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ABSTRACT

The success of deep learning requires large datasets and extensive training, which
can create significant computational challenges. To address these challenges,
pseudo-coresets, small learnable datasets that mimic the entire data, have been
proposed. Bayesian Neural Networks, which offer predictive uncertainty and
probabilistic interpretation for deep neural networks, also face issues with large-
scale datasets due to their high-dimensional parameter space. Prior works on
Bayesian Pseudo-Coresets (BPC) attempt to reduce the computational load for
computing weight posterior distribution by a small number of pseudo-coresets
but suffer from memory inefficiency during BPC training and sub-optimal results.
To overcome these limitations, we propose Variational Bayesian Pseudo-Coreset
(VBPC), a novel approach that utilizes variational inference to efficiently approx-
imate the posterior distribution, reducing memory usage and computational costs
while improving performance across benchmark datasets.

1 INTRODUCTION

While deep learning has shown remarkable performance across various fields, its success requires
large amounts of data storage and extensive training. However, handling such large datasets can
impose a significant computational burden, especially when training new models or updating ex-
isting ones with new data. In settings like continual learning, where the model must be trained
continuously on new data, this challenge becomes more pronounced due to the risk of catastrophic
forgetting. To mitigate this, a small subset of representative data, called a coreset, is needed to pre-
serve knowledge from previously learned data. Instead of creating a small dataset as a subset of the
entire data to represent it, the approach of treating the small dataset itself as learnable parameters
and training it to mimic the entire dataset is known as dataset distillation or pseudo-coreset (Nguyen
et al., 2020; 2021; Zhou et al., 2022; Loo et al., 2023).

On the other hand, Bayesian Neural Networks (BNNs) have gained attention in fields like health-
care (Abdullah et al., 2022; Lopez et al., 2023) and climate analysis (Vandal et al., 2018) because
they provide a posterior distribution over the weights of a deep neural network, enabling the mea-
surement of predictive uncertainty and allowing for a probabilistic interpretation of parameters (Pa-
pamarkou et al., 2024). While this method is promising for enabling various types of statistical
analysis, BNNs face significant challenges when applied to real-world scenarios that involve large-
scale datasets. The high-dimensional parameter space and structure of BNNs often lead to posterior
landscapes with multiple modes, which complicates efficient and straightforward computation of
predictive uncertainty. To overcome this, BNNs typically rely on indirect methods such as Stochas-
tic Gradient Markov Chain Monte Carlo (SGMCMC; Welling & Teh, 2011; Chen et al., 2014; Ma
et al., 2015) or variational inference (VI; Blei et al., 2017; Fiedler & Lucia, 2023; Harrison et al.,
2024b) instead of directly calculating the posterior distribution in closed form. However, these
approaches still depend on gradient-based updates of model weights for large-scale datasets. In par-
ticular, SGMCMC-based methods face the challenge of increased computational load, as the amount
of training grows linearly with the number of weight samples needed.

To overcome these issues, prior works on Bayesian Pseudo-Coreset (BPC; Kim et al., 2022; 2023;
Tiwary et al., 2024) aim to learn a small synthetic dataset that helps efficiently compute the posterior
distribution of BNNs’ weights. These studies train the pseudo-coreset by minimizing the divergence
between the posterior obtained using the full dataset and the posterior obtained using the pseudo-
coreset. However, these studies face three major problems: 1) require expert trajectories for training,
2) use stop-gradient during training, and 3) still rely on SGMCMC sampling for weight space poste-
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rior computation. First, expert trajectories refer to the trajectories of model weights trained using the
full dataset. In previous studies, these trajectories are saved for every epoch with multiple different
seeds, and they are used to approximate and match the posterior distribution. This creates the prob-
lem of needing to store the model weights for the number of epochs multiplied by the number of
seeds in order to train the pseudo-coreset. Secondly, when training BPC, the posterior distribution is
computed using the BPC for loss computation via gradient-based methods. As the updates progress,
the computational graph required to update the pseudo-coreset based on the loss becomes signifi-
cantly larger, resulting in increased memory demands. To address this memory issue, prior works
have used the stop-gradient method to reduce memory consumption. However, this approach leads
to sub-optimal results because it prevents accurate updates. Finally, even after training the pseudo-
coreset, the weight posterior distribution remains multi-modal, meaning that while the training cost
is reduced, sequential training through SGMCMC sampling is still required for each sample. Ad-
ditionally, after obtaining the samples, forward computation is needed for each sample to calculate
the predictive distribution during Bayesian inference.

To address these issues, we propose a novel BPC approach called Variational Bayesian Pseudo-
Coreset (VBPC). In learning VBPC, unlike previous works, we employ VI, specifically last-layer
VI (Fiedler & Lucia, 2023; Harrison et al., 2024b), to approximate the posterior distribution. During
the VBPC training and inference process, we demonstrate that this variational formulation allows
us to obtain the closed-form posterior distribution of the last layer weights, which frees our method
from relying on stop-gradient. This resolves the issue of suboptimal performance seen in previous
approaches. And, we propose a memory-efficient method to approximate the predictive distribution
with only a single forward pass instead of multiple forwards, making the approach computationally
and memory-efficient. Furthermore, we empirically show that VBPC achieves better performance
compared to other baselines on various benchmark datasets.

2 PRELIMINARIES

2.1 BAYESIAN NEURAL NETWORKS AND BAYESIAN MODEL AVERAGING

In Bayesian Neural Network frameworks (Papamarkou et al., 2024; Lee et al., 2024), the main
objective is to compute the predictive distribution for a given input x, while accounting for model
uncertainty (i.e., epistemic uncertainty), as shown below:

p(y|x,D) =
∫
p(y|x, θ)p(θ|D)dθ, (1)

where D represents the observed data, and θ denotes the model parameters. This process is known
as Bayesian Model Averaging (BMA). To perform BMA, we need to compute the posterior distri-
bution p(θ|D) and evaluate the integral. However, due to the complexity of the model and the high-
dimensional parameter space, directly computing a closed-form solution for p(θ|D) is impractical.
Therefore, in practice, we typically rely on posterior sampling methods such as SGMCMC (Welling
& Teh, 2011; Chen et al., 2014; Ma et al., 2015) or VI (Blei et al., 2017; Fiedler & Lucia, 2023) to
approximate the posterior distribution.

2.2 BAYESIAN PSEUDO-CORESET

As mentioned in Section 1, the large size of the training dataset makes it computationally intensive
to perform SGMCMC or VI for approximating the posterior distribution of BNNs. To address
these challenges and efficiently compute the posterior distribution in terms of both computation and
memory, previous works (Kim et al., 2022; 2023; Tiwary et al., 2024) introduced BPC within the
SGMCMC framework. Specifically, BPC S is optimized using the following objective:

S∗ = argmin
S

D(p(θ|D), p(θ|S)), (2)

where D can be various divergences between the two distributions (Kim et al., 2022). The optimiza-
tion poses a challenge, as the posteriors p(θ|D) and p(θ|S) are intractable for most of the cases.
Previous works (Kim et al., 2022; 2023; Tiwary et al., 2024) attempt to approximate them using
weight checkpoints obtained from training trajectories based on the dataset D (i.e., expert trajecto-
ries) which requires expensive computation and memory cost.
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2.3 NATURAL GRADIENT VARIATIONAL INFERENCE WITH EXPONENTIAL FAMILIES

Although several methods exist for approximating the posterior p(θ|D), in this paper, we focus on
VI (Bishop, 2006; Blundell et al., 2015; Blei et al., 2017). In VI, we approximate the target posterior
with a variational distribution that is easier to handle and optimize the parameters of the variational
distribution to minimize the Kullback-Leibler (KL) divergence between the approximate and target
posterior distributions. Among the many possible choices for variational distributions, we focus on
the exponential family. We assume that both the prior pλ0

(θ) and the variational distribution qλ(θ)
belong to the same class of exponential family distributions:

qλ(θ) ∝ exp(⟨ψ(θ), λ⟩ −A(λ)), pλ0(θ) ∝ exp(⟨ψ(θ), λ0⟩ −A(λ0)), (3)
where ψ(·) represents the sufficient statistics, A(·) is the log partition function, and λ and λ0 are
the natural parameters for qλ and pλ0

, respectively. We further assume that the exponential family
is minimal, meaning that there is no non-zero vector x such that ⟨x, ψ(θ)⟩ evaluates to a constant.
Under this setting, we can optimize the variational parameter λ by minimizing the following loss:

LD(λ) := Eqλ [− log p(D|θ)] + βDKL[qλ(θ)∥pλ0(θ)], (4)
where β > 0 is a temperature controlling the strength of the KL regularization (Blundell et al.,
2015; Wenzel et al., 2020). When β = 1, minimizing Eq. 4 is equivalent to minimizing
DKL[qλ(θ)∥p(θ|D)]. Optimizing equation 4 with natural gradient descent (Amari, 1998) has been
shown to be effective, especially for large-scale deep neural networks (Khan et al., 2018; Osawa
et al., 2019; Shen et al., 2024). The optimal solution of Eq. 4 must satisfy the following equation,

λ∗ = λ0 + β−1∇µEqλ∗ [log p(D|θ)], (5)
where µ = Eqλ [ψ(θ)] = ∇λA(λ) is the mean parameter corresponding to the natural parameter λ.
Except for some cases, Eq. 5 does not admit a closed-form expression for λ∗. Therefore, one must
rely on iterative algorithms to obtain it. This approach, which solves the variational inference using
iterative natural gradient descent steps, covers a broad spectrum of machine learning algorithms and
is commonly referred to as the Bayesian Learning Rule (BLR) (Khan & Rue, 2023).

3 VARIATIONAL BAYESIAN PSEUDOCORESET

In this section, we propose a novel method called Variational Bayesian Pseudo-Coreset (VBPC)
which effectively learns S and thereby well approximates the variational posterior distribution with
full dataset distribution. Several recent studies (Fiedler & Lucia, 2023; Harrison et al., 2024b) have
shown that using only a last layer for variational inference is simple and computationally cheap,
yet it performs comparably to more complex methods. Motivated by these findings, we seek to
learn a pseudo-coreset S that effectively approximates the last layer variational posterior for the
classification task, all while ensuring computational and memory efficiency.

3.1 PROBLEM SETUP

Consider a supervised learning problem with a dataset D = (xi, yi)
n
i=1. While our discussion

can be easily extended to more general problems, in this paper, we focus on k-way classification
tasks, where yi ∈ {0, 1}k is a one-hot vector representing a category. Given D and a model fθ
parameterized by θ, we aim to learn a synthetic dataset (pseudocoreset) S := (x̂i, ŷi)

n̂
i=1 solving

Eq. 2 under a constraint n̂≪ n. We approximate the pseudocoreset posterior p(θ|S) by solving the
following variational inference problem,

LS(λ) := ℓS(λ) + βSDKL[qλ(θ)∥pλ0(θ)], λ∗S = argmin
λ

LS(λ), (6)

where ℓS(λ) := −Eqλ [
∑n̂

i=1 log pS(yi|xi, θ)] is the expected sum of negative log-likelihoods over
S given a choice of likelihood pS(y|x, θ). Throughout the paper, we call Eq. 6 as coreset VI prob-
lem. Ideally, we would like to match the optimal solution of the coreset VI problem to the optimal
variational distribution computed with the original dataset D,

LD(λ) := ℓD(λ) + βDDKL[qλ(θ)∥pλ0
(θ)], λ∗D = argmin

λ
LD(λ), (7)

where ℓD(λ) := −Eqλ [
∑n

i=1 log pD(yi|xi, θ)] for a likelihood pD(y|x, θ). We call Eq. 7 as dataset
VI problem. After obtaining λ∗S and λ∗D, to learn S, we can minimize D(qλ∗

S
, qλ∗

D
) for some pre-

defined divergence D.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 BILEVEL OPTIMIZATION

It is often challenging to first compute the approximate solutions of Eqs. 6 and 7 and then backprop-
agate through the divergence D(qλ∗

S
, qλ∗

D
). Instead, considering the optimization nature of the VI,

we cast the problem of coreset learning as a bilevel optimization as follows:

S∗ = argmin
S

LD(λ
∗
S) where λ∗S = argmin

λ
LS(λ). (8)

Note that similar approaches have also been considered in the dataset distillation literature (Loo
et al., 2023). Under the bilevel optimization formulation, learning S requires the derivative

∇SLD(λ
∗
S) = (∇Sµ

∗
S)∇µLD(λ

∗
S), (9)

where µ∗
S = ∇λA(λ

∗
S) is the mean parameter corresponding to λ∗S . To obtain∇Sµ

∗
S , we may apply

the implicit function theorem (Bengio, 2000; Krantz & Parks, 2002) to Eq. 5. Specifically, if we let:

F (S, µ) := λ− λ0 + β−1
S ∇µℓS(λ) (10)

With F (S, µ∗
S) = 0, applying the implicit function theorem,

∇SF (S, µ∗
S) + (∇Sµ

∗
S)∇µF (S, µ∗

S) = 0⇒ ∇Sµ
∗
S = −∇SF (S, µ∗

S)∇µF (S, µ∗
S)

−1,

∇Sµ
∗
S = −β−1

S (∇S∇µℓS(λ
∗
S))
(
∇µλ

∗
S + β−1

S ∇
2
µℓS(λ

∗
S)
)−1

.
(11)

Plugging this back into the above equation, we get the expression for the gradient

∇SLD(λ
∗
S) = −β−1

S (∇S∇µℓS(λ
∗
S))
(
∇µλ

∗
S + β−1

S ∇
2
µℓS(λ

∗
S)
)−1∇µLD(λ

∗
S). (12)

Unfortunately, the term involving the inverse is usually intractable, so one needs an approximation
(e.g., Lorraine et al. (2020)). In the next section, we describe a case where the derivatives can be
computed in closed form, and develop Bayesian pseudo-coreset algorithm based on it.

