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Abstract

Batch Bayesian optimisation and Bayesian quadrature have been shown to
be sample-efficient methods of performing optimisation and quadrature where
expensive-to-evaluate objective functions can be queried in parallel. However, cur-
rent methods do not scale to large batch sizes — a frequent desideratum in practice
(e.g. drug discovery or simulation-based inference). We present a novel algorithm,
SOBER, which permits scalable and diversified batch global optimisation and
quadrature with arbitrary acquisition functions and kernels over discrete and mixed
spaces. The key to our approach is to reformulate batch selection for global optimi-
sation as a quadrature problem, which relaxes acquisition function maximisation
(non-convex) to kernel recombination (convex). Bridging global optimisation and
quadrature can efficiently solve both tasks by balancing the merits of exploitative
Bayesian optimisation and explorative Bayesian quadrature. We show that SOBER
outperforms 11 competitive baselines on 12 synthetic and diverse real-world tasks.

1 Introduction

Bayesian optimisation (BO) is a sample-efficient model-based global optimiser. BO typically use a
Gaussian process (GP), whose predictive mean and variance guide the optimiser where to evaluate
next by maximising the acquisition function (AF). Flexibility and superb sample-efficiency enable
a range of expensive-to-evaluate applications, e.g. drug discovery [18, 22], materials [1], and
hyperparameter optimisation [16, 70]. Batch BO offers faster convergence by querying multiple
locations at once (batch acquisition). Bayesian quadrature (BQ), a model-based blackbox integration
method akin to BO, widely applied in simulation-based inference. The task is to estimate both the
posterior and marginal likelihood (also called evidence) of blackbox functions (simulators), applied
to science (e.g. astrophysics [48, 47], batteries [3]).

Challenges in Batch Bayesian Optimisation Tasks. Despite its many successes, batch BO has
several challenges. Firstly, batch size scalability: The extensive overhead of many batch BO methods
limits the batch size to be around 10. Scaling to a larger batch size is preferable for a variety of
real-world problems. For instance, high-throughput drug discovery might evaluate 384 compounds
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Table 1: Comparing batch BO algorithms. The scalability to large batch sizes is defined by the
computational complexity smaller or equivalent complexity to Thompson sampling (TS) (See Supp.
B). Comb. explos. refers to combinatorial explosion when applied to discrete inputs with large batch
size. The sparsity means more diversified samples than random Monte Carlo. x, f , and h spaces refer
to the input, function, and hyperparameter spaces. The black-box evidence represents the ability to
estimate the integral of the black-box function over input space x, equivalent to the task of BQ.

Batch BOs large
batch

mixed
space

No comb.
explos.

arbitrary
AF

x-space
sparsity

f -space
sparsity

h-space
sparsity

blackbox
evidence

Hallucination [4] ✕ ✓ ✕ ✓ ✓ ✕ ✕ ✕
LP [19] ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✕
TS [30] ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕
Decoupled TS [69] ✓ ✓ ✓ ✕ ✕ ✓ ✕ ✕
DPP [37] ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕
DPP-TS [45] ✓ ✓ ✓ ✕ ✓ ✕ ✕ ✕
MC-SAA [5] ✓ ✓ ✕ ✕ ✓ ✕ ✕ ✕
GIBBON [43] ✕ ✓ ✕ ✕ ✓ ✕ ✕ ✕
TurBO [15] ✓ ✕ ✕ ✓ ✓ ✕ ✕ ✕
SOBER (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Figure 1: Thompson sampling is under-explorative.
The white, black, and red points are the observed,
querying, and true maximum locations.

in a batch experiment [8]. Further, in-Silico
materials discovery can query thousands of
simulations in parallel via computer clusters.
As a second challenge, many batch BO methods
are targeted at continuous inputs, yet the
examples mentioned above of drug discovery,
namely molecules, are inherently discrete.
Selecting batch acquisition samples in a discrete
space leads to combinatorial explosion with
increasing batch size. Lastly, batch diversity:
scalable methods, such as Thompson sampling
(TS) [30, 36], are too exploitative. The two
leftmost columns in Figure 1 exemplifies typical
behaviour – getting stuck in a local minimum
and wasting batch samples in the majority of
TS methods. This tendency amplifies in noisy
and multimodal cases. The larger the batch
size we query, the larger the regret becomes,
as the batch samples could have been used for
exploring other regions.

Figure 2 shows drug discovery is a case where
the input space is noisy and multimodal. This
needle-in-the-haystack situation is challenging
for finding the bias-variance trade-off via opti-
mising GP hyperparameters. It leads to having

two modes: low-noise and high-noise in the hyperposterior space. A low-noise mode regards every
tiny change as a peak, whereas high-noise sees every peak as noise. While the low-noise mode tends
to get stuck in local minima, the high-noise mode can not find the best drug. Such problems are
usually solved by adopting fully Bayesian GP (FBGP), which uses an ensemble of GP models with
hyperparameters sampled from hyperposteriors [53]. Yet, FBGP causes significant overhead that
challenges for expensive batch BOs (e.g. determinantal point process (DPP) [37]).

Challenges in Batch Bayesian Quadrature Tasks. Unlike BO, BQ endures ‘over-exploration’
when applied for Bayesian inference. The exploration space in BQ is defined as the prior distribution,
whereas the target distribution to approximate, posterior, is much sharper than prior and shows
negligibly small values almost everywhere. Guiding BQ to explore the posterior mode is key to
sample-efficiency.
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Contribution. We propose the hallucination-free scalable batching: solving optimisation as Bayesian
estimation via recombination (SOBER). SOBER bridges BO and BQ, combining both merits to
solve the above issues of each method — While exploitative BO alleviates over-exploration for BQ,
explorative BQ mitigates the stuck-in-local-minima issue via diversified sampling for BO (see two
rightmost columns of Figure 1). Table 1 summarises a comparison with the batch BO baselines.
With the given features, we particularly focus on drug discovery (large-scale discrete batch BO with
graph/string input, batch BO task), and simulation-based inference (simultaneous estimation of both
posterior and evidence, batch BQ task). Empirically, SOBER shows better sample-efficiency as well
as faster wall-clock time computation than 11 baselines in both batch BO and BQ over 12 tasks. We
emphasise that SOBER is an extension of both BO and BQ and is compatible with existing methods.

2 Related Work and Challenges

Figure 2: Drug discovery
is finding the needle in the
hey stack. 2D UMAP [42]
shows only 5 out of 133,055
molecules on the QM9 dataset
met desideratum (> 10D).

Batch Bayesian Optimisation. Batch BOs are summarised in Table
1 (see Supp. A.1 for primer). While BO is an inherently sequential
algorithm, assuming queries to an oracle are performed one after an-
other, batch BO aims to query multiple locations in one go. However,
most AFs are designed only for querying one point. Classic methods,
like hallucination [4] and local penalisation (LP) [19], tackled this
by simulating sequential processes, both of which are successful
in small batch size n, but not scalable due to large computational
overhead. In recent work, MC-SAA [5] proposed quasi-Monte Carlo
(qMC)-based AF approximation, and GIBBON [43] proposed diver-
sified sampling methods using a specific AF. However, discrete and
mixed spaces also present challenges for the above algorithms. The
simplest way to maximise AFs over a discrete space is to take the
argmax of all possible candidates. Yet, the higher the dimension and
larger the number of categorical classes, the more infeasibly large the
combination becomes (combinatorial explosion). This is particularly
challenging for MC-SAA and GIBBON, as both optimise the batch
querying points as optimisation variables. Namely, querying large
batch sizes requires enumerating all possible permutations of both
batch samples and discrete variables, leading to a combinatorial explosion. DPP [37] also proposed
diversified sampling with rejection sampling, however, it produces prohibitive overhead and is not
scalable. Alternatively, there exist BO works for discrete and mixed spaces that propose bespoke AF
[6, 54, 10] or special kernel [67, 46, 11, 64]. All consider sequential setting — we do not compare
against sequential BO. Rather, these special AF/kernels are compatible with our method, SOBER.

As such, the existing scalable discrete batch BO methods are TS-based (TS [30], decoupled TS [69],
DPP-TS [45], TurBO [15]). TS is approximated by the sequential argmax of random samples over
input space, which is completely gradient-free, allowing for scalable batching over a discrete space.
Yet, batch TS is not so diversified. Decoupled TS diversifies TS batch samples by decoupled sampling
that sparsifies the GP function space. Although decoupled sampling yields scalable batch sampling,
diversification is not enough as shown in Figure 1. DPP-TS tried to take the best of both worlds
of DPP and TS, and is faster than DPP, but still slower than others. TurBO [15] introduced multiple
local BOs bounded with trust regions, and allocates batching budgets based on TS. This succeeded
in scalable batching via maintaining local BOs that are compact, via shrinking trust regions, based
on heuristics with many hyperparameters. Selecting hyperpameters is non-trivial and TurBO cannot
apply to discrete and non-Euclidean space, for which kernels do not have lengthscale hyperparameters
for the trust region update heuristic (e.g. Tanimoto kernel for drug discovery [51]). (See Supp. B).

Batch Bayesian Quadrature. A primer on BQ can be found in [28] and Supp. A.2. BQ shares
analogous challenges on batching with BO. While BO needs accurate approximation around the
global optimum, integration approximation error in BQ is affected by whole function space. Thus,
BQ adopts uncertainty sampling AF [47, 23]. BatchWSABI [66] was the first to extend BQ to a batch
setting using LP [19]. Later, Bayesian alternately subsampled quadrature (BASQ) achieved efficient
batching with kernel recombination and is the only method for scalable batching [2]. However, BASQ
is over-explorative; logBASQ [3] mitigates this by using the log-warped GP.
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2.1 Bayesian Alternately Subsampled Quadrature (BASQ)

The difficulty of scalable batching is the sequential AF maximisation strategy, of which the large over-
head and the continuity assumption hinder scalable discrete space optimisation. The TS strategy is
too exploitative and less diversified. BASQ [2] achieved scalable batch BQ with a different approach
from existing works. Instead of AF maximisation, BASQ reframed batch uncertainty sampling (batch
BQ) as kernel quadrature (KQ). KQ is the problem of sample-efficient integration approximation as a
weighted sum

∫
f(x)dπ(x) ≈ w⊤

batchf(Xbatch), of which the integrand function f belongs to reproduc-
ing kernel Hilbert space (RKHS), typically applied to the positive semi-definite kernel. Let the kernel
K be the posterior predictive covariance of the GP. Surprisingly, minimising worst-case integration
error via selecting n weighted samples (wbatch,Xbatch) is equivalent to minimising the total predictive
uncertainty (proof in [32]). Thus, solving KQ can obtain n batch samples which are not only diver-
sified, but also of provably small total GP predictive variance (uncertainty sampling). This duality
enables us to import the advanced methods from KQ community. Particularly, subsample-based kernel
quadrature (SKQ) offers multiple advantages over existing batch BQ/BO methods. First, scalability
in batch size, of which computational complexity is smaller than baselines (see Supp. B). Second, a
gradient-free solver, which is ideal for non-Euclidean discrete spaces. Third, no limitation in prior and
kernel modelling, unlike baselines [66]. SKQ reformulates the n point selection problem as extracting
the subset of discrete probability measure πbatch = (wbatch,Xbatch) from large samples approximating
the prior (we refer to empirical measure) πemp = (wrec,Xrec), where Xbatch ∈ Rn×d, Xrec ∈ RN×d,
Xbatch ⊂ Xrec, N ≫ n. Empirical measure is constructed by sampling from π, Xrec ∼ π, and its
expectation approximates the mean of π well,

∫
fdπ ≈ w⊤

recf(Xrec) ≈ w⊤
batchf(Xbatch) for f in the

RKHS. This formulation can be interpreted as minimising maximum mean discrepancy (MMD) [21]
between πemp and πbatch [32]. The MMD distance is widely recognised for measuring the distance
between distributions. As such, SKQ is a sparse discretisation problem of an uncertain region subject
to approximate the original π with given n samples with weights.

