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Abstract
Low rank structure is expected in many applications, so it is often desirable to be able to specify
cost functions that induce low rank. A common approach is to augment the cost with a penalty
function approximating the rank function, such as the nuclear norm which is given by the ℓ1 norm
of the matrix’s singular values. This has the advantage of being a convex function, but it biases
matrix entries towards zero. On the other hand, nonconvex approximations to the rank function
can make better surrogates but invariably introduce additional hyperparameters. In this article, we
instead study a weighted nuclear norm approach with learnable weights which provides the be-
havior of nonconvex penalties without introducing any additional hyperparameters. This approach
can also benefit from the fast proximal methods which make nuclear norm approaches scalable.
We demonstrate the potential of this technique by comparing it against the standard nuclear norm
approach on synthetic and realistic matrix denoising and completion problems. We also outline the
future work necessary to deploy this algorithm to large scale problems.

1. Introduction

Oftentimes it is desirable for a matrix-valued optimization quantity to have low rank. The func-
tion rank(A) of A ∈ RM×N unfortunately is difficult to optimize directly, being nonconvex and
discontinuous. Therefore, the nuclear or Ky Fan norm [8] ∥A∥∗, defined as the sum of the A’s
singular values, is often used as a surrogate loss function as it is convex and continuous, leading to
the following optimization problem:

min
A∈RM×N

f(A) + τ∥A∥∗ = min
A∈RM×N

f(A) + τ
P∑

p=1

σp(A) ,

where σp(A) gives the p’th singular value of A, and we P = min(M,N). Local solutions to
this class of problems can produced efficiently for smooth f using proximal gradient methods [16].
Most prominently, Cai et al. [2] and Mazumder et al. [14] deployed the Iterative Shrinkage and
Thresholding Algorithm [4, ISTA] with f given by the matrix completion problem (see Section 4).

In this article, we propose using a version of the nuclear norm with variable weights, to be esti-
mated via optimization, allowing for a better surrogate loss function which more closely mimics the
behavior of the rank function while maintaining a continuous optimization problem. The remainder
of this article is organized as follows: Section 2 provides an overview of pertinent sparsity and low-
rank inducing penalties. In Section 3, we describe the novel penalty and an optimization algorithm.
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In Section 4, we deploy our penalty on noisy matrix completion problem based on natural images.
Finally, Section 5 concludes and overviews future research.

2. Background

In the vector case, ISTA is parameterized by a step size η and regularization strength τ and proceeds
by the proximal gradient formula, which involves iteration of two steps:

for t ∈ {1, . . . , T} do
xt+1
0 ← xt − η∇f(xt)

xt+1 ← STOητ (x
t+1
0 ) ,

end
where STO is the Soft Thresholding Operator applied elementwise: STOητ (x) = (|x|−ητ)+sgn(x).
In the matrix case, iteration proceeds by applying the STO elementwise to the singular values of the
solution matrix after the gradient descent step (svd(A) is the singular value decomposition of A):

for t ∈ {1, . . . , T} do
At+1

0 ← At − η∇f(At)
Ut+1,σt+1,Vt+1,⊤ ← svd(At+1

0 )
At+1 ← Ut+1diag[STOητ (σ

t+1)]Vt+1,⊤

end
The nuclear norm serves as a convex relaxation of the rank function [9] much as the ℓ1 norm

serves as a convex relaxation of the ℓ0 “norm” for vectors. ℓ1 penalized regression [21] is now
ubiquitous in many domains of computational science, and is called Lasso regression [22] in the
machine learning community, having been catapulted to popularity in part by its ease of compu-
tation and interpretability. However, this penalty does have some drawbacks when viewed as a
surrogate of the ℓ0 function, particularly when there are large values among the nonzero signal. The
practical consequence of this is bias towards zero: in the matrix case, imposition of a nuclear norm
penalty means that though some components will be successfully thresholded to zero, the nonzero
components will be overly shrunk towards zero, sometimes perniciously so.