3.3 LAST LAYER VARIATIONAL BAYESIAN PSEUDOCORESET

Recently, there has been growing interest in subspace Bayesian neural networks (BNNs), where only
a subset of the network’s parameters are treated as random, while the remaining parameters are kept
deterministic (Sharm et al., 2023; Shen et al., 2024). An extreme form of a subspace BNN would
be the last layer randomization, where a neural network fθ(x) ∈ Rk is decomposed as a feature
extractor ϕ(x) ∈ Rh followed by a linear layer W ∈ Rh×k. Denoting the jth column of W as wj

and the jth output from fθ(x) as [fθ(x)]j , we have [fθ(x)]j = ϕ(x)⊤wj for j ∈ [k]. Adapting the
last layer randomization scheme, we treat only the parameter W of the linear layer as random while
keeping the feature extractor ϕ(x) deterministic. From below, we describe our model more in detail.

Variational distributions. We assume the Gaussian priors and variational posteriors for W ,

pλ0
(W ) =

K∏
j=1

N (wj |0, ρ−1Ih), qλ(W ) =

k∏
j=1

N (wj |mj , Vj), (13)

with the natural parameters and the corresponding mean parameters are given as,

λ0 = concat(
[
0 − (ρ−1/2)Ih

]k
j=1

), µ0 = concat(
[
0, ρ−1Ih

]k
j=1

),

λ = concat((λj)
k
j=1), µ = concat((µj)

k
j=1),

(14)

where λj =
[
V −1
j mj − (1/2)Vj

]
, and µj =

[
mj , Vj +mjm

⊤
j

]
. Here, we denote Id as the d × d

identity matrix and ρ is a pre-defined precision hyperparameter of the prior. Note that the block-wise
approximation qλ(W ) reduces the space complexity of the variance parameter V := (Vj)

k
j=1 from

O(k2h2) to O(kh2) while keeping flexibility compare to mean field approximation.
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Likelihoods. For a classification problem, it is common to use a softmax categorical likelihood,
and we follow that convention for the dataset VI problem with pD. However, for the coreset VI
problem, the softmax categorical likelihoods would not allow a closed-form solution, which would
necessitate approximations involving iterative computations to solve the bilevel optimization Eq. 8.
This would, for instance, require storing the unrolled computation graph (Vicol et al., 2021) of the
iterative updates and performing backpropagation through it, leading to significant computational
and memory overhead (Werbos, 1990). As a detour, we use the Gaussian likelihood for the pS , as
it allows us to obtain a closed-form solution. While using Gaussian likelihoods may seem coun-
terintuitive for a classification problem, it is widely used in the literature on infinitely-wide neural
networks (Lee et al., 2017; 2019; 2022), and one can also interpret it as solving the classifica-
tion problem as a regression, using one-hot labels as the target vector. More specifically, we set
pS(y|x, θ) = N (y|W⊤ϕ(x), γ−1Ik) where γ−1 is the precision hyperparameter for the likelihood.
With our choices for pD and pS we can expand the bilevel optimization problem as follows.

λ∗S = argmin
λ

−Eqλ

[
n̂∑

i=1

logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
+ βSDKL[qλ∥pλ0 ], (15)

S∗ = argmin
S

Eqλ∗
S

− n∑
i=1

k∑
j=1

yi,j log
exp(ϕ(xi)

⊤wj)∑k
l=1 exp(ϕ(x)

⊤wl)

+ βDDKL[qλ∗
S
∥pλ0

]. (16)

3.4 SOLVING CORESET VI PROBLEM

Based on our choices described in the previous section, we show how we can obtain closed-form
expressions for the coreset VI problem. The likelihood term for the coreset VI problem is

Eqλ

[
−

n̂∑
i=1

logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
c
=
γ

2

n̂∑
i=1

k∑
j=1

Eqλ

[(
ŷi,j − ϕ(x̂i)⊤wj

)2]
, (17)

where ŷi,j indicates jth element of ŷi for all i ∈ [n̂] and c
= denotes equality up to a constant. Then

we can further elaborate Eq. 17 as follows:

γ

2

n̂∑
i=1

k∑
j=1

Eqλ

[(
ŷi,j − ϕ(x̂i)⊤wj

)2] c
=
γ

2

k∑
j=1

(
−2ŷ⊤:,jΦµ

(1)
j + Tr

(
Φ⊤Φµ

(2)
j

))
, (18)

where ŷ:,j := [ŷ1,j , . . . , ŷn̂,j ]
⊤, Φ := [ϕ(x̂1), . . . , ϕ(x̂n̂)]

⊤, µ(1)
j = mj , and µ(2)

j = Vj +mjm
⊤
j for

all j ∈ [k]. Then by Eq. 18, the gradient of the likelihood with respect to µj can be computed as:

∇
µ
(1)
j
ℓS(λ) = −γΦ⊤ŷ:,j , ∇

µ
(2)
j
ℓS(λ) =

γ

2
Φ⊤Φ, (19)

Then from Eq. 5, we obtain the closed-form solution for the coreset VI problem as follows:

λ∗S,j =

[
γ

βS
Φ⊤ŷ:.j −

ρ

2
Ih −

γ

2βS
Φ⊤Φ

]
, ∀j ∈ [k], (20)

with Woodbury formula (Woodbury, 1950) which leads to

m∗
j = Φ⊤

(
ρβS
γ
In̂ +ΦΦ⊤

)−1

ŷ:,j , V ∗
j =

1

ρ
Ih −

γ

ρ2βS
Φ⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

Φ. (21)

For all j ∈ [k], the values V ∗
j are identical, meaning the full covariance calculation, though O(kh2),

only requires computing and storing the variance once, O(h2). We will refer to this shared variance
as V ∗. See Appendix A.1 and Appendix A.2 for detailed derivations in this section.

Bilevel optimization as an influence maximization. Before proceeding to the dataset VI prob-
lem, let us describe how the last-layer variational model simplifies the coreset gradient Eq. 12. From
Eq. 19, we have ∇2

µℓS(λ
∗
S) = 0, leading to∇2

µLS(λ
∗
S) = ∇µλ

∗
S . Using this, we can show that

∇SLD(λ
∗
S) = ∇S

(
−∇µLS(λ

∗
S)

⊤ (∇2
µLS(λ

∗
S)
)−1∇µLD(λ

∗
S)
)
. (22)

Here, −∇µLS(λ
∗
S)

⊤ (∇2
µLS(λ

∗
S)
)−1∇µLD(λ

∗
S) is the variant (in a sense that it is defined w.r.t.

the gradient of the variational objective by the mean parameters) of the influence function (Koh &
Liang, 2017), measuring the influence of the coreset S on the dataset VI loss computed with D.

5
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3.5 COMPUTATION FOR DATASET VI PROBLEM

Now with these coreset VI problem solutions, we have to find the optimal S∗ by solving Eq. 16.
However, unlike the coreset VI problem, since we use a categorical likelihood with a softmax output,
a closed-form solution cannot be obtained from Eq. 16. Thus we have to use iterative updates,
such as Stochastic Gradient Descent (SGD), for the outer optimization problem. Then because
ϕ(x)⊤wj ∼ N (ϕ(x)⊤m∗

j , ϕ(x)
⊤V ∗ϕ(x)) for all j ∈ [k], the dataset VI problem changed into

LD(λ
∗
S) = −

n∑
i=1

k∑
j=1

yi,jEz∼N (m̄∗(xi),Σ̄∗(xi))

[
log

exp zj∑k
i=1 exp zi

]
+ βDDKL

[
qλ∗

S
||pλ0

]
, (23)

where z = [z1, . . . , zk], m̄∗(x) = [m̄∗
1(x), . . . , m̄

∗
k(x)], Σ̄

∗(x) = diag([Σ∗
1(x), . . . ,Σ

∗
k(x)]) and

(m̄∗
i (x),Σ

∗
i (x)) = (ϕ(x)⊤m∗

i , ϕ(x)
⊤V ∗ϕ(x)) for all j ∈ [k] and x. For a simpler notation, we will

denote (m̄∗
i (x), Σ̄

∗
i (x)) as (m̄∗

i , Σ̄
∗
i ). Then we have to approximate Ez∼N (m̄∗,Σ̄∗)

[
log

exp zj∑k
i=1 exp zi

]
to compute the loss LD(λ

∗
S) analytically. To compute approximate expectation for the likelihood,

we first change the form as follows:

Ez

[
log

exp(zj)∑k
i=1 exp zi

]
=

∫
log

2−K +
∑
i̸=j

1

σ(zj − zi)

−1

N (z|m̄∗, Σ̄∗)dz, (24)

where σ(·) is the sigmoid function. Then we utilize mean-field approximation (Lu et al., 2020) to
the zis to approximately compute the Eq. 24:

Ez∼N (m̄∗,Σ̄∗)

[
log

exp (zj)∑t
i=1 exp(zi)

]
≈
[
log softmax

(
m̄∗

√
1 + αΣ∗

)]
j

, (25)

where α = π
8 and Σ∗ = ϕ(x)⊤V ∗ϕ(x). Refer to Appendix A.3 for the complete derivation of

Eq. 23, Eq. 24, and Eq. 25. By Eq. 25, our outer optimization loss has changed form as follows:

LD(λ
∗
S) = −

n∑
i=1

k∑
j=1

yi,j log softmax

[(
m̄∗(xi)√

1 + αΣ∗(xi)

)]
j

+ βDDKL[qλ∗
S
||pλ0

]. (26)

Here, since n is large, we need to employ the SGD method to optimize S. Thus, using the training
batch B ⊂ {(x1, y1), . . . , (xn, yn)}, we compute approximate loss L̃D for the batch and update S
using stochastic loss as follows:

L̃D(λ
∗
S) = −

n

|B|
∑
i∈B

k∑
j=1

yi,j log softmax

[(
m̄∗(xi)√

1 + αΣ∗(xi)

)]
j

+ βDDKL[qλ∗
S
||pλ0 ]. (27)

3.6 TRAINING AND INFERENCE

Memory Efficient Loss computing If we naïvely compute the gradient of S by directly eval-
uating Eq. 27, calculating Σ∗ and DKL[qλ∗

S
||pλ0

] will require computations involving V ∗, which
demands h2 memory. However, the quadratic memory requirements with respect to the feature di-
mension pose a challenge when training S for large-scale models. To address this issue, we propose
a memory-efficient approach for computing loss during training in this paragraph. We will address
the efficient computation of Σ∗ in the below paragraph Variational Inference and Memory Effi-
cient Bayesian Model Averaging. Here, we will focus on efficiently computing the KL divergence.
Since both qλ∗

S
and pλ0 are Gaussian distributions, the KL divergence can be expressed as follows:

DKL[qλ∗
S
||pλ0 ]

c
=

1

2

[
−k log |det(V ∗)|+ kρTr(V ∗) + ρ∥m∗∥2

]
. (28)

Thus we have to efficiently compute detV ∗ and Tr(V ∗). For the detV ∗, we use Weinstein-
Aronszajn identity (Pozrikidis, 2014) which results as follows:

detV ∗ =
1

ρh det(In̂ + γ
ρβS

ΦΦ⊤)
. (29)
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And for the Tr(V ∗), we can easily change the form with a property of matrix trace computation:

Tr(V ∗) =
βS
γ

(
γh

ρβS
−
(

γ

ρβS

)2

Tr

((
In̂ +

γ

ρβS
ΦΦ⊤

)−1

ΦΦ⊤

))
. (30)

By these formula, we can calculate the KL divergence without directly computing V ∗, reducing the
memory from O(h2) to O(n̂2). Refer to Appendix A.4 for the derivation of Eq. 28 and Eq. 29.

Model Pool If we train S based on only one ϕ, it may overfit to that single ϕ, resulting in an
inability to properly generate the variational posterior for other ϕ’s. This overfitting issue is common
not only in Bayesian pseudo-coresets but also in the field of dataset distillation (Zhou et al., 2022).
While several prior studies (Wang et al., 2018; 2022) tackle this overfitting problem, we address it
by employing a model pool during training, following the approach of Zhou et al. (2022); Loo et al.
(2023). This model pool method involves generating P different θi’s through random initialization
during the training of S and storing them in a set M = {θi}Pi=1. At each step, one θ is sampled
from M, and ϕ is constructed using this θ. Then, S is trained for one step using SGD with this
ϕ. Afterward, θ is updated by training it for one step using S and the Gaussian likelihood, and
the original θ in M is replaced with this updated version. Once each θi has been trained for a
pre-defined number of T steps, it is replaced with a new θ generated through random initialization.
Through this process, S is trained with a new ϕ at every step, allowing it to generalize better across
different ϕ’s and become more robust to various initialization. See Algorithm 1 for a summary of
the whole VBPC training procedure.