Amongst SKQs, random convex hull quadrature (RCHQ) [26] achieved provably state-of-the-art
convergence rate of integral approximation as well as computationally-tractable complexity. This rate
and complexity come from two approaches: Nyström method [12] and kernel recombination [62].
The Nyström method approximates the kernel using randomised singular value decomposition (SVD)
[25] of the Gram matrix. SVD eigendecomposes the Gram matrix K(Xrec,Xrec) = Udiag(Λ)U⊤,
then the test functions, defined as φj(x) := u⊤

j K(Xnys, x), where uj ∈ U is an eigenvector, λj ∈
diag(Λ) is an eigenvalue, and Xnys ∈ RM×d drawn from π, can approximate the kernel K(x, x′) ≈∑n−1

j=1 λ−1
j φj(x)φj(x

′). RCHQ constructs sparse KQ rules via n − 1 test functions, permitting
incorporation of the spectral decay in the kernel for faster convergence. Kernel recombination is the
algorithm to solve such SKQ problems with best known complexity. This algorithm is completely
gradient-free. In summary, the advantages of BASQ derive from: (1) Scalability, (2) gradient-free
solver for discrete and non-Euclidean spaces, and (3) no limitation in prior and kernel selection, as
comes from reformulation as SKQ. Constructing πemp is just sampling, so any kind of distribution
can be used. The Nyström approximation only requires Gram matrix, which any kernel can compute.

3 Proposed Method: SOBER

3.1 Global Optimisation as Bayesian Quadrature: Duality in Probability Measure

We reframe batch BO as a batch BQ problem. Consider the following dual formulation [56]:

x∗
true = argmax

x
ftrue(x)

dual⇐=⇒ δx∗
true
∈ argmax

π

∫
ftrue(x)dπ(x), (1)

where δx is the delta distribution at x, π is a probability distributions over the x∗
true, and x∗

true is the
location of the global maximum of ftrue. Figure 3 illustrates the algorithm flow.

Why necessary? This formulation is defined as black-box integration. We can then solve the batch
BO problem as batch BQ using BASQ to harvest the benefits: (1) scalable diversified batching, (2)
applicability to discrete and non-Euclidean space, and (3) flexibility of GP models with arbitrary kernel
and priors over input. These benefits are unachievable with existing methods as previously mentioned.

How is it different from BASQ? Eq. (1) updates π over each iteration, whereas BASQ keeps
π unchanged. The more accurately the GP surrogate approximates ftrue through batch-sequential
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Figure 3: SOBER algorithm. Finding the location of global maximum x∗
true is equivalent to finding the

delta distribution δx∗
true

. Based on the surrogate f , we approximate the probability of global maximum
P (x∗

true | Dobs) as π defined in §3.3. We can also set the user-defined acquisition function α to adjust
batch samples (max-value entropy search in this case). Kernel quadrature gives a weighted point set
(wbatch,Xbatch) that makes a discrete probability measure approximating π in a way that is adaptive to
the current GP [32]. Here, we have used a weighted kernel density estimation based on (wbatch,Xbatch)
to approximately visualise the kernel quadrature. Over iterations, π shrinks toward global maximum,
which ideally becomes the delta function in a single global maximum case.

updates, the “narrower” π gets. Ideally, π eventually reaches the global maximum δx∗
true

in a single
global maximum case. As such, solving Eq. (1) by updating π is equivalent to finding the maximum
x∗

true. While BASQ is a pure exploration algorithm, SOBER introduces exploitation by shrinking π.

3.2 Batch Selection as Kernel Quadrature

The batch selection in SOBER is performed by RCHQ. We propose the objective-RCHQ, solving:

Find an n-point subset Xbatch ⊂ Xrec, (2a)

s.t. max w⊤
batchα(Xbatch), (2b)

w⊤
batch1 = w⊤

rec1 = 1, wbatch ≥ 0, w⊤
batchφi(Xbatch) = w⊤

recφi(Xrec), 1 ≤ i < n, (2c)

where α is an arbitrary AF. As with the known constraints of n − 1 KQ rules with Nyström
approximation in Eq. (2c), we added the AF maximisation term Eq. (2b). There exist theoretical
guarantees for specific choices of AFs depending on the spectral decay of an integral operator
determined by the pair (K,π) [2, 27]. Empirically, the convergence as n increase is fast even without
the AF term. We can utilise this degree of freedom for incorporating AF tailored for specific domain.

3.3 Sequentially Updating π

π is vital in defining the feasible region by exploiting the information from the surrogate model f .
We wish to design π to shrink towards the global maximum, which ideally becomes the delta function
in a single global maximum case. We discuss two variants; TS and likelihood-free inference (LFI).

TS-based. SOBER-TS adopts the maximum of the current GP surrogate x∗, P (x∗|D) as π. This
definition is well known as TS. We prepare N candidates with parallel decoupled TS [69], which
alleviates the sampling overhead and fosters batch diversity via sparsifying the sampled functions
from GP posterior (f -space sparsity). As such, SOBER-TS can be understood as re-selecting the TS
samples that can maximise the sum of the AF and minimise the predictive variance. However, TS
cannot provide the closed-form P (x∗|D) distribution for faster sampling.

LFI-based. Considering π definition under uncertain global maximiser x∗, x∗
true might be any location

with values possibly larger than the current maximum η := maxE[f(x∗)]. Given this definition, we
can define the “tentative” likelihood over input space P (f(x) ≥ η|x,D) [24], given by:

L(x|θ, σ2
n, η) := P

(
f(x|D

)
≥ η) ∝ Φ

[
m(x|θ)− η√
C(x, x|θ)

]
, (3)
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where the Φ is cumulative density function (CDF) of the standard normal distribution. This likelihood
definition is the same as the probability of improvement (PI) AF [38]. Ideally, π can eventually reach
the global maximum δx∗

true
in a single global maximum case, where η = ftrue(x

∗
true) = E[f(x∗

true)].
Now we can estimate posterior belief of the maximum location π via the following Bayes’ rule,
π(x) ∝ L(x)π′(x). For each iteration, L(·|θ, σ2

n, η) is updated and π′ is π of the previous iteration.
In the beginning, π′ is the prior belief. In the typical BO setting, we use the bounded uniform prior,
but we can incorporate the experts’ knowledge via a stronger prior. We do not examine the sensitivity
to prior π′ in this paper, but the following papers show strong empirical performance of a stronger
prior [41, 34]. Closed-form expression of SOBER-LFI can offer faster sampling.

How to sample from π. SOBER handles discrete, continuous, or mixed inputs. The difference is the
sampler for empirical measure πemp. The simplest scenario is if all discrete candidates are available a
priori and enumerable. As RCHQ accepts weighted samples πemp = (wrec,Xrec) as importance sam-
pling, sampling is just computing the weights wrec = π(Xrec)/

[
π(Xrec)

⊤1
]
. If all combinations are in-

numerable or unavailable, we sample Xrec from the discrete prior π′, which is user-defined. Once sam-
pled, the procedure is the same: compute wrec, then pass the empirical measure πemp to RCHQ. We up-
date the hyperparameters of the prior π′ via maximum likelihood estimation (MLE) from the weighted
sample (wrec,Xrec). A continuous space can be regarded as an innumerable discrete space, so it can be
handled similarly. The only difference is the prior update. We use weighted kernel density estimation
(KDE) for the update, for speed and flexibility. Mixed space is the combination of discrete and contin-
uous space, so the prior is the combination of both. Importantly, the prior does not need to precisely
approximate π as the importance weights wrec will correct the difference. See Supp. D for details.

3.4 Auxiliary Algorithms

The fundamental idea of SOBER is simple: reframe batch BO as a batch BQ problem. While objective-
RCHQ plays a role of exploration, shrinking π contributes to exploitation. The balance between
exploration and exploitation can be adjustable via AF in objective-RCHQ, π definitions, or kernel
selection, similarly to standard BO. While the above functionalities suffice minimal components of
SOBER, the following auxiliary ones help bringing out the full potential of SOBER on each case.

Noisy Functions. As seen in Figure 2, noisy functions need FBGP modelling [53] but is expensive.
We propose quadrature distillation to mitigate this. As FBGP is the Monte Carlo (MC) integration
for marginal predictive posterior over hyperposterior (blackbox function), we can reframe this
as another BQ problem. This reformulation extracts a small subset of weighted hypersamples
from random ones. Such a distilled subset can offer sample-efficient integral approximattion over
the hyperposterior, which can accelerate various expensive integrations, such as fast FBGP, fast
information-theoretic AF, and fully Bayesian LFI formulation (see Supp. C).

Non-Smooth Functions. RCHQ exploits spectral decay of kernel via Nyström method for faster
convergence. However, non-smooth or sharp functions have a long-tailed decay in eigenvalues,
worsening the convergence rate of quadrature algorithms. We propose automatic KQ selection
algorithm to cope with this. SKQ is not only RCHQ — kernel thinning [14]is also subsample-based
and independent on the spectral decay. Which performs better depends on the level of smoothness.
Importantly, the quadrature performance is quantifiable as worst-case integration error, thus we can
automate the selection of two SKQ algorithms by monitoring the error (see Supp. D).

Simulation-based Inference. As LFI is originally introduced to solve simulation-based inference,
now our SOBER-LFI is also capable of solving simulation-based inference. Sampling from π
efficiently squeezes the region to be explored toward only the vicinity of posterior mode. As such,
BO reformulation can introduce exploitation to BQ via π update. When compared to the original BO-
based LFI (BOLFI) [24], SOBER has two benefits; evidence estimation and exact posterior estimation.
While BOLFI is designed to approximate only the posterior distribution using the approximated
likelihood definition, SOBER can estimate both the posterior and model evidence in one go, using
the exact likelihood definition based on BASQ. We propose dual GPs; one for sampling with BOLFI,
one for BQ modelling with BASQ. (see Supp. E)

3.5 Summary of Contribution

We reformulated the batch BO task as the dual problem defined by Eq. (1). Now, estimating the
global maximum is equivalent to updating π. We introduced two variants: TS and LFI. Both offer
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Table 2: Experimental Setup. BO/BQ refers to which task is to be solved, syn./real refers to the
problem whether synthetic or real-world ones. The dimensions represent the number of dimensions
over input space categorised into continuous (cont.), categorical (cat.), and binary (bin.), total refers
to the summation of each dimension. Batch is the batch size n, and prior is π′. For prior, Bernoul.
and Categor. refer to Bernoulli and categorical distributions with equal weights. (see Suppl. F)

dimensions d prior π′

experiments BO
/BQ

syn.
/real objective cont. cat. bin. total batch

n
kernel
K

cont. disc.

Ackley

BO

syn

log10 min(f) 3 - 20 23 200 RBF U(−1, 1) Bernoul.
Rosenbrock log10 min(f) 1 6 - 7 100 RBF U(−5, 10) Categor.
Hartmann log10 max(f) 6 - - 6 100 RBF U(0, 1) -
Snekel log10 max(f) 4 - - 4 100 RBF U(0, 10) -

Pest

real

min(f) - 15 - 15 200 RBF - Categor.
MaxSat min(f) - - 28 28 200 RBF - Bernoul.
Ising log10 min(f) - - 24 24 100 RBF - Bernoul.
SVM min(f) 3 - 20 23 200 RBF U(0, 1) Bernoul.
Malaria log10 min(f) - - 2048 2048 100 Tanimoto - Categor.
Solvent −max log10 f - - 2048 2048 200 Tanimoto - Categor.

2 RC BQ real
∫
f(x)dπ′(x) 6 - - 6 100 RBF Gaussian -

5 RC
∫
f(x)dπ′(x) 12 - - 12 100 RBF Gaussian -

approximation of π using the information of the current surrogate model f . In either case, once the
empirical measure πemp = (wrec,Xrec) is constructed by sampling from π, the ‘objective-RCHQ’
chooses batch samples that minimise the GP posterior variance and maximise the user-defined AF.
Additionally, quadrature distillation provides fast FBGP for noisy functions, automatic KQ selection
permits the best of both worlds over RCHQ and kernel thinning for non-smooth or sharp functions,
and dual GPs offer simulation-based inference. Note that the auxiliary algorithms are additional
augmentations of general GP-based BO against the shared challenges. These design choices are
simple, whether or not the objective function is noisy, non-smooth, or sharp. If the additional overhead
allows, we can use all in default, but SOBER works even without these (see Supp. D).

4 Link between Global Optimisation and Quadrature

4.1 Theoretical Background

Similar approaches to ours can be seen in existing batch BOs, such as TurBO [15] (shrinking trust
regions), batch TS [36], and DPP-BO [37]. For instance, the motivation of DPP is to diversify the
batch samples [45], but the underlying idea can be linked with quadrature. As explained in Sec. 2.1,
quadrature can be seen as sparsely discretising an uncertain region, which again can be regarded as
pure exploration with diversified batch samples for BO via Eq. (1). For a more detailed theoretical
background, we can start with classical batch TS. First of all, [36] show that the batch TS (synTS in
their paper) satisfies the reasonable order of Bayesian regret (BR) (their Theorem 2). Their proof is
essentially given by estimating 1

t

∑t
i=1

1
N

∑N
j=1 E[ftrue(x

∗
true)− ftrue(xi,j)], where (xi,j) ∈ Xbatch,i

is the batch sample at the i-th iteration. We can view the value ftrue(x
∗
true)− 1

N

∑N
j=1 ftrue(xi,j) as

the difference between ftrue(x
∗
true) and the MC estimate of the integral of ftrue over πi. In SOBER,

we approximate this integral by an n-point weighted subset of Xbatch,i at each iteration using kernel
recombination — on which we can prove the integral error (see Theorem 1 in [2])1. Namely, we can
quantify how close our integral estimate w⊤

batchf(Xbatch) is to the true integral
∫
ftrue(x)dπ(x) or the

empirical mean w⊤
recf(Xrec). Similar discussion can be done with DPP-BO [37, 45] for general AFs.
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Table 3: Experimental BO results on convergence of objectives atfter 15 iterations. Objective values
are average ± 1 standard error over 10 repeated runs. See Table 2 for the objectives of each task.
Mean rank is the average rank over 10 datasets for each method.

baselines Ackley Rosen-
brock

Hart-
mann Shekel Pest MaxSat Ising SVM Mal-

aria
Sol-
vent

Mean
rank

Random 0.232
± 0.01

3.509
± 0.02

0.448
± 0.01

-1.280
± 0.06

8.514
± 0.06

-25.50
± 0.30

-2.008
± 0.12

0.363
± 0.01

-2.593
± 0.03

-0.972
± 0.01 7.1

TS 0.093
± 0.01

1.382
± 0.31

0.505
± 0.01

-0.195
± 0.01

9.397
± 0.12

-30.37
± 0.54

0.027
± 0.07

0.349
± 0.01

-2.703
± 0.03

-0.990
± 0.01 6.0

decoupled
TS

0.054
± 0.01

2.490
± 0.14

0.502
± 0.01

0.072
± 0.05

7.911
± 0.01

-32.53
± 0.25

-0.157
± 0.01

0.348
± 0.01

incompatible
RFF kernel 5.0

DPP-TS 0.071
± 0.01

0.976
± 0.26

0.495
± 0.01

-0.821
± 0.08

7.963
± 0.05

-31.18
± 0.45

-0.320
± 0.01

0.357
± 0.01

prohibitively
slow (>7 days) 6.0

TurBO 0.200
± 0.01

-0.017
± 0.01

0.499
± 0.01

0.458
± 0.01

9.309
± 0.03

-18.25
± 0.47

0.169
± 0.02

0.362
± 0.01

no lengthscale
in kernel 7.0

GIBBON 0.007
± 0.02

2.800
± 0.20

0.368
± 0.02

0.375
± 0.03

8.890
± 0.05

-33.58
± 1.08

-0.228
± 0.01

0.365
± 0.01

combinatorial
explosion 6.4

Halluci-
nation

0.142
± 0.01

0.704
± 0.28

0.504
± 0.01

-0.013
± 0.02

8.176
± 0.04

-31.05
± 0.46

-2.345
± 0.03

0.327
± 0.01

prohibitively
slow (>7 days) 4.6

LP -0.063
± 0.01

3.727
± 0.19

0.511
± 0.01

-0.189
± 0.08

9.111
± 0.11

-20.98
± 1.39

-1.527
± 0.28

0.343
± 0.01

Non-Euclidean
space 5.9

SOBER
-TS

-0.008
± 0.02

1.934
± 0.250

0.513
± 0.01

0.242
± 0.02

8.377
± 0.01

-32.29
± 0.27

-2.749
± 0.01

0.349
± 0.01

incompatible
RFF kernel 3.9

SOBER
-LFI

-2.180
± 0.01

0.653
± 0.17

0.514
± 0.01

0.713
± 0.01

7.070
± 0.03

-34.84
± 0.12

-2.796
± 0.01

0.320
± 0.01

-2.765
± 0.03

-1.064
± 0.01 1.1

4.2 Empirical Analysis

We empirically investigate the relationship between regret and π-shrinkage. We consider the following
two metrics for π-shrinkage; mean variance (MV) Var[π(x)] and mean distance (MD) |x∗

true−E[π(x)]|.
MV corresponds to the π-shrinkage, of which smaller value indicates shrinking. MD represents
the Euclidean distance between the mean of π and the true global maximum x∗

true. We compared
these two metrics against BR, BR := |y∗true − w⊤

batchftrue(Xbatch)|. BR is the batch estimation regret
(referred as BR for Theorem 2 in [36]). Experimental results (see Supp. F.) show the strong linear
correlations between all of these 3 metrics (> 0.95), clearly explaining the π-shrinkage is a good
measure of BR as the dual objective in Eq. (1). In other words, π (MC estimate of x∗) shrinks toward
true global maximum x∗

true with being smaller variance (more confident), and both linearly correlated
to minimising BR, can be visually confirmed in Figure 3.

5 Experiments

We evaluate the sample efficiency and overhead of SOBER on 12 experiments against 11 baselines
(8 baselines for BO; random, TS, decoupled TS, DPP-TS, TurBO, GIBBON, hallucination, LP, and 3
baselines for BQ; batchWSABI, BASQ, and logBASQ). 12 experimental conditions are summarised
in Table 2 (10 experiments for BO, 4 synthetic and 6 real-world datasets, and 2 real-world experiments
for BQ). See Supp. F for full experimental details. Our code is built upon PyTorch-based libraries
[49, 17, 5, 22]. All experiments were averaged over 10 repeats, computed in parallel with multicore
CPUs2 for a fair comparison, although GPUs can accelerate SOBER. As explained in Sec. 2, TurBO,
GIBBON, Hallucination, and LP suffer from a combinatorial explosion in discrete space. To enable
the comparison, we adopt thresholding3 only for their discrete or mixed experiments. Most algorithms
cannot be applied for various reasons to drug discovery tasks (see Table 3).

Results. Tables 3 and 4 illustrate the convergence and wall-clock time of sampling overhead at 15th
iteration, respectively. As mean rank shows, SOBER-LFI outperforms all 8 baselines on 9 out of 10
experiments as well as maintaining the smallest average overhead. Diversified but squeezed batching

1Although, more investigation is needed to obtain end-to-end convergence guarantees.
2Performed on MacBook Pro 2019, 2.4 GHz 8-Core Intel Core i9, 64 GB 2667 MHz DDR4
3We optimise discrete variables as continuous ones, then the solutions are classified via nearest neighbours.
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Table 4: Cumulative wall-clock time for 15 iterations and averaged over 10 repeated runs (log10
second).

baselines Ackley Rosen-
brock

Hart-
mann Shekel Pest MaxSat Ising SVM Mal-

aria
Sol-
vent

Mean
rank

Random -1.92 -1.96 -1.26 -1.17 -1.92 -1.89 -1.64 0.82 1.40 1.49 -
TS 2.71 3.10 2.79 2.86 3.00 3.70 3.22 3.36 2.71 2.85 3.1
decoupled TS 2.20 2.04 2.01 2.04 3.17 3.22 3.65 3.90 - - 2.6
DPP-TS 4.85 4.56 4.35 4.62 5.67 4.49 4.73 4.73 - - 7.4
TurBO 3.42 3.06 2.12 3.07 2.91 2.97 3.45 3.58 - - 3.3
GIBBON 4.92 4.18 3.71 3.52 3.72 4.71 4.25 4.41 - - 6.8
Hallucination 4.52 4.09 4.42 3.68 4.68 4.75 4.14 5.05 - - 7.4
LP 5.50 5.48 5.23 4.78 3.84 5.48 5.10 4.53 - - 8.5
SOBER-TS 3.10 3.43 3.16 3.17 3.30 4.01 3.20 3.21 - - 4.1
SOBER-LFI 2.58 2.19 2.08 2.65 2.99 2.96 2.28 2.31 2.43 2.35 1.5

with SOBER-LFI is demonstrated to work well over various levels of multimodal and noisy functions
over continuous, discrete, and mixed spaces. SOBER-LFI was only outperformed on the unimodal
noiseless Rosenbrock function, which is in favour of hill-climbing algorithms like TS and TurBO.
Still, SOBER-LFI takes second place, showing that updating π can efficiently squeeze the sampling
region around the global maximum. In drug discovery tasks, SOBER-LFI showed fast convergence
in both optimisation and computation, where most algorithms do not apply. Particularly, the solvent
dataset clearly exemplifies the stuck behaviours (see Supp. F for learning curves). TS converges fast
in the early stage, but it can not get out of the local maxima, resulting in a final regret being identical
to random search, whereas SOBER-LFI does not suffer.
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Figure 4: Batch BQ baseline comparisons across
2 real-world simulation-based inference tasks.
Top: Log of log evidence. Bottom: Log RMSE
of posterior as function of iterations. Lines and
shaded area denote mean± 1 std. error. SOBER-
LFI consistently outperforms all three baselines.

Figure 4 illustrates that SOBER also outperformed
the BQ baselines. While the original BASQ over-
explores the prior distribution and shows plateaus,
logBASQ alleviates this behaviour via log-warp
modelling. Nonetheless, SOBER showed signif-
icantly faster convergence than all competitors in
both posterior and evidence inference of all tasks
by squeezing π toward the posterior mode.

We used type-II MLE GP throughout the experi-
ments (no auxiliary algorithms from Sec. 3.4 ex-
cept simulation-based inference). Supp. F fur-
ther illustrates the effect of AF, batch size n,
and hyperparameters (N,M). Amongst the AFs,
information-theoretic AFs (MES and GIBBON)
can boost the convergence rate than the LFI AF
with a negligible overhead increase. The hyperpa-
rameters N , M are quite intuitive: the discretisa-
tion accuracy of the input x and function f spaces,
respectively. Unsurprisingly, the larger these val-
ues become, the faster the convergence becomes
but the larger the overhead is. Our default values
(N = 20000,M = 500) are competitive through-
out the experiments. These values can be adjusted to the cost of queries [2] 4. Moreover, the larger
the batch size n becomes, the faster the convergence5. The ablation study shows that each component
(temporary likelihood π, the iterative π update, and the objective-RCHQ) contributes to faster con-
vergence. Additionally, FBGP with quadrature distillation can accelerate convergence, especially in
noisy functions, while maintaining the overhead is competitive enough to the baselines.

4see guidelines in [2]
5We emphasise the convergence acceleration in the large batch is not typically achievable with other baseline

methods, such as GIBBON (See Figure 6 in [43]).
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A Background

A.1 Bayesian Optimisation

BO is an algorithm for solving the black-box global optimisation problems defined by:
x∗

true = argmax
x

ftrue(x), (4)

where x∗
true is the true global maximum of the true black-box function ftrue. The underlying assump-

tions here are:

1. ftrue is a black-box function, and we do not know the function information except for
querying the values at certain locations (oracles).

2. We can query multiple locations at the same time without additional overhead, and a larger
batch size is desirable for faster convergence in wall-clock time.

With the given assumption, the desiderata are:

1. The queries are expensive, and we wish to minimise the number of queries for fast conver-
gence.

2. The total overhead of the batch acquisition algorithm should be smaller for fast computation.

For sample-efficient global optimisation, BO typically utilities a surrogate GP model f of ftrue. We
set zero mean GP as a prior over function space, and set Gaussian likelihood. As both are Gaussian
and conjugate, the predictive posterior with noisy observations has the closed-form as Gaussian,
denoted by:

P (f | Dobs, x) = GP
(
f ;m(x), C(x, x′)

)
, (5a)

m(x) = K(x,Xobs)
[
K(Xobs,Xobs) + σ2I

]−1

yobs, (5b)

C(x, x′) = K(x, x′)−K(x,Xobs)
[
K(Xobs,Xobs) + σ2I

]−1

K(Xobs, x
′), (5c)

where Dobs=(Xobs, yobs) is the observed dataset, yobs :=ftrue(Xobs) are the oracles queried in parallel,
m(·) and C(·, ·) are the mean and covariance of the predictive posterior, K(·, · | θ) is the kernel, θ is
the kernel hyperparameters, I is the identity matrix, σ2

n is the variance of Gaussian noise, and x and
x′ are the locations where we wish to predict, x, x′ /∈ Xobs.

m and C guide our beliefs toward the region where the true global maximum x∗
true possibly locates.

Such a guiding mechanism is obtained through maximising an AF, which selects the next query
via its maximisation. There are several types of AFs, such as expected improvement (EI) [35],
upper confidence bound (UCB) [60], information-theoretic AFs [65, 29, 68, 33], FBGP-based AFs
[31, 57, 53]. More sample-efficient AF tends to be more computationally expensive.

Queried observations Dobs serially update the GP surrogate model f so it can predict the output of
ftrue more accurately. When updating GP with given Dobs, GP hyperparameters θ are also updated.
There are two ways of updating hyperparameters; type-II MLE and FBGP. While type-II MLE is
the point estimation of optimal hyperparamter in terms of the marginal likelihood of the GP, FBGP
estimates the hyperposterior, typically performed by Markov chain Monte Carlo (MCMC), then
represent the predictive posterior as the ensemble of GP with the hyperparameters randomly sampled
from hyperposterior.

A.2 Bayesian Quadrature

BQ is an algorithm for evaluating integrals given by:

Ztrue =

∫
ftrue(x)dπ(x), (6)

where ftrue is the black-box function we wish to integrate against a known probability measure π. The
difference from BO is the objective being integration, not global optimisation. The integration problem
is widely recognised in statistical learning: expectations, variances, marginalisation, ensembles,
Bayesian model selection, and Bayesian model averaging. BQ is, like BO, solved by GP-surrogate-
model-based active learning. The batch acquisition methods are also shared with batch BO. The
methodological differences are:
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1. BQ typically assumes a specific kernel to make the integration analytical (e.g. RBF kernel).
2. While BO requires to approximate the black-box function only in the vicinity of the global

optimum, BQ needs to approximate the whole region of interest defined by the probability
measure π.

Thus, BQ is a purely explorative algorithm, and the uncertainty sampling AF is often applied.

The classic method to estimate the integral exploits Gaussianity. Let π be multivariate normal
distribution π(x) = N (x;µπ,Σπ), and the kernel K be RBF kernel, which can be represented as
Gaussian K(Xob, x) = v

√
|2πW|N (Xob;x,W), where v is kernel variance and W is the diagonal

covariance matrix whose diagonal elements are the lengthscales of each dimension. As the product of
two Gaussians is a Gaussian, the integrand becomes a Gaussian and its integral has the closed form,
as such: ∫

m(x)π(x)dx = v

[∫
N (x;Xobs,W)N (x;µπ,Σπ)dx

]⊤
K(Xobs,Xobs)

−1yobs, (7)

= v

[∫
N (x;Xobs,W)N (x;µπ,Σπ)dx

]⊤
ω, (8)

= vN (Xobs;µπ,W +Σπ)
⊤ω, (9)

where ω := K(Xobs,Xobs)
−1yobs. As such, the integration of GP over the measure π is analytical.

The more accurately the GP can approximate the true function ftrue, the more accurately the above
integration estimation approximates.

As such, classical BQs have additional limitations on prior and kernel selections. To make the
integration closed-form, the prior needs to be uniform or Gaussian, and the kernel also needs to be
limited selection (e.g. RBF kernel, see Table 1 in [7]).

B Details on Related Works

B.1 Compatibility

The compatibility of each batch BO method is summarised in Table 1.

Hallucination Hallucination [4] tackled batch BO by simulating sequential process by putting
“fantasy” oracles estimated by GP, translating batch selection into sequential problem. Hallucination
is successful in low batch size n, but not scalable. Even a single iteration of AF maximisation is not
trivial due to non-convexity, but they repeat this over n times and produce prohibitive overhead. For
discrete and mixed space, maximizing AF requires enumerating all possible candidates. However,
the higher the dimension and larger the number of categorical classes, the more infeasibly large the
combination becomes (combinatorial explosion).

Local Penalisation (LP) LP [19], simulates only AF shape change, without fantasy oracles,
by penalising AF assuming Lipschitz continuity. This succeeds in speeding up the hallucination
algorithm. However, the principled limitations are inherited (combinatorial explosion). Large batch
sizes are also not applicable because maximising AF still produces large overhead. This is because
maximising AF is typically computed by multi-start optimiser, but the number of random seeds
need to increase dependent on the number of dimensions and multimodality of true function. This
optimiser also does not guarantee to be globally maximised, which contradicts the assumption of AF
(only optimal if it is globally maximised.). Furthermore, Lipschitz continuity assumption limits its
applicable range to be only for continuous space.

Thompson Sampling (TS) TS [30] is a random sampling method of P (x∗ | Dobs) by maximising
the function samples drawing from predictive posterior in Eq. (5a). Due to its random sampling
nature, exactly maximising the function samples are not strict relative to hallucination or LP. Thus,
in practice, TS is typically done with taking argmax of function samples amongst the candidates
of random samples over input space. This two-step sampling nature (random samples over input
space→ subsamples with argmax of random function samples) allows us for domain-agnostic BO.
However, this scheme itself is a type of AF, so other AF is not naïvely supported. Moreover, due
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Table 5: Comparion with batch BO algorithms. The scalability to large batch size is defined by the
computational complexity that is smaller or equivalent complexity than TS.

Batch BOs large
batch

mixed
space

No combinatorial
explosion sampling complexity

Hallucination [4] ✕ ✓ ✕ n(NCacq + Cupdate +N logN)
Local penalisation [19] ✓ ✕ ✕ n(NCacq +N logN)
TS [30] ✓ ✓ ✓ n(NCfunc +N logN)
Decoupled TS [69] ✓ ✓ ✓ n(NMCφ +N logN)
DPP [37] ✕ ✓ ✕ n3NCreject

DPP-TS [45] ✓ ✓ ✓ IMCMC(NCfunc + n3)
MC-SAA [5] ✕ ✓ ✕ PN

n Cacq + PN
n logPN

n

GIBBON [43] ✕ ✓ ✕ PN
n Cacq + PN

n logPN
n

SOBER (Ours) ✓ ✓ ✓ NMCφ +NCacq + n3 log(N/n)

to the random sampling nature, the selected batch samples are not sparsified to efficiently explore
uncertain regions.

Decoupled TS Decoupled TS [69] achieved faster but more diversified sampling than TS by
separating out the prior from the data. Only this method and SOBER sparsifies the samples via
f -space (function space), which allows for general-purpose sparsifications. However, this does not
guarantee to be f -space sparsification leads to better sparcification in x-space. Figure 1 visualises
that decoupled TS can provide more diversified samples than TS, however, it still suffered from being
stuck in local minima. Also, AFs are not custamisable.

Determinantal Point Process (DPP) DPP-BO [37] proposed diversified sampling using DPP
via maximising the determinant of Gram matrix of the selected batch samples. However, this
maximisation problem in general is NP-hard and the best known sampling method is a rejection
sampling, which produces significant overhead. Thus, large batch sizes are prohibitive. This method
also cannot support discrete and mixed spaces due to combinatorial explosion.

DPP-TS DPP-TS tried to take the best of both worlds of DPP and TS. Thanks to the randomised
sampling of TS, this method can apply to discrete and mixed spaces, avoid combinatorial explosion,
and is faster than original DPP. Still, the computation is much slower than non-DPP-based alternatives.

MC-SAA MC-SAA [5] adopts qMC-based AF approximation, which achieves faster computations
with a deterministic function sampler. Still, underlying strategy of AF maximisation is shared with
classic methods (hallucination, LP), hence the limitations are also shared. Thus, AF maximisation
requires enumerating all combinations of possible candidates, easily becomes combinatorial explosion.
Moreover, this method is only applicable to those MC approximation can be applied, so information-
theoretic AF cannot be applied.

GIBBON GIBBON [43] proposed diversified sampling methods using a specific AF (lower bound
approximation of max-value entropy search [68]). Querying large batch sizes requires enumerating
all possible permutations of both batch samples and discrete variables. This requirement introduces a
combinatorial explosion. Moreover, even in continuous variables, GIBBON becomes less diversified
for large batch size (See Figure 6 in [43]).

TurBO TurBO [15] introduced multiple local BOs bounded with trust regions, and allocates
batching budgets based on TS. This succeeded in scalable batching via maintaining local BOs that
are compact, via shrinking trust regions, based on heuristics with many hyperparameters. Selecting
hyperpameters is non-trivial and TurBO cannot apply to discrete and non-Euclidean space, for which
kernels do not have lengthscale hyperparameters for the trust region update heuristic (e.g. Tanimoto
kernel for drug discovery [51]).
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B.2 Sampling Complexity

Table 5 summarises the computational complexity of each baseline method for sampling. The
sampling complexity shows the upper bounds of N discrete candidates. Notation remarks: Creject is
the cost of rejection sampling from DPP, Cacq is the cost of evaluating the AF at a point, Cupdate is the
cost of updating the GP, including the Gram matrix inversion and hyperparameter optimisation, Cfunc
is the cost of evaluating a sampled function at a point, IMCMC is the number of MCMC iterations
until convergence, MCφ is the cost of evaluating M components of the kernels approximated by
Nyström method or random Fourier feature, PN

n := n!/(N − n)!≫ nN is the total number of all
permutations, N is the number of candidate points, n is the batch size. The computational costs are
in order of Creject ≫ Cupdate ≫ Cfunc ≥ Cacq > MCφ, and the number of samples are in order of
N > M > n, IMCMC ≫ n. The empirical comparison can be seen in Table 4. Our method was the
fastest.

C Quadrature Distillation

C.1 Fast Fully Bayesian Gaussian Process

C.1.1 Existing Method: MCMC

While BO works well with a single set of optimised hyperparameters (type-II MLE) on most
functions, some noisy cases such as drug discovery shown in Figure 2 requires FBGP modelling.
GP marginalisation is typically done with MC integration via sampling from hyperposterior Π. The
hyperposterior Π is given by:

Π(θ) := p(θ | Dobs), (10)

=

∫
p(yobs | f)p(f | θ,Xobs)p(θ)df∫∫
p(yobs | f)p(f | θ,Xobs)dfdp(θ)

, (11)

=
L(θ)Π′(θ)∫
L(θ)dΠ′(θ)

, (12)

=
L(θ)Π′(θ)

Lhyper
, (13)

where
Π′(θ) := p(θ), (14)

L(θ) :=

∫
p(yobs | f)p(f | θ,Xobs)df, (15)

= N
(

yobs;m(Xobs | θ), C(Xobs,Xobs | θ)
)
, (16)

Lhyper =

∫
L(θ)dΠ′(θ), (17)

Π′(θ) is the hyperprior, L is the marginal likelihood, Lhyper is the marginal hyperlikelihood. And the
predictive posterior for the test inputs x can be approximated with MCMC with M samples as

p(y | Dobs, x, x
′) :=

∫∫
p(y | f, x, x′)p(f | θ,Dobs)dfdp(θ | Dobs), (18)

=

∫
p(y | θ,Dobs, x, x

′)dp(θ | Dobs), (19)

=

∫
L(x | θ)dΠ(θ), (20)

≈ 1

M

M∑
m=1

L(x | θm) (21)

where

L(x | θ) := N
(
y;m(x | θ), C(x, x′ | θ)

)
(22)

θm ∼ Π (23)
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However, its convergence rate O(1/
√
n) is poor, requiring thousands of ensemble GP models for

marginalisation. This significantly slows down batch BO computation as BASQ requires such an
ensemble kernel. Hence, we introduce quadrature distillation (QD) trick for faster marginalisation
by using the smaller set of weighted hypersamples selected by the quadrature, distilling random
hypersamples from hyperprior.

C.1.2 MCMC-based Quadrature Distillation

The easiest to implement is to apply existing MCMC scheme to sample from hyperposterior Π. Let
θcand be the candidates sampled from Π via MCMC, θcand ∼ Π. Then, simply applying RCHQ
with an arbitrary kernel yields the small subset of (wQD,θQD). We refer this weighted subset of
hypersamples to QD samples, which are the approximation of Π. Intuitively, this can be understood as
the weighted samples can more sample-efficiently approximate the distribution than random samples
that approximate the distributions with frequencies. With the QD samples, we can approximate the
marginal predictive posterior of FBGP, given by:

p(y | Dobs, x, x
′) ≈ w⊤

QDL(x | θQD), (24)

mQD(x) =

∫
m(x | Θ)dΠ(θ),

≈ w⊤
QDm(x | θQD),

(25)

VQD(x) =

∫
C(x, x | θ)dΠ(θ),

≈ w⊤
QD

[
C(x, x | θQD) +m2(x | θQD)

]
−m2

QD(x).

(26)

CQD(x, x
′) =

∫
C(x, x′ | θ)dΠ(θ),

≈
H∑
i

wi, QD

[
(m(x | θi, QD)−mQD(x))

T
(m(x′ | θi, QD)−mQD(x

′))
]
,

(27)

where wQD ∈ RH is the QD weights, θQD ∈ RD×H is the QD samples, D is the number of types of
hyperparameters (e.g. lengthscale, variance), and H is the number of QD samples, which is much
smaller than the number of MCMC samples M , H ≪ M . Thus, we can estimate the marginal
predictive posterior of FBGP as the small set of weighted hypersamples via QD. As all the above
marginalisation shares the same signed measure Π, so the quadrature with QD is good approximation.

C.1.3 BQ-based Quadrature Distillation

MCMC-based QD suffices for most cases, however, MCMC produces significant overhead, so we
wish to avoid this sampling scheme for quick estimation. Thus we adopt BQ-based quadrature
distrillation. First, we apply BQ by placing GP on hyperlikelihood L(θ),

Π(θ) =
L(θ)Π′(θ)∫
L(θ)dΠ′(θ)

,

≈
E
[
p(ℓ | θ,Lobs,θobs)

]
Π′(θ)∫

E
[
p(ℓ | θ,Lobs,θobs)

]
dΠ′(θ)

,

≈ mhyper(θ)Π
′(θ)∫

mhyper(θ)dΠ′(θ)
,

=
mhyper(θ)Π

′(θ)[∫
Khyper(θ,θobs)Khyper(θobs,θobs)−1dΠ′(θ)

]
Lobs

,

=
mhyper(θ)Π

′(θ)

w′⊤
BQLobs

,

(28)

where
P (ℓ | θ,Lobs,θobs) ∼ GP(ℓ;mhyper(θ), Chyper(θ, θ

′)), (29a)

w′
BQ :=

∫
Khyper(θ,θobs)Khyper(θobs,θobs)

−1dΠ′(θ), (29b)

Lobs := L(θobs). (29c)
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Here, we place hyper-GP on the marginal likelihood L defined by Eq. (16). Importantly, this
measure is the hyperprior Π′, not the hyperposterior Π like the MCMC-based cases. We draw
hypersamples θobs ∈ RD×M , from the hyperprior Π′(·) := P (θ). Then, we evaluate the marginal
likelihood Lobs = L(θobs) in parallel. We select multivariate normal distribution for hyperprior
Π′(θ) := N (θ;µhyper,Σhyper) based on [40], and Gaussian kernel for hyper-GP. Then, weights w′

BQ
in Eq. (29b) become analytical:

w′
BQ :=

∫
Khyper(θ,θobs)Khyper(θobs,θobs)

−1dΠ′(θ),

= v
√
|2πW|

[∫
N (θ;θobs,W)N (θ;µhyper,Σhyper)dθ

]
Khyper(θobs,θobs)

−1,

= v
√
|2πW|N (θobs;µhyper,W +Σobs)Khyper(θobs,θobs)

−1,

(30)

(31)

With the given weighted samples (w′
BQ,θobs), we can approximate the marginalisation. For instance,

the marginal predictive posterior can be approximated as follows:

p(y | Dobs, x, x
′) ≈

∫
L(x | θ)mhyper(θ)

w′⊤
BQLobs

dΠ′(θ),

≈ w⊤
BQL(x | θobs),

(32)

where wBQ := w′
BQ ⊙ Lobs/(w′⊤

BQLobs). Obviously, Eq. (32) is the same approximation with the
MCMC-based QD approximation in Eq. (24). The difference is the number of hypersamples; the
number of hyperprior samples M is larger than that of quadrature distillation. Therefore, we can
further distill the BQ samples, (wQD,θQD) ⊂ (wBQ,θobs) via RCHQ. The kernel for RCHQ is
the kernel of hyper-GP, Khyper. The kernel hyperparameters are optimised by type-II MLE. These
procedure does not require MCMC. Thus, this can offer faster computation.

C.2 Fast Fully Bayesian Acquisition Functions

Many AFs, including the LFI, are dependent on not only kernel hyperparameters θ, but also the
current maximum η. To achieve fast marginalisation of AFs, we need to incorporate η as one of
arguments in estimation.

C.2.1 Parabolic Transform for Max-value Estimation

Estimating the current maximum location conditioned on θ is computationally challenging. We
inherit the parabolic transform of GP surrogate model from [55]:

f(x | θ) = η − 1

2
g(x)2, (33a)

:= GP
(
f(x);m(x | θ, η), C(x, x | θ)

)
, (33b)

g(x | θ) := GP
(
g(·);mg(· | θ), Cg(·, · | θ)

)
, (33c)

m(x | θ, η) := η − 1

2

[
mg(x)

2 + Cg(x, x)
]
, (33d)

C(x, x′ | θ) := 1

2
Cg(x, x

′)2 +mg(x)
⊤Cg(x, x

′)mg(x
′), (33e)

where f(·) is the surrogate model that approximates ftrue(·), g(·) is the square-root warped GP [58]
of f(·). The predictive mean mg(·) and covariance Cg(·, ·) of the warped GP g(·) are expressed with
normal GPs in Eqs. (5b) - (5c). The predictive mean m(·) and covariance C(·, ·) are approximated
via moment-matching [23]. Dg = (Xobs, yg,obs) is the observed data for the warped GP, and
yg,obs :=

√
2(η − yobs). Now, η becomes a GP hyperparameter via yg,obs. All we have to do for QD

is just replacing the definition of GP to this warped GP.
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C.2.2 Marginal Expected Improvement Acquisition Function

The marginal EI AF [35] can be calculated with parabolic-transformed FBGP formulation:

αEI(x) := w⊤
QD [(m(x | θQD)− η)⊙ Φ(Z | θQD)] + w⊤

QD

[√
C(x, x | θQD)⊙ ϕ(Z | θQD)

]
(34)

Z :=
m(x | θQD)− η√
C(x, x | θQD)

(35)

where Φ(x), ϕ(x) are CDF and probability density function (PDF) of the normal distribution, η ∈ θQD
is the distilled max value η.

C.2.3 Marginal Upper Confidence Bound Acquisition Function

The marginal UCB AF [60] can be calculated using FBGP formulation without parabolic-
transformation:

αUCB(x) := w⊤
QDm(x | θQD) +

√
βw⊤

QD

√
C(x, x | θQD) (36)

where β is the BO hyperparameter, usually 0.2 is selected.

C.2.4 Max-value Entropy Search Acquisition Function

The max-value entropy search (MES) AF [68] can be calculated via parabolic-transformed FBGP
formulation via FITBO formulation [55]:

αFITBO(x) := H[p(y | Dobs, x)]− Ep(η|Dobs)

[
H[p(y | Dobs, x, η)]

]
, (37)

p(y | Dobs, x) =

∫
p(y | Dobs, x, η)dp(η | Dobs), (38)

H[p(y | Dobs, x)] =

∫
ln p(y | Dobs, x)dp(y | Dobs, x), (39)

Ep(η|Dobs)

[
H[p(y | Dobs, x, η)]

]
=

∫
H[p(y | Dobs, x, η)]dp(η | Dobs). (40)

FITBO AF can be discretised via MC integration:

αFITBO(x | Dobs) := H

[
1

M

M∑
i

p(y | Dobs, x, θi, ηi)

]
− 1

2M

M∑
i

log[2πe(C(x, x | Dobs, θi, ηi) + σn,i)].

(41)
Quadrature distillation can approximate the above AF as:

αFITBO(x | Dobs) ≈ H

[
w⊤

QDm(x | θQD)

]
− 1

2
w⊤

QD log[2πe(C(x, x | Dobs,θQD) + σ2
n,QD)]. (42)

For faster computation, moment-matching approximation yields the first term as:

H

[
1

M

M∑
i

p(y | Dobs, x, θi, ηi)

]
≈ 1

2
log[2πe(Var[y] + σ2

n,i)], (43)

Var[y] =
1

M

M∑
i

(
C(x, x | θi) +m2(x | θi)

)
− E[yθi]2, (44)

E[y] =
1

M

M∑
i

m(x | θi). (45)

Hence,

αFITBO(x | Dobs) ≈
1

2
log[2πe(Var[y] + w⊤

QDσ
2
n,QD)]

− 1

2
w⊤

QD log[2πe(C(x, x | Dobs,θQD) + σ2
n,QD)],

(46)

Var[y] = w⊤
QD

(
C(x, x | θQD) +m2(x | θQD)

)
−

[
w⊤

QDm(x | θQD)
]2

. (47)
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Table 6: Quadrature distillation algorithm

Algorithm 2: Quadrature distillation

1: if MCMC-based?
2: Πemp := (whyper,θobs) = (1/M,θobs), θobs ∼ Π(·) # MCMC sampling from hyperposterior
3: elif BQ-based?
4: θobs ∼ Π′(·) # random sampling from hyperprior
5: ℓ(θ)← TrainGP(θobs, L(θobs)) # train hyper-GP
6: Πemp := (wBQ,θBQ)← BayesQuad(ℓ(·),θobs, L(θobs))# Bayesian quadrature
7: (wQD,θQD) = RCHQ(Πemp,Khyper) # quadrature distillation via RCHQ
8: return wQD,θQD

C.2.5 Bayesian Query-by-Committee Acquisition Function

The Bayesian query-by-committee (B-QBC) AF is defined by [53]:

αBQBC(x) := Varp(θ|Dobs)

[
m(x | θ)

]
, (48)

= Ep(θ|Dobs)

[
(m(x | θ)− m̂(x))2

]
. (49)

The quadrature distillation approximates this without parabolic-transformation, as follows:

αBQBC(x) ≈ w⊤
QD

[
(m(x | θQD)− w⊤

QDm(x | θQD))
2

]
. (50)

A variant AF, query by mixture of Gaussian process (QB-MGP), can also be approximated by the
quadrature distillation without parabolic-transformation:

αQB-MGP(x) := Ep(θ|Dobs)

[
C(x, x | θ)

]
+ Ep(θ|Dobs)

[
(m(x | θ)− m̂(x))2

]
. (51)

≈ w⊤
QDC(x, x | θQD) + w⊤

QD

[
(m(x | θQD)− w⊤

QDm(x | θQD))
2

]
. (52)

C.3 Quadrature Distillation Algorithm

The algorithm flow of the quadrature distillation is shown in Table 6. Each procedure will be explained
step by step.

D Algorithm

The whole algorithm flow of SOBER is shown in Table 7. QuadDistil is short for quadrature
distillation explained in Section C. Sampling procedure is deliniated in Section D.3. AutoKQ is short
for automatic kernel quadrature selection, explained in Section D.2.

D.1 Sampling from π

SOBER is a sample-based gradient-free approach, and so can handle discrete, continuous or mixed
inputs. The only difference is the sampler for Xrec. The simplest scenario is if all discrete candidates
are available a priori and enumerable. As RCHQ accepts weighted samples πemp = (wrec,Xrec) for
importance sampling, all we have to do is to calculate the weights wrec. This is simply the normalised
posterior π(Xrec)/

[
π(Xrec) · 1

]
. If all combinations are innumerable or unavailable, we sample Xrec

from the discrete prior π′, which the user can define the arbitrarily. Once sampled, the procedure
is the same: we compute wrec, then pass the empirical measure πemp to RCHQ. We update the
hyperparameters of the prior π′ via MLE from the weighted sample (wrec,Xrec). Continuous space
can be regarded as innumerable discrete space, so it can be handled similarly. The only difference is
the prior update. We use weighted KDE for the update, for speed and flexibility. Mixed space is the
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Table 7: SOBER algorithm.
Algorithm 1: SOBER

Input: prior π′, hyperprior Π′(θ),
observed dataset Dobs = (Xob, yob)

Output: maximum argmax[yob], evidence E[m(x)]
1: f ← InitialiseGP(Dobs)
2: while convergence:
3: if FBGP:
4: wQD,θQD ← QuadDistil(f,Π′(θ))
5: π, α,K(·, ·)← FBGP(f, π′,wQD,θQD)
6: else:
7: π, α,K(·, ·)← Type-II MLE(f)
8: wrec,Xrec,Xnys ∼ Sampling(π, π′)
9: Xbatch,wbatch ← AutoKQ(wrec,Xrec,Xnys, α,K(·, ·))

10: ybatch = ParallelQuery(ftrue(Xbatch))
11: Dobs ← Dobs ∪ Dbatch
12: f ← UpdateGP(f,Dobs)
13: π′ ← π
14: E[m(x)],Var[m(x)]← KQ(f,Xbatch,wbatch)
15: return argmax[yob],E[m(x)]

combination of discrete and continuous space, which also can be regarded as innumerable discrete
space. The prior update is the combination of the above two by assuming the discrete and continuous
parameters are independent. Importantly, the prior does not need to precisely approximate π as the
importance weights wrec will correct the difference.

D.2 Automatic Kernel Quadrature Selection

Table 8: AutoKQ selection algorithm

Algorithm 4: AutoKQ selection

1: Xrchq,wrchq,Var[m(x)]rchq ← RunRCHQ(wrec,Xrec,φ(·), α(·),Xnys, f(·))
4: Xkt,wkt,Var[m(x)]kt ← RunKernelThinning(wrec,Xrec,φ(·), α(·),Xnys, f(·)
6: if Var[m(x)]rchq < Var[m(x)]kt:
7: return Xrchq,wrchq
8: else:
9: return Xkt,wkt

function RunRCHQ(wrec,Xrec,φ(·), α(·),Xnys, f(·)):
1: φ(·)← Nyström(Xnys, f(·))
2: Xrchq,wrchq ← RCHQ(wrec,Xrec,φ(·), α(·))
3: Var[m(x)]rchq ← KQ(f(·),Xbatch,wbatch)
4: return Xrchq,wrchq,Var[m(x)]rchq

function RunKernelThinning(wrec,Xrec,φ(·), α(·),Xnys, f(·)):
4: Xkt,wkt ← KernelThinning(Xrec, f(·), α(·))
5: Var[m(x)]kt ← KQ(f(·),Xbatch,wbatch)
4: return Xkt,wkt,Var[m(x)]kt

Table 8 illustrates the algorithm flow of automatic kernel quadrature selection algorithm. We compare
the worst-case integration error of each algorithm, then pick the batch queries of which integration
error is smaller. The choice between these two KQ methods can be made automatically by comparing
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the worst-case error wce(Qwbatch,Xbatch):

wce(Qwbatch,Xbatch)

:= sup
∥f∥H≤1

|wbatchf(Xbatch)−
∫

f(x)π(x)dx|,

≈ w⊤
batchK(Xbatch,Xbatch)wbatch − 2w⊤

batchK(Xbatch,Xrec)wrec + w⊤
recK(Xrec,Xrec)wrec,

(53)

where H is the reproducing kernel Hilbert space. The third term in Eq. (53) is not dependent on
the KQ methods, so we can avoid expensive N ×N computations. RCHQ is selected in the early
stage because the smooth kernel makes the eigenvalue decay short-tailed. In the late stage, the kernel
thinning is chosen when the region is narrowed.

D.3 Sampling algorithm

The algorithm flow of the sampling is shown in the Table 9. The details will be explained step by
step.

Table 9: Sampling algorithm

Algorithm 3: Subsampling

1: Xrec ∼ π′(·) # sampling from prior
2: wrec =

L(Xrec)
π′(Xrec)

· π
′(Xrec)

⊤1
L(Xrec)⊤1 # compute the weights

3: if len(wrec > 0) < n :
4: π′(·)← π′

initial(·) # return to the initial prior when overexploitive
5: if continuous:
6: π(·) = WKDE(wrec,Xrec) # weighted kernel density estimation
7: Xrec ∼ π(·) # resample from WKDE
8: wrec =

L(Xrec)
π(Xrec)

· π(Xrec)
⊤1

L(Xrec)⊤1 # recompute the weights
9: else if discrete and enumerable:

10: Xrec = π′(·) # all discrete candidates
11: wrec =

L(Xrec)
L(Xrec)⊤1 # normalised weights

12: else if innumerable discrete:
13: π(·)← OptHypersMLE(π′(·),wrec,Xrec) # MLE hyperparameter optimisation
14: Xrec ∼ π(·) # resample from WKDE
15: wrec =

L(Xrec)
π(Xrec)

· π(Xrec)
⊤1

L(Xrec)⊤1 # recompute the weights
16: else mixed:
17: π(·)← CombineBothPrior(π′(·),wrec,Xrec) # Combine continuous and discrete prior
18: wrec =

L(Xrec)
π(Xrec)

· π(Xrec)
⊤1

L(Xrec)⊤1 # recompute the weights
19: Xnys ∼ Deweighted(wrec,Xrec) # deweighted random subset extraction
20: return wrec,Xrec,Xnys

D.3.1 Weighted Kernel Density Estimation

The mean and covariance of the weighted kernel density estimation (WKDE) is estimated with the
unbiased data covariance matrix given by:

µwkde := w⊤
recXrec, (54)

Σwkde :=
w⊤

rec1
(w⊤

rec1)2 − (w2
rec)

⊤1

N∑
i

wi, rec(Xi, rec − µwkde)
T (Xi, rec − µwkde), (55)

:=
1

1− (w2
rec)

⊤1

N∑
i

wi, rec(Xi, rec − µwkde)
T (Xi, rec − µwkde), (56)

where Xi, rec ∈ Xrec and wi, rec ∈ wrec is the i-th element of Xrec and wrec, respectively. The bandwidth
of the kernel is estimated by the Scott’s method [63].
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D.3.2 Maximum Likelihood Estimation of Discrete Prior

The optimisation of hyperparamters of the discrete prior distributions was done via MLE from
the weighted samples (wrec,Xrec). We denote the PDF of Bernoulli distribution (binary) and the
categorical distribution as Bernoul(x;wBer),Categor(x;wCat), where wBer ∈ Rd and wCat ∈ Rd×C

are the weights hyperparaeters, C is the number of categories in the input parameters. The weighted
log-PDF can be expressed as follows:

LL := w⊤
rec logBernoul(Xrec;wBer) (57)

LL := w⊤
rec logCategor(Xrec;wCat) (58)

We optimise each weight hyperparameters via maximising the log-likelihood (LL) via L-BFGS-B
[39]. PyTorch [49] auto-differentiation gives the gradient for L-BFGS-B. To make weights bounded
[0, 1], we transformed original LL space via the sigmoid function during optimisation. We start the
optimisation of weights to be equal chance (discrete uniform distribution).

D.3.3 Deweighted sampling

Samples for the Nyström method are better to be spatially sparse to well represent the whole kernel
shape. We adopt the deweighted sampling to constract the small subset of uniformly distributed
samples Xnys from the weighted samples (wrec,Xrec). We resample from the categorical distribution
with the inverse weights (1/wrec), then the resampled samples are uniformly distributed.

E Simulation-based inference

E.1 Simulation-based inference

The simulator emulates typically time-evolving signals from the physical device modelled by simul-
taneous differential equations. The solution of the differential equation is basically not analytical,
requiring numerical approximation such as the finite element method. Each equation has param-
eters, such as coefficients of differential terms, which determine the signal shape. Estimating the
parameters that can reproduce the observed signal is a typically tricky task because simulation is
not differentiable with regard to each parameter. Although auto-differentiation can mitigate this
problem, the parameter posterior is typically multimodal, so local optimisation algorithms based on
differentiation struggles to find the global optimum. More importantly, this inverse problem often has
no unique solution mathematically. Hence, rather than estimating one deterministic parameter set,
inferring the parameter posterior is more practically important. Moreover, having dozens of plausible
simulators with differing levels of assumption is a common situation where we need to select the
parsimonious model that best describes the given dataset. Bayesian model evidence can provide a
selection criterion. Therefore, estimating both Bayesian model evidence and parameter posterior
is a frequent desideratum in practice. Furthermore, running simulators is expensive to evaluate, so
parallelising the computation via computer clusters is of practical importance.

Let yobs be the observed signal from the physical device, and we wish to estimate the simulator
parameters Θ. This can be formulated as Bayesian inference, given by:

p(Θ) := π′(Θ) := N (Θ;µπ,Σπ) (59)

p(Dobs|Θ,M) := ℓtrue(Θ) :=

m∏
j

N (errj(θ); 0, σ2
noise), (60)

p(Dobs|M) := N
(

E
x∈π

[ℓtrue(Θ)],Var
x∈π

[ℓtrue(Θ)]

)
, (61)

p(Θ|Dobs,M) =
p(Dobs|Θ,M)p(Θ)

p(Dobs|M)
=

ℓtrue(Θ)π(Θ)

Ex∈π[ℓtrue(Θ)]
, (62)
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where

Dobs := {xobs, yobs} ∈ Rm×1, (63)

θ := {θi} ∈ Rd−1, (64)

Θ := {θ, σ2
noise} ∈ Rd, (65)

ysim,j(θ) := M(θ, xobs), (66)

errj(θ) := [yobs,j − ysim,j(θ)]
2
. (67)

M(θ, xobs) is the simulation model, which returns the prediction ysim,j(θ) at given simulation param-
eter θ at the j-th time step. We wish to estimate the model evidence Ex∈π[ℓtrue(Θ)] and the parameter
posterior p(Θ|Dobs,M).

E.2 Bayesian Quadrature Formulation

In naive BQ, we place GP on the likelihood as such:

ℓ(Θ) ∼ GP
(
ℓ(Θ);µℓ(Θ), σℓ(Θ,Θ′)

)
. (68)

The evidence can be estimated with BASQ formulation, given by:

E
x∈π

[m(x)] ≈ w⊤
batchm(Xbatch), (69a)

Var
x∈π

[m(x)] ≈ w⊤
batchC(Xbatch,Xbatch)wbatch − 2w⊤

batchC(Xbatch,Xrec)wrec + w⊤
recC(Xrec,Xrec)wrec.

(69b)

The posterior can be estimated with the surrogate model and the estimated evidence via Eq. (62).

However, the likelihood is typically transformed into the logarithmic space because its dynamic range
is wider than the numerical over-/underflow limits. Thus, log-warped GP [47, 9, 3] is often applied.
Particularly, we consider moment-matched log-transformed (MMLT) [9] GP, modelled as such:

f(x) = exp[g(x)]− 1, (70a)

:= GP
(
f(x);m(x), C(x, x)

)
, (70b)

g(x) := GP
(
g(·);mg(·), Cg(·, ·)

)
, (70c)

m(x) := exp

[
mg(x) +

1

2
Cg(x, x)

]
, (70d)

C(x, x′) := mg(x)mg(x
′) [Cg(x, x)− 1] . (70e)

The warped GP stores log-transformed values yg = log(y+1), so we can avoid the over-/underflows.
Adachi et al. [3] further extended MMLT GP so as to accommodate with BASQ modelling. They
adopted the four-layered GP combining MMLT and parabolic transformation. The reason why they
add the parabolic transformation is to copy the exponetiated function information to not only the
surrogate function but also prior update. However, this deep warped structure causes additional
predictive errors due to the cumulative approximation errors from each layer’s moment-matching
method.

E.3 Likelihood-free Inference Formulation

Alternately, BO-based LFI [24] models GP differently. They placed GP on the discrepancy, rather
than the likelihood, defined as :

∆true(θ) := log ||yobs − ysim(θ)|| (71)

∆(Θ) ∼ GP
(
∆(Θ);µ∆(θ), σ∆(θ, θ

′)
)

(72)

LFI adopts the tentative likelihood defined by Eq. 3 as the likelihood at each iteration. The true
likelihood can be estimated a posteriori. The benefits of this modelling are as follows:

1. Avoiding extreme dynamic range of likelihood; ∆true(θ) has much more moderate range.
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2. We can reformulate BQ as BO. BO is more suitable for solving simulation-based inference
as only the vicinity of the MAP location has meaningful value. As almost everywhere has
zero likelihood, so BQ formulation is over-exploring if the prior is misspecified.

3. We can obtain the “temporary” likelihood L(θ) that approaches the true likelihood ℓtrue(Θ)
asymptotically over iterations. This likelihood can be regarded as "updated prior". This can
also mitigate the prior misspecification.

They reformulate the posterior inference as the BO to find the global minimum of the discrepancy
∆true(θ). The resulting GP surrogate model is used to approximate the posterior. They do not go
beyond the posterior inference, so evidence estimation cannot be done with BOLFI.

E.4 SOBER-LFI Formulation

We wish to take the best of both world; LFI GP modelling suitable for sampling and exact evidence
estimation via BQ modelling. Thus, we adopt the dual GPs; one for sampling, and the other for
BQ modelling. While the sampling GP is modelled with the inverse discrepancy (−∆true(θ) so as
to be the maximisation objective), the BQ GP is modelled with log-likelihood with MMLT GP.
Importantly, we can query both {∆true(θ), ℓtrue(Θ)} with negligible overhead as the time-consuming
part is ysim(θ). Once we get ysim(θ), calculating both {∆true(θ), ℓtrue(Θ)} are very cheap.

The sampling GP is used for setting up the sampling function π, in the same manner explained in
Section D.3. One difference is that the π becomes extremely sharper than the BO task. WKDE-based
sampling can fail to sampling from π. Hence, we adopted elliptical slice sampling (ESS) [44].
Importance sampling permits using all of the samples from ESS without the burn-in period. The
weights can be calculated via the π defined with the sampling GP. Note that ESS is more expensive
than WKDE, so the additional overhead had to be produced instead. As such, the sampling GP
constructs the empirical measure πemp = (wrec,Xrec).

On the other hand, BQ GP constructs the surrogate model for likelihood. The posterior and evidence
inference can be made in the same manner explained in Section E.2.

Batch acquisition via objective RCHQ becomes a mix of both GPs. The kernel is defined by the BQ
GP in Eq. 70e. The objective with AF is defined by the sampling GP.

F Experiments

F.1 Batch Bayesian Optimisation

We examined our method, SOBER, with the following 10 datasets. All experiments are averaged
over 16 iterations with varied random seeds. random is the random samples drawn from the prior
distribution for each task. As these random samples are aware of categorical or mixed variables,
it often performs better than baseline methods that cannot handle them (e.g. TurBO, LP). TS and
decoupled TS was implemented with BoTorch library [5]. The candidates are sampled from the prior
distribution, and each TS algorithm took the argmax of function samples over candidates. DPP-TS
is provided by the author of the paper [45]. TurBO and GIBBON were implemented based on
the official tutorials of BoTorch. Both Hallucination and LP were implemented using GPyTorch
[17], and we select the standard EI AF. Both SOBER-TS and SOBER-LFI experiments were
conducted without FBGP, and the hyperparameters (N,M) are fixed with (20, 000, 500) throughout
the experiments. The SOBER software is coded with GPyTorch, BoTorch, and BASQ code [2]. All
codes are provided in the supplementary and will be open-sourced.

Synthetic: Ackley function Ackley funciton is defined as:

f(x) := −a exp

−b
√√√√1

d

d∑
i=1

x2
i

− exp

[
1

d

d∑
i=1

cos(cxi)

]
+ a+ exp(1) (73)

where a = 20, c = 2π, d = 23. We take the negative Ackley function as the objective of BO to
make this optimisation problem maximisation. We modified the original Ackley function into a
23-dimensional function with the mixed spaces of 3 continuous and 20 binary inputs from [0, 1]20,
following [10]. The batch size n is 200. The continuous prior is the uniform distribution ranging
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Figure 5: We evaluate SOBER across 4 synthetic functions and 6 real-world drug discovery datasets.
Top: Log regret or log best observations, Bottom: Log overhead in seconds as function of iterations.
Lines and shaded area denote mean ± 1 standard error. The batch size is 100 or 200 (see Table 2).

from [-1, 1]. The binary prior is the Bernoulli distribution with unbiased weights 0.5. We assume
each of continuous and binary priors at each dimension are independent.

Synthetic: Rosenbrock function Rosenbrock function is defined as:

f(x) :=

[
d−1∑
i=1

{
100(xi+1 − x2

i )
2 + (xi − 1)2

}]
(74)

where d = 7. We take the negative Rosenbrock function as the objective of BO to make this optimi-
sation problem maximisation. We modified the original Rosenbrock function into a 7-dimensional
function with the mixed spaces of 1 continuous and 6 discrete variables, following [10]. The first 1
dimension is discretised to be categorical variables, with 4 possible values x1 ∈ {−5, 0, 5, 10}. The
other 6 dimensions are continuous with bounds [−5, 10]6. The batch size n is 100. The continuous
prior is the uniform distribution ranging from [-5, 10]. The discrete prior is the categorical distribution
with unbiased weights 0.5. We assume each of continuous and discrete priors at each dimension are
independent.
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Synthetic: Hartmann function Hartmann 6-dimensional function [61] is defined as:

f(x) := −
4∑

i=1

αi exp

− 6∑
j=1

Aij(xj − Pij)
2

 , (75)

α = (1.0, 1.2, 3.0, 3.2)⊤, (76)

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , (77)

P =

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 (78)

We take the negative Hartmann function as the objective of BO to make this optimisation problem
maximisation. All input variables are continuous with bounds [0, 1]6. The batch size n is 100. The
continuous prior is the uniform distribution ranging from [0, 1].

Synthetic: Shekel function Shekel function [61] is defined as:

f(x) := −
10∑
i=1

 4∑
j=1

(xj − Cji)
2 + βi

 , (79)

β =
1

10
(1, 2, 2, 4, 4, 6, 3, 7, 5, 5)⊤, (80)

C =

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

 , (81)

We take the negative Shekel function as the objective of BO to make this optimisation problem
maximisation. All input variables are continuous with bounds [0, 10]6. The batch size n is 100. The
continuous prior is the uniform distribution ranging from [0, 10].

Real-world: Pest Control Pest Control (Pest in the main) is proposed in [46], which is a multi-
categorical optimisation problem (15 dimensions, 5 categories for each dimension). We wish to
optimise the effectiveness of pesticide by choosing the 5 actions (selection of pesticides from 4
different firms, or not using any of it), but penalised by their prices. This choice is a sequen-
tial decision of 15 stages, and the objective function is expressed as the cumulative loss function
with the total of both cost and the portion having pest. The batch size n is 200. We set the cate-
gorical prior with equal weights for each choice (discrete uniform distribution). Code is used in
https://github.com/xingchenwan/Casmopolitan [67].

Real-world: Maximum Satisifiability Maximum satisfiability (MaxSat in the main) is proposed
in [46], which is 28 dimensional binary optimisation problem. The objective is to find boolean
values that maximise the combined weighted satisfied clauses for the dataset provided by Max-
imum Satisfiability competition 2018. The batch size n is 200. We set the Bernoulli distribu-
tion prior with equal weights (discrete uniform distribution). Both code and dataset are used in
https://github.com/xingchenwan/Casmopolitan [67].

Real-world: Ising Model Sparsification Ising Model Sparsification (Ising in the main) is proposed
in [46], which is 24 dimensional binary optimisation problem. The objective is to sparsify an Ising
model using the regularised Kullback-Leibler divergence between a zero-field Ising model and the
partition function, considering 4 × 4 grid of spins with regularisation coefficient λ = 10−4. The
batch size n is 100. We set the Bernoulli distribution prior with equal weights (discrete uniform
distribution). Code is used in https://github.com/QUVA-Lab/COMBO [46].
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Figure 6: The histograms of the target values in the real-world drug discovery datasets

Real-world: Support Vector Machine Feature Selection Support vector machine feature selection
(SVM in the main) is proposed in [10], which is 23 dimensional mixed-type input optimisation prob-
lem (20 dimensional binary and 3 dimensional continuous variables). The objective is jointly perform-
ing feature selection (20 features) and hyperparameter optimisation (3 hyperparameters) for a support
vector machine (SVM) trained in the CTSlice UCI dataset [20, 13]. The batch size n is 100. We set
the Bernoulli distribution prior with equal weights (discrete uniform distribution) for 20 binary inputs,
and uniform prior with bounds [0, 1]6. Code is used in https://github.com/facebookresearch/bo_pr
[10].

Real-world: Anti-Malarial drug discovery The dataset with 20,746 small molecules represented
as 2048-dimensional binary features were taken from the P. falciparum whole cell screening derived
by the Novatis-GNF Malaria Box [59]. The target variable is the EC50 value, which is defined as
the concentration of the drug which gives half the maximal response. The lower the concentration,
the more effective (better) the drug. We take the nagative EC50 to make this optimisation problem
maximisation. The batch size n is 100. We set the categorical prior with equal weights for each
molecule (discrete uniform distribution). The dataset is downloaded from https://www.mmv.org/mmv-
open/malaria-box/malaria-box-supporting-information. The raw molecule inputs as SMILES are
converted into 2048-dimensional binary features with Gauche https://github.com/leojklarner/gauche
[22]. The Tanimoto kernel is also coded with Gauche. This drug discovery dataset is challenging for
most baseline methods: For decoupled TS in BoTorch, which is based on random Fourier features
[50], is not compatible with the Tanimoto kernel in GAUCHE [22]. SOBER-TS is also based on
decoupled TS, so it is not applicable neither. Tanimoto kernel is more computationally demanding
than RBF, so DPP-TS and hallucination could not be finished the computation within one week. This
is practically too slow, so we judged these two are not applicable for active learning purposes. TurBO
is also not applicable because the Tanimoto kernel has no lengthscale hyperparameter, so TurBO
cannot update the trust region. GIBBON suffers from combinatorial explosion, as enumerating all
combination of both batch and drug candidates becomes infeasible (20746P100 ≈ 3.9×10431. For LP,
which explicitly assumes continuity over Euclidean space, so we cannot apply it to non-Euclidean
and discrete space.

Real-world: Polar solvent for batteries The dataset with 133,055 small molecules represented
as 2048-dimensional features were optimised and predicted by the quantum-chemical computations
using density functional theory, known as QM9 dataset [52]. The target variable is the dipole moment,
which is basically correlated with the solvation capability in electrolytes in lithium-ion batteries,
increasing the ratio of electro-mobile Li-ions. The higher the dipole moment becomes, the larger
(better) the ionic conductivity does. The batch size n is 200. We set the categorical prior with
equal weights for each molecule (discrete uniform distribution). The dataset is downloaded from
http://quantum-machine.org/datasets/ [52]. The coding was done with Gauche [22]. Most baseline
methods cannot be applied with the same reasons explained above.

Figure 6 shows the distribution of target values in two real-world drug discovery datasets. The
optimal molecules are outliers from the dataset distribution, so it clearly shows these tasks are
needle-in-the-haystack situations.
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Figure 7: Visualising the multiple true global maxima case

F.2 Batch Bayesian Quadrature

We tested our algorithm, SOBER, with the simulation-based inference tasks as the batch BQ method.
All experiments are averaged over 16 iterations with varied random seeds. The number of candidate
samples drawn from the prior distribution is fixed to be 20,000 (N = 20, 000) for a fair comparison.
As the ground truth of posterior and evidence cannot be obtained for the simulation-based inference,
we use the empirical metric to evaluate the quality of each inference. For posterior evaluation, we
drew the 10,000 test samples from the normal distribution centered at the ground truth parameters
and the covariance with the identity matrix of which each element is 5× 10−6. Then, we computed
the root-mean-squared error (RMSE) between the estimated log-likelihood and true log-likelihood.
For evidence, we simply adopted the negative of estimated evidence.

Real-world: 2 RC Pairs ECM 2 RC Pair equivalent circuit model (ECM) is the simplest lithium-
ion battery simulator with 6-dimensional continuous variables [3]. We generated synthetic signal
using the model with 100 frequency steps equispaced over log-angular frequency regime, then added
the Gaussian noise with the amplitude of exp(1) to the Rtotal = exp(2) signal from the canonical
ECM.

Real-world: 5 RC Pairs ECM 5 RC Pair ECM is more complex lithium-ion battery simulator
with 12-dimensional continuous variables [3]. We generated synthetic signal using the model with
100 frequency steps equispaced over log-angular frequency regime, then added the Gaussian noise
with the amplitude of exp(1) to the Rtotal = exp(2) signal from the canonical ECM.

F.3 Additional Experiments

F.3.1 Visualising Multiple Global Maxima Case

We visualised the case of multiple true global maxima. As shown in Figure 7, π converged to multiple
delta distributions.

F.3.2 Empirical Convergence Analysis

We empirically investigated the relationship between regret and π shrinkage. Recall that empirical
measure πemp = (wrec,Xrec) is sampled from π, and batch measure πbatch = (wbatch,Xbatch) is the
subset further extracted from πemp. As such, all measures approximate the same distribution π, only
the level of discretisation differs.
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Figure 8: The correlations between regret and measure optimisation

Given two measures πemp and πbatch, we consider the following two metrics for π shrinkage; MV
Var[π(x)] and MD |x∗

true − E[π(x)]|. The empirical measure πemp can approximate these as such:

E[π(x)] :=
∫

xdπ(x) ≈ w⊤
recXrec, (82a)

Var[π(x)] :=
∫
|x− E[π(x)]|2dπ(x) ≈ w⊤

recdiag
[
(Xrec − E[π(x)])⊤(Xrec − E[π(x)])

]
,

(82b)

|x∗
true − E[π(x)]| ≈

√√√√ d∑
k=1

(x∗
true,k − (w⊤

recXrec)k)2, (82c)

BR := |y∗true − w⊤
batchftrue(Xbatch)|. (82d)

MV, and MD corresponds to the π shrinkage, of which smaller value indicates shrinking. MD
represents the Euclidean distance between the mean of π and the true global maximum x∗

true. We
compared these two metrics against BR. BR is the batch estimation regret (referred as BR for Theorem
2 in [36]). Experiments were done using SOBER-LFI on the Ackley function (see Table 2) over 10
iterations with 16 repeats (160 data points). Figure 8 shows the linear correlation matrix of these 3
metrics. Both MD and MV are highly correlated with BR, clearly explaining the π shrinkage as the
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Figure 10: Ablation study using the Ackley function. Lines and shade area denote mean ± 1 standard
error.

dual objective in Eq. (1) is the good measure of BR. In other words, π (MC estimate of x∗) shrinks
toward true global maximum x∗

true with being smaller variance (more confident), and both linearly
correlated to minimising the Bayesian regret, BR.

F.3.3 Hyperparameter sensitivity

We tested the hyperparameter sensitivity of SOBER-LFI using the Ackley function. We examined the
effect of AFs α, batch size n, the number of Nyström samples M , and the number of recombination
samples N . We averaged the results from 16 experiments with varied random seeds, and terminated
at the 15th batch acquisition. The baseline conditions are n = 100, α = LFI, M = 500, and
N = 20, 000. For AF, the information-theoretic AFs can boost the convergence rate, whereas the
others do not change significantly. For the batch size n, the convergence rate can be improved in
accordance with the batch size. For quadrature hyperparameters M and N , the larger the number of
samples becomes, the faster the convergence does. However, increasing the number of samples leads
to additional overhead increase. Our default conditions are competitive throughout the experiments.

F.3.4 Ablation Study

We performed the ablation study to analyse each algorithm’s effects on convergence rate. Firstly, we
compared the various π definitions defined by the AFs. As shown in Figure 10, LFI and PI definitions
are the clear performants. This is because the other AFs are designed to guide the sequential sampling,
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Figure 11: Efficacy of Fully Bayesian Gaussian process modelling using the noisy Ackley function.
Lines and shade area denote mean ± 1 standard error.
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Figure 12: SOBER-LFI consistently outperforms with small overhead. Lines and shade area denote
mean ± 1 standard error.

of which global maxima sensitively changed over iterations. LFI and PI show the possibility of global
maxima, which gradually squeezes the region toward the true global maxima. Thus, in SOBER-LFI
formulation, LFI AF is well-suited as the definition of π. As another ablation study, we compared
whether or not updating π and using AF in the objective RCHQ. As a result, unsurprisingly, updating
π is the most influential on the convergence rate. The objective RCHQ does not significantly influence
the convergence when we select LFI as the objective. However, information-theoretic AFs can boost
the convergence, as shown in Figure 9.

F.3.5 Fully Bayesian Gaussian Process

We further tested the effect of FBGP modelling on the convergence rate. To examine the efficacy,
we adopted the noisy Ackley function. We added the Gaussian noise to the queried values from
the Ackley function. The amplitude of the noise is varied from 10−3 to 1 in a logarithmic order.
The baseline conditions are n = 100, α = LFI, M = 500, N = 20, 000, and H = 50. Figure 11
illustrates that FBGP modelling with quadrature distillation can boost the convergence rate while
maintaining the overhead feasibly small (the overhead of FBGP is smaller than DPP-TS with type-II
MLE kernel.)

Furthermore, we examined the effects of the number of hyperweights H and the AFs. While H
are influential on both convergence rate and overhead, the default value H = 50 are reasonably
competitive. With regard to the effect of AFs, QB-MGP AF was the performant.

34


	Introduction
	Related Work and Challenges
	Bayesian Alternately Subsampled Quadrature (BASQ)

	Proposed Method: SOBER
	Global Optimisation as Bayesian Quadrature: Duality in Probability Measure
	Batch Selection as Kernel Quadrature
	Sequentially Updating p
	Auxiliary Algorithms
	Summary of Contribution

	Link between Global Optimisation and Quadrature
	Theoretical Background
	Empirical Analysis

	Experiments
	Background
	Bayesian Optimisation
	Bayesian Quadrature

	Details on Related Works
	Compatibility
	Sampling Complexity

	Quadrature Distillation
	Fast Fully Bayesian Gaussian Process
	Existing Method: MCMC
	MCMC-based Quadrature Distillation
	BQ-based Quadrature Distillation

	Fast Fully Bayesian Acquisition Functions
	Parabolic Transform for Max-value Estimation
	Marginal Expected Improvement Acquisition Function
	Marginal Upper Confidence Bound Acquisition Function
	Max-value Entropy Search Acquisition Function
	Bayesian Query-by-Committee Acquisition Function

	Quadrature Distillation Algorithm

	Algorithm
	Sampling from p
	Automatic Kernel Quadrature Selection
	Sampling algorithm
	Weighted Kernel Density Estimation
	Maximum Likelihood Estimation of Discrete Prior
	Deweighted sampling


	Simulation-based inference
	Simulation-based inference
	Bayesian Quadrature Formulation
	Likelihood-free Inference Formulation
	SOBER-LFI Formulation

	Experiments
	Batch Bayesian Optimisation
	Batch Bayesian Quadrature
	Additional Experiments
	Visualising Multiple Global Maxima Case
	Empirical Convergence Analysis
	Hyperparameter sensitivity
	Ablation Study
	Fully Bayesian Gaussian Process