For this reason, a slew of debiased penalties have been proposed to replace the ℓ1 norm with
a better surrogate of the ℓ0 norm. Many of these are nonconvex penalties originally proposed for
sparsity in regression problems such as as the Minimax Concave Penalty [25, MCP], the Smoothly
Clipped Absolute Deviation [7, SCAD] and bridge/ℓq [10] penalties p(x) = λ

∑P
p=1 |xp|q, q ∈

(0, 1). Yao et al. [24] and Phan and Nguyen [18] developed a general optimization framework that
can accommodate many nonconvex penalties. Marjanovic and Solo [13] brought bridge penal-
ties to the matrix case in order to perform matrix completion using the fact that the proximal
operator of the ℓq penalty is known. Mohan and Fazel [15], on the other hand, develop an itera-
tive reweighting procedure for the bridge norm, defining a weighted version of the nuclear norm:
∥A∥λ∗ =

∑P
p=1 λpσp(A). Lu et al. [12] extend this to more nonconvex penalties. In this article,

we will also make use of a weighted nuclear norm, but rather than choose λp in order to locally
approximate a prespecified nonconvex loss, we instead propose to treat λ as a decision variable and
to determine its value via optimization.

The Maximum a Posteriori (MAP) Bayesian perspective on Lasso regression [17] specifies the
prior distribution β ∼ L(0, 1

λ), where L(0, 1
λ) gives a Laplace distribution with inverse scale pa-

rameter λ. Methods in the family of the Spike-Slab Lasso [20] or Horseshoe prior [3] specify a
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coefficient-specific regularization parameter λp endowed with a common marginal hyperprior Pλ,
which alleviates the bias that the standard Laplace (or Normal in the Horseshoe case) prior places
on selected coefficients. Classically, such hyperpriors are then used inside of an MCMC procedure.
In this article, we will instead be interested in the MAP perspective:

min
β∈RP ,λ≥0

f(β) + τ
P∑

p=1

λp|βp| −
P∑

p=1

logPλ(λp)

Optimization of this quantity is complicated by the coupling between λp and βp which renders the
STO inappropriate for joint optimization. In [23], we showed that there is nevertheless a closed
form proximal operator appropriate for this problem. If η is a step size common to all variables and
assuming that τη2 ≤ 1, the Variable Soft Thresholding Operator is given by:

VSTOτη(λ0, x0) : λ∗ =

{
λ0 λ0 ≥ |x0|

τη
(λ0−τη|x0|)+

1−τ2η2
o.w. ,

(1)

x∗ = (|x0| − ηλ∗)+sgn(x0) (2)

where (a)+ = max(0, a), and λ∗ = 1[λ0>|x0|]λ0 when τη2 ≥ 1 (with x∗ unchanged). In general
the constraint is τηxηλ ≥ 1 if these have different step sizes. We refer to the deployment of the
VSTO proximal operator and priors on λ within a gradient descent procedure as Variable ISTA, or
VISTA. In this article, we extend this approach to the matrix case to allow for adaptive low-rank
inference.

3. A Variable-Coefficient Nuclear Norm Penalty

We propose to endow A with the prior matrix distribution with density δ(A) ∝ e−∥A∥λ∗ , and then to
specify independent hyperpriors Pλ for each λp, conducting MAP inference with this prior structure.
The optimization problem thus becomes:

min
A∈RM×N ;λ≥0

f(A) + τ
P∑

p=1

λpσp(A)− c(λ)−
P∑

p=1

logPλ(λp) .

where c(λ) = log
[ ∫

A∈RM×N e−∥A∥∗
]

is the normalizing constant associated with this distribution.
Unfortunately, we have not been able to locate a discussion of this distribution in the academic
literature, and, for the purposes of our numerical experiments, simply plug in the normalization
constant of the scalar Laplace c(λ) =

∑
p log λp. We intend to develop the normalizing expression

in future work. Iteration proceeds with a gradient descent step with respect to A and λ before
applying the VSTO operator to λ and the singular values of A:

for t ∈ {1, . . . , T} do
At+1

0 ← At − η∇Af(At)

λt+1
0 ← λt − η∇λ

[
−
∑P

p=1 logPλ(λ
t)− c(λ)

]
Ut+1,σt+1

0 ,Vt+1,⊤ ← svd(At+1
0 )

λt+1,σt+1 ← VSTOτη(λ
t+1
0 ,σt+1

0 )
At+1 ← Ut+1diag(σt+1)Vt+1,⊤

end
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Figure 1: Synthetic Illustration on Individual Matrices: A ∈ R30×40 with standard normal
noise. Left: Denoising. Right: Noisy Matrix Completion. Dotted lines give reconstruc-
tion error, solid lines give prediction error.

Unlike the previously proposed nonconvex penalties enumerated by [12], the variable-coefficient
nuclear norm penalty does not introduce any additional tuning parameters. Though it relies instead
on the specification of a hyperprior Pλ, we have found the standard Half Cauchy prior to be appro-
priate for the applications in this article as well as in the regression problems in [23].

One difference between the vector and matrix cases is the fact that the singular values come
with a natural ordering, whereas a vector’s elements comes only with a nominal ordering. It might
be thus desired to have λp ≤ λp+1. But this would couple the optimization problems, significantly
complicating proximal operator computation. In this article, we simply apply the prox to each sin-
gular value individually, and observe that λp ≤ λp+1 naturally. Since the singular values themselves
are of course ordered, we would expect that this would impose the correct orderings on λp in most
cases, but have not yet established a proof for all Pλ nor developed a counterexample.

A second difference is that the weighted nuclear norm is nonconvex [11], in contrast to the
weighted ℓ1 norm, which retains the convexity of the unweighted ℓ1 norm. In either case, the
problem with λ considered as a decision variable is nonconvex, but it in the vector case it is at least
biconvex. In future work, we will investigate the implications of this additional nonconvexity in the
matrix case.

4. Empirical Evaluation

In this section, we first qualitatively compare the proposed VISTA approach with the classical ISTA
on two random matrices before quantitatively comparing the methods on completion of noisy nat-
ural images. Neither VISTA nor ISTA are competitive with modern approaches for natural image
completion that can exploit the spatial layout of the pixels such as wavelets or convolutional neural
networks. We use this example nevertheless as images are a classic benchmark for matrix com-
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Image 1; Red Channel Noisy and Half Observed Classic with = 10 Adaptive with = 10

Figure 2: Example Case: Left to Right: Original Image, Noisy partial image presented to algo-
rithms, ISTA solution, VISTA solution.

pletion and we are able to use images small enough to easily compute explicit singular values
decompositions.

4.1. Experimental Design

First, we consider the low rank denoising problem, that is, we generate a matrix Aobs = B + E,
where B is of rank 2 and E is a matrix of standard normal random variates. The classical cost
function for this problem is:

min
A∈RM×N

1

2
∥Aobs −A∥2F + τ

P∑
p=1

σp(A)] ,

which has a closed form in terms of the singular value decomposition of Aobs = Udiag[σ]V⊤ [2]:

A∗ = Udiag[(σ − τ1)+]V⊤ .

The cost function associated with the adaptive nuclear penalty is instead:

min
A∈RM×N ;λ≥0

∥Aobs −A∥2F + τ
P∑

p=1

λpσp(A)−
P∑

p=1

logPλ(λp)

which we solve iteratively.
We also consider the matrix completion problem, which is similar except for we only have data

constraints for a subset of Aobs’s entries, which we encode as an observation mask mi,j which takes
value 1 if the entry is observed and 0 otherwise:

f(A) = ∥(Aobs −A)⊙M∥2F

again with both penalties. Unlike the denoising case, this cost function augmented with the classical
nuclear penalty does not enjoy a closed form solution, and a common solution algorithm is ISTA.
See [5] for more background and algorithms.

We deploy both ISTA and VISTA as part of a gradient descent algorithm with fixed step size of
10−3 and for 2,000 iterations.
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Figure 3: Imagenet Test Problems: Left: The plot gives the 2.5, 50, and 97.5 percentiles of sum
squared prediction error for both algorithms for a range of τ . Center: The distribution
of out of sample SSE for VISTA is below that of ISTA. Right: A histogram of the SSE
differences on the considered images; a value greater than 0 indicates that VISTA is
performing better on that image (such bars are colored blue).

4.2. Illustrative Synthetic Examples

Figure 1 shows the trajectory of the reconstruction error as τ varies. In the left figure, all entries
of the matrix are observed with noise, with error evaluated by distance to the noiseless low-rank
matrix (i.e. B). We notice that the rank of the solution for a given τ is identical between VISTA
and ISTA. However, the approximation errors are quite different. The ISTA algorithm achieves its
optimal error at τ ≈ 20, using an approximation with rank greater than 2. VISTA, on the other
hand, achieves its optimal error at the correct rank of 2 and for a wide range of τ values between
about 20 and 50. It would seem that ISTA is forced to let in singular values that should be zero in
order to avoid excessive shrinkage of the truly nonzero components. VISTA, on the other hand, is
able to identify a good solution with the correct rank.

The right side of Figure 1 shows a similar setup but now with only 50% of the entries available.
Error is now evaluated with respect to left-out matrix entries. Again, VISTA is able to find a lower
rank solution which achieves better out-of-sample error (i.e. error on the unseen matrix entries) than
ISTA is. Unlike the completely observed case, VISTA sometimes chooses different ranks for a give
τ value than ISTA, tending to favor larger rank solutions at smaller τ values. Notice that the ISTA
error curve varies continuously with τ , whereas VISTA has flat regions followed by sudden changes.
This indicates that VISTA returns the same approximations for ranges of τ values, meaning that it
is less sensitive to hyperparameter specification than is ISTA.

4.3. Small Natural Image Completion and Denoising

We now deploy adapative and classical proximal nuclear norm minimization to a natural image
benchmark. We use images from Imagenet [6], in particular the imagenette1 subset. This repo has
963 images of widths between 160 and 269 and heights between 160 and 480. We treat the R, G

1. https://github.com/fastai/imagenette
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and B channels as individual matrices, and choose as our benchmark the 100 first such matrices. We
scale them to [0, 1], then add i.i.d. Gaussian noise with a standard deviation of 0.1 and sample the
observation mask from a bernoulli with p = 0.5 such that the algorithm sees about half the image
with noise and has to fill in the other half (see Figure 2, right and center-left).

Figure 3 presents the distribution of Sum Squared Error (SSE) on held-out matrix entries for
each algorithm. The top-left panel shows us the 25’th, 50’th, and 95’th percentiles of the error for
each algorithm, revealing that ISTA has its best performance for smaller τ than VISTA. Addition-
ally, it would seem that VISTA can achieve peak performance for a wider range of τ than can ISTA,
suggesting again that it is less sensitive to specification of its global penalty parameter. The lower-
left panel shows the average rank of solutions from each algorithm; they are higher for VISTA for
most τ values. We next compare the error distributions associated with each method for the specific
τ at which each performs “best”, defined by SSE of the 85th percentile. This was τ ≈ 9 for ISTA
and τ ≈ 20 for VISTA. The middle panel shows the distribution of error for each as pair of box-
plots while the right panel shows a histogram of pairwise error differences, revealing that VISTA
does better for almost all images, though there are a significant number of images for which it does
especially poorly.

Though VISTA generally gives better average performance, certain images flummoxed it, at
least for the regularization level chosen. We suspect that in certain applications it would be helpful
to include some amount of “non-adaptive” regularization by augmenting cost with a standard ℓ2 or
ℓ1 regularization as suggested in the context of regression by Piironen and Vehtari [19].

5. Conclusion and Future Work

This article introduced a variable-coefficient version of the nuclear norm penalty for inducing low-
rank structure in matrices. We compared it to the classic singular value thresholding approach on test
problems small enough that we could actually compute the SVD to apply our proximal operator. But
in many interesting applications this is not possible, notably large scale recommendation problems
(“The Netflix Problem”). Authors working with the nuclear norm have been able to successfully
deploy their procedure within scalable singular value estimation procedures, and we see no obstacle
to doing the same with our adaptive norm. We look forward to this future work.

We caution that the adaptive nuclear norm should not be viewed as universally superior to the
standard kind. In some applications, particularly those where there is not true low rank structure,
the shrinkage imposed by the nuclear norm may be desired, and the bias it induces may prove
stabilizing.

The denoising problem with complete observation can be solved in closed form via a single
application of the classical nuclear norm proximal operator to the singular values of the observed
noisy matrix. Conceivably, the same is true of our adaptive method, depending on the Pλ chosen. In
future work, we will identify a suitable prior and investigate the possibility of a closed form adaptive
denoiser.

Previous work has shown that Nesterov acceleration may be profitably incorporated in proximal
gradient methods (notably [1]), and there is no reason to believe that this would not be the case here.
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[20] Veronika Ročková and Edward I George. The spike-and-slab lasso. Journal of the American
Statistical Association, 113(521):431–444, 2018.

[21] Howard L Taylor, Stephen C Banks, and John F McCoy. Deconvolution with the ℓ1 norm.
Geophysics, 44(1):39–52, 1979.

[22] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 00359246. URL
http://www.jstor.org/stable/2346178.

[23] Nathan Wycoff, Ali Arab, Katharine M. Donato, and Lisa O. Singh. Sparse Bayesian lasso via
a variable-coefficient ℓ1 penalty, 2022. URL https://arxiv.org/abs/2211.05089.

[24] Quanming Yao, James T Kwok, Taifeng Wang, and Tie-Yan Liu. Large-scale low-rank matrix
learning with nonconvex regularizers. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(11):2628–2643, 2018.

[25] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

9

http://www.jstor.org/stable/2346178
https://arxiv.org/abs/2211.05089

	Introduction
	Background
	A Variable-Coefficient Nuclear Norm Penalty
	Empirical Evaluation
	Experimental Design
	Illustrative Synthetic Examples
	Small Natural Image Completion and Denoising

	Conclusion and Future Work