Variational Inference and Memory Efficient Bayesian Model Averaging After training S, we
use it for variational inference. During variational inference, to improve the quality of the model’s
feature map ϕ, we first train the randomly initialized θ using data sampled from S for a small
number of steps T ′ with a Gaussian likelihood. Then, using the trained feature map ϕ, we compute
the variational posterior by finding the optimal mean m∗

j and variance V ∗ for each θLj as determined
in the inner optimization. However, the variance V ∗ we computed corresponds to a full covariance
matrix, leading to a memory cost of h2. To address this, rather than calculating V ∗ explicitly, we
need a memory-efficient approach for conducting BMA on test points. This can be done easily by :

Σ∗ =
βS
γ

(
γ

ρβS
ΦteΦ

⊤
te −

(
γ

ρβS

)2

ΦteΦ
⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

ΦΦ⊤
te

)
, (31)

where Φte ∈ Rnte×h denotes the feature matrix of nte number of test points. Then by storing Φ ∈
Rn̂×h and (In̂ + γ

ρβS
ΦΦ⊤)−1 ∈ Rn̂×n̂ instead of V ∗, we can reduce the memory requirements

to n̂h + n̂2, which is much smaller than h2. Refer to Algorithm 2 for an overview of variational
inference and BMA. This procedure does not require multiple forwards for BMA.

4 RELATED WORKS

Bayesian Pseudo-Coreset As discussed in Section 1 and Section 2, the large scale of modern
real-world datasets leads to significant computational costs when performing SGMCMC or varia-
tional inference to approximate posterior distributions. To address this issue, previous works, such
as Bayesian Coreset (BC; Campbell & Broderick, 2018; 2019; Campbell & Beronov, 2019), have
proposed selecting a small subset from the full training dataset so that the posterior distribution built
from this subset closely approximates the posterior from the full dataset. However, Manousakas
et al. (2020) highlighted that simply selecting a subset of the training data is insufficient to accu-
rately approximate high-dimensional posterior distributions, and introduced BPC for simple logistic
regression tasks. Later, Kim et al. (2022) extended BPC to BNNs, using reverse KL divergence,
forward KL divergence, and Wasserstein distance as measures for D in Eq. 2 to assess the difference
between the full posterior and the BPC posterior. Subsequent works have used contrastive diver-
gence (Tiwary et al., 2024) or calculated divergence in function space (Kim et al., 2023). However,
as discussed in Section 1, computational and memory overhead remains an issue when training BPC
and during inference using BMA. For the additional related works, refer to Appendix C.
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Figure 1: Learned VBPC images for the Fashion-MNIST (ipc=10; left), CIFAR10 (ipc=10; middle)
and CIFAR100 (ipc=1; right) cases. These images construct trained mean for the distribution S∗.

Table 1: Comparison of the VBPC with BPC baselines for the benchmark datasets. We report ACC
and NLL for the VBPC and BPC baselines.

BPC-rKL BPC-fKL FBPC BPC-CD VBPC (Ours)
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

MNIST
1 74.8±1.2 1.90±0.01 83.0±2.2 1.87±0.03 92.5±0.1 1.68±0.01 93.4±0.1 1.53±0.01 96.7±0.4 0.11±0.02

10 95.3±0.2 1.53±0.01 92.1±0.4 1.51±0.02 97.1±0.2 1.31±0.01 97.7±0.2 1.57±0.02 99.1±0.1 0.03±0.01

50 94.2±0.3 1.36±0.02 93.6±1.8 1.36±0.02 98.6±0.1 1.39±0.02 98.9±0.2 1.36±0.01 99.4±0.1 0.02±0.01

FMNIST
1 70.5±1.1 2.47±0.02 72.5±2.5 2.30±0.02 74.7±1.4 1.81±0.03 77.3±0.5 1.90±0.03 82.9±0.6 0.47±0.03

10 78.8±0.2 1.64±0.01 83.3±0.6 1.54±0.03 85.2±0.1 1.61±0.02 88.4±0.2 1.56±0.01 89.4±0.2 0.30±0.01

50 77.0±0.6 1.48±0.02 74.8±0.5 1.47±0.02 76.7±0.4 1.46±0.02 89.5±0.1 1.30±0.02 91.0±0.2 0.25±0.01

CIFAR10
1 21.6±0.8 2.57±0.01 29.3±1.1 2.10±0.03 35.5±0.3 3.79±0.04 46.9±0.2 1.87±0.02 55.1±0.3 1.34±0.08

10 37.9±1.5 2.13±0.02 49.9±1.4 1.73±0.01 62.3±0.3 1.31±0.02 56.4±0.7 1.72±0.03 69.8±0.7 0.89±0.02

50 37.5±1.3 1.93±0.03 42.3±2.9 1.54±0.01 71.2±0.2 1.03±0.05 71.9±0.2 1.57±0.03 76.7±0.5 0.71±0.03

CIFAR100
1 3.6±0.1 4.69±0.02 14.7±0.2 4.20±0.10 21.0±0.8 3.76±0.11 24.0±0.1 4.01±0.02 38.4±0.2 2.47±0.04

10 23.6±0.7 3.99±0.03 28.1±0.6 3.53±0.05 39.7±0.3 2.67±0.02 28.4±0.2 3.14±0.02 49.4±0.1 2.07±0.02

50 30.8±0.5 3.57±0.17 37.1±0.3 3.28±0.24 44.5±0.4 2.63±0.01 39.6±0.2 3.02±0.01 52.4±0.4 2.02±0.02

Tiny-ImageNet 1 3.2±0.1 5.91±0.07 4.0±0.1 5.63±0.03 10.1±0.7 4.69±0.05 8.4±0.1 4.72±0.01 23.1±0.2 3.65±0.01

10 9.8±0.6 5.26±0.05 11.4±0.5 5.08±0.05 19.4±0.5 4.14±0.02 17.8±0.4 3.64±0.05 25.8±0.3 3.45±0.02

5 EXPERIMENT

In this section, we present empirical results that demonstrate the effectiveness of posterior approx-
imation using VBPC across various datasets and scenarios. We compare VBPC with four BPC
algorithms that use SGMCMC to perform Bayesian Model Averaging (BMA) with posterior sam-
ples: BPC-rKL (Kim et al., 2022), BPC-fKL (Kim et al., 2022), FBPC (Kim et al., 2023), and
BPC-CD (Tiwary et al., 2024). BPC-rKL and BPC-fKL employ reverse KL divergence and forward
KL divergence, respectively, for the divergence term in Eq. 2. BPC-CD uses a more complex diver-
gence called contrastive divergence, while FBPC also applies forward KL divergence but matches
the posterior distribution in function space rather than weight space. Following all other prior works,
we adopted a three-layer convolutional network with Batch Normalization (BN; Ioffe, 2015) as the
base model architecture. For the target dataset, we used the MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), CIFAR10/100 (Krizhevsky, 2009), and Tiny-ImageNet (Le & Yang,
2015). Additionally, we used image-per-class (ipc) as the unit to count the number of pseudo-
coresets. For a k-way classification task, m ipc signifies that a total of mk pseudo-coresets are
trained. Along with evaluating classification accuracy (ACC) for each methods, we assess the per-
formance of the resulting predictive distributions using negative log-likelihood (NLL).

In all tables, the best performance is indicated with boldfaced underline, while the second-best value
is represented with underline in each row. See Appendix E for the additional experimental details.

5.1 BAYESIAN MODEL AVERAGING COMPARISON

We begin by evaluating the effectiveness of VBPC on five benchmark datasets by comparing the
BMA performance across different methods. Table 1 clearly demonstrates that VBPC surpasses
other BPC baselines across all benchmark datasets and ipcs in terms of ACC and NLL. Notably,
VBPC achieves significantly better NLL, with large margins, while requiring only a single forward
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Table 2: Comparison with dataset distillation baselines in terms of ACC. Here, ↓ indicates the
performance drop compare to original method.

Dataset ipc FRePo FRePo VI RCIG RCIG VI VBPC AVBPC

CIFAR10 1 46.8±0.7 28.2(18.6↓)±0.9 53.9±1.0 27.8(24.1↓)±0.7 55.1±0.3 39.7(15.4↓)±1.5

10 65.5±0.4 55.7(9.8↓)±0.5 69.1±0.4 55.6(13.8↓)±1.5 69.8±0.7 67.8(2.0↓)±0.8

CIFAR100 1 28.7±0.1 19.9(8.8↓)±0.4 39.3±0.4 2.1(37.2↓)±0.1 38.4±0.2 31.3(7.1↓)±1.0

10 42.5±0.2 34.8(7.7↓)±0.4 44.1±0.4 2.5(41.6↓)±0.4 49.4±0.1 44.0(5.4↓)±0.8

Table 3: Comparison of the VBPC with BPC baselines on the OOD setting with CIFAR10-C dataset.
The +A in the first column indicates that A type corruption is applied to the CIFAR10 test dataset.

BPC-rKL BPC-fKL FBPC BPC-CD VBPC (Ours)
Corruption ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)
CIFAR10 37.9±1.5 2.13±0.02 49.9±1.4 1.73±0.01 62.3±0.3 1.31±0.02 56.4±0.7 1.72±0.03 69.8±0.7 0.89±0.02

+Gaussian Blur 31.0±2.7 2.13±0.77 39.7±2.7 1.94±0.05 35.8±0.2 1.85±0.08 41.4±0.7 1.73±0.83 59.3±0.9 1.20±0.03

+JPEG Compression 30.4±0.9 2.13±0.02 37.3±2.9 1.95±0.06 40.1±0.1 1.73±0.02 37.3±0.2 1.71±0.03 61.9±0.8 1.12±0.02

+Snow 26.9±1.7 2.20±0.07 35.7±2.7 2.00±0.07 38.6±0.4 1.78±0.16 37.8±0.6 1.91±0.05 59.0±0.1 1.20±0.02

+Zoom Blur 31.7±1.2 2.09±0.04 35.1±2.9 2.04±0.07 28.9±0.2 2.19±0.11 38.3±0.8 1.93±0.13 58.1±0.8 1.23±0.04

+Pixelate 29.0±2.3 2.19±0.07 39.1±3.2 1.93±0.06 38.0±0.3 1.77±0.04 39.0±1.5 1.92±0.07 58.8±0.9 1.26±0.04

+Defocus Blur 27.6±1.3 2.20±0.05 36.7±3.7 1.99±0.08 31.7±0.4 2.07±0.19 37.2±1.0 1.87±0.04 63.0±0.7 1.08±0.02

+Motion Blur 17.4±2.5 2.73±0.14 35.2±3.3 2.01±0.05 27.9±0.2 2.29±0.15 37.1±0.5 1.92±0.04 55.9±0.5 1.32±0.03

pass for BMA. These results empirically validate that the variational distribution trained by VBPC
effectively captures epistemic uncertainty with a small amount of synthetic data, while keeping
performance. Refer to Fig. 1 for examples of VBPC-trained images from the Fashion-MNIST, CI-
FAR10, and CIFAR100 datasets. For more trained VBPC images for other settings, see Appendix G.

Comparison with dataset distillation baselines In addition to the BPC baselines, we compared
VBPC with two notable dataset distillation baselines, FRePo (Zhou et al., 2022) and RCIG (Loo
et al., 2023), which are recognized for their strong accuracy performance. Since FRePo and RCIG
do not employ cross-entropy loss for training, we only report ACC, as comparing NLL would be
unfair. As shown in Table 2, although VBPC is designed to learn pseudo-coresets to approximate
the variational distribution from the training data, it outperforms these dataset distillation baselines,
focused mainly on ACC, in nearly all tasks except for CIFAR100 with 1 ipc. The results for each
methods (i.e., FRePo, RCIG, and VBPC) in Table 2 were evaluated based on each baseline’s evalu-
ation methods. However, one might question whether the significant performance of VBPC is due to
the trained pseudo-coreset itself or the VI method. To verify that VBPC’s performance isn’t solely
due to the VI method, we applied our VI method to the baselines’ pseudo-coresets (i.e., FRePo VI
and RCIG VI) and used FRePo’s method to evaluate VBPC’s pseudo-coresets (i.e., AVBPC). Al-
though all methods saw some performance decline, VBPC exhibited a smaller drop, indicating that
its performance is not solely due to the VI method, but to its ability to effectively learn the varia-
tional distribution. Full comparisons across all benchmark datasets, available in Appendix F.1, show
that VBPC maintains a consistent trend over dataset distillation baselines across all the datasets.

5.2 RESULTS ON OUT OF DISTRIBUTION SCENARIOS

To further demonstrate that the predictive distribution derived from the VBPC dataset enhances
robustness to distributional shifts and out-of-distribution (OOD) data, we assess the performance
of VBPC and BPC baselines on a corrupted version of the CIFAR10 dataset, known as CIFAR10-
C (Hendrycks & Dietterich, 2019). In this case, we use the CIFAR10 10ipc BPC data trained in
Section 5.1 for all methods and evaluate their performance on the corrupted dataset across 7 different
types of corruption. We assess performance using all 5 levels of severity provided in the dataset.
Table 3 clearly illustrates that VBPC shows strong robustness against various types of corruption and
consistently outperforms other baselines across all corruption types in terms of both ACC and NLL.
These findings highlight that the predictive distribution obtained from the VBPC dataset improves
robustness to distributional shifts and OOD scenarios.
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Table 4: Comparison of the VBPC with BPC baselines on the architecture generalization. The
A−B in the first column indicates that B type normalization layer is used for the A model.

BPC-rKL BPC-fKL FBPC BPC-CD VBPC (Ours)
Model ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

Conv-BN 37.9±1.5 2.13±0.02 49.9±1.4 1.73±0.01 62.3±0.3 1.31±0.02 56.4±0.7 1.72±0.03 69.8±0.7 0.89±0.02

Conv-NN 23.1±3.8 2.22±0.02 22.9±4.4 2.12±0.04 28.6±4.8 2.17±0.02 30.1±4.4 2.05±0.19 58.4±0.8 1.46±0.05

Conv-GN 28.5±4.5 2.85±0.23 29.1±4.4 2.81±0.24 31.5±5.2 1.93±0.01 23.8±4.2 3.07±0.42 66.8±0.6 0.95±0.04

Conv-IN 26.7±4.3 2.81±0.22 27.7±4.7 2.82±0.25 31.7±5.3 1.96±0.09 26.9±4.4 3.29±0.27 58.1±0.8 1.22±0.12

AlexNet-NN 24.2±3.8 2.23±0.01 21.4±4.3 2.82±0.24 32.1±0.9 2.91±0.05 30.8±1.4 2.24±0.11 48.0±0.4 1.94±0.05

ResNet18-BN 9.6±2.6 3.27±0.15 10.5±4.5 3.16±0.14 46.7±1.2 1.81±0.08 41.7±1.1 2.05±0.27 54.9±0.5 1.36±0.05

VGG11-GN 10.0±2.9 2.94±0.11 10.1±3.0 2.85±0.11 37.2±0.9 1.40±0.05 44.5±1.2 1.78±0.12 52.4±1.1 1.44±0.15

Table 5: Ablation results on memory allocation and time requirements on CIFAR10 10ipc.

Naïve Training Training (Ours) Naïve BMA BMA (Ours)
Memory (MB) sec/100 steps Memory (MB) sec/100 steps Memory (MB) Memory (MB)

542.9 54.0 272.9 9.9 542.9 268.9

5.3 ARCHITECTURE GENERALIZATION

To demonstrate that VBPC can be applied when performing BMA on unseen architectures, we
conduct BMA using different model structures with various normalization layers. Specifically,
we include the identity layer (NN), Group Normalization (GN; Wu & He, 2018), and Instance
Normalization (IN; Ulyanov, 2016) as additional normalization methods. We also incorporate
AlexNet (Krizhevsky et al., 2012), ResNet18 (He et al., 2016), and VGG11 (Simonyan & Zis-
serman, 2014) as new model architectures. Similar to Section 5.2, we use the CIFAR10 10ipc BPC
data. As shown in Table 4, VBPC successfully performs VI across various architectures and effec-
tively constructs predictive distributions through BMA. Notably, while other baselines are sensitive
to changes in normalization layers, VBPC demonstrates robust learning over diverse feature maps
through the model pool, resulting in strong ACC and NLL performance.

5.4 MEMORY ALLOCATION AND TIME REQUIREMENTS

In this section, we perform an ablation study to compare memory usage and time requirements be-
tween the naive computation and the efficient computation for the variance V ∗, Σ∗, and the loss
terms during both training and inference. As we discussed in Section 3.6, naive loss computa-
tion requires O(h2) space complexity and O(h3) computational complexity. However, our com-
putationally efficient loss computation method only requires O(n̂2) space complexity and O(n̂3)
computational complexity. Therefore, in the BPC setting where n̂≪ h typically holds, we can sig-
nificantly reduce the space and computational complexity required for training. This difference can
be observed during the actual training process. As shown in Table 5, our computationally efficient
training reduces the memory requirements for loss computation by nearly half and decreases the
training time to under 20%. Also, we can see the similar results during the BMA procedure. Refer
to Appendix F to see the various additional ablation studies including ablation on hyperparameters,
pseudo-coreset initialization, and augmentations.

6 CONCLUSION

In this paper, we present a novel BPC method for VI, referred to as VBPC. By utilizing the Gaussian
likelihood, we enable the computation of a closed-form solution for coreset VI, thereby removing the
need to unroll the computation graph or use stop gradients. Leveraging this closed-form solution, we
propose a method to approximate dataset VI without weight sampling during the training of VBPC.
Additionally, we introduce a computationally efficient training and BMA inference method that sig-
nificantly reduces both computational and space complexity. Finally, we empirically show that the
variational distribution obtained from VBPC substantially outperforms the predictive distributions
derived from other BPC baselines in BMA performance across various scenarios.
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Reproducibility Statement. We present comprehensive derivations of all equations in the paper
in Appendix A. The overall algorithms can be found in Appendix B. Details regarding the datasets,
model architecture, data preprocessing, and hyperparameters are provided in Appendix E.

Ethics Statement. We propose a method that improves the computational and memory ef-
ficiency of the variational inference method for posterior approximation in Bayesian Neural
Networks. Thus although our approach does not have a direct positive or negative impact on
ethical or societal aspects, it can enhance privacy preservation. Specifically, our method facilitates
Bayesian inference using private training data in neural network models by generating syn-
thetic datasets, allowing for the computation of the posterior distribution while maintaining privacy.
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A FULL DERIVATIONS

A.1 FULL DERIVATION FOR THE INNER OPTIMIZATION

In this section, we present the full derivation calculation for the inner optimization in Section 3.4.
Let us first examine the term Eqλ

[
−
∑n̂

i=1 logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
, which can be computed

as follows:

Eqλ

[
−

n̂∑
i=1

logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
= −

n̂∑
i=1

Eqλ

[
logN (ŷi|W⊤ϕ(x̂i), γ

−1Ik)
]

(32)

=

n̂∑
i=1

Eqλ

[γ
2
||ŷi − ϕ(x̂i)⊤W ||2

]
+ constant (33)

=
γ

2

n̂∑
i=1

k∑
j=1

Eqλ

[(
ŷi,j − ϕ(x̂i)⊤wj

)2]
+ constant

(34)

c
=
γ

2

n̂∑
i=1

k∑
j=1

Eqλ

[(
ŷi,j − ϕ(x̂i)⊤wj

)2]
, (35)

where ŷi,j indicates jth element of ŷi for all i ∈ [n̂]. With this approximation, now we can compute

Eqλ

[
−
∑n̂

i=1 logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
as follows:

Eqλ

[
−

n̂∑
i=1

logN (ŷi|W⊤ϕ(x̂i), γ
−1Ik)

]
c
=
γ

2

n̂∑
i=1

k∑
j=1

Eqλ

[(
ŷi,j − ϕ(x̃i)⊤wj

)2]
(36)

=
γ

2

k∑
j=1

Eqλ

[
ŷ⊤j ŷj − 2ŷ⊤j Φwj + w⊤

j Φ
⊤Φwj

]
(37)

c
=
γ

2

k∑
j=1

(
−2ŷ⊤j Φmj + Eqλ

[
w⊤

j Φ
⊤Φwj

])
(38)

=
γ

2

k∑
j=1

(
−2ŷ⊤j Φmj + Tr

(
Φ⊤ΦEqλ

[
wjw

⊤
j

]))
(39)

=
γ

2

k∑
j=1

(
−2ŷ⊤j Φmj + Tr

(
Φ⊤Φ

[
Vj +mjm

⊤
j

]))
(40)

=
γ

2

k∑
j=1

(
−2ŷ⊤j Φµ

(1)
j + Tr

(
Φ⊤Φµ

(2)
j

))
, (41)

where ŷj := [ŷ1,j , . . . , ŷn̂,j ]
⊤, Φ := [ϕ(x̂1), . . . , ϕ(x̂n̂)], µ

(1)
j = mj , and µ(2)

j = Vj + mjm
⊤
j

for all j ∈ [k]. Here, c
= denotes equality up to a constant. Eq. 39 derived from the fact that

Eqλ

[
w⊤

j Φ
⊤Φwj

]
is scalar value and the property of the Tr function.

A.2 NUMERICALLY STABLE MEAN AND VARIANCE

In this section, we present the full derivation calculation for the numerically stable mean and vari-
ance in Section 3.4. Due to the dimension of Φ is n̂ × h and usually n̂ ≪ h, naïve computation of
m∗

j and V ∗
j lead numerically unstable results. To address this issue, we transformed the formulas

for m∗
j and V ∗

j into equivalent but more numerically stable forms. Specifically, when calculating
V ∗
j , we applied the Woodbury formula (Woodbury, 1950). First, we utilize the kernel trick to make
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mean m∗
j more numerically stable. The derivation is as follows:

m∗
j = −1

2
λ
(2)∗−1
j λ

(1)∗
j (42)

= −1

2
(−ρ

2
Ih −

γ

2βS
Φ⊤Φ)−1 γ

βS
Φ⊤ŷj (43)

=
1

2
(
ρ

2
Ih +

γ

2βS
Φ⊤Φ)−1 γ

βS
Φ⊤ŷj (44)

= (ρIh +
γ

βS
Φ⊤Φ)−1 γ

βS
Φ⊤(ρIn̂ +

γ

βS
ΦΦ⊤)(ρIn̂ +

γ

βS
ΦΦ⊤)−1ŷj (45)

=
γ

βS
(ρIh +

γ

βS
Φ⊤Φ)−1(ρΦ⊤ +

γ

βS
Φ⊤ΦΦ⊤)(ρIn̂ +

γ

βS
ΦΦ⊤)−1ŷj (46)

=
γ

βS
Φ⊤(ρIn̂ +

γ

βS
ΦΦ⊤)−1ŷj (47)

= Φ⊤(
ρβS
γ
In̂ +ΦΦ⊤)−1ŷj . (48)

Next, we utilize the Woodbury formula (Woodbury, 1950) to make variance V ∗
j more numerically

stable. The derivation is as follows:

V ∗
j =

βS
γ

(
ρβS
γ
Ih +Φ⊤Φ

)−1

(49)

=
βS
γ

(ρβS
γ
Ih

)−1

−
(
ρβS
γ
Ih

)−1

Φ⊤

(
I−1
n̂ +Φ

(
ρβS
γ
Ih

)−1

Φ⊤

)−1

Φ

(
ρβS
γ
Ih

)−1

(50)

=
βS
γ

(
γ

ρβS
Ih −

(
γ

ρβS

)2

Φ⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

Φ

)
(51)

=
1

ρ
Ih −

γ

ρ2βS
Φ⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

Φ. (52)

It is important to note that for all j ∈ [k], the V ∗
j values are identical. This implies that while

calculating the full covariance for all j ∈ [k] can be computationally intensive (i.e. O(kh2)), we
only need to compute and store the variance once (i.e. O(h2)).

A.3 FULL DERIVATION FOR OUTER OPTIMIZATION PROBLEM

In this section, we present the full derivation for the outer optimization problem. Here, we first
change LD(λ

∗
S) as follows:

LD(λ
∗
S) = EθL∼qλ∗

S

[−
n∑

i=1

log pD(yi|xi, θL)] + βDDKL[qλ∗
S
||pλ0 ] (53)

= Eqλ∗
S

− n∑
i=1

k∑
j=1

yi,j log
exp(ϕ(xi)

⊤wj)∑k
l=1 exp(ϕ(x)

⊤wl)

+ βDDKL[qλ∗
S
(W )∥pλ0

(W )] (54)

= −
n∑

i=1

k∑
j=1

yi,jEqλ∗
S

[
log

exp(ϕ(xi)
⊤wj)∑k

l=1 exp(ϕ(x)
⊤wl)

]
+ βDDKL[qλ∗

S
(W )∥pλ0

(W )]. (55)
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Next, in order to compute approximate expectation Ez∼N (m̄∗,Σ̄∗)

[
log

exp zj∑k
i=1 exp zi

]
, we first change

the form as follows:

Ez∼N (m̄∗,Σ̄∗)

[
log

exp(zj)∑k
i=1 exp zi

]
=

∫
log

exp zj∑k
i=1 exp zi

N (z|m̄∗, Σ̄∗)dz (56)

=

∫
log

1

1 +
∑

i ̸=j exp(−(zj − zi))
N (z|m̄∗, Σ̄∗)dz (57)

=

∫
log(1 +

∑
i̸=j

exp(−(zj − zi)))−1N (z|m̄∗, Σ̄∗)dz (58)

=

∫
log(2−K +

∑
i ̸=j

(1 + exp(−(zj − zi))))−1N (z|m̄∗, Σ̄∗)dz

(59)

=

∫
log(2−K +

∑
i ̸=j

1

σ(zj − zi)
)−1N (z|m̄∗, Σ̄∗)dz, (60)

where σ(·) is the sigmoid function. Then we utilize mean-field approximation (Lu et al., 2020) to
the zis to approximately compute the Eq. 24:

Ez∼N (m∗,Σ̄∗)

[
log

exp (zj)∑t
i=1 exp(zi)

]
≈ log

2− k +
∑
i ̸=j

1

E(zj ,zi)∼N (m̄∗
j,i,Σ̄

∗
j,i)

[σ(zj − zi)]

−1

(61)

≈ log

2−K +
∑
i̸=j

1

σ

(
m̄∗

j−m̄∗
i√

1+αΣ̄∗
j

)


−1

(62)

= log
1

1 +
∑

i̸=j exp(−
m̄∗

j−m̄∗
i√

1+αΣ̄∗
j

)
(63)

=

log softmax

 m̄∗√
1 + αΣ̄∗

j


j

(64)

=

[
log softmax

(
m̄∗

√
1 + αΣ∗

)]
j

, (65)

where α = π
8 and Σ∗ = ϕ(x)⊤V ∗ϕ(x).

A.4 FULL DERIVATION FOR TRAINING AND INFERENCE

In this section, we present the full derivation for the training and inference. Since both qλ∗
S

and pλ0

are Gaussian distributions, the KL divergence can be expressed as follows:

DKL[qλ∗
S
||pλ0 ] =

1

2
[k log

|det(ρ−1Ih)|
|det(V ∗)|

− kh+ kTr(ρI−1
h V ∗) +

k∑
j=1

(m∗
j )

⊤(ρI−1
h )m∗

j ] (66)

=
1

2
[k log

|det(ρ−1Ih)|
|det(V ∗)|

− kh+ kTr(ρV ∗) + ρ∥m∗∥2] (67)

c
=

1

2
[−k log |det(V ∗)|+ kρTr(V ∗) + ρ∥m∗∥2]. (68)

Here, we have to reduce the memory requirements for the det(V ∗) and the Tr(V ∗) as they require
O(h2) memory to compute directly from V ∗. For the detV ∗, we used Weinstein-Aronszajn iden-
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tity (Pozrikidis, 2014) which results as follows:

detV ∗ = det(ρIh +
γ

βS
Φ⊤Φ)−1 (69)

=
1

det(ρIh + γ
βS

Φ⊤Φ)
(70)

=
1

ρh det(Ih + γ
ρβS

Φ⊤Φ)
(71)

=
1

ρh det(In̂ + γ
ρβS

ΦΦ⊤)
. (72)

Thus we have:

log detV ∗ = −h log ρ− log det

(
In̂ +

γ

ρβS
ΦΦ⊤

)
(73)

c
= − log det

(
In̂ +

γ

ρβS
ΦΦ⊤

)
. (74)

Also we can compute trace as follows:

Tr(V ∗) = Tr

(
βS
γ

(
γ

ρβS
Ih −

(
γ

ρβS

)2

Φ⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

Φ

))
(75)

=
βS
γ

(
γh

ρβS
−
(

γ

ρβS

)2

Tr

(
Φ⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

Φ

))
(76)

=
βS
γ

(
γh

ρβS
−
(

γ

ρβS

)2

Tr

((
In̂ +

γ

ρβS
ΦΦ⊤

)−1

ΦΦ⊤

))
(77)

c
= − γ

βSρ2
Tr

((
In̂ +

γ

ρβS
ΦΦ⊤

)−1

ΦΦ⊤

)
. (78)

These computations allow us to reduce memory requirements during training fromO(h2) toO(n̂2),
which represents a significant reduction when dealing with a high-dimensional feature space h.

Memory Efficient Bayesian Model Averaging For the variance V ∗ we computed corresponds to
a full covariance matrix, leading to a memory cost of h2. To address this, rather than calculating V ∗

explicitly, we need a memory-efficient approach for conducting BMA on test points. This can be
done easily by calculating Σ∗ as follows:

Σ∗ = ΦteV
∗Φ⊤

te (79)

=
βS
γ

(
γ

ρβS
ΦteΦ

⊤
te −

(
γ

ρβS

)2

ΦteΦ
⊤
(
In̂ +

γ

ρβS
ΦΦ⊤

)−1

ΦΦ⊤
te

)
, (80)

where Φte ∈ Rnte×h denotes the feature matrix of nte number of test points. Then by storing Φ ∈
Rn̂×h and (In̂ + γ

ρβS
ΦΦ⊤)−1 ∈ Rn̂×n̂ instead of V ∗, we can reduce the memory requirements to

n̂h+ n̂2, which is much smaller than h2.

B ALGORITHM FOR TRAINING AND INFERENCE

In this section, we present algorithms for training and inference. In Algorithm 1, the overall training
procedures are presented, and note that we utilize the model pool M to prevent overfitting. We
also use the Gaussian likelihood to update the weights contained in the model pool. Additionally,
in Algorithm 2, we present computationally and memory-efficient variational inference and BMA
methods. Here, we store Φ and (In̂ + γ

ρβS
ΦΦ⊤)−1 instead of directly computing V ∗.
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Algorithm 1 Training Variational Bayesian Pseudo-Coreset (VBPC).

Require: Training dataset D, learning rate δ.
Ensure: Learned synthetic dataset S∗.

1: Initialize: Initialize synthetic dataset distribution S with n̂ pairs of (x̂i, ŷi).
2: Initialize: Randomly initialize P different θis and construct a model poolM.
3: while not converged do
4: Sample training batch B from training distribution D.
5: Uniformly sample θi from model poolM and construct feature map ϕ.
6: Efficiently compute loss Eq. 27 with Eq. 29, Eq. 30 and Eq. 31.
7: Update x̂is and ŷis using gradient descent: x̂i ← x̂i − δ∇x̂i

L̃D, ŷi ← ŷi − δ∇ŷi
L̃D

8: Update θi with S and the Gaussian likelihood.
9: Replace θi inM with updated θi.

10: If θi ∈M has been updated T times, reinitialize θi and replace θi inM.
11: end while

Algorithm 2 Variational inference and Bayesian Model Averaging using VBPC.

Require: Learned synthetic dataset S∗, MODE which is VI or BMA, and test dataset T .
Ensure: Variational posterior or Bayesian Model Averaged output prediction.

1: Initialize: Randomly initialize θ.
2: while not converged do
3: Update θ with Gaussian likelihood and S∗.
4: end while
5: Compute m∗

j , Φ, and (In̂ + γ
ρβS

ΦΦ⊤)−1 with (x̂i, ŷi)s.
6: if MODE == VI then
7: Compute V ∗ with Eq. 21.
8: else if MODE==BMA then
9: Compute Σ∗ with Eq. 31.

10: Compute approximate expected predictive distribution for T similar to Eq. 25.
11: end if

C ADDITIONAL RELATED WORKS

Bayesian Pseudo-Coreset As discussed in Section 1 and Section 2, the large scale of modern
real-world datasets leads to significant computational costs when performing SGMCMC (Welling
& Teh, 2011; Ahn et al., 2012; Chen et al., 2014; Ma et al., 2015) or variational inference (Blei
et al., 2017; Fiedler & Lucia, 2023) to approximate posterior distributions. To address this issue,
previous works, such as Bayesian Coreset (BC; Campbell & Broderick, 2018; 2019; Campbell &
Beronov, 2019), have proposed selecting a small subset from the full training dataset so that the
posterior distribution built from this subset closely approximates the posterior from the full dataset.
However, Manousakas et al. (2020) highlighted that simply selecting a subset of the training data
is insufficient to accurately approximate high-dimensional posterior distributions, and introduced
BPC for simple logistic regression tasks. Later, Kim et al. (2022) extended BPC to BNNs, using
reverse KL divergence, forward KL divergence, and Wasserstein distance as measures for D in Eq. 2
to assess the difference between the full posterior and the BPC posterior. Subsequent works have
used contrastive divergence (Tiwary et al., 2024) or calculated divergence in function space (Kim
et al., 2023) using Function-space Bayesian Neural Network (FBNN; Rudner et al., 2021; 2022).
However, as discussed in Section 1, computational and memory overhead remains an issue when
training BPC and during inference using BMA.

Dataset Distillation Similar to but distinct from BPC, dataset distillation (Wang et al., 2018) meth-
ods aim to train a pseudo-coreset that preserves the essential information contained in the full train-
ing dataset. These methods ensure that the model trained on the pseudo-coreset learns information
that allows it to perform similarly to a model trained on the full dataset. This approach enables com-
putationally efficient training of new models using the pseudo-coreset and helps prevent catastrophic
forgetting in continual learning scenarios, leading to more stable learning.
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To train these dataset distillation methods, a bilevel optimization problem must be solved, requiring
the computation of meta-gradients through unrolled inner optimization to find the solution to the
outer optimization problem. To address this challenge, various learning methods have been pro-
posed in the dataset distillation field, which can be broadly categorized into three approaches: 1)
using surrogate objectives, 2) closed-form approximations, and 3) employing the implicit function
theorem.

Examples of works in the first category include Zhao & Bilen (2021), Zhao & Bilen (2023), and
Cazenavette et al. (2022), where Zhao & Bilen (2021) uses gradient matching, Zhao & Bilen (2023)
focuses on feature distribution alignment, and Cazenavette et al. (2022) employs a trajectory match-
ing objective. Papers in the second category, Nguyen et al. (2020) and Zhou et al. (2022), calculate
closed-form solutions by using the Neural Tangent Kernel (Jacot et al., 2018) and Neural Network
Gaussian Process Kernel (Lee et al., 2017), respectively. Lastly, Loo et al. (2023), representing the
third category, uses the implicit function theorem to compute gradients for unrolled inner optimiza-
tion, allowing for the updating of the pseudo-coreset.

Variational Inference Variational inference (Bishop, 2006; Blundell et al., 2015; Blei et al.,
2017), one of the most general methods for approximating most posterior distributions, is a tech-
nique that approximates the target posterior distribution using a variational distribution, which has
a well-known and manageable form. The parameters of the variational distribution are learned by
minimizing the KL divergence between the target posterior distribution and the variational distribu-
tion. Although using all the parameters of the variational distribution can enhance its expressiveness,
allowing for more accurate approximations, two common approaches are typically employed to ad-
dress the computational and memory challenges that arise when handling the large scale of BNN
weights: 1) mean-field approximation (Blundell et al., 2015; Shen et al., 2024), and 2) computing the
posterior distribution for only a subset of the network parameters (Dusenberry et al., 2020; Fiedler
& Lucia, 2023; Harrison et al., 2024a). In both of these cases, the parameters of the variational
distribution are optimized either directly using gradient descent methods to minimize the KL diver-
gence (Blundell et al., 2015; Dusenberry et al., 2020; Shen et al., 2024), or a closed-form solution is
found (Wang & Blei, 2013).

D ADDITIONAL DISCUSSION ON VBPC

Future work direction Here, we would like to discuss some concerns and challenges we fore-
see in adopting the Laplace approximation on the softmax likelihood instead of using variational
inference with Gaussian likelihood.

Specifically, if we switch from using a Gaussian likelihood to employing a softmax likelihood with
Laplace approximation for variational inference, there are two cases to consider: (1) using Laplace
approximation on the last-layer weights without any updates, and (2) updating the last-layer weights
with some gradient descent steps before applying Laplace approximation.

In the first case—applying Laplace approximation to weights without updating the last layer—two
main issues may arise. First, the Laplace approximation assumes that the weights are near a mini-
mum, allowing for the approximation of the first-order term in Taylor expansion as zero. However,
this assumption may not hold for untrained weights, leading to significant approximation error.
Additionally, the computational burden of calculating the Hessian for Laplace approximation is
substantial, and the need to compute gradients through this Hessian during pseudo-coreset updates
increases the computational load further.

In the second case—updating the last layer weights with gradient steps before applying Laplace
approximation—there’s the advantage of reducing Taylor expansion error. However, this approach
involves a large computational graph, which can be problematic due to the computational expense
typical in bilevel optimization settings. Additionally, the need to compute gradients through the
Hessian remains a challenge.

Overall, we believe that solving these issues could lead to new meaningful future work for VBPC.

Limitations of the Last-Layer Approximation There might be concerns that considering the
posterior distribution of only the last layer weights, rather than the entire parameter set, could limit
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the model’s ability to capture uncertainty effectively, especially as the model size increases and
tasks become more complex. We fully agree that this is a valid concern and would like to provide a
discussion based on related findings.

Specifically, Harrison et al. (2024b) provides extensive empirical evidence on the effectiveness of
last-layer variational inference. Their experiments span diverse tasks, including regression with UCI
datasets, image classification using a Wide ResNet model, and sentiment classification leveraging
LLM features from the OPT-175B model. They compared their method with other Bayesian in-
ference approaches such as Dropout, Ensemble methods, and Laplace approximation for the full
model. Their results demonstrate that even though last-layer variational inference focuses solely
on the final layer weights, it achieves performance comparable to other comprehensive Bayesian
inference techniques across various tasks.

These findings indicate that while conducting Bayesian inference on the full set of weights in a
neural network could potentially lead to more precise uncertainty estimation, employing last-layer
variational inference is still effective in capturing meaningful uncertainty.

We believe that extending VBPC to incorporate full-weight variational inference could be a promis-
ing direction for future work, offering the potential to further enhance the method’s uncertainty
estimation capabilities. We will include this discussion in the final manuscript to provide a balanced
perspective and acknowledge possible avenues for improvement.

E EXPERIMENTAL DETAILS

Our VBPC code implementation is built on the official FRePo (Zhou et al., 2022)1 codebase. The im-
plementation utilizes the following libraries, all available under the Apache-2.0 license2: JAX (Brad-
bury et al., 2018), Flax (Babuschkin et al., 2020), Optax (Babuschkin et al., 2020), TensorFlow
Datasets (Abadi et al., 2015), and Augmax3. For the baseline methods, we used the official code
implementations provided for each. All experiments, except those on the Tiny-ImageNet (Le &
Yang, 2015) dataset, were performed on NVIDIA RTX 3090 GPU machines, while Tiny-ImageNet
experiments were conducted on NVIDIA RTX A6000 GPUs.

E.1 DATASETS

Datasets for the Bayesian Model Averaging comparison For the BMA comparison experi-
ments, we utilize 5 different datasets: 1) MNIST (LeCun et al., 1998), 2) Fashion-MNIST (Xiao
et al., 2017), 3) CIFAR10 (Krizhevsky, 2009), 4) CIFAR100 (Krizhevsky, 2009), and 5) Tiny-
ImageNet (Le & Yang, 2015).

• MNIST: The MNIST dataset4 contains 10 classes of handwritten digits with 60,000 train-
ing images and 10,000 test images, each with dimensions of 28× 28× 1. All images were
normalized using a mean of [0.1307] and a standard deviation of [0.3081].

• Fashion-MNIST: The Fashion-MNIST dataset5 consists of 10 classes of fashion article
images, with 60,000 training images and 10,000 test images, each with dimensions of 28×
28 × 1. Images were normalized using a mean of [0.2861] and a standard deviation of
[0.3530].

• CIFAR-10/100: The CIFAR-10/100 dataset6 contains 10/100 classes, with 50,000
training images and 10,000 test images sourced from the 80 Million Tiny Images
dataset (Torralba et al., 2008). Each image has dimensions of 32 × 32 × 3. For
CIFAR-10, images were normalized with a mean of [0.4914, 0.4822, 0.4465] and a stan-
dard deviation of [0.2470, 0.2435, 0.2616], while CIFAR-100 images used a mean of
[0.5071, 0.4866, 0.4409] and a standard deviation of [0.2673, 0.2564, 0.2762].

1https://github.com/yongchaoz/FRePo
2https://www.apache.org/licenses/LICENSE-2.0
3https://github.com/khdlr/augmax
4https://yann.lecun.com/exdb/mnist/
5https://github.com/zalandoresearch/fashion-mnist
6https://www.cs.toronto.edu/˜kriz/cifar.html
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• Tiny-ImageNet: The Tiny-ImageNet dataset7 contains 200 classes, with 100,000 train-
ing images and 10,000 test images. Each image has dimensions of 64 × 64 × 3. Im-
ages were normalized using a mean of [0.4759, 0.4481, 0.3926] and a standard deviation of
[0.2763, 0.2687, 0.2813].

Datasets for the Out of Distribution scenarios For the distribution shift and OOD scenarios, we
use CIFAR10-C (Hendrycks & Dietterich, 2019), which includes seven corruption types with five
severity for each corruption type: 1) Gaussian Blur, 2) JPEG Compression, 3) Snow, 4) Zoom Blur,
5) Pixelate, 6) Defocus Blur, and 7) Motion Blur.

• CIFAR10-C: The CIFAR10-C dataset8 consists of 10 classes, with 50,000 test images
for each corruption type. It applies various corruptions to 10,000 test images from
CIFAR10, with five levels of severity, each containing 10,000 images. The images
are normalized using the same mean [0.4914, 0.4822, 0.4465] and standard deviation
[0.2470, 0.2435, 0.2616] as the CIFAR10 dataset.

E.2 MODEL ARCHITECTURE

Model architecture utilized for the Bayesian Model Averaging and Out of Distribution tasks
Following previous works (Kim et al., 2022; 2023; Tiwary et al., 2024; Zhou et al., 2022), we used
a convolutional neural network (CNN) for the Bayesian Model Averaging comparison experiment
and the Out of Distribution experiment. This model is composed of several blocks, each consisting
of a 3×3 convolution kernel, pre-defined normalization layer, Rectified Linear Unit (ReLU; Agarap,
2018) activation, and a 2× 2 average pooling layer with a stride of 2. For datasets with resolutions
of 28 × 28 × 1 and 32 × 32 × 3, we used 3 blocks, and for datasets with a resolution of 64 ×
64 × 3, we used 4 blocks. Following Zhou et al. (2022), we increase twice the number of filters
when the feature dimension was halved, to prevent the feature dimensions from becoming too small.
Additionally, by default, we used the Batch Normalization (Ioffe, 2015) layer for normalization
unless stated otherwise. For initializing model weights, we conducted experiments using the Lecun
Initialization (Cun et al., 1998) method, which is the default initialization method of the Flax library.
This configuration was applied both during the model pool in the VBPC training process and in the
evaluation phase.

Model architecture utilized for the Architecture Generalization task For the Architecture
generalization experiments, we incorporate three additional normalization layers and three ad-
ditional model architectures. The normalization layers include Instance Normalization (Ulyanov,
2016), Identity map, and Group Normalization (Wu & He, 2018). For the model architectures, we
include AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), and ResNet (He
et al., 2016). Initially, we evaluate all baselines by replacing Batch Normalization in the convolution
layers with the three alternative normalization methods, referring to these as CNN-IN, CNN-NN,
and CNN-GN, respectively. Next, we use the three additional model architectures for evaluation.
Since AlexNet does not have normalization layers in its original design, we retain this structure and
refer to it as AlexNet-NN. For VGG and ResNet, we use VGG11 with Group Normalization and
ResNet18 with Batch Normalization. These models are denoted as VGG11-GN and ResNet18-BN.

E.3 PSEUDO-CORESET INITIALIZATION, PREPROCESSING, AND AUGMENTATION

Initialization Building on prior works (Kim et al., 2022; 2023; Tiwary et al., 2024; Zhou et al.,
2022), we initialize the pseudo-coreset by randomly sampling images and labels from the original
training dataset using a fixed sampling seed. For the labels, following Zhou et al. (2022), we initial-
ize them with scaled, mean-centered one-hot vectors corresponding to each image, where the scaling
factor is determined by the number of classes k, specifically 1√

k/10
. Here, we train both images and

labels during training.

7https://tiny-imagenet.herokuapp.com/
8https://github.com/hendrycks/robustness?tab=readme-ov-file

23

https://tiny-imagenet.herokuapp.com/
https://github.com/hendrycks/robustness?tab=readme-ov-file


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Data preprocessing and Augmentation Following previous works (Kim et al., 2022; Tiwary
et al., 2024; Zhou et al., 2022), we perform standard preprocessing on each dataset, with the ad-
dition of ZCA (Kessy et al., 2018) transformations for all datasets with 3 channels. Consistent with
Zhou et al. (2022), we apply a regularization strength of λ = 0.1 across all datasets. Similar to
previous works (Kim et al., 2022; 2023; Tiwary et al., 2024; Zhou et al., 2022), we apply the fol-
lowing augmentations to the MNIST and Fashion-MNIST datasets: ‘Gaussian noise’, ‘brightness’,
‘crop’, ‘rotate’, ‘translate’, and ‘cutout’. For all other datasets, we use ‘flip’, ‘Gaussian noise’,
‘color’, ‘crop’, ‘rotate’, ‘translate’, and ‘cutout’ augmentations. These augmentations are applied
both during the training of the Bayesian pseudo-coreset and during evaluation with them.

E.4 HYPERPARAMTERS

Hyperparameters during training VBPC Following previous works (Kim et al., 2022; 2023;
Tiwary et al., 2024), we select 1, 10, or 50 images per class for all datasets when training VBPC
for evaluation. For βS , we use n̂, which corresponds to the number of pseudo-coresets in each
experiment. This setup is designed to control the gradient magnitude by averaging, rather than
summing, the expected likelihood, while maintaining the influence of the KL divergence for stable
training. For βD, we used 1e-8 as the default value, and when adjusted, it was selected from the
range [1e-6, 1e-7, 1e-8] across all experiments. For ρ and γ, we set the default values to ρ = 1.0 and
γ = 100.0 for the ipc 1 and ipc 10 settings, and ρ = 10.0 and γ = 100.0 for the ipc 50 settings.
Except for the CIFAR100 ipc 10 setting where we utilize ρ = 10.0 and γ = 100.0 for the default
setting. When tuning these parameters, we adjusted them on a log scale in steps of 10 within the
range of [-5, 5]. Following the default settings in Zhou et al. (2022), we set the number of models
stored in the model pool, P , to 10. Additionally, as per Zhou et al. (2022), we set the number of
training steps, T , for each model in the model pool to 100. For the model pool optimizer, we used
the Adam (Kingma, 2014) optimizer with a fixed learning rate of 0.0003 across all experiments. For
the pseudo-coreset optimizer, we also used the Adam optimizer by default, with a cosine learning
rate schedule starting at 0.003 for both images and labels. Lastly, we used a batch size of 1024 and
trained for 0.5 million steps to ensure sufficient convergence.

Hyperparameters during variational inference and Bayesian Model Averaging For all exper-
iments, the hyperparameters γ, ρ, and βS used during evaluation were the same as those used for
pseudo-coreset training in the corresponding experiment. The optimizer used for training the models
during evaluation was the Adam optimizer with a constant learning rate of 0.0003. The number of
training steps for each model was as follows: for MNIST and Fashion-MNIST, 100 steps for 1 ipc,
500 steps for 10 ipc, and 1000 steps for 50 ipc. For CIFAR10, 200 steps for 1 ipc, 2000 steps for 10
ipc, and 5000 steps for 50 ipc. For CIFAR100, 2000 steps for both 1 ipc and 10 ipc, and 5000 steps
for 50 ipc. Lastly, for Tiny-ImageNet, 1000 steps were used for 1 ipc and 2000 steps for 10 ipc.

F ADDITIONAL EXPERIMENT

F.1 FULL EXPERIMENTAL RESULTS ON BAYESIAN MODEL AVERAGING COMPARISON

Here, we report the full experimental results for Section 5.1. We report results for FRePo and
RCIG across the entire benchmark dataset and varying IPC settings additional to Table 1. Table 6
clearly demonstrates that VBPC surpasses other BPC baselines across all benchmark datasets and
IPC settings in terms of ACC and NLL. Notably, VBPC achieves significantly better NLL, with large
margins, while requiring only a single forward pass to conduct BMA. Although VBPC is designed to
learn pseudo-coresets that approximate the variational distribution derived from the training dataset,
it outperforms dataset distillation baselines, which primarily focus on achieving high ACC, in nearly
all tasks, except for CIFAR100 with 1 IPC and Tiny-ImageNet. These results empirically validate
that the variational distribution trained by VBPC effectively captures epistemic uncertainty with a
small amount of synthetic data, while maintaining high performance.

Comparison with dataset distillation baselines In Section 5.1, the performance was evaluated
based on the training and evaluation methods proposed by each baseline’s original papers. However,
one might question whether the significant performance of VBPC is due to the trained pseudo-
coreset itself or the VI method. To address this, and to validate that the significant performance of
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Table 6: Comparison of the VBPC with BPC and additional dataset distillation baselines for the
benchmark datasets. We report ACC and NLL for the BPC baselines, and ACC for the dataset dis-
tillation baselines. Boldfaced blue color indicates when the performance of the dataset distillation
baseline surpasses that of VBPC.

FRePo RCIG BPC-rKL BPC-fKL FBPC BPC-CD VBPC (Ours)
Dataset ipc ACC(↑) ACC(↑) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

MNIST
1 93.0±0.4 94.7±0.5 74.8±1.2 1.90±0.01 83.0±2.2 1.87±0.03 92.5±0.1 1.68±0.01 93.4±0.1 1.53±0.01 96.7±0.4 0.11±0.02

10 98.6±0.1 98.9±0.0 95.3±0.2 1.53±0.01 92.1±0.4 1.51±0.02 97.1±0.2 1.31±0.01 97.7±0.2 1.57±0.02 99.1±0.1 0.03±0.01

50 99.2±0.1 99.2±0.0 94.2±0.3 1.36±0.02 93.6±1.8 1.36±0.02 98.6±0.1 1.39±0.02 98.9±0.2 1.36±0.01 99.4±0.1 0.02±0.01

FMNIST
1 75.6±0.3 79.8±1.1 70.5±1.1 2.47±0.02 72.5±2.5 2.30±0.02 74.7±1.4 1.81±0.03 77.3±0.5 1.90±0.03 82.9±0.6 0.47±0.03

10 86.2±0.2 88.5±0.2 78.8±0.2 1.64±0.01 83.3±0.6 1.54±0.03 85.2±0.1 1.61±0.02 88.4±0.2 1.56±0.01 89.4±0.2 0.30±0.01

50 89.6±0.1 90.2±0.2 77.0±0.6 1.48±0.02 74.8±0.5 1.47±0.02 76.7±0.4 1.46±0.02 89.5±0.1 1.30±0.02 91.0±0.2 0.25±0.01

CIFAR10
1 46.8±0.7 53.9±1.0 21.6±0.8 2.57±0.01 29.3±1.1 2.10±0.03 35.5±0.3 3.79±0.04 46.9±0.2 1.87±0.02 55.1±0.3 1.34±0.08

10 65.5±0.4 69.1±0.4 37.9±1.5 2.13±0.02 49.9±1.4 1.73±0.01 62.3±0.3 1.31±0.02 56.4±0.7 1.72±0.03 69.8±0.7 0.89±0.02

50 71.7±0.2 73.5±0.3 37.5±1.3 1.93±0.03 42.3±2.9 1.54±0.01 71.2±0.2 1.03±0.05 71.9±0.2 1.57±0.03 76.7±0.5 0.71±0.03

CIFAR100
1 28.7±0.1 39.3±0.4 3.6±0.1 4.69±0.02 14.7±0.2 4.20±0.10 21.0±0.8 3.76±0.11 24.0±0.1 4.01±0.02 38.4±0.2 2.47±0.04

10 42.5±0.2 44.1±0.4 23.6±0.7 3.99±0.03 28.1±0.6 3.53±0.05 39.7±0.3 2.67±0.02 28.4±0.2 3.14±0.02 49.4±0.1 2.07±0.02

50 44.3±0.2 46.7±0.3 30.8±0.5 3.57±0.17 37.1±0.3 3.28±0.24 44.5±0.4 2.63±0.01 39.6±0.2 3.02±0.01 52.4±0.4 2.02±0.02

Tiny-ImageNet 1 15.4±0.3 25.6±0.3 3.2±0.1 5.91±0.07 4.0±0.1 5.63±0.03 10.1±0.7 4.69±0.05 8.4±0.1 4.72±0.01 23.1±0.2 3.65±0.01

10 25.4±0.2 29.4±0.2 9.8±0.6 5.26±0.05 11.4±0.5 5.08±0.05 19.4±0.5 4.14±0.02 17.8±0.4 3.64±0.05 25.8±0.3 3.45±0.02

Table 7: Ablation experiment on BMA method. Here, we conduct our variational inference method
utilizing datasets trained with other baselines.

FRePo VI RCIG VI BPC-rKL VI BPC-fKL VI FBPC VI BPC-CD VI
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR10 1 28.2±0.9 2.22±0.02 27.8±0.7 2.20±0.01 10.1±0.1 2.30±0.01 10.1±0.1 2.32±0.01 10.0±0.1 2.37±0.02 10.4±0.8 2.35±0.02

10 55.7±0.5 2.07±0.02 55.6±1.5 2.05±0.02 12.0±0.5 2.25±0.02 20.1±1.9 2.21±0.01 10.0±0.0 2.37±0.02 10.5±0.7 2.32±0.01

CIFAR100 1 19.9±0.4 4.55±0.02 2.1±0.1 5.02±0.05 1.2±0.1 4.60±0.01 1.4±0.3 4.60±0.01 1.2±0.2 4.60±0.01 1.2±0.2 4.60±0.01

10 34.8±0.4 4.50±0.01 2.5±0.4 5.45±0.12 2.6±0.2 4.59±0.02 4.0±0.2 4.59±0.02 1.6±0.3 4.59±0.02 11.6±0.4 4.54±0.02

VBPC is not solely attributable to the VI method, we collected the pseudo-coresets trained on all
baselines used in Section 5.1 for the CIFAR10 and CIFAR100 datasets in the 1ipc and 10ipc settings.
We then applied our proposed VI method to these baseline pseudo-coresets to measure their BMA
performance and compared the results with those reported in Table 6. Results in Table 7 and Table 6
clearly show that the performance significantly drops for all baselines compared to their original
performance. This validates that the performance is not solely attributable to the VI method, and
demonstrates that VBPC successfully learns to approximate the variational distribution effectively.

F.2 ADDITIONAL EXPERIMENT RESULTS ON LARGE DATASET AND CONTINUAL LEARNING

To further highlight the ability of VBPC to handle tasks that pose challenges for other BPC baselines,
we conduct additional experiments on more large datasets and the continual learning setting.

Large Datasets First, to show that our method is uniquely scalable to large datasets compared
to other BPC methods, we conducted additional experiments on the ImageNetWoof (128x128x3)
dataset (Howard, 2020) and the ImageNet1k (64x64x3) dataset(Russakovsky et al., 2015). Addi-
tionally, we included an experiment in a continual learning scenario to validate that our method
performs better in practical scenarios.

We conducted experiments on the ImageWoof (128x128x3) dataset with ipc 1 and ipc 10 settings,
as well as the resized ImageNet1k (64x64x3) dataset with ipc 1 and ipc 2 settings, to demonstrate
the scalability of our method to high-resolution images and larger datasets. Unlike existing BPC
baselines, which encountered memory issues and failed to train due to out-of-memory errors on an
RTX 3090 GPU as the image resolution and number of classes increased, our method successfully
completed training. Table 8 clearly shows that VBPC significantly outperforms other baselines with
a large margin for both the ImageWoof and resized ImageNet1k datasets.

Continual Learning Next, we validated the practical effectiveness of our method through con-
tinual learning experiments using pseudo-coreset images learned by each method. We followed the
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Table 8: Experiments on the scalability utilizing ImageWoof and resized ImageNet datasets. Here
‘-’ indicates the training fails due to the out-of-memory problems.

ImageWoof ipc 1 ImageWoof ipc 10 ImageNet ipc 1 ImageNet ipc 2
Method ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

Random 14.2±0.9 3.84±0.25 27.0±1.9 2.83±0.33 1.1±0.1 8.32±0.05 1.4±0.1 8.10±0.05

BPC-CD 18.5±0.1 2.76±0.05 - - - - - -
FBPC 14.8±0.1 3.73±0.02 28.1±0.3 2.69±0.09 - - - -

BPC-fKL 14.9±0.9 3.74±0.23 25.0±0.8 2.90±0.27 - - - -
BPC-rKL 12.0±0.5 6.07±0.31 - - - - - -

VBPC 31.2±0.1 2.13±0.04 39.0±0.1 1.84±0.1 10.1±0.1 5.33±0.04 11.5±0.2 5.25±0.05

Table 9: Experiments on the continual learning setting. Here, we utilize the CIFAR100 dataset with
ipc 20 setting. We assume 5 steps during training and each step contains data from new 20 classes
in the CIFAR100 dataset. Here we only report accuracy due to the variant of the number of classes
during the steps.

Number of Classes 20 40 60 80 100
BPC-CD 52.5±2.4 40.4±1.3 35.2±0.8 33.4±0.5 29.4±0.2

FBPC 61.4±1.8 53.2±1.5 48.8±0.7 43.9±0.4 41.2±0.3

BPC-fKL 51.8±2.2 39.8±1.1 35.5±0.7 33.1±0.5 29.5±0.3

BPC-rKL 48.2±2.7 35.5±1.8 32.0±1.0 29.8±0.6 25.5±0.3

VBPC 75.3±2.0 65.8±1.5 57.1±0.9 53.3±0.5 50.3±0.2

continual learning setup described in Zhou et al. (2022); Zhao & Bilen (2021), where class-balanced
training examples are greedily stored in memory, and the model is trained from scratch using only
the latest memory. Specifically, we performed a 5-step class incremental learning experiment on
CIFAR100 with an ipc 20 setting, following the class splits proposed in Zhou et al. (2022); Zhao &
Bilen (2021). Table 9 demonstrates that VBPC consistently outperforms other baselines across all
steps, confirming its superior practicality and effectiveness in real-world continual learning scenar-
ios.

F.3 ADDITIONAL EXPERIMENTS ON OUT-OF-DISTRIBUTION DATA

To further validate the effectiveness of VBPC, We have conducted additional Out-of-Distribution
(OOD) detection experiments and reported the results. The metrics we evaluate include AUROC,
AUPR-In, and AUPR-Out, where higher values indicate better performance. We used models
trained with the CIFAR10 IPC 10 setting and evaluated them on CIFAR100, TinyImageNet, and
SVHN (Netzer et al., 2011) datasets as OOD datasets.

The results, presented in Table 10, demonstrate that the pseudo-coreset learned by VBPC performs
robustly in OOD detection scenarios. These findings, combined with the corruption experiments in
the main paper, validate the effectiveness and robustness of VBPC under diverse and challenging
evaluation conditions.

F.4 ANALYSIS ON COMPUTATIONAL COSTS AND TRAINING TIME

In this section, we performed analyses focusing on two aspects of computational cost.

Cost of training the pseudo-coreset As mentioned in the Section 1, conventional BPC methods
relying on SGMCMC require the creation of expert trajectories, which are training trajectories de-
rived from the full dataset. Each dataset typically involves training with 10 different random seeds
for these trajectories, making this step computationally expensive. Since all BPC baselines share
and utilize these precomputed trajectories, their associated computational cost can be considered a
shared overhead.

To isolate the computational cost of training the pseudo-coreset itself, we measured the wall-clock
time required for pseudo-coreset optimization by each method. The results of this comparison are
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Table 10: AUROC, AUPR-In, and AUPR-Out results for the OOD detection task with a model
trained with the learned pseudo-coresets. Note that we used the same model structure which is
utilized when training pseudo-coresets.

Dataset Model AUROC(↑) AUPR-In(↑) AUPR-Out(↑)

TinyImageNet

BPC-CD 49.09 52.79 45.88
BPC-fKL 48.95 51.72 47.00
BPC-rKL 48.34 52.71 44.49

FBPC 45.39 49.70 43.14
VBPC 52.85 56.22 49.64

SVHN

BPC-CD 55.09 35.64 73.88
BPC-fKL 54.26 34.78 75.47
BPC-rKL 42.61 28.29 67.15

FBPC 41.34 30.12 62.18
VBPC 68.50 48.49 82.91

Table 11: Wall clock time results for training pseudo-coresets with each BPC method using CI-
FAR10 ipc 10 settings. We used RTX3090 GPU to measure the exact training time. Here, all
methods except for VBPC share the training time for expert trajectories.

Method BPC-CD BPC-rKL FBPC BPC-fKL VBPC
Times (hr) 5+8.5 5+9 5+10.5 5+12 5.5

summarized in Table 11, providing insights into how VBPC reduces training costs compared to other
baselines.

Cost of inference When performing inference, VBPC requires training only a single model,
whereas other BPC baselines rely on multiple SGMCMC samples. Each sample incurs significant
training and inference costs, which grow linearly with the number of samples.

To quantify this difference, we measured the wall-clock time for inference across methods, with
results presented in Table 12. These results highlight how VBPC achieves superior efficiency during
inference by avoiding the high computational costs associated with sampling-based approaches.

These analyses demonstrate VBPC’s ability to perform Bayesian inference efficiently, both in terms
of pseudo-coreset training and inference, and further reinforce the computational advantages of our
method.

F.5 ABLATION ON RANDOM INITIALIZATION

Since our method initializes the pseudo-coreset by randomly sampling images and labels from the
original training dataset, following previous works (Kim et al., 2022; 2023; Tiwary et al., 2024;
Zhou et al., 2022), we conducted an ablation experiment using random initialization for the pseudo-
coreset. In this experiment, we first randomly initialized the pseudo-coreset by sampling pixel values
from a uniform distribution Unif[0, 1]. We then trained the images after normalizing them with the
predefined mean and variance for each dataset reported in Appendix E.1. We conducted this ablation
experiment on the CIFAR10/100 1 ipc and 10 ipc settings. Fig. 2 and Fig. 3 clearly illustrate that
VBPC can effectively learn semantic information even when initialized randomly. Specifically, in
the CIFAR10 ipc 1 case shown in the top figures of both Fig. 2 and Fig. 3, the images after training
appear similar, whether they were initialized randomly or sampled from the training dataset. Also
Table 13 shows that randomly initialized VBPC shows comparable performance compared to the
VBPC.

F.6 ABLATION ON PSEUDO-CORESET OPTIMIZER

Since we use the Adam optimizer for training VBPC, which differs from the default choice in pre-
vious work (Zhou et al., 2022), we conducted an ablation experiment on the optimizer. Following
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Table 12: Wall clock time results for inference using learned pseudo-coresets. We measure the in-
ference time for evaluating all the test data from the CIFAR10 test dataset. After finishing training
the pseudo-coresets, the inference cost for the all baselines are same because they only need SGM-
CMC and BMA with same number of datasets and weight samples.

Method BPC-CD BPC-rKL FBPC BPC-fKL VBPC
Times (s) 165 165 165 165 20

Figure 2: Learned VBPC images from the random initialization for the CIFAR10 ipc 1 (above) and
ipc 10 (below) cases. The left figure shows the random images sampled from the uniform distribution
and the right figure shows the trained VBPC images starting from the left images. Training from
random initialization successfully learns semantic information from the full dataset.

Zhou et al. (2022), we used the LAMB (You et al., 2019) optimizer with a cosine learning rate
schedule for this ablation. We conduct this ablation experiment on the CIFAR10 1 ipc and 10 ipc
settings. As seen in Fig. 4, although there are minor differences, the images trained with the LAMB
and Adam optimizers are largely similar when starting from the same pseudo-coreset initial images.
Additionally, Table 14 demonstrates that our method effectively learns pseudo-coreset with varying
optimizers, closely approximating the variational distribution of the full training dataset.

F.7 ABLATION ON MODEL POOL MAXIMUM UPDATE STEPS

As mentioned in Appendix E.4, we set T = 100 as the maximum update step for the weights in
the model pool M across all experiments. The model pool was introduced to address VBPC’s
overfitting issue, as the weights in the model pool are trained for T steps, leading to a variety of
feature maps. This prevents VBPC from learning based on a single feature map. To investigate
the effect of T , we plan to conduct an ablation study to examine how changes in T impact image
quality and performance. We conducted an ablation experiment on the CIFAR100 ipc 10 task with

Table 13: Comparison between the random initialization and initialization with randomly sampled
images. Random Initialization denotes the VBPC learned starting from the uniform random initial-
ization. Here, we report ACC and NLL for both initializations.

Random Initialization VBPC Random Initialization VBPC
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR10 1 54.2±0.5 1.37±0.02 55.1±0.3 1.34±0.08 CIFAR100 1 37.5±0.4 2.51±0.06 38.4±0.2 2.47±0.04

10 68.9±0.4 0.98±0.01 69.8±0.7 0.89±0.02 10 48.4±0.4 2.20±0.03 49.4±0.1 2.07±0.02
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Figure 3: Learned VBPC images from the randomly sampled image from the original training
dataset for the CIFAR10 ipc 1 (above) and ipc 10 (below) cases. The left figure shows the initial
images sampled from the original dataset and the right figure show the final learned VBPC starting
from the left images.

Figure 4: Visualization of learned VBPC images utilizing different optimizers for the CIFAR10 ipc
1 (above) and ipc 10 (below). The left figure shows the learned VBPC images with LAMB optimizer
and the right figure shows the learned VBPC images with Adam optimizer.

T = 200 and T = 400. As shown in Fig. 5, the images learned with different maximum update
steps appear visually similar. However, Table 15 quantitatively shows that excessive updates to the
model pool weights can reduce feature diversity, potentially leading to a decline in performance for
unseen feature maps.

F.8 ABLATION ON LABEL LEARNING

Following the previous works (Kim et al., 2022; 2023; Tiwary et al., 2024; Zhou et al., 2022), we
learned the labels when training the pseudo-coreset. This can be crucial and effective for learning
a more informative BPC, as the mean of the pseudo-coreset variational distribution depends on the
label. This dependency also impacts the loss function used in the outer optimization process. Fig. 6
shows that without label learning, trained VBPC images significantly lost the semantic informa-
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Table 14: Comparison between the VBPC learned with LAMB optimizer and Adam optimizer.
LAMB denotes the VBPC trained with LAMB optimizer. Here, we report ACC and NLL for both
optimizers.

LAMB VBPC LAMB VBPC
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR10 1 54.4±0.8 1.36±0.03 55.1±0.3 1.34±0.08 CIFAR100 1 38.5±0.5 2.46±0.03 38.4±0.2 2.47±0.04

10 69.4±0.5 0.90±0.02 69.8±0.7 0.89±0.02 10 49.4±0.2 2.25±0.10 49.4±0.1 2.07±0.02

Figure 5: Learned VBPC images utilizing different maximum updates steps for the model pool
elements in the CIFAR100 ipc 10 experiment. The left figure shows the T = 100 case which is
the default setting for the all experiments. The middle and the right figures show the T = 200 and
T = 400 cases. The learned images show minor difference in visual.

tion for each image. Also, results presented in Table 16 clearly shows that the BMA performance
with VBPC variational distribution largely drops without label learning. These results validate that
learning the label is important for the successful VBPC training.

F.9 ABLATION ON GAUSSIAN NOISE AUGMENTATION

During VBPC training, we apply Gaussian noise augmentation. Based on previous findings that
adding Gaussian noise to images during neural network training improves robustness to various
image corruptions (Rusak et al., 2020), we incorporate Gaussian noise during VBPC training. This
helps the learned pseudo-coreset dataset produce a variational posterior that is robust to unseen
model structures and corrupted test datasets. Specifically, we add Gaussian noise sampled from
N (0, 0.01) after normalizing the images using the predefined mean and standard deviation for all
tasks. We conduct the ablation experiment on the existence of this Gaussian Noise during training
VBPC utilizing CIFAR10/100 1 ipc and 10 ipc settings. As clearly seen in the CIFAR10 1 ipc case in
Fig. 7, training with Gaussian noise results in much clearer and brighter images. In contrast, without
Gaussian noise, the model tends to learn visually similar features in the background, unlike the cases
where noise is applied. Table 17 confirms that, as expected, the overall performance decreases when
Gaussian noise augmentation is not applied, compared to VBPC with Gaussian noise augmentation.

Table 15: Ablation results on the model pool maximum update steps. Here, we used CIFAR100 ipc
10 setting for the ablation. T = 200 and T = 400 indicate the maximum updates for the model pool
is 200 and 400, respectively. Here, we report ACC and NLL for all the update steps.

VBPC T = 200 T = 400
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR100 10 49.4±0.1 2.07±0.02 48.7±0.2 2.16±0.03 48.0±0.2 2.22±0.04
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Figure 6: Visualization of learned VBPC images with and without label learning for the CIFAR10
ipc 1 (above) and ipc 10 (below). The left figure shows the learned VBPC images without label
learning and the right figure shows the learned VBPC images with label learning.

Table 16: Comparison between the VBPC learned with and without label learning. No Label de-
notes the VBPC trained without label learing. Here, we report ACC and NLL for both results.

No Label VBPC No Label VBPC
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR10 1 40.6±1.3 1.83±0.02 55.1±0.3 1.34±0.08 CIFAR100 1 10.1±0.0 5.12±0.05 38.4±0.2 2.47±0.04

10 56.6±0.3 1.54±0.03 69.8±0.7 0.89±0.02 10 23.5±1.2 4.92±0.06 49.4±0.1 2.07±0.02

F.10 ABLATION ON HYPERPARAMETER

In this section, we conduct ablation experiments on ρ and γ, which are the hyperparameters newly
proposed in our work. We set the default values to ρ = 10 and γ = 100.0 for the CIFAR100 ipc 10
settings. And, we conduct ablation experiment with the CIFAR100 ipc 10 setting. And the results
presented in Table 18 and Table 19 show that even when we varied our hyperparameters by orders of
magnitude (in log scale, with changes up to 10-fold), the performance remains consistently similar.
And this concludes that our method works robustly with respect to hyperparameter changes.

F.11 ABLATION ON TRAINING STEPS DURING INFERENCE

In this section, we conduct ablation experiments on the number of training steps T ′ during inference.
When learning the pseudo-coreset using the VBPC method, we leverage a model pool to allow the
data to observe various feature maps, ensuring diverse learning. Therefore, even during inference,
although the model may not perfectly fit the pseudo-coreset that was trained with the feature map,
it can still approximate the best variational distribution for the current last-layer weights based on

Table 17: Comparison between the VBPC learned with and without Gaussian Noise augmentation.
No Noise denotes the VBPC trained without Gaussian Noise augmentation. Here, we report ACC
and NLL for both results.

No Noise VBPC No Noise VBPC
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR10 1 53.9±0.8 1.41±0.04 55.1±0.3 1.34±0.08 CIFAR100 1 35.4±0.3 2.62±0.05 38.4±0.2 2.47±0.04

10 68.8±0.7 0.92±0.04 69.8±0.7 0.89±0.02 10 48.5±0.4 2.22±0.06 49.4±0.1 2.07±0.02
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Figure 7: Visualization of learned VBPC images utilizing Gaussian noise during training for the
CIFAR10 ipc 1 (above) and ipc 10 (below). The left figure shows the learned VBPC images without
the Gaussian noise and the right figure shows the learned VBPC images with the Gaussian noise.

Table 18: Ablation results on the hyperparamer γ. Here, we used CIFAR100 ipc 10 setting for
the ablation. γ = 10, γ = 1000, and γ = 10000 indicate that we set γ as 10, 1000, and 10000,
respectively. Our default setting is γ = 1. Here, we report ACC and NLL for all the update steps.

γ = 10 VBPC γ = 1000 γ = 10000
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR100 10 48.5±0.2 2.30±0.03 49.4±0.1 2.07±0.02 49.4±0.4 2.14±0.04 49.0±0.5 2.10±0.02

the available feature map. This enables the model to achieve sufficient BMA performance even
before the pseudo-coreset learning is fully completed. As shown in Table 20, the model exhibits
slightly lower performance during initial steps, such as at 400 or 800 steps, compared to the best
performance. However, after these early stages, the performance becomes nearly identical to the
final convergence step at 2000 steps. These results further demonstrate that our VBPC approach
allows for fast and efficient posterior approximation.

G TRAINED VBPC IMAGES

In this section, we present the images learned under the ipc 1, 10, and 50 settings for MNIST,
Fashion-MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet. To avoid overwhelming the report
with too many images, we have limited the number of reported images to a maximum of 100 per
task.

G.1 TAKE-HOME MESSAGE FROM LEARNED IMAGES

Regarding the learned pseudo-coreset images for CIFAR10, the results can be found in Fig. 12 and
left figure of Fig. 13, showing the outcomes for ipc values of 1 and 10. These images reveal several
interesting aspects of how VBPC captures information.

First, both ipc 1 and ipc 10 images show that VBPC effectively learns features associated with
specific classes, such as “horse" or “automobile," as can be visually confirmed. This indicates that
the pseudo-coreset images retain class-relevant information necessary for approximating the original
dataset’s posterior distribution. When comparing ipc 1 and ipc 10, there are notable differences. In
the case of ipc 1, where only a single image per class is available, VBPC attempts to encode as
many class-specific features as possible into a single image. As a result, the learned image appears
to incorporate multiple discriminative features from the class symmetrically. In contrast, with ipc
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Table 19: Ablation results on the hyperparamer ρ. Here, we used CIFAR100 ipc 10 setting for the
ablation. ρ = 1, ρ = 100, and ρ = 1000 indicate that we set ρ as 1, 100, and 1000, respectively.
Our default setting is ρ = 10. Here, we report ACC and NLL for all the update steps.

ρ = 1 VBPC ρ = 100 ρ = 1000
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR100 10 49.0±0.3 2.10±0.02 49.4±0.1 2.07±0.02 49.0±0.2 2.20±0.03 47.5±0.4 2.35±0.04

Table 20: Ablation results on the training step T ′ during inference. Here, we used CIFAR100 ipc
10 setting for the ablation. T ′ = 400, T ′ = 800, T ′ = 1200, and T ′ = 1600 indicate that the
intermediate performance at step 400, 800, 1200, and 1600, respectively. Our default setting is
T ′ = 2000. Here, we report ACC and NLL for all the update steps.

T ′ = 400 T ′ = 800 T ′ = 1200 T ′ = 1600 VBPC
Dataset ipc ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓) ACC(↑) NLL(↓)

CIFAR100 10 48.9±0.3 2.16±0.01 49.2±0.3 2.09±0.01 49.4±0.3 2.07±0.01 49.5±0.2 2.07±0.01 49.4±0.1 2.07±0.02

10, where more images per class are available, VBPC distributes the class-relevant features across
multiple images. This leads to a greater diversity of features being captured across the pseudo-
coreset, enabling a more comprehensive representation of the class.

Additionally, both ipc 1 and ipc 10 images often include low-level features beyond the main class-
relevant ones. These features likely help capture the dataset’s variability and ensure the learned
pseudo-coreset maintains a close approximation of the original data distribution.

These observations suggest that VBPC is effective in compressing the dataset while retaining essen-
tial information. The learned images illustrate how VBPC balances feature extraction and informa-
tion retention to ensure that the variational posterior distribution learned using the pseudo-coreset
closely approximates the one learned using the full dataset. This further validates the interpretability
and utility of VBPC in various tasks.
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Figure 8: Visualization of learned VBPC images for the MNIST ipc 1.

Figure 9: Visualization of learned VBPC images for the MNIST ipc10 (left) and ipc50 (right).

Figure 10: Visualization of learned VBPC images for the Fashion-MNIST ipc1.

Figure 11: Visualization of learned VBPC images for the Fashion-MNIST ipc10 (left) and ipc50
(right).

Figure 12: Learned VBPC images for the CIFAR10 ipc 1 case.
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Figure 13: Visualization of learned VBPC images for the CIFAR10 ipc10 (left) and ipc50 (right).

Figure 14: Visualization of learned VBPC images for the CIFAR100 ipc1.
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Figure 15: Visualization of learned VBPC images for the CIFAR100 ipc10 (left) and ipc50 (right).

Figure 16: Visualization of learned VBPC images for the Tiny-ImageNet ipc1 (left) and ipc10
(right).

36


	Introduction
	Preliminaries
	Bayesian Neural Networks and Bayesian Model Averaging
	Bayesian Pseudo-Coreset
	Natural gradient variational inference with Exponential Families

	Variational Bayesian Pseudocoreset
	Problem Setup
	Bilevel optimization
	Last Layer Variational Bayesian Pseudocoreset
	Solving Coreset VI Problem
	Computation for dataset VI problem
	Training and Inference

	Related works
	Experiment
	Bayesian Model Averaging comparison
	Results on Out of Distribution scenarios
	Architecture generalization
	Memory allocation and time requirements

	Conclusion
	Full derivations
	Full derivation for the inner optimization
	Numerically stable mean and variance
	Full derivation for outer optimization problem
	Full derivation for training and inference

	Algorithm for training and inference
	Additional Related Works
	Additional discussion on VBPC
	Experimental Details
	Datasets
	Model Architecture
	Pseudo-coreset Initialization, Preprocessing, and Augmentation
	Hyperparamters

	Additional Experiment
	Full experimental results on Bayesian Model Averaging comparison
	Additional experiment results on Large Dataset and Continual Learning
	Additional experiments on Out-of-Distribution Data
	Analysis on Computational Costs and Training Time
	Ablation on random initialization
	Ablation on pseudo-coreset optimizer
	Ablation on model pool maximum update steps
	Ablation on label learning
	Ablation on Gaussian Noise Augmentation
	Ablation on Hyperparameter
	Ablation on Training steps during inference

	Trained VBPC images
	Take-home message from learned images


