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ABSTRACT

Natural language interfaces for vehicle control must contend with vague commands,
evolving dialogue context, and strict protocol constraints. We introduce Clari-
fyVC, a unified framework that integrates a hybrid data-augmentation pipeline
(ClarifyVC-Data), reference models trained on the data (ClarifyVC-Models) and a
evaluation protocol (ClarifyVC-Eval). The agent-orchestrated pipeline generates
diverse, ambiguity-rich dialogues from real-world seeded queries under schema and
safety constraints, while the evaluation protocol systematically probes single-turn
parsing, conservative clarification under extreme fuzziness, and multi-turn ground-
ing. Fine-tuning on ClarifyVC-Data yields consistent gains—up to 15% higher
parsing accuracy, 20% stronger ambiguity resolution, and 98% protocol compli-
ance—across realistic in-cabin scenarios, with human-in-the-loop assessments
confirming high realism, coherence, and applicability. ClarifyVC thus advances
beyond simulation-only datasets by tightly coupling real-world grounding with
scalable generation and standardized evaluation, and provides a generalizable
pipeline for broader interactive control domains. Our code and dataset are available
at: https://anonymous.4open.science/r/ClarifyVC.

1 INTRODUCTION

Natural language interfaces are becoming a cornerstone of interactive control systems, from au-
tonomous vehicles (Wen et al., 2024) to smart homes (Thukral et al., 2025), robotics (Sikorski et al.,
2025), and other embodied agents (Bick et al., 2024). These systems require the ability to interpret
vague instructions, maintain multi-turn dialogue context, and execute actions under strict protocol
constraints. In the automotive domain, the rise of autonomous vehicles has already transformed
human–machine interaction, making natural language commands crucial for intuitive and trustworthy
control of hundreds of onboard functions (Zheng et al., 2024; Wang et al., 2024a). However, Vehicles
face pervasive ambiguity—user commands are often vague, protocol mappings incomplete, and
existing evaluation metrics inadequate (Ma et al., 2024). Traditional intent detection and slot-filling
methods perform poorly under ambiguity and context shift, while current benchmarks lack realism,
coverage, or failsafe metrics (Chun et al., 2025).

Public perception reflects these gaps: 58% of individuals feel uneasy about self-driving cars, and
25% express complete distrust in their reliability (Wenskovitch et al., 2024; Peng & Shang, 2024).
A core reason is that current LLMs, though strong in general reasoning, struggle in safety-critical
control (Brahman et al., 2024). They hallucinate under ambiguous instructions, fail to request clarifi-
cations when uncertain, and lack strict protocol adherence in task orchestration (Dai et al., 2024).
These weaknesses are compounded by the absence of high-quality, reality-grounded datasets and stan-
dardized evaluation protocols, limiting progress toward reliable in-vehicle dialogue systems (Nguyen
et al., 2024; Zou et al., 2024). To close this gap, we introduce ClarifyVC, a unified framework
for clarifying ambiguous commands in vehicle control. It integrates a hybrid data-augmentation
pipeline (ClarifyVC-Data), reference models trained on the data (ClarifyVC-Models) and a three-tier
evaluation protocol (ClarifyVC-Eval) to evaluate the data quality and model performance.

At the core of ClarifyVC-Data is a hybrid augmentation pipeline seeded from over 20k authentic
in-vehicle commands drawn from a proprietary corpus of 4M+ production-level interactions. Through
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structured ambiguity injection, adversarial perturbations, and multi-turn clarification, the pipeline
synthesizes ambiguity-rich yet protocol-compliant samples that target robustness and safe execution.
The resulting dataset, ClarifyVC-Data, has been validated through human evaluation and distributional
alignment experiments, demonstrating close correspondence to real-world usage patterns. Fine-
tuning LLMs on this data yields an average 15% improvement in parsing accuracy, underscoring the
pipeline’s practical value for safety-critical language interfaces.

Beyond dataset construction and training, we introduce ClarifyVC-Eval, a three-tier evaluation
protocol that explicitly targets real-world ambiguity in function-call tasks (Jiang et al., 2024b; Chao
et al., 2024; Wu et al., 2024; Jiang et al., 2024a). ClarifyVC-Eval plays a dual role: (i) it audits
the benchmark itself—testing whether the data is realistic and ambiguity-rich—and (ii) it provides
a unified lens to evaluate model capabilities in semantic parsing, execution fidelity, and safety
compliance. By jointly assessing data validity and functional reliability, the protocol addresses a key
gap in prior work, which typically isolates dataset realism from model accuracy and thus misses their
interaction in safety-critical settings. To operationalize the data-side audit, we additionally define a
Dataset Quality Score (DQS) that aggregates ambiguity diversity (AD), protocol compliance (PC),
and realism (R). Together, ClarifyVC-Eval and DQS constitute a comprehensive, scalable framework
for auditing datasets and benchmarking models under realistic ambiguity.

Extensive experiments demonstrate that ClarifyVC substantially improves performance in safety-
critical control tasks. Fine-tuned models achieve 15% higher parsing accuracy, 20% better ambiguity
resolution, and 98% protocol compliance, while also reducing inference latency by 30% compared to
baseline systems. Additional ablation studies confirm the necessity of each module in the pipeline,
with the default configuration yielding the best trade-off between diversity, coherence, and adherence.
Multi-run evaluations further validate robustness, showing consistently low variance (<1%) and
statistically significant improvements across metrics. Human-in-the-loop assessments corroborate
these results, with expert annotators rating generated dialogues highly on realism, coherence, and
practical applicability. Together, these findings highlight ClarifyVC as a reliable and efficient
framework for robust language understanding under real-world ambiguity in vehicle control. In
summary, our contributions are threefold:

1. ClarifyVC Framework: A unified framework for clarifying ambiguous commands in vehicle
control and interactive systems. It integrates a hybrid data pipeline, a three-tier evaluation protocol,
and reference models, offering an end-to-end standard for safe and deployable language interfaces.

2. ClarifyVC-Data&Models: A hybrid, reality-grounded, and human-validated dataset built from
20k+ real-world seed commands, expanded with controlled fuzziness and adversarial variants.
By training on the high-quality data, we release reference models that show consistent gains in
accuracy, clarification, and safety compliance.

3. ClarifyVC-Eval: A three-tier evaluation protocol that disentangles under-specification, ambiguity
clarification, and multi-turn grounding, along with a Dataset Quality Score which ensures the
benchmark aligns with real-world distributions and maintains high-quality standards. By explicitly
targeting these failure families, the protocol enables comprehensive and safety-aware assessment
of function-call understanding, addressing gaps left by conventional single-turn accuracy.

2 RELATED WORK

2.1 METHODS FOR CLARIFYING AMBIGUITY AND MULTI-TURN COMMAND PARSING

Natural–language command understanding has progressed from structure-aware parsers to end-
to-end LLM solutions for mapping utterances to executable actions (Zheng et al., 2024; Wang
et al., 2024a). Early pipelines emphasized schema-constrained intent/slot structures and hierarchical
modeling (Sriram et al., 2019; Wang et al., 2024b; Okur et al., 2023). More recently, LLMs have
been applied to enable direct intent grounding, rule translation, and task formalization (Shao et al.,
2024; Choudhary et al., 2024; Manas & Paschke, 2023).

In the domain of vehicle or visual command understanding, datasets like Talk2Car (Deruyttere
et al., 2019), CI-AVSR (Dai et al., 2022a), and doScenes (Roy et al., 2024) provide real-world
instruction–action pairs and visual grounding contexts, but primarily support single-turn mapping
rather than interactive clarification. Beyond single-turn parsing, logical disambiguation methods such
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as LogicalBeam (Bhaskar et al., 2023) have been explored, while other datasets and studies (e.g.
CHAMBI) highlight cross-cultural or spatial ambiguity challenges (Zhang et al., 2024b; Saparina &
Lapata, 2024). Frameworks for task decomposition and retrieval-augmented decision making further
support complex instruction following (Shen et al., 2024; Yang et al., 2024). Parallel streams examine
unimodal parsing (Zhang et al., 2024a), synthetic data generation (Liu et al., 2024), and distillation
for instruction following (Ding et al., 2024), alongside domain-specific command datasets (Liu et al.,
2023; Li et al., 2024). Together, these approaches offer modeling, training, and data-centric tools for
tackling ambiguity and multi-turn semantics in command parsing.

2.2 LIMITATIONS OF EXISTING APPROACHES AND OUR POSITIONING

Despite steady progress, three gaps persist. (1) Ambiguity management and uncertainty signaling.
Many systems lack explicit mechanisms to detect under-specification, trigger clarifying questions,
or expose calibrated confidence, which is critical in safety-sensitive interaction (Pramanick et al.,
2022; Wenskovitch et al., 2024; Lee et al., 2024). (2) Evaluation scope. Benchmarks often emphasize
single-turn parsing, narrow modalities, or synthetic distributions (Zhang et al., 2024a; Liu et al.,
2024; 2023; Li et al., 2024), offering limited coverage of multi-turn grounding and protocol-aware
execution; even task-centric frameworks (Shen et al., 2024; Yang et al., 2024) provide only partial
visibility into clarification behavior. (3) Data realism and compliance. Instruction-generation and
distillation pipelines (Ding et al., 2024) rarely tie ambiguity to real logs or enforce function-call
protocols, hindering transfer to deployed systems.

ClarifyVC addresses these gaps with a unified framework that: (i) couples a hybrid, real-log–seeded
augmentation pipeline with controlled adversarial/fuzzy evolution to surface realistic ambiguity; (ii)
introduces a three-tier evaluation protocol that disentangles single-turn parsing, clarification under
extreme fuzziness, and multi-turn grounding with execution checks; and (iii) reports reference models
trained on the data with protocol-aligned metrics. Our data generation pipeline, benchmark, and
evaluation protocol demonstrate strong generalization and practical utility in real world settings.
Beyond in-cabin voice control, the framework’s clarification strategies and compliance-oriented
evaluation naturally extend to broader domains of human-machine interaction, including smart homes,
medical dialogue, and embodied intelligence, where safety and interpretability remain critical.

3 METHODOLOGY

We instantiate ClarifyVC as a unified framework comprising a hybrid data-augmentation pipeline
(ClarifyVC-Data), reference models trained on the data (ClarifyVC-Models) and a safety-aware
three-tier protocol (ClarifyVC-Eval). Seeded with 20k+ authentic in-vehicle commands (drawn from
4M+ production logs), the pipeline expands queries via structured ambiguity injection, adversarial
perturbations, and multi-turn clarification under protocol constraints. The resulting corpus is validated
through human studies and distributional alignment with real-world usage.

3.1 CLARIFYVC-DATA: AGENT-ORCHESTRATED PIPELINE

Stage-wise pipeline. We adopt an agent-orchestrated modular pipeline with four stages: Semantic
Parsing Module (SPA), Adversarial Generation Module (AGA), Fuzz Injection Module (FIA), Multi-
Turn Evolution Module (MEA), each implemented with prompt-engineered, pre-trained LLMs
without task-specific fine-tuning. Specifically, SPA/FIA/MEA are implemented with DeepSeek-R1
(API-based) for semantic parsing, fuzz injection, and multi-turn dialogue evolution, while AGA is
realized with Qwen2.5-72B (via vLLM) to perform protocol-constrained adversarial rewriting. These
choices combine scalability and strong instruction-following, while ensuring modularity for drop-in
substitution. The total compute cost of synthesizing the benchmark remains modest, as generation
relies primarily on API calls and lightweight orchestration:

• SPA parses each seed command into (I, E, P ) as standardized grounding.
• AGA produces syntactically valid yet ambiguous variants cadv under protocol constraints.
• FIA converts cadv into softer fuzzed instructions c′ (parameter omission, subjective modifiers,

mild distortion); both tiers are retained.
• MEA expands c′ into coherent multi-turn dialogues D for long-horizon grounding.

3
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Figure 1: Agent-orchestrated, stage-wise generation flow. A schema-constrained pipeline executes se-
mantic parsing, adversarial construction, fuzz injection, and multi-turn evolution on real-world–seeded
commands to synthesize ambiguity-rich single- and multi-turn dialogues under protocol constraints.
The resulting corpus forms ClarifyVC-Data: a hybrid, realism-aligned, human-validated benchmark
with standardized function-call annotations and broad ambiguity coverage.

The adopted sequence (SPA→ AGA→ FIA→MEA) is not arbitrary but empirically validated. We
conducted controlled ablations that permuted the order or removed individual stages. Evaluation
results (Table 9) show that the default order achieves the best balance across ambiguity diversity,
dialogue coherence, and protocol adherence. For example, reversing FIA and AGA substantially
reduced diversity, while removing either stage markedly degraded ambiguity coverage. This confirms
that the chosen order is optimal for synthesizing realistic yet challenging interactions.

This yields a hierarchical pool: (1) SPA+AGA ⇒ cadv; (2) +FIA ⇒ c′; (3) +MEA ⇒ D. To
encourage diversity while preserving operational validity, each sample is scored by

Q(c) = α ·H(c) + (1− α) · I(c is protocol-compliant), α = 0.6, (1)

where H(c) is ambiguity entropy and I(·) indicates compliance (Appendix B.2).

Reference models (ClarifyVC-Models). We obtain ClarifyVC-Models by supervised fine-tuning
open-source backbones (e.g., LLaMA3-8B, Qwen2.5-7B/72B, DeepSeek-R1-Distilled) on ClarifyVC-
Data with schema-aligned function-call targets, using a teacher-forced cross-entropy objective and
JSON-schema–constrained decoding at inference(Experiment settings can be seen in Appendix B).
Training is performed with early stop on a delayed test split and evaluated on a separate 2k test
set, averaged on 5 random seeds (std.,< 1%). We release the Qwen2.5-7B-SFT checkpoint and
training/evaluation configs. Notably, while larger backbones (14B, 32B, 72B) show strong results,
the 7B model achieves the best trade-off between accuracy and computational efficiency, reducing
inference cost by an order of magnitude while delivering comparable or superior performance under
our protocol. As will be shown in Table 3, the models fine-tuned with ClarifyVC-Data consistently
surpass the zero-shot base models in different scenarios.

3.2 CLARIFYVC-EVAL: EVALUATING DATASET QUALITY AND MODEL PERFORMANCE

In this part, we introduce ClarifyVC-Eval to evaluate the quality of ClarifyVC-Data and ClarifyVC-
Models. A Dataset Quality Score (DQA) is used to ensure the benchmark aligns with real-world
distributions and maintains high-quality standards. Meanwhile, a three-tier evaluation protocol that
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User: "Increase the temperature." 

• Inference Path : "Temperature increased by 2°C." 

• Clarification Path : "What temperature increase would you prefer?" 

User: "Turn on that switch."

"Could you specify which switch you want to turn on?"

User: "It’s too hot." 

"Do you want to adjust the air conditioning or rolldown the windows?"

User: "Adjust the air conditioning." 

"Please provide the target temperature and windspeed."

User: "22 degrees, medium wind." 

"Okay, the air conditioning has been set to 22°C, wind speed 2 gears." 

(i) Single-Round Fuzzy Instruction Parsing

(ii) Extreme Fuzzy Instruction Counter-Questioning (iii) Multi-round Dialogue

Figure 2: Illustration of ClarifyVC-Eval: (i) parse mildly fuzzy commands into precise function
calls, (ii) adopt safe clarification under extreme vagueness, and (iii) sustain multi-round dialogue for
coherent, grounded execution—capturing ambiguity, safety, and interactivity in real-world control.

disentangles under-specification, ambiguity clarification, and multi-turn grounding, is proposed to
evaluate the generation quality of different LLMs.

Automated quality and human validation for Dataset. We summarize dataset quality with

DQS = λ1 · AD + λ2 · PC + λ3 · R, (λ1, λ2, λ3) = (0.4, 0.3, 0.3), (2)

combining ambiguity diversity (AD), protocol compliance (PC), and realism (R). We choose
(0.4, 0.3, 0.3) as the hyperparameters of Dataset Quality Score (DQS) via a grid search that maxi-
mizes Spearman correlation with human ratings while preserving rank stability across baselines; full
sweeps appear in Appendix C.4.

Three-Tier Protocol for Comprehensive Model Evaluation. While dataset validation secures
distributional realism, robust model assessment requires an evaluation protocol that can reveal failure
families invisible to single-turn accuracy. To this end, when evaluating models, ClarifyVC-Eval
operationalizes three complementary tiers of evaluation: (i) Single-round fuzzy instruction parsing,
which tests the model’s ability to parse mildly ambiguous commands by disambiguating challenges
such as under-specified parameters, vague references, and subjective expressions; (ii) Extreme fuzzy
instruction counter-questioning, examining whether the model adopts safe clarification strategies
when confronted with severe ambiguity, specifically its capacity to detect extreme uncertainty and ask
relevant clarifying questions; and (iii) Multi-turn dialogue, assessing the ability to address challenges
like multi-turn dependency and memory, which is crucial for iteratively recovering missing semantics,
maintaining dialogue and parameter coherence, and executing the accumulated commands reliably.
The protocol ClarifyVC-Eval, as illustrated in Figure 2, spans single-turn parsing, clarification under
extreme fuzziness, and multi-turn dialogue grounding, addressing gaps in existing evaluation metrics
and enabling more realistic assessment of safety, robustness, and interactivity in control-oriented
language interfaces

Table 1: The three-tier ClarifyVC-Eval protocol to evaluation metrics. Each tier isolates a distinct
family of failure modes while jointly covering the spectrum of function-call understanding and safe
execution.

Tier Metrics Used Rationale

Tier 1: Single-Round
Instruction Fuzzy Pars-
ing

Intent Recognition Accuracy (IRA), Pa-
rameter Extraction Precision (PEP), Intent
Hit Rate (IHR), Function Hit Rate (FHR)

Captures the model’s ability to resolve under-specified single-turn com-
mands into correct intents and API calls. These metrics reflect semantic
accuracy and parameter precision at the most basic function-call level.

Tier 2: Extreme Fuzzy
Instruction Counter-
Questioning

Fuzzy Detection Rate (FDR), Counter-
Question Coverage (CQC), Protocol Com-
pliance Rate (PCR)

Evaluates whether the model identifies extreme ambiguity and adopts
safe clarification strategies instead of unsafe guesses. Metrics track
conservative behavior, protocol adherence, and safety awareness.

Tier 3: Multi-turn Dia-
logue

Dialogue Consistency (DC), Final Execu-
tion Success Rate (FESR), Parameter Com-
pleteness (F1-score)

Assesses long-horizon interactions where the model must gather missing
semantics over multiple turns, maintain coherence, and ultimately ground
safe executable commands. These metrics measure the culmination of
dialogue fidelity and execution success.

5
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Table 2: Comprehensive quality evaluation of ClarifyVC-Data. Automated metrics (left) benchmarked
against baselines; human validation (right) conducted only for ClarifyVC-Data.

(a) Comparison with baselines using four metrics.

Dataset AD PC R DQS

Talk2Car 0.50 0.85 0.60 0.62
doScenes (Roy et al., 2024) 0.56 0.81 0.64 0.65
CI-AVSR (Dai et al., 2022b) 0.53 0.82 0.61 0.64
DeepSeek Distilled 0.55 0.80 0.65 0.65
GPT-o1 Distilled 0.60 0.82 0.70 0.69
Qwen2.5 Distilled 0.58 0.78 0.68 0.67
LLaMA3 Distilled 0.62 0.80 0.72 0.70

ClarifyVC-Data 0.89 0.95 0.82 0.88

(b) Human validation (ClarifyVC-Data only)

Aspect Score Agreement

Linguistic Realism 4.6 ± 0.2 93%

Ambiguity Plausibility 4.6 ± 0.1 96%

Dialogue Coherence 4.7 ± 0.2 94%

Practical Applicability 4.5 ± 0.3 91%

As summarized in Table 1, ClarifyVC-Eval is structured into three complementary tiers, each probing
a distinct capability of interactive control models. Tier 1 targets the core ability of semantic parsing
under underspecification, using intent- and function-level accuracy metrics (IRA, PEP, IHR, FHR) to
capture fine-grained correctness of disambiguated calls. Tier 2 focuses on safe clarification under
extreme fuzziness, where FDR, CQC, and PCR jointly test whether models recognize ambiguity,
avoid unsafe guesses, and adhere to interaction protocols. Tier 3 addresses long-horizon multi-
turn grounding, evaluated by DC, FESR, and parameter completeness, ensuring that models can
sustain coherent dialogue and achieve reliable execution outcomes. The detailed definitions and
computation formulas of these metrics can be found in Appendix C. Collectively, these metrics
provide comprehensive coverage of the decision points most critical to safe and effective deployment,
extending beyond what single-turn accuracy alone can capture.

Rationale and scope. Our analysis of 20k+ real-world in-vehicle logs shows that failures cluster
into three families: under-specification, insufficient clarification, and long-horizon grounding. These
are precisely captured by ClarifyVC-Eval, which not only measures success rates but also tracks
protocol violations, yielding diagnostics that better reflect operational safety. Importantly, the
same decision points recur across broader HCI and embodied intelligence (e.g., robotics, smart
environments), making the protocol directly transferable beyond the vehicle domain.

4 EXPERIMENTAL

We conduct extensive experiments to address the following research questions: RQ1: What’s the
quality of ClarifyVC-Data evaluated under DQS in Equation 2 and human-grounded validation? RQ2:
How well do existing LLMs handle complex and ambiguous vehicle control instructions? RQ3: Does
fine-tuning on ClarifyVC-Data improve model performance in realistic command understanding?
RQ4: How accurately can LLMs execute structured function calls under protocol constraints? RQ5:
Can open-source models, when properly tuned, match or surpass proprietary models in vehicle
control tasks? The complete experimental setup, including the experimental environment and the
agent-orchestrated pipeline used to generate the evaluation test sets, is provided in Appendix B.

4.1 EVALUATION ON THE DATA QUALITY (RQ1)

As mentioned in Section 3.2, we introduced DQS and human validation to assess the quality of the
dataset. Table 2(a) shows that ClarifyVC-Data exceeds previous datasets and distilled baselines on the
four axes. In order to ensure that the constructed benchmark aligns with real-world distributions and
maintains high-quality standards, we conducted a dedicated human-grounding study on 500 sampled
dialogues, as shown in Table 2(b). Five independent annotators rated each sample on linguistic
realism, plausibility of ambiguity, coherence of dialogue, and practical applicability. The results
confirm high realism (4.6/5), strong plausibility of ambiguity (96% agreement), coherent dialogues
(94%), and strong applicability (91%), verifying that ClarifyVC-Data maintains practical quality
in addition to statistical robustness. Together, these results confirm that ClarifyVC-Data not only
surpasses prior datasets in automated measures(more results can be seen in Appendix A) but also
passes stringent human-grounding validation, ensuring both scalability and real-world applicability.
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Table 3: Multi-run evaluation on ClarifyVC-Data under Zero-shot (ZS), Few-shot (FS), and SFT.
Entries are means over 5 independent runs; per-cell standard deviation is < 1.0 percentage point
(pp) across all columns (Appendix B, B.4). For readability we report means; the “Max σ (pp)” row
summarizes the largest observed standard deviation in each column. All models are evaluated on
a held-out test set of 5k instructions, separately constructed to differ in distribution from the 20k
training corpus, ensuring fair generalization assessment.

Model Single-Round Accuracy Fuzzy Detection Rate Multi-Turn Consistency
ZS FS SFT ZS FS SFT ZS FS SFT

Max σ (pp) ≤0.7 ≤0.8 ≤0.6 ≤0.8 ≤0.8 ≤0.7 ≤0.8 ≤0.7 ≤0.8

Qwen2.5-0.5B 59.2 64.5 75.1 57.0 60.3 73.5 54.8 59.1 72.4
Qwen2.5-1.5B 63.4 67.2 78.9 60.5 64.3 76.4 58.9 63.0 74.1
Qwen2.5-3B 66.9 70.3 81.6 64.0 67.5 79.1 61.4 64.8 77.3
Qwen2.5-7B 74.3 77.1 89.0 72.0 74.8 87.6 70.2 72.5 85.4
Qwen2.5-14B 78.1 79.5 91.3 75.3 76.9 89.2 73.0 74.2 88.0
Qwen2.5-32B 80.8 81.6 93.1 78.2 79.0 91.5 75.5 76.0 89.6
Qwen2.5-72B 82.5 88.4 95.8 81.0 83.2 93.6 79.8 82.9 92.3
LLaMA3-8B 72.0 74.3 87.1 70.0 72.8 85.3 67.3 69.0 83.0
LLaMA3-70B 81.2 80.1 94.1 79.0 77.4 92.5 76.5 75.3 90.8
DeepSeek-R1-Distilled-1.5B 66.0 70.1 83.7 64.3 67.8 81.9 62.0 65.0 80.0
DeepSeek-R1-Distilled-8B 74.5 76.3 88.2 71.8 73.7 86.1 69.4 71.0 83.9
DeepSeek-R1-Distilled-70B 82.4 84.0 94.8 80.1 81.9 93.1 78.0 80.2 91.3

4.2 BENCHMARK TEST ON BASELINE MODELS (RQ2, RQ3)

To rigorously assess the necessity and effectiveness of ClarifyVC-Data, we conduct a two-part
empirical study centered on benchmarking the instruction-following capabilities of LLMs in vehicle
control scenarios. In the first part, we evaluate four representative models, including Qwen2.5-72B,
LLaMA3-70B, Claude 3, and GPT-4, under a zero-shot setting across five benchmark datasets, in-
cluding three open instruction-following datasets (Talk2Car, CI-AVSR, doScenes), one programmatic
function-call dataset (APIGen), and our proposed ClarifyVC-Data. The results in Figure 3 reveal
a consistent performance drop on ClarifyVC-Data, highlighting its higher linguistic complexity,
ambiguity diversity, and multi-turn reasoning demands.

In the second part, to evaluate the effectiveness and generalizability of ClarifyVC-Data, we conduct
systematic experiments across twelve open-source LLMs, including Qwen2.5 (0.5B–72B) (Team,
2024c), LLaMA3 (8B, 70B) (Team, 2024b;a), and DeepSeek-R1 Distilled (1.5B–70B) (DeepSeek-AI,
2025). Each model is evaluated under three settings: Zero-shot (ZS): inference without adaptation;
Few-shot (FS): inference with 4 in-context examples; SFT: supervised fine-tuning on ClarifyVC-
Data. Training details and loss definitions are provided in Appendix B. The results demonstrate that
while pre-trained models exhibit limited capabilities under zero- and few-shot conditions, fine-tuning
on ClarifyVC-Data yields significant gains across all metrics, especially in ambiguity resolution and
multi-turn coherence. Together, these findings underscore the practical difficulty of realistic vehicle
command understanding and establish ClarifyVC-Data as a high-fidelity benchmark for developing
and evaluating robust instruction-following models.

We assess model performance on all three tiers of the benchmark which explained in section 3.2.
As shown in Table 3, several trends emerge: (i) SFT consistently outperforms ZS and FS across
all models; (ii) FS offers marginal gains over ZS, particularly for small-scale models; (iii) In large
models (e.g., Qwen2.5-72B), FS occasionally underperforms ZS, likely due to prompt truncation or
sub-optimal context bias. These findings highlight the limitations of in-context prompting and validate
the effectiveness of ClarifyVC-Data as a fine-tuning benchmark for vehicle command comprehension.

4.3 EVALUATION OF BASIC INSTRUCTION-FOLLOWING CAPABILITIES (RQ4)

To assess the fine-grained function execution ability of LLMs in vehicle control scenarios, we compare
twelve representative systems spanning both open-source (Qwen2.5-7B/14B/32B/72B, LLaMA3-
8B/70B, DeepSeek-R1) and proprietary models (GPT-4 (OpenAI et al., 2024) with function calling,
GPT-4o (OpenAI, 2024a), OpenAI-o1 (OpenAI, 2024b), Doubao (Doubao Team, 2025), Claude
3 (Anthropic, 2024)). All models are evaluated under a unified function-call setting on four key
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Qwen2.5-72B LLaMA3-70B Claude 3 GPT-4

Figure 3: Zero-shot evaluation of four representative LLMs across five benchmarks. We compare
the performance of Qwen2.5-72B, LLaMA3-70B, Claude 3, and GPT-4 on four core metrics across
five datasets: Talk2Car, CI-AVSR, doScenes, APIGen, and ClarifyVC-Data. Results show that while
all models perform well on existing benchmarks, they exhibit a notable drop when evaluated on
ClarifyVC-Data. For instance, GPT-4’s intent accuracy drops from 92.5% on APIGen to 70.5% on
ClarifyVC-Data, and its multi-turn success rate drops from 77.5% to 61.7%. This highlights the
increased difficulty and real-world alignment introduced by our benchmark.

Figure 4: Comparative performance of 13 LLMs on the ClarifyVC-Data across four critical function-
call metrics. All values are reported in percentage (%). Our finetuned model (Qwen2.5-7B-SFT)
achieves state-of-the-art results across all metrics.

metrics: Intent Hit Rate (IHR), which measures whether the correct intent is identified; Function Hit
Rate (FHR), which checks whether the predicted API/function matches the gold standard; Parameter
Completeness (F1-Score), which evaluates the accuracy and coverage of slot/parameter filling;
and Protocol Compliance Rate (PCR), which assesses whether generated function calls adhere to
predefined API schema and safety constraints. Further details of metric definitions and evaluation
procedures are provided in Appendix C.

The evaluation is conducted on a test set of 4,000 control commands, comprising 2,000 curated
samples from the Talk2Car dataset and 2,000 from real-world in-vehicle control logs, covering diverse
command types such as lighting, HVAC, navigation, and media operations. These metrics reflect both
semantic accuracy and system safety compliance, which are critical in production-grade automotive
systems.

As shown in Figure 4, our ClarifyVC-Model (Qwen2.5-7B-SFT, more ablation studies can be seen
in Appendix D), fine-tuned on ClarifyVC-Data, consistently achieves state-of-the-art performance
across all evaluation dimensions. Notably, it surpasses leading closed-source models such as GPT-4o
and Claude 3 in both execution correctness and safety alignment, demonstrating the impact of targeted
domain-specific fine-tuning. This confirms that instruction-tuned LLMs benefit substantially from
high-quality control-oriented supervision when deployed in structured vehicular environments.

4.4 EVALUATION ON ADVANCED SCENARIO (RQ5)

Building upon foundational function-call evaluations, we assess the same 13 prominent large language
models under complex, ambiguous, and multi-turn vehicle control scenarios to test instruction-
following capabilities under realistic conditions.

We utilized three test sets, each with 5,000 examples: (1) single-round fuzzy instruction parsing,
(2) extremely fuzzy instruction counter-questioning(requiring clarification), and (3) multi-round
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Figure 5: Comparison of LLM performance across four realistic vehicle-control scenarios. In every
scenario, the polygon for Qwen2.5-7B-SFT fully encloses the others, demonstrating state-of-the-art
accuracy, coherence, and safety compliance with a much smaller parameter footprint.

dialogues with evolving contexts. Models were evaluated across six metrics: Intent Recognition
Accuracy (IRA), Parameter Extraction Precision (PEP), Fuzzy Detection Rate (FDR), Counter-
Question Coverage (CQC), Dialogue Consistency (DC), and Final Execution Success Rate (FESR).
Detailed descriptions of the test sets and their generation process are provided in Appendix C.

ClarifyVC-Model (Qwen2.5-7B-SFT), consistently outperformed all tested models across all metrics,
achieving state-of-the-art results (see Table 15 in Appendix D). For instance, it attained an FESR
of 92.0%, surpassing the next-best model, Claude 3, by 4.6 points. While proprietary models like
Claude 3 and GPT-4o exhibit strong stability, they lag in critical areas such as fuzzy detection and
multi-turn consistency.

Additionally, we evaluated four specialized scenarios—Safety-critical, Entertainment, Autonomous
Driving, and Comfort—to simulate diverse real-world user intents. The baseline model excelled
across all scenarios, notably achieving a 95.4% accuracy rate in safety-critical tasks, significantly
outperforming competitors.

Figure 5 presents each model’s performance profile across four realistic vehicle-control
scenarios—Safety-critical, Entertainment, Autonomous Driving, and Comfort—using six function-
call metrics. In every scenario, Qwen2.5-7B-SFT (Ours) defines the Pareto frontier: its 95.4% Intent
Recognition Accuracy in Safety-critical tasks outstrips GPT-4 by 7.4 pp; its 99.2% Counter-Question
Coverage in Entertainment exceeds Qwen2.5-72B by 24.2 pp; in Autonomous Driving its 93.0% Dia-
logue Consistency is 5.0 pp higher than the next best model; and its 97.5% Final Execution Success
Rate in Comfort tasks is more than 8 pp above Claude 3. These gains demonstrate that a compact
LLM, when supervised with ClarifyVC-Data, can attain state-of-the-art robustness, coherence, and
safety compliance in diverse, real-world driving interactions.

5 CONCLUSION

This work introduces ClarifyVC, a unified framework that couples a schema-constrained, ambiguity-
rich dataset (ClarifyVC-Data) with a compliance-aware, three-tier evaluation protocol (ClarifyVC-
Eval). By explicitly disentangling under-specification, clarification behavior, and long-horizon
grounding, the protocol surfaces failure modes that single-turn accuracy obscures and yields diagnos-
tics aligned with safety-critical deployment. The data pipeline preserves realism through real-world
seeding and human validation, while enabling scalable synthesis of diverse ambiguity types. Em-
pirically, ClarifyVC provides a principled basis for comparing models and training strategies under
uniform function-call semantics, addressing gaps in multi-turn clarification and protocol compli-
ance measurement. Although our experiments focus on in-cabin voice control, the framework is
domain-agnostic and readily transfers to interactive HCI and embodied settings where safe execution
and interpretable disambiguation are essential. Future work will integrate multimodal signals (e.g.,
vision/context sensors), explore human-in-the-loop learning to refine clarification policies, and re-
lease a public challenge to catalyze community benchmarking. We hope ClarifyVC will serve as a
foundation for rigorous research on ambiguity handling and robust interactive AI.
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Table 4: Comparative analysis of vehicle command benchmarks.

Benchmark Ambiguity Multi- Safety Evaluation Distil-
Handling turn Constr. Protocol lation

Talk2Car (Deruyttere et al., 2019) Basic No Partial Single-
round

No

APIGen (Liu et al., 2024) Synthetic No No Single-
round

Yes

Easy2Hard (Ding et al., 2024) Difficulty lev-
els

No No Single-
round

No

CI-AVSR (Dai et al., 2022a) Moderate Limited No Two-tier No
doScenes (Roy et al., 2024) Visual only No No Single-

round
No

ClarifyVC-Data 9 types Yes Full Three-tier Yes

A DATASETS

This section provides detailed information on the ClarifyVC-Data dataset, which underpins the
evaluations presented in the main text. The dataset is designed to support robust training and testing
of large language models (LLMs) in vehicle control scenarios.

A.1 CLARIFYVC-DATA CONSTRUCTION

The ClarifyVC-Data dataset is constructed through a three-stage pipeline. Seed queries are derived
from real-world user command corpora (collected from in-vehicle infotainment systems of major car
manufacturers during 2022–2024) and synthetic functional specifications covering diverