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Abstract

Transfer learning is a powerful paradigm for leveraging knowledge from source
domains to enhance learning in a target domain. However, traditional transfer learn-
ing approaches often focus on scalar or multivariate data within Euclidean spaces,
limiting their applicability to complex data structures such as probability distribu-
tions. To address this limitation, we introduce a novel transfer learning framework
for regression models whose outputs are probability distributions residing in the
Wasserstein space. When the informative subset of transferable source domains
is known, we propose an estimator with provable asymptotic convergence rates,
quantifying the impact of domain similarity on transfer efficiency. For cases where
the informative subset is unknown, we develop a data-driven transfer learning pro-
cedure designed to mitigate negative transfer. The proposed methods are supported
by rigorous theoretical analysis and are validated through extensive simulations and
real-world applications. The code is available at https://github.com/h7nian/WaTL.

1 Introduction

In recent years, transfer learning [32] has emerged as a powerful paradigm in machine learning,
enabling models to leverage knowledge acquired from one domain and apply it to related tasks in
another. This approach has proven especially valuable in scenarios where data collection and labeling
can be costly, or where tasks exhibit inherent similarities in structure or representation. While early
successes focused on conventional data types such as images [30], text [28]], and tabular data [38]],
there is growing interest in extending these methods to more complex data structures. Such data often
reside in non-Euclidean spaces and lack basic algebraic operations like addition, subtraction, or scalar
multiplication, posing challenges for traditional learning algorithms. A key example is probability
distributions [27], where for example the sum of two density functions does not yield a valid density.

Samples of univariate probability distributions are increasingly encountered across various research
domains, such as mortality analysis [14], temperature studies [44], and physical activity monitoring
[23], among others [27]. Recently, there has been a growing focus on directly modeling distributions
as elements of the Wasserstein space, a geodesic metric space related to optimal transport [36} [24]].
The absence of a linear structure in this space motivates the development of specialized transfer
learning techniques that respect its intrinsic geometry.

To address this gap, we introduce Wasserstein Transfer Learning (WaTL), a novel transfer learn-
ing framework for regression models where outputs are univariate probability distributions. WaTL
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effectively leverages knowledge from source domains to improve learning in a target domain by intrin-
sically incorporating the Wasserstein metric, which provides a natural way to measure discrepancies
between probability distributions.

1.1 Contributions

The primary contributions of this work are summarized as follows:

Methodology. We propose a novel transfer learning framework for regression models with distribu-
tional outputs, addressing the challenges inherent in the Wasserstein space, which lacks a conventional
linear structure. Our framework includes an efficient algorithm for cases where the informative subset
of source domains is known, and a data-driven algorithm for scenarios where the subset is unknown.
To the best of our knowledge, this is the first comprehensive transfer learning approach specifically
designed for regression models with outputs residing in the Wasserstein space.

Theoretical analysis. We establish the asymptotic convergence rates for the WaTL algorithm in
both the case where the informative set is known and the more challenging scenario where it must
be estimated. In the latter case, we also prove that the informative set can be consistently identified.
In both settings, we demonstrate that WaTL effectively improves model performance on the target
data by leveraging information from the source domain. The proofs rely heavily on empirical process
theory and a careful analysis of the covariate structure. Our key theoretical results extend beyond
responses lying in the Wasserstein space, offering potential applications to other complex outputs.

Simulation studies and real-world applications. We evaluate WaTL through simulations and
real data applications, demonstrating its effectiveness in improving target model performance by
leveraging source domain information. The benefits become more pronounced with larger source
sample sizes, underscoring its ability to harness transferable knowledge.

1.2 Related Work

Transfer learning. Transfer learning aims to improve performance in a target population by leverag-
ing information from a related source population and has seen wide application across domains [e.g.,
16, (151181411 140]]. Recent theoretical developments have focused on regression in Euclidean settings,
including high-dimensional linear [21] and generalized linear models [3 1], nonparametric regression
[6} 22]], and function mean estimation from discretely sampled data [5]. In parallel, optimal transport
has been used to measure distributional shifts for domain adaptation [[10} 29]. However, to the best
of our knowledge, no existing work has investigated transfer learning in regression models where
outputs are probability distributions residing in the Wasserstein space. This represents a significant
gap in the literature, highlighting the need for novel methodologies that address this challenging yet
important setting.

Distributional data analysis. The increasing prevalence of data where distributions serve as funda-
mental units of observation has spurred the development of distributional data analysis [27]. Recent
advancements in this field include geodesic principal component analysis in the Wasserstein space
[1]], autoregressive models for time series of distributions [39,44], and distribution-on-distribution
regression [[14}[7]. Leveraging the Wasserstein metric, regression models with distributional outputs
and Euclidean inputs can be viewed as a special case of Fréchet regression [26]], which extends linear
and local linear regression to outputs residing in general metric spaces. In practical scenarios where
only finite samples from the unknown distributional output are available, empirical measures have
been utilized as substitutes for the unobservable distributions in regression models [43]].

2 Preliminaries

2.1 Notations

Let L?(0,1) be the space of square-integrable functions over the interval (0,1), with the
associated L? norm and metric denoted by || - ||o and dj», respectively. To be specific,
llgllz = (fol g*(2)dz)"/? and d;2(g1,92) = |lg1 — g2ll2. For a vector Z, ||Z| denotes the
Euclidean norm. Given a matrix X, we define its spectrum as the set of its singular val-



ues. For a sub-Gaussian random vector X, we define the sub-Gaussian norm as || X |y, =
Sup||y||=1 inf {t >0: E(6<X’U>2/t2) < 2} .

We write a,, < by, if there exists a positive constant C' such that a,, < Cb,, when n is large enough
and a,, < by, if a,, < by, and by, < a,,. The notation a,, = O, (b,,) implies that P(|a,,/b,| < C) — 1
for some constant C' > 0, while a,, = 0,(b,,) implies that P(|a,/b,| > ¢) — 0 for any constant
¢ > 0. Superscripts typically indicate different data sources, while subscripts distinguish individual
samples from the same source.

2.2 Wasserstein Space

Let W denote the space of probability distributions on R with finite second moments, equipped with
the 2-Wasserstein, or simply Wasserstein, metric. For two distributions p1, e € W, the Wasserstein
metric is given by d3y, (pu1, o) = Infreri(uy ) Jpug |8 — t1? dm(s, t), where IL(ju1, p12) denotes the
set of all joint distributions with marginals p1 and po [[18]]. For a probability measure 1 € YV with
cumulative distribution function F),, we define the quantile function Fu_ L as the left-continuous
inverse of F),, such that F,; ! (u) = inf{t € R|F),(t) > u}, for u € (0,1). It has been established

[36]) that the Wasserstein metric can be expressed as the L? metric between quantile functions:

By(pnon) = [ {F ) = Fl ) du (1)
0

The space W, endowed with the Wasserstein metric, forms a complete and separable metric space,
commonly known as the Wasserstein space [36].

Assuming E{d},(v, 1)} < oo for all u € W, the Fréchet mean [13] of a random distribution v € W
is given by vg = argmin ¢y E{d3, (v, uu)}. Since the Wasserstein space W is a Hadamard space
[20], the Fréchet mean is well-defined and unique. Moreover, from @]) it follows that the quantile
function of the Fréchet mean, denoted as F),_, satisfies F, ! (u) = E{F, " (u)},u € (0,1).

2.3 Fréchet Regression

Consider a random pair (X, v) with joint distribution F on the product space R? x W. Let X have
mean § = E(X) and covariance matrix ¥ = Var(X), where ¥ is assumed to be positive definite. To
establish a regression framework for predicting the distributional response v from the covariate X,
we employ the Fréchet regression model, which extends multiple linear regression and local linear
regression to scenarios where responses reside in a metric space [26]. The Fréchet regression function
is defined as the conditional Fréchet mean of v given X = z,

m(x) = arg min E{d}, (v, n)| X = x}.
HEW

For a detailed exposition of Fréchet regression, we refer the reader to [26]. Given n independent
realizations {(X;,v;)},, we define the empirical mean and covariance of X as X = 1 "% | X;

and &= 15" (X, - X)(X; - X)".

The global Fréchet regression extends classical multiple linear regression and estimates the conditional
Fréchet mean as
ma(x) = argmin E{sq(x)d3, (v, 1)},
HEW
where the weight function is given by sg(z) = 1 + (X — 0)"S 7! (x — ). The empirical estimator

is formulated as
n

1
Me(z) =argmin = Y siq(x)dsy (v4, 1),
pew ; Y

where s;¢(z) =1+ (X; — Y)Tffl(x - X).

Similarly, local Fréchet regression extends classical local linear regression to settings with metric
space-valued outputs. In the case of a scalar predictor X € R, the local Fréchet regression function is

mp p(x) = argmin E{sy(z, h)df/v(y, W},
HEW



where the weight function is sL(m h) = Kh(X —z){ug —u1 (X —x)}/0d, withu; = BE{K,(X —
z)(X —x)7},j =0,1,2, and 02 = uguz — u3. Here, K, (-) = h~1K(-/h) is a kernel function with
bandwidth h. The emplrlcal version is given by

mrn(x) = argmlanle x, h)d3y (v, 1),
pew M =1

where s;1 (2, h) = K, (X; — a:){uQ —uy(X; —x)}/og, withu; =n~ 1Y " | Kp(X; —2)(X; —
x)?,5=0,1,2, and 52 = Ugtia — U3.

3 Methodology
3.1 Setup

We consider a transfer learning problem where target data {(X i(0)7 0) )}, are sampled indepen-

dently from the target population (X9, () ~ Fy, and source data {(X; (k). (k)) ', are sampled

independently from the source population (X(®) 1K)} ~ F for k = 1, ..., K. The goal is to
estimate the target model using both the target data and source data from K related studies.

Fork =0,..., K, assume X (%) has mean Hk and covariance X, with Xy, positive definite. Define the

empirical mean and covariance of { X"} as X, = ngt S X® and & = = Z?:kl(Xi(k) —

Y;@)(ng) — X 1)". For a fixed x € RP, the weight function is sé)( ) =1+ (X® —gp)" (2 —

0.), with the sample version s( )( ) =1+(X i(k) —Yk)TfJ,Zl (r—X). The target regression function

for a given z € R? is then m(GO)(x) = argmin,,cy E{s® (x)d2,(»), 1)}. In the following, we

present details on transfer learning for global Fréchet regression, where the key difference in the local
Fréchet regression setting is the use of a different weight function. The technical details for transfer
learning in local Fréchet regression are therefore deferred to Appendix [D}

The set of informative auxiliary samples (informative set) consists of sources sufficiently similar to the
target data. Formally, the informative set is defined as Ay, = {1 <k < K : || fO(2) — f®)(2)]2 <

¢} for some 1 > 0, where f(*)(z) = E{s(k)( ) U_(,})} For simplicity, let n4 = 25:1 ng.

3.2 Wasserstein Transfer Learning

We propose the Wasserstein Transfer Learning (WaTL) algorithm, which combines information from
source datasets under the assumption that all source data are informative enough. This assumption
implies that the discrepancies between the source and target are small enough to enhance estimation
compared to using only the target. When this condition is met for all source datasets, the informative
set is given by Ay, = {1,..., K}. The detailed steps of WaTL are presented in Algorithm

Algorithm 1 Wasserstein Transfer Learning (WaTL)

Input: Target and source data {(z; )}”0 (Ui<w<k {(:cgk), fk)

parameter A, and query point x E R”

)}k ), regularization

Output: Target estimator ml )( ).
1: Weighted auxiliary estimator: f(z) = mz,ionkf(k)(x), where fF)(z) =

-1 55 -1
Ne it Sic (T )Fl,gkr
2: Bias correction using target data: fo(z) = arg minger2 (o1 % Dy 52;)( )||F © = qll3 +

Mg = F(@)ll2-
)

3: Projection to Wasserstein space: i’ (z) = argmin ,cy || F,; ! — ]?0(3[:)]‘2

In Step 1, the initial estimate faggregates information from both the target and source, weighted by
their respective sample sizes. While this step incorporates valuable auxiliary information, the resulting



Algorithm 2 Adaptive Wasserstein Transfer Learning (AWaTL)

Input: Target and source data {(z”, ")} U (Uicper {(@™,M)}1)), regularization

» g ’ 1,
parameter )\, prespecified number of informative sources L, and query point z € R?.
Output: Target estimator s )( ).
1: Compute discrepancy scores. For each source dataset k = 1,..., K, compute the empirical

discrepancy: 9 = | FO(z) — 7z |2, where F®)(z) = ny ' 0%, sz )F, - Construct

the adaptive informative set by selecting the L smallest discrepancy scores A= { k:1<Ek<
K and vy, is among the L smallest values }..
2: Weighted auxiliary estimator: f( )= —t— ZkeAu{O} ny fk )(z).

ZkeAu{O} Nk

3: Bias correction using target data: fo(z) = arg MiNger2(0.1) 7 i 52; )||F © = qll3 +

Mg — F(@)l|2-

4: Projection to Wasserstein space: s )( ) = argmin ¢y, HFJ1 - .]/CE)(I)||2

estimate may be biased due to distributional differences between the target and source populations. In
Step 2, the bias in f is corrected by focusing on the target data. The regularization term Mlg— f(x) Il2
ensures a balance between target-specific precision and auxiliary-informed robustness. Theoretical
guldehnes for selecting A are provided in Theorem 2] The final step projects the corrected estimate
fo onto the Wasserstein space, ensuring the output m, 0 )( ) respects the intrinsic geometry of W.
This projection exists and is unique because W is a closed and convex subset of L2(0, 1).

3.3 Adaptive Selection of Informative Sources

In many practical scenarios, the assumption that all source datasets belong to the informative set Ay,
may not hold. To address this, we extend WaTL with an adaptive selection procedure to identify the
informative set. The discrepancy for each source dataset k is defined as 1, = || f(© (z) — f®*)(2)]|,
which measures the distance between the target distribution and the auxiliary distribution. Since
f©(z) and f*)(z) are unknown, we compute an empirical estimate ¥y, for ¥y, which is used
to adaptively estimate the informative set .A4,. To implement this approach, an additional input
parameter L, which specifies the approximate number of informative sources, is required. In practice,
L can be treated as a tuning parameter and selected through cross-validation or other model selection
techniques. The full procedure is formalized in Algorithm 2}

The proposed algorithm adaptively identifies the informative set Ain Step 1 by evaluating the

empirical discrepancy scores 1. The selected set is then used to compute the weighted auxiliary
estimator in Step 2, ensuring that only the most relevant source datasets contribute to the final target
estimator. Steps 3 and 4 follow the same bias correction and projection procedures as described in
Section[3.2] This adaptive approach enhances the robustness of WaTL by excluding irrelevant or
highly dissimilar source datasets.

4 Theory

In this section, we establish the theoretical guarantees of the proposed WaTL and AWaTL algorithms
using techniques from empirical process theory [34]. For WaTL, we present the following lemma,
which characterizes the convergence rate for each term contributing to the weighted auxiliary estimator

f(a:) computed in Step 1.

Condition 1. For k = 0,..., K, the covariate X*) is sub-Gaussian with | X®)||g, € [o1,02),
the mean vector satisfies |0k || < Ry, and the spectrum of the covariance matrix Xy, lies within the
interval [Ry, R3). Moreover, v*) is supported on a bounded interval.



Lemma 1. Ler f(k)(x) =n Y, lG (z)F"}, and its population counterpart be defined as
o

f®)(z) = E{S(Gk) (x)F;(k)}fork =0,...,K. Then under Condition 1F®) (z) — f®) ()|, =
Op(ny 7).

To derive the convergence rate of f(m), we rely on the following condition.
Condition 2. There exist positive constants Cy, Cs, C3, Cy such that

K
ZQe_ClRi%nk + Che C3(Rs \/E)nk =o(1),

where Rs is as in Condition|l| In addition,

T RA _op), VLA ()

IninlngK ng ’ no '
Remark 1. These conditions are typically satisfied in practice as they are not overly restrictive.
Condition [T|requires that covariates and covariance matrices are bounded in a specific way, which
is standard in the transfer learning literature and generally holds in real-world scenarios [5]. In
particular, this assumption is common when dealing with high-dimensional data where regularization
is necessary [21]]. Condition [2 assumes that the number of samples is significantly larger than the
number of sources K, which is reasonable since K is usually fixed in practical settings, and we often
have sufficient source data compared to target data. In practice, Condition [2] may be slightly violated
if there exists a source k with a relatively small ny, such that \/ng + n_4/ny is not o(1). In such
cases, the kth source can simply be excluded from Step 1 of the WaTL algorithm.

Theorem 1. Suppose Conditions[l|and 2| hold. Then, for the WaTL algorithm, it holds for a fixed
x € RP that

170) — 1@l = Op(BELYE & 1y 41,7172,

no +na
where f(x) = (ng +mn4)~! ZkK:O nef® ().

The proof of Theorem [I]involves a detailed analysis of the sample covariance matrix and leverages
M-estimation techniques within the framework of empirical process theory. The result extends
beyond responses in the Wasserstein space, applying to other metric spaces that meet mild regularity
conditions. Consequently, Theorem [I] provides a versatile framework that can be applied to transfer
learning in regression models with responses such as networks [42]], symmetric positive-definite
matrices [25]], or trees [2]. The following theorem establishes the convergence rate for the estimated

regression function s )( ) in the WaTL algorithm.

Theorem 2. Assume Condltlonsand @hold and the regularization parameter satisfies A < n ~1/2+e

for some € > Q. Then, for the WaTL algorithm and a fixed x € RP, it holds that

= —1/2+¢ Z _
d%/v(mg)) (I),mg)(x)) =0, (no 1/24 (& + nl; i\ﬁ (1o + 1) 1/2)),
where 1) = max; << || fO () — f¥)(2)||2 quantifies the maximum discrepancy between the target
and source.

Theorem 2] can be compared to the convergence rate of global Fréchet regression [26] applied solely

to the target data, for which the rate is dyy (. (GO) (2), mg)) (x)) = Op(ng oY ?). The WaTL algorithm
achieves a faster convergence rate when there are sufficient source data and the auxiliary sources are
informative enough, satisfying ¢ < ng ~1/27¢ This result highlights that knowledge transfer from
auxiliary samples can 51gn1ﬁcantly enhance the learning performance of the target model, provided

the auxiliary sources are closely aligned with the target data.

For the AWaTL algorithm, we require the following condition.

Condltlon 3. The regularization parameter satlsﬁes A X ng ~1/2+e

€' > €, there exists a non-empty subset A C {1, ..., K} such that

gt maxeeaty
- O( ) 1/2 —1/2—¢
0

for some € > 0 and for some

- ) = 0(1)7
minge 4¢ Y ne ' 4mn



where A€ = {1,..., K}\ A, n. = min;<y<x ng and i, = || O (x) — fF) (2)]]2.

Remark 2. We allow A to be the whole set {1, ..., K}, in which case the condition becomes
maxi<g<k Yk
=== - =0(1).
012 Jr7151/2—6
Besides, if A exists, then it is unique since
—1/2 | —1/2
(l<k<i:" T _,a)n{l<k<K: Vi = 0(1)} =0.
On no 12 +7181/2—6

Condition [3]ensures that the source datasets can be effectively partitioned into two groups: infor-
mative ones and those sufficiently different from the target data. This separation guarantees that
the informative set can be accurately identified. Under this condition, by setting the number of
informative sources to L = |.A|, we establish the following rate of convergence for the AWaTL
algorithm. In practice, L can be decided by cross-validation.

Theorem 3. Under Condition[3|and the conditions of Theorem[2] for the AWaTL algorithm with a
fixed number of sources K we have P(A = A) — 1 and

ZkeAU{O}\/H_’_( Z nk)—l/z)).

d%/v(ﬁ”b(c?) (x)7m(£) (z)) =0, (”51/2“(%1&} (e
€ Lreauo} LT

The convergence rate of the AWaTL algorithm simplifies to n, 1=¢'+¢ When the informative source

data is sufficiently large. This rate surpasses that of global Fréchet regression [26]] applied solely to
the target data, offering a theoretical guarantee that AWaTL effectively mitigates negative transfer by
selectively integrating relevant auxiliary information.

While the above analysis assumes that each probability distribution is fully observed, an assumption
commonly adopted in the distributional data literature [26, [7], real-world applications often provide
only independent samples drawn from underlying distributions. In such cases, this limitation can
be overcome by replacing unobservable distributions with their empirical counterparts, constructed
from sample observations [43]. Additional details and theoretical justification for this extension are
provided in Appendix [E]

5 Numerical Experiments

In this section, we evaluate the performance of the proposed WaTL algorithm, alongside two baseline
approaches: the global Fréchet regression using only target data (Only Target) and using only source
data (Only Source). Consider K = 5 source sites. The data are generated as follows. For the target
population, we sample X (©) ~ U(0,1) and generate the response distribution, represented by its
quantile function, as

Foow) =w(1 —wu+ (1 - X+ XOF L (), ue(0,1),
where Z(©) ~ N(0.5,1)|0,1) and w® ~ N(0,1)|(_o.5,0.5)- Here, N(,0%)|(4,5) denotes a normal
distribution with mean 1 and variance o2, truncated to the interval (a, b). For source populations,
we define 1, = 0.1k for k = 1, ..., K, and generate X (¥) ~ U(0,1). The corresponding response
distribution is generated as

FU_(,%) (u) = w(k)(l —w)u+ (1— X(k))u + X(k)FZ_&) (u), ue(0,1),
where Z*) ~ N(0.5,1 — ¥x)|(0,1) and w*) ~ N(0,1)|(_¢.5,0.5). Consequently, for each predictor

x, the true regression function is mg) ()=(1-2)u+ xFZ’(i) (u),fork =0,1,..., K.

We vary the target sample size ng from 200 to 800, while the source sample size is set as ny = kT,
where 7 € {100,200} and k = 1, ..., K. The regularization parameter \ in Algorithm [1]is selected
via five-fold cross-validation, ranging from 0 to 3 in increments of 0.1. To evaluate performance,
we sample 100 predictors uniformly from the target distribution. Using Algorithm[I} we compute



mgj ) (x) and compare it with the corresponding estimates obtained from global Fréchet regression

using only target or source data. Performance is assessed using the root mean squared prediction
risk RMSPR = \/ LS @2 ( O (x,), mg))(xi)), where x; denotes the sampled predictor,

771(6? )( 1) is the estimated function, and mt )(acz) represents the ground truth. To ensure robustness,
we repeat the simulation 50 times and report the average RMSPR, as shown in Figure[T|a).

As shown in Figure[T[a), WaTL consistently outperforms global Fréchet regression trained solely on
target or source data. When the target sample size ng is small, the Only Target method exhibits a
high RMSPR due to the instability of models trained on limited data. In contrast, WaTL significantly
reduces RMSPR by effectively incorporating auxiliary information from the source domain. As ng
increases, the performance of Only Target improves and gradually approaches that of WaTL, which
is expected as larger sample sizes lead to more stable and accurate estimators. Nevertheless, WaTL
maintains a consistent advantage across all ng, suggesting that it leverages complementary information
from the source. The performance of the Only Source estimator remains nearly unchanged across
different ng values, as it does not benefit from additional target data.

Comparing the two panels of Figure[I|(a), we also observe that WaTL improves as the source sample
size increases, confirming its ability to effectively integrate information from source domains. This
demonstrates the benefit of multi-source transfer learning, where WaTL balances knowledge from
both target and source domains to achieve improved prediction.

To better understand when negative transfer may occur, we conduct an ablation study with K =1
source and vary the similarity parameter ); from 0.01 to 1 in increments of 0.01, with ny = 100 and
n1 = 200. Our method outperforms the Only Target approach when 1, < 0.9, while for ¢; > 0.9,
the Only Target method becomes preferable. This confirms that negative transfer arises when the
source is too dissimilar to the target.

We further evaluate the effectiveness of AWaTL in selecting informative sources. In this experiment,
we set L = 2 and ny = 100 for ¥ = 0, ..., 5. The similarity parameters are specified as ¢, = 0.1
for k = 1, 2 (informative sources), and 1, = v, increasing from 0.2 to 1 in increments of 0.1, for
k = 3,4, 5 (uninformative sources). Each configuration is repeated 100 times, and the corresponding
selection rates are reported in Figure [T[b). The results show that AWaTL successfully identifies
informative sources, with selection rates for sources 1 and 2 rapidly increasing and reaching perfect
accuracy once 1 > 0.6. These findings demonstrate the robustness of AWaTL in distinguishing
useful sources under varying similarity levels.

Method « Only Source = Only Target = WaTL Source 1 + Source 2 - Source 3 + Source 4 -+ Source 5
1.00
0.0040 0.0040
0.0035 0.0035 075
2
I
5 0.0030 0.0030 -
7 : 5050
% 8
0.0025 0.0025 3
\ 0.25 .
0.0020 0.0020 \
0.00 N
200 400 600 800 200 400 600 800 0.2 0.4 0.6 0.8 1.0
Target Sample Number Target Sample Number Y
(@) (b)

Figure 1: (a) Root mean squared prediction risk (RMSPR) of WaTL, only Source, and Only Target
methods under varying target sample sizes, with source sample sizes 7 = 100 (left) and 7 = 200
(right); (b) Selection rate of each source site as ¢/ increases.



6 Real-world Applications

We evaluate the WaTL algorithm using data from the National Health and Nutrition Examination
Survey (NHANES) 2005—200(@ focusing on modeling the distribution of physical activity intensity.
NHANES is a large-scale health survey in the United States that combines interviews with physical
examinations to assess the health and nutrition of both adults and children. The dataset includes
extensive demographic, socioeconomic, dietary, and medical assessments, providing a comprehensive
resource for health-related research.

During the 2005-2006 NHANES cycle, participants aged 6 and older wore an ActiGraph 7164
accelerometer on their right hip for seven days, recording physical activity intensity in 1-minute
epochs. Participants were instructed to remove the device during water-based activities and sleep.
The device measured counts per minute (CPM), ranging from 0 to 32767, capturing variations in
activity levels throughout the monitoring period.

Since female and male participants exhibit distinct physical activity patterns [12], we analyze them
separately. Physical activity intensity is influenced by multiple factors, and we consider body mass
index (BMI) and age as key predictors [19} 9]. To accommodate potential nonlinear relationships, we
implement local Fréchet regression within the WaTL algorithm, treating the distribution of physical
activity intensity as the response and BMI and age as predictors.

Following the data preprocessing steps in [23], we remove unreliable observations per NHANES
protocols. For each participant, we exclude activity counts above 1000 CPM or equal to zero (as
zeros may correspond to various low-activity states such as sleep or swimming). Participants with
fewer than 100 valid observations or missing BMI, age, or gender information are also excluded.
The remaining activity counts over seven days are concatenated to form the distribution of each
participant’s activity intensity.

To evaluate the WaTL, we set White, Mexican Americans, and other Hispanic individuals as sources
and Black as the target. For females, the source data include 1308 White people, 884 Mexican Ameri-
cans, and 108 Other Hispanic individuals. For males, the source data include 1232 White participants,
805 Mexican Americans, and 92 Other Hispanic individuals. We set 200 Black participants as the
target data for both genders. During evaluating, we perform five-fold cross-validation, using four
folds for training and one for testing, cycling through each fold. For comparison, we also apply local
Fréchet regression using only the target data. The results, summarized in Figure (a), show that
WaTL improves performance over local Fréchet regression for both females and males, demonstrating
its ability to leverage information from other demographic groups to enhance modeling for Black
participants.

Method [ Only Target " WaTL Method — Ground Truth — WaTL — Only Target
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Figure 2: (a) Root mean squared prediction risk (RMSPR) of WaTL and Only Target methods for
females and males, evaluated using five-fold cross-validation; (b) Cumulative distribution function
of physical activity levels for one selected female (left) and one selected male (right), along with
estimates from WaTL and Only Target methods.
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To further illustrate the effectiveness of WaTL, we visualize the cumulative distribution function of
physical activity levels for one female participant and one male participant in Figure[2(b), along with
estimates from WaTL and local Fréchet regression, using only the target data. The results indicate
that WaTL provides a better fit to the true distribution, outperforming the estimate obtained using
only the target data. We further evaluate the robustness of WaTL on a human mortality dataset in
Appendix [A] where WaTL continues to demonstrate strong performance.

7 Conclusion

We introduce Wasserstein transfer learning and its adaptive variant for scenarios where the informative
set is unknown, addressing the challenges posed by the lack of linear operations in the Wasserstein
space. By leveraging the Wasserstein metric, the proposed algorithm accounts for the non-Euclidean
structure of distributional outputs, ensuring compatibility with the intrinsic geometry of the Wasser-
stein space. Supported by rigorous theoretical guarantees, the framework demonstrates improved
estimation performance compared to methods that rely solely on target data.

This paper focuses on univariate distributions, which arise frequently in real-world applications such
as the NHANES and human mortality studies discussed in Section [6] The proposed framework,
however, is not limited to the univariate case and can be extended to multivariate distributions
by incorporating metrics such as the Sinkhorn [[L1] or sliced Wasserstein distance [4]. Extending
the methodology to higher dimensions is an exciting future direction that entails addressing both
computational and theoretical challenges specific to high-dimensional Wasserstein spaces.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately state the paper’s contributions, in-
cluding the proposal of the WaTL framework, theoretical analysis of convergence rates,
and validation through simulations and real-world data. These are detailed in subsequent
sections (e.g., Section 1.1, Section 3, Section 4).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses a limitation concerning the focus on univariate distri-
butions and suggests how this could be addressed in practical settings. This is found in
Section 71

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results (Lemmas and Theorems) are presented in Section 4, with
assumptions clearly stated (Conditions 1-3). The paper mentions that detailed proofs are
provided in Appendix C.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the WaTL and AWaTL algorithms (Algorithms 1 and 2 in
Section 3), the data generation process for simulations (Section 5), and the preprocessing
steps for the real-world NHANES data application and human mortality data application
(Section 6, Appendix A), providing sufficient information to understand how the main
experimental results were obtained.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper uses publicly available datasets, including NHANES (Section 6)
and human mortality data (Appendix A), with URLs provided. The code used to generate
all results is included in the submission as a zip folder, supporting reproducibility of the
experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies experimental settings, including sample sizes, data genera-
tion procedures for simulations (Section 5), data preprocessing for real-world applications
(Section 6), and how hyperparameters like A were chosen (five-fold cross-validation in
Section 5).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: The paper reports average RMSPR over 50 repetitions for simulations (Section
5) and results from cross-validation for real data (Section 6), but error bars, confidence inter-
vals, or formal statistical significance tests for these experimental results are not explicitly
reported in the figures or text.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: This paper introduces a new transfer learning method for regression with
distributional outputs, emphasizing methodological and theoretical contributions rather than
computational efficiency. The approach is not compute-intensive and was implemented
using standard CPU resources, so details on compute infrastructure and execution time were
not included.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conforms to it. The work focuses on algorithmic development and utilizes publicly available,
de-identified data for real-world applications (NHANES and human mortality datasets).

Guidelines:
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¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper primarily focuses on the methodological and theoretical contri-
butions of the proposed transfer learning framework. A dedicated discussion of potential
positive and negative societal impacts is not included, though the real-world applications
(Sections 6) in health and demography hint at positive uses.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research introduces new regression algorithms and applies them to existing
public datasets. It does not involve the release of new pretrained models or datasets that
pose a high or direct risk for misuse in the manner of generative Al or sensitive scraped data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the NHANES and human mortality datasets and provides
the related URLSs (Section 6).

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces new algorithms (WaTL and AWaTL) which are de-
scribed in detail (Algorithms 1 and 2, Section 3). No new datasets or software/models
are being released as downloadable assets alongside the paper that would require separate
documentation files.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research uses existing, publicly available, and de-identified datasets
(NHANES, human mortality data from Section 6) involving human subjects. It does not
involve new data collection through crowdsourcing or direct interaction with human subjects

by the authors. Therefore, details of participant instructions or compensation for the original
data collection are not applicable to this paper’s contribution.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research involves the secondary analysis of publicly available and de-
identified datasets (NHANES, human mortality data from Section 6). Such research typically
does not require a new IRB approval for the current authors, as ethical oversight and risk
disclosure were presumably handled by the original data collectors. The paper does not
describe new risks to participants arising from this secondary analysis.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of this research focuses on transfer learning for regres-
sion models with distributional outputs in Wasserstein space and does not involve the use of
Large Language Models as an important, original, or non-standard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Human Mortality Data

We further assess WaTL using the age-at-death distributions from 162 countries in 2015, compiled
from the United Nations Databaseﬁ and the UN World Population Prospects 2022ﬂ The dataset
provides country-level age-specific death counts, which we convert into smooth age-at-death densities
using local linear smoothing; see Figure[3](a) for an illustration. For this analysis, we define the 24
developed countries as the target site and the remaining 138 developing countries as the source site.

We evaluate the performance of WaTL against several key baselines on this dataset. These include
models trained only on the target data (Only Target), only on the source data (Only Source), and
on a naive pooling of both (Target + Source). Furthermore, for these baselines, we compare the
performance of our underlying Fréchet regression framework against Wasserstein Regression [7]],
another state-of-the-art method for distributional data.

Table 1: Performance and Training Time with Varying Target Sample Sizes.
Number of Target Samples RMSPR Training Time (ms)

14 0.028 0.598
19 0.025 0.597
24 0.022 0.694

The comprehensive results are presented in Figure [3|(b). The proposed WaTL method achieves the
lowest Root Mean Squared Prediction Risk (RMSPR) of 0.022, demonstrating a marked improvement
over all alternatives. Notably, it significantly outperforms models trained solely on the 24 target
samples (RMSPR of 0.027 for Fréchet Regression and 0.025 for Wasserstein Regression) and the
naive data pooling approach (RMSPR of 0.033). This highlights that simply combining datasets is
insufficient to overcome the domain shift between developing and developed countries, validating the
necessity of our bias-correction mechanism.

To further assess WaTL’s robustness and practicality, especially in common scenarios with limited
target data, we analyze its performance with a varying number of target samples. As shown in Table[T}
the model’s predictive accuracy consistently improves as the target sample size increases from 14
to 24. It is also worth noting that the method maintains exceptional computational efficiency, with
training times remaining under one millisecond. These findings confirm that WaTL is not only highly
accurate but also a robust and efficient solution for real-world demographic studies where target data
can be scarce.

Developed — Developing Wasserstein Regression [ Fréchet Regression
0.05
0.06
0.04
&
0.03 0 0.04
2 =
@ o
c
9]
£0.02
0.02
0.01
<& & & Q&
o oF &° N
0.00 ) & &
©
<
Method
(a) (b)

Figure 3: (a) Age-at-death densities of developed and developing countries; (b) Root mean squared
prediction risk (RMSPR) of WaTL and Only Target methods for human mortality data.

*https://data.un.org/
https://population.un.org/wpp/Download
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B Additional Notations

For any g1, g2 € L?(0,1), the L? inner product is defined as
1
(91,92)2 = / 91(2)g2(2)dz.
0
The total variation of a function g on the interval (a, b) is

V2(g) = lim sup > g(w:) — glzioa)].

nNIE0 gz <. <Tn<b iy

The space of bounded variation functions is given by
BV((0,1), H) = {g: (0,1) = (—=H, H)|V;'(g) < H},
which is equipped with the L? metric.

For a matrix 3, let ||3|| and ||2||¢ denote its operator norm and Frobenius norm, respectively, and let
~i(X) be its ith smallest singular value.

We denote the characteristic function of a set A by 1 4 and use |.A| to represent its cardinality. In a
metric space (€, d), the covering number N (K, d, €) represents the smallest number of closed balls
of radius € required to cover a subset K C 2. The notation | | is used to denote the disjoint union of
sets.

For notational simplicity, we will omit (z) from f(x) when the meaning is clear from the context.

C Proof

Lemma 2. Consider U : W x (0,1) — R, where U(v,z) := F,;}(x) and W x (0,1) is endowed
with the product o —algebra generated by the Borel algebra on W and the Borel algebra on (0,1).
The first Borel algebra B(W) is generated by open balls in OV, dy) and the second B((0,1)) is
generated by Euclidean open balls. Then U is measurable.

Lemma [2] enables a simplified expression for the conditional Fréchet mean of v given X = x by
applying Fubini’s theorem. Specifically, we have

m(x) = arg min E{d}, (v, u)| X = x}
HEW

= arg min E{d2. (F;17F;1)|X =z}
new

= argmind7. (E{F, '|X = I}vFil)a
HEW

where the last equality follows from Fubini’s theorem, since E{F,}|X = x} is measurable. A
similar argument applies to mq(z) and mg(z).

C.1 Proof of Lemmal[2|

Proof. Without loss of generality, It suffices to prove {(v, )| F, !(x) > 0} is measurable. Note that
any quantile function is left continuous, hence { (v, z)|F, ' (z) > 0} = Ugeqno,n{(v @)|F, (q) >
0}.

Then without loss of generality, we suffice to prove {(v, 0.5)|F,,*(0.5) > 0)} is measurable. Since W
is separable, we can select a dense countable subset /. We then define A = {v € K|F;1(0.5) > 0}.
Assuming A = {v;,i € N}, we have {v|F,1(0.5) > 0} = {v|lim,; . dw(v,v) = 0} =
lim,, 00 lim;_oo B1 (v;) where B.(v) is the ball centered at v with radius e. Here we remark

that both left continuous and monotone increasing are used in the first equation. Hence U is
measurable. O
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C.2 Proof of Lemmall]

Proof. First, it is easy to check that f(*) € BV((0,1), Hy) for some Hy > 0 since f*) =
k - k .

B (0)1 (0 ooy Pt} = BAsE @)1 0 (1) oy Foih } and Elsy (2)] < oo. By taking

H large enough, We also claim that P(f( ) € BV((0,1), Hy)) — 1 since 7% also has a similar
decomposition and

IR R ) ),
. Sia(r)] < — s (x) — s + |s;

i=1
<op(1) + Hy

for some H; > 0 with high probability, where sl(-k)( ) =1+ (X5 = 0k)% (33 — 0). The last

inequality holds because of the result given by the proof of Theorem 2 in [26]] that o Sk |SZ(-Z) (z)—

sgk) (z)| = 0p(1) and the assumption that X (*) is subguassian.

To use Theorem 2 in [26], taking Q to be BV((0,1), Hy), M(g,x) to be M*) (g, 2) =

E{S(G ()| F UW — g||3} for any g € BV((0,1), Hp), it suffices to check that the other two as-
sumptions of the theorem:

1
/ \/1 +log N'(Bs(f®)) N BV ((0,1), Hy),drz2,d¢)de = O(1)
0
as 0 — 0 and
M® (g,z) = MP (0 2) > || P — g]3.
Example 19.11 in [33]] gives a bound of the covering number of the space (BV((0,1), Hy),dz2),
N(BV((0,1), Ho),dyz2,¢) < e
for some K > 0 where K is independent of e.

The rest is similar to the proof of Proposition 1 in [26]. For g € BV ((0,1), Hy), B-(g) denotes the L?
ball of radius ~y centered at g. Let Cc(f*®)) := {g, : u € U} such that |U| = |N(BV((0,1), Hy) N
Bi(f),dr2,€)| < eX< " and the balls B, (g, ) covers By (f) N BV ((0,1), Hy). For § > 0, we define
Gu = f®) + 6(gu — f*)). Then the balls Bs.(g,,) covers Bs(f) N BV((0,1), Hy). Hence

1 1

/ V1 +1log N(Bs(mg(z)) N BV((0,1), Hy), dy2,d€)de < / V1+ Ketde < 142VK < .
0 0

For the last assumption, just note that

M®) (g,2) = MB(f®) ) = || F0) — g]13.

Then according to Theorem 2 in [26]], Hf(k) — f®y =0 (nlzlm). O

C.3 Proof of Theorem[T]

To prove Theorem [I] we first establish a lemma that quantifies the bias introduced in Step 1 of
Algorithm[I] This lemma is formulated for a general metric space, making it broadly applicable and
potentially useful for extending transfer learning algorithms to other metric spaces.

Here are some notations, most of which are similar to our original setting. The only difference is
that we use Y instead of v to represent a random object in a general metric space (2, d). We define

Ny = MiNj<p<fg Nk, NA = Zfil N, o = ng/(no +na),
K

mi(z) = argmin M (w,z), M'(w,z)= Z ozkE{sgf) (a:)ch((,u,Y;(k))}7
weN k=0

and

~ . 1 1 E : (k) Y(k)
mi(xr) = arg min lwn w,T), M W, CU S 5 .
1( ) weN ( ) ( nO na =0 i—=1 ’ )
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We impose the following mild condition on the metric space (€2, d), which is widely used in the
literature on non-Euclidean data analysis [26]]. This condition holds for various metric spaces
commonly encountered in real-world applications, including the Wasserstein space, the space of
networks, and the space of symmetric positive-definite matrices, among others.

Condition 4. (i) m1(x) uniquely exists and my(x) uniquely exists almost surely. Additionally
for any v > 0, inf 4(1m, (2),w) >y M (w, ) > M (my (), 2).

(ii) Let Bs(my(x)) C Q) be the ball of radius § centered at m1(x). Then

J(0) = /O T+ Tog N (Bs(m1(2)), 4, 66)de = O(1)

asd — 0.

(iii) There existn > 0, C > 0 and § > 1, possibly depending on x, such that whenever
d(mq(z),w) < n, we have M*(w,x) — M} (mq(z),z) > Cd’(w, my(x)).

Ly 22 _ Zf:o\/ﬁ
Lemma 3. Under Conditions |I| |2| and 4| d*(mi(z),mi(z)) = Op((=="E 4 (ng +

no+na
_1_
na)~2) 571)'

C.3.1 Proof of Lemma[3

Proof. Denote V,,(w, ) = M}(w, )~ M (w, z),and D (w, z) = 2 (V;® , w)~a2(Y;® ,my (2))
and recall s (z) = 1 4+ (X¥) — 6,)S7 " (z — 6x). Then

i

N

Valios) = Valms (2),2)] < 3" anf - > (s8@) = 5 @)D )
k=0 i=1

1 &
+1— 3" s DM (w) — B{sV D (w)]}. (A1)
ki
For any § > 0,
1 & 2diam(Q)d =
sup | LS (68@) - o ) D )] < 2B §H o) )4 P @y,
d(w,m1(z))<é | Tk i=1 K i=1

where W (z) == (X" 8@ = X)) — 079 @ — 0,) and W () = S0 (@ — 6) —
Sz — Y(k)). Then
k k k k k
sier (@) = 57 (@) = WP @) + (W (@) 7", (A2)
We neglect the superscript for the sake of notation simplicity.

Denote By s = {||2 Y7 | X;||| < M} where | X;| represents the element-wise absolute value of
X;. Let Boar = {71 < M}, By = Buar N Boag and 7 = 1 57(X; —0)(X; — 6)™. In By s,

I - )| < I - 2|
1
n

F
—2 —

2p°(IX° — 62|15 + M| X — 0]3]"/

2p(M + |6))[|.X — 0]2.

Using Theorem 6.5 in [37] leads to

<
<

~ C.
P(S =3 > €) < 267G 4 Che= GV T,
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for any ¢ € (2 %, 1). Note that

IETH < BT+ s =)
n(X) - ’71(§)|
71(2)%@)
Iz -5
NEME) - £ -2
where the third inequality is from the Weyl’s inequality. Then there exists M/ > 0 such that

<=7+

<=7+

~ o
PS> M) < 26 T 4 Cpel OV R,
Consequently,
4C )
P(Bi) < 3e "4 028(_03(?3_\/?)71),
In BM,

Wo(z) = [(X = )87z — 05710 - X) - Xu7'(0 - X))|
<X =07 (Jz] + 0] + M)

Hence in BM = ﬂk OB](J;), we have

o Osr
<Z ag|Wo(x)| > t) < 9e Th=okIMo@IY,
,079
S —Ct?
< 2e TE=0 Tigtnp? < 9 Cot’(notna), (A3)

for some constants C5, Cg > 0.

In the first inequality, we use general Hoeffding’s inequality (Theorem 2.6.2 in [35]]) and in the second
inequality, we use Proposition 2.6.1 in [35].

In addition,
1 & ~ _ -~
— 21 Wa@) "Xl < M{IET = Sl - 27O - X) + (7 - ETHX)
=1
< M(||lzl| + M)(|=7" = =7Y)) + MRs|0 — X]|
< M?(||z|| + M)Rs||E — £|| + MRs| — X|.

: !
Hence in B,

(Zak2| (k) TW ( )| >t> < 2~ "o+"A +P (Z%Cgﬂzk — S >t>

k=0
(A.4)
for some constant Cg, C9 > 0. Using Markov inequality, the second term is bounded by

(y)\

n
k 9

_,\fHK Ee,\akcgnzk Skl <e —\t 4pK+Zk 0 Cro—EL

which is from Theorem 6.5 in [37] for any A satisfying A < Cyin, for some constants

C10,C11 > 0. We can choose \ := %, which does satisfy the theorem’s assumption if

t =0 ((no +n.a)~"/?). Here we utilize Condition Then

K
~ t2 (ng+mn 4)
P (Z arCol[ Sy — Syl > t) <K (AS)
k=0
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Note that K = o(ng + n.4), hence

K
sup Z ay [

d(w,m1(z))<6 .-
since P(B)s) — 1 due to Condition 2]
To bound the second term of (A-T)), following the proof of Theorem 2 in [26] for each k, we define

the functions gﬁ,k) RPx Q+— Ras

98 () = L+ (2 = 60)7E, (@ — )] d (y,w)

Nk

LY @) = O @NDE@)| | = 0y (310 + ) 2).

and the function class

M = (g = gl - d(w,ma () < 6}.

ml(ac)
‘We have
R k) o (k k 1
E{d< o n—kz s\ (1) D (9) — B{s{" DM (9)}| ¢ < J(BI(GS" ()27 vk,
w,mi(x))< i=1

where ng)(z) := 2diam(Q)0[1 + (z — 0)"S; ' (x — 6)] is the envelop function.

Note that *)
E(Gy7(X)?) < C146°
for some constant C74 > 0, which does not depend on k. Hence

SN SR < TSP (9) 1K) ~
E sup - Zk Dik g — F Sik DilC g Olé
{d(wml(ac))<§ kZOTLOJrnAZI G( ) ( ) { ( ) kZZOTLOJFnA
(A.6)
Define

L6 @) — 59 D ()

K
Dpgr = { sup Zak
L

d(w,m1(x))<6 "o

< Ré(ng + nA)1/2} .
We have

K
E{lp sup Va(w) — Vp(my(x gaR5< + (no +1n4 —1/2>7
{1, s IVa(w) = Va(m(@)]} ;; P )
for some constant a > 0.

Next we show
M (w, ) = My (w,z)| = 0p(1),
and for all w €  and for any k > 0, ¢ > 0, there exists § > 0 such that

limsup P( sup |M}(wi,2) — ML(w2,2)| > k) < . (A7)
n d(wy,w2)<d

To prove the first assertion, we denote

K ng

N () = o0 ()¢ (w, Y
( n0+n"4k§:01 1 )

Then EM}(w,z) = M}(w,z) and Var(M}(w,z)) < 235, C' Grotiyz for some constant
C’" > 0. Hence M} (w,z) — M} (w,z) = 0,(1).

Besides,

M} (w) — M Zak

= op(l).

(k) Nk K W(k) T "k
o

Zdz v ZX(k)dz Y™, )
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The last equation is true since Zf:o ak% Yok [(Wh ()™ X5 = op(1) and ZkK:O a|Wo(z)| =
op(1).
To prove (A7), note that for any 1, v2 € €,

K ng

My (71, @) = M (1, 2)| < 2diam(@)d(1, 72 >m SN W )
k=0 i=1
= Op(d('}/h’}@))

The last equation is true since 22{:0 O‘kn%. Yok |(Wh(z))™ X5 = op(1) and Zé{:o ag|[Wo(z)| =
0p(1), and we can prove

K 1 Nk
k
Zakaz\sg =1+ o0,(1) (A.8)
k=0 i=1
in a similar way of (A3). It follows that d(m4 (x), m1(x)) = 0p(1).
5
Setr, = (Zk 0 no+nA + (no + nA)_1/2> 7Y and

Sim(z) = {w: 271 < rpd(w,ma(x))? < 27}
Choose n > 0 to satisfy (iii) in Condition@and also small enough that (ii) in Condition@holds for
all < nandset 7 := ng. For any integer Lo,

P(rndﬁﬂ(ml(a;),ml(x)) > sz) < P(D%,) + P(Zd(fle(x),ml(x)) > n)
22(3 1)

+ Y P({ swp [Valw) ~ Valma(@))| = €

i>Lo wWESj n n

}mDR)

29 <rp, i
The second term converges to 0 since d(1 (), m1(z)) = o0p(1). For each j in the sum in the third
term, we have d(w, mq(z)) < ( )B < 1, so the sum is bounded by

25(1=8)
B 1
—1
400" 3 EIE - ) < 4aC”! 2(4%)
) k 1
253377 " (Zk:o motna 1 (ot na) 2) §>Lo

Choose L5 large enough, this probability can be small enough.

Hence we have

K
& (s (2). 1 (2) = O, (M + (o + nA>1/2>B%> .
nog+n4

C.3.2 Proof of Theorem[I] Given Lemma

Proof. The proof is similar to that of Lemmall] First, it is easy to check that f € BV ((0,1), Hz) for
some large Ho > 0 since

K
k
f:E{kzoakS(G)(x)l{ZK aps® (2)>0} l,(o)} {

and E\ZkK Oaks(G)(x)| < oo. Taking H large enough, we also claim that P(f €
BV ((0,1), Hz)) — 1 since fj also has a similar decomposition and

(8 (4 1 ) ) (k)
n0+nAZZ|S _WZ(I @) —s; (@) + s (2)])

k=0 i=1

{sz 0 aksG)(:v)<O}FV_(0) }

S Op( )+H37
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for some H3 > 0 with high probability. The last inequality follows from (A2), (A=), (A3) and
(A-4). Thus, (i) in Condition @] holds.

(ii) in Condition [] follows from the same arguments used in the proof of Lemma([l] It remains to
verify (iii) in Condition@, which holds since

Ml(g’(ﬂ) - Ml(fax) - ||f - gH%
Hence the result follows by using Lemma 3] O
C.4 Proof of Theorem
Proof. Recall that f(©)(z) = E{sg))(x)Fl;[}) }. Using the definition of f;,

no

o~ 1 0 - _ —
1o = £ONE = =3 s @ Lo = F o lls = 150 = F )

1=1
2 <= (0) ~
+7’L7()Z zG( )<F;§)_f(0)af0_f(0)>2
i=1 :
< =M fo = Flla + AIF@ = Flla
2 B N
+;£§:§2<MFW FO o — O,
=1

< =Allfo = Fll2 + AF© = Fll2

~ 1 _
+%h—f@hml§:mN)F@ I

=1

We define the event B, := {||ng* 31, Z((();)( )F_ — fO|3 < A/2}. According to Lemmal we
have P(E,) — 1 since A < ng */**<.
Under E,, for n large enough,
1fo = SOUZ < 215 = Flla < 20(IS = fll2 +1F = £112)
holds. Hence we have
ay (& (@), m (@) < 1o = FOU3 = Oy (ng > (I = Fll2 + ).
Then using Theorem [T} it follows that

d%/\)(ﬁl(c(;)) (x)7m(£)(x)) _ Op (n0—1/2+6( Zk £Lik=0V 'k \/7 (nO +’I7,A)71/2)).

ng +nAa

C.5 Proof of Theorem 3]
Proof. We first prove P(A = A) — 1. Note that
P(A=A) > P(max Y < min )
keA

2 1-P( max [ — | > | max¢py — min i)

> — ; — ’ — .
>1 KlgmkagKP(lwk Y| > | mazepy — min o)
According to Lemma [t — @\ = Op(n,, vz nil/ ). According to Condition

| maxyea ¥ — minge a0 Yi|

1/2+n51/2

— 0.
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Hence R
P(A=A)=1-o0(1).
Then using Theorem 2] where we substitute A for {1,..., K}, we have

dw(ﬁzg)(g:)7mg))(x)) ~=0, (n81/2+e(%16aj(¢k + M +( Z nk)fl/z))'

ZkGAU{O} k ke AU{0}
O
D Transfer Learning for Local Fréchet Regression
For simplicity, we consider a scalar predictor X(*) € R for k = 0, ..., K. For predictors in R?, the

explicit form of the weight function can be found in Section 2.3 of [17]. Under the same source-target
data setting, we define

m®) () = arg min B{d, (v, )| X9 = 2},

HEW
m(Lk)h( ) = arligenvtin E{S(Lk)(a:, h)d2, (v®) ) 1)},
= (k) L S= 0 2 (k)
mL,h(x) = arfenvynnsz i (@ h)dyy (v, )},

1=1

where s(L )( ) and s( )( ) represents the population and sample weight functions of local Fréchet
regression for the kth source.

For notational simplicity, define
k _
(@) = B{FIX® = 2},
k k -
I(L )(x) = E{S(L )(xv h)Fy(;)},

K
=3 arfP ().
k=0

Similar to Section |3} we introduce the Local Wasserstein Transfer Learning (LWaTL) algorithm in
Algorithm [3] assuming that all sources are informative. When the informative set is unknown, we
incorporate an additional step to identify the informative set, as outlined in Algorithm ] Theoretical
guarantees for these algorithms are provided in Theorem ] and Theorem [5]

We impose the following condition, where the first two parts correspond to the kernel and distributional
assumptions that are standard in local linear regression.

Condition 5. (i) The kernel K is a probabtllty density function, symmetrlc around zero. Fur-
thermore, defining K,; = [, K*(u)udu,

(ii) The marginal density q® of X®) and the conditional density of X (k) given vk, gi’fg),
exist and are twice continuously differentiable. Besides, it satisfies that

sup sup max{(q¢™)"(2), (4%)))" ()} < H3
0<k<K Z}V(k)

for some Hs > 0.
(iii) h — 0 and ngh — oo.
-1
(iv) Zh=t"e — o(1),
(v) v'®) have a common bounded domain.
(vi) ugk) = E(Kh(Xi(k) - x)(Xi(k) —x)),j=0,1,2 and G'(k) = ué )u;k) - (ugk))2 >0

are bounded.
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Algorithm 3 Local Wasserstein Transfer Learning (LWaTL)

Input: Target and source data {(xl(»o), Vi(o)))}?:"1 U (Ui<k<i {(JZZ(-k), Z(k)) 1), regularization
parameter A, bandwidth h and query point x € R.
Output: Target estimator ﬁl(L )h( )-

1: Weighted auxiliary estimator

R K
In(z) = no +ng kz
where /;(lk)( ) =nt Y E?(l’ h)F (k) and ny = Zk 1 k-

2: Bias correction using target data

fon(z) = argmin stzL wW)IE, 6 = gl3+ Mg = Fu(@)]l>
geL(0,1) M0 ;=

3: Projection to Wasserstein space

m(L({)}l(gg)_argmlnHF ! fbh(x)’|2'
LEW

The following theorem establishes the rate of convergence for the LWaTL algorithm.

Theorem 4. Assume Conditionholds and the regularization parameter satisfies A < n 12p=1/2-c
for some € > 0. Then, for the LWaTL algorithm and a fixed x € RP, we have

a2y (), (), m (@) = O, <h4+n V212 ¢L+h2+h‘1/2((kzo 1/2+Z nﬁm”)’
where oy, = maxy<p<xc | £ (2) — £8 (@)
Proof. Note that
3y (), (), m O (2)) < 2{d3y (m), (), mO (@) + diy (m), (), M), (2))}
< 2{d}y(m), (x), m® (@) + | 1" (@) — Fon (@) 13}-

For the first term, We could use Theorem 3 of [[26] since we can check all its assumptions easily, which
is similar to the proof of Lemma[l] Here we should consider the metric space BV ((0, 1), Hy) for
some H, > 0 endowed with the probability measure naturally induced by the canonical embedding
of the Wasserstein space.

For the second term, first note that using Theorem 4 of [26], we have || f (0)( ) — f;(lo)(a:)HQ =
O, ((noh)~'/2). Then similar to the proof of Theorem we have

1757 () = for(@)3 < Al fon(x) — A( Mz + MY (@) = Ful(@)]2
+ 27 @) = £ @) all fon(x) = 1 @)]]2.
Hence in B, := {||f\” (z) — £\ ()ll2 < $A},

1A (@) = for(@) 12 < 21 £ (@) = Fr(@)]l2 < 2MWn + || fn(z) = Fa(@)]2), (A.9)

where ¢, = maxi<p<i Hf,gk) — f,(LO) ||2. For the first term of (A.9), using Theorem 3 of [26] and (i),
(i) in Condition 3} we have
Pn =YL+ O(h?).

For the second term of (A.9), we could follow the proof of Lemma [3] to study the asymptotic
rate of convergence. The difference is that we do not assume covariates are sub-Gaussian but
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Algorithm 4 Adaptive Local Wasserstein Transfer Learning (ALWaTL)

Input: Target and source data {(z”, ")} U (Uicper {(@™,)}71)), regularization
parameter A\, bandwidth A, number of informative sources L, and query pomt x €R.
Output: Target estimator ﬁl(L )h(x)
1: Compute discrepancy scores. For each source dataset £ = 1,..., K, compute the empirical

discrepancy

en = 15" @) = B @),
where f}bk)( ) =mn; S E? (z, h)F ( +,- Construct the adaptive informative set by selecting

the L smallest discrepancy scores

A= {1<k<K: 121\k7h is among the smallest L values}.

2: Weighted auxiliary estimator

[ P S— )

n n
ZkEAU{O} k ke AU{0}
3: Bias correction using target data
—~ 0 —~
Fona) = angmin = 59, )| @~ 9l3 + Allg = Fn(@)]l2-
geL2(0,1) 1o =1
4: Projection to Wasserstein space

AP () = axgmin | F; = Fon(a)
HEW

we have upper bounds for moments related to covariates and the kernel. In detail, we define

(k k ul? —u (X k k
Sip () = Kh<X“ 1) and D (g, 2) = |[Fd gl =1k — 17 @)l

Then similar to and the proof of Theorem 4 in [26]) we have for small § > 0,

K Nk K
E{ s |——3 > 5w (9,2) = Y- arB{5}) (0, ) D (g, )}
{sz(g,fﬁ,k)K o A k=0 }
K
- o(ah*/?iz’ﬂzo VEL),
ng +na

Another term we need to bound is Zszo S |s£§) (z,h) — 55? (z,h)|. Note that we can define
~(k k i k k ; ;

Bar =i ({166™)% > §(06™)2) My (L 5 K (XY =) (X" —2)7| < b7 M})) for

some large M > 0. Then it is easy to check that

Al
((Bm)° kzzo -
for some C'41 > 0. In Bj;, observe that
|58 (2, h) = 555 (e, )| < (W) K (X — )] + W K (XY — ) (X — )],
where (k) ) (k) )
(k) . Uy ) (k) . U1 ug

= (ko o’ n "= (ko o
@2 (o) @2 (e

-5)

Note that in By, it is easy to check

\Won)\<cA2(Zhﬂ
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and )
WO < Can (30

J=0

W — )

for some constants C'4o > 0. Hence in B),,

(ZiH? (w,h) = 5} (x, h)|>t)

k=0 i=1

K
< P(CA3 kgoakﬂW(ml B[ Win) > t)

1 Ko
<_—C -
< o7 A4];)nk

Hence Y 1 020 158 (2, ) — 38 (@, h)| = 0,(h"Y2K ni'). In addition, we can
check that fh( ) € BV((0,1),Hs) exists almost surely for some Hs > 0 by showing
Zszl Sk |s£? (z,h)] = Op(1). Also utilizing the same technique in the proof of Lemma

P
, It suffices to show that || f,(z) — fr(z)|l2 = 0,(1). It is just a simple generalization of Lemma 2
in [26]. Eventually, we have

K
(0) > ~1/2 1y1/2
12 @) ~ Fon(@)lls = 0 ( <,§ +Zn0+nA)>
and
K
2 (30 (2 1 (0) (1)) — 4y, =1/2p—1/2—¢ 2,1 -1/2 1/2 '
&y (), (@), m® (@) O<h+ O R (O3 +Zno+w)]>

O

Remark 3. Theorem [ can be extended to general metric spaces and serves as a parallel version
of Lemma Besides, if n, is much larger than ng and ¢; = O(nak) with & > ﬁ, then

among bandwidth sequences 7 = n; ", the optimal sequence is achieved at r* = % , leading to the

convergence r ate
3k—2ek+2

&y (), (2),m O (2)) = Op(ng ),

which surpasses the convergence rate of local Fréchet regression O, (n, 4 5) [26].
There is also a parallel version of Theorem 3] built upon the following condition.

Condition 6. Suppose the regularization parameter satisfies A < ng 12p=1/2-c for some € > 0 and

for some €' > ¢, There exists a non-empty subset A C {1, ..., K} such that
h? + (nah) =12 4+ (noh) =12 o(1) maxke A Yk L _ o)
minkeAC 7Jfk,L ’ h2 + (n*h)—l/Q + nal/2h_1/2+€/ )

where A® = {1,..., K}\A n, = miny<x<x ny, and V. 1, = Hfg(go)(m) - G(ak)(a?)Hg.
Theorem 5. Assume Conditions @and |§| hold. Then for the ALWaTL algorithm we have

Ay (), (x

= <h4 +ng PR/ [maxwk,L + h?
keA

Jrhq/z(( Z n;1)1/2+ Z Vi )])

ke AU{0} ke AU{0} 2 keAu{o) M
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Proof. We first prove P(A = A) — 1. Note that

P(A=A) > P(maxy,, < min 1)
( ) 2 P(max iy < min i)

>1-P i — - — mi

> (1r§r}€a§K(lwk,h Yin| + [Ye,n — Yi,L]) > Irgleajlm/}k,L in, Ui,
> 1 — b ;- ’ rp — ’ — i .
21 Klg,‘ﬁ;‘KP(Wk Vi + [Ynrn — Y L]) > |fl§€aj‘<¢k,L o, Vk,L])

According to Theorem 3 of [26]], [¢x ,,— 1k .| = O(h?). Utilizing Theorem 4 of [26]], |1/)k_,h—$k,h\ =
Op((nish) =2 + (noh)~*/?). According to Condition 6]

| maxgea Yr, L, — Minge ac Vi, 1

%
W2+ (nah) 2+ (noh) 172
Hence R
PA=A)=1-0(1).
Then utilizing Theorem {| where we substitute A for {1, ..., K'}, we have

— O h4 _1/2h71/276|: h2
P +ng rkﬂgffd’k,L +

+h‘1/2<( Z n;1)1/2+ Z Vi )])

ke Au{o} ke AU{0} ZkeAU{O} L
O
Remark 4. If n, is much larger than no, then the simplified rate is O,(h* + n51/2h3/2*e +

ng ! h_l‘“/_e). Among bandwidth sequences h = ng, the optimal choice is achieved at r* =
leading to the convergence rate

_ 1
5—2¢"”

4—c—¢’

&2y (), (x),m(z)) = Op(ng * ),

which is faster than the convergence rate of local Fréchet regression O, (n,, 4 5) [26].

E Transfer Learning for Wasserstein Regression with Empirical Measures

Fréchet regression assumes that each distribution is fully observed. However, this assumption is often
impractical, since in real-world settings one rarely encounters datasets where each observation itself
constitutes a full distribution. To address, Wasserstein regression with empirical distributions has been
proposed [43]], where distributions are replaced by their empirical versions, reaching a convergence

rate of O, (n~/2 + Nr;iln/ 4), where Ny, representing the minimum number of observations. In this
section we do the same modification to handle this obstacle, providing algorithms for global and local
Wasserstein transfer learning with empirical measures (WaTL-EM), respectively. The only difference
between them and those with full distributions is that we substitute empirical distributions f/\i(k)

O]
defined as NL Zf\;l (Su(k) for the true but unobservable distributions l/i(k), 1<i<n,1<k<K,

i Yij
()

where we recall the settings in Subsection and Appendix@ additionally assume {yz(f)};v;l are
independently sampled from z/i(k) and define J, as the Dirac measure at z. In addition, we denote
Nmin as min; j Ni(k).
Theorem 6. Assume Conditions |I| and |2| hold and the regularization parameter satisfies A <

(no_l/2 + N;iln/zl)l*for some € > 0. Then, for the WaTL-EM algorithm and a fixed x € RP, it holds
that

K
~ — — 1—e — n _ —
By a0 2 () = O (05 4N ) (0 L )N 1)),
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Algorithm 5 Wasserstein Transfer Learning with Empirical measures (WaTL-EM)

(0) (k)
Input: Target and source data {(z\", {yz(;))};vzl )} U (Urerer {8, {yfjk)};vzl k), regu-

larization parameter A, and query point z € R?.
Output: Target estimator ﬁl(c? o (T)-

. Empiri Lok 1
1: Empirical measures: U;"’ = N >t (Syx_c).
2: Weighted auxiliary estimator: frgar(z) = Y S nkA( ) (), where fSEk&(x) =

-1 k -1
P 2ie1 EG)( ) F .-
3: Bias correction using target data: fo g/ () = arg minge 2o 1) nio Yos lG( )HFA(& qll3+

Mg = fem ()2
4: Projection to Wasserstein space: ﬁl(c?v)EM(x) = argmin ¢y ||FH — fo em( H2

Algorithm 6 Local Wasserstein Transfer Learning with Empirical measures (LWaTL-EM)

(0) (k)
Input: Target and source data {(z\", {yz(;))};vzl )} U (Urerer {8, {yfjk)};vzl k), regu-

larization parameter A, bandwidth h and query point z € R.
Output: Target estimator m( ) ().

N
1: Empirical measures: 1/( ) = N}k) ity 6.
3

2: Weighted auxiliary estimator

nox 2

Fromn () Tlo+77A
k
where /}ng( ) =mn; " Z?kl il (:c h)F m andny = Ek: 1 N

3: Bias correction using target data

fon,gr(z) = argmin — ZSZL z, h)||FA<§> 91153 + Allg = faear(2)|2-
geL(0,1) M0 ;=

4: Projection to Wasserstein space

m(LO,)h,EM( ) = argenvtm HF - J%h7E]V[(x)H2'

where () = max; << || (x) — f*) (x)||2 quantifies the maximum discrepancy between the target
and source.

Proof. First note the following result has been established in [43]. | fx U V(@) — fR(2)] =
0, (n; “1/2 - 1/4).

min

Also, an analogy of Theorem [I]can be established in a similar way, just note that analysis in proof of
Bl we have established that

1 K ng
n 2 2 Il (@) = 0u(1)
k=1 i=1
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Then using Theorem 7.9 in [3], we have

{ZZH’“) D)l[IEd — Foblla | {(af”,

k= lz 1
0 n k k
v >}J Y U (Ui (D, 0105 ) |
K Nk /
Op(Npid ).
< e e

Hence we have ||f — fuull = Op (N, L/ %). Then the augments in the proof of Theorem still

hold if F _(01) , f ), f are replaced by their empirical-measure version. And the rate turns to be

Op(( 71/2+N 1/4)1_6(¢+ DIF Om—k(no—i—nA) 12 4 N- 1/4)) O

min no+na min

Theorem 7. Assume Conditionholds and the regularization parameter satisfies A < (n V2p-124
NV 4)1_6 for some € > 0. Then, for the LWaTL-EM algorithm and a fixed x € RP, it holds that

(g, (@), m ) (@))
( 71/2 1/2+N 1/4)1 6(1\]7_1/4

K
1 ng
2 1/2 L
T R ] gnk+§nov+nA)]),

where 1, = maxi<p<i ||fé90) (x) — fék) (@)]-
Proof. Using the same arguments in the proof of Theorem 2 in [43] we can show that

- —1/4
152 (@) = F s @)llz = Op(ng /2h=Y2 4+ N /).

min

Analysis in the proof of Theorem f]shows

K ng

fZDsE?a:h 0,(1).

k=11i=1

Then using Theorem 7.9 in [3]], we have

k — 0
B[ ZZMRMH\FM Fobllz [{(”

klzl

{y“))}] ¥ U (Ui (D, 0105 1) |
1/4 ZZ‘S/Z/) .’13 h | = ( m11n/4)'

Hence we have || fr, — fn.zumll2 = OP(N_.1/4). Then the augments in the proof of TheoremE| still

min
hold if F’(g), ,SO), fn are replaced by their empirical-measure version. And the rate turns to be
v

—1/2, _ —1/4\1—¢ —-1/4 —
OP((nO /h 1/2<+>]\/vmin/ )1 [Nmin/ +¢L+h2+h 1/2(m+2k Ono-‘rnA)]) -
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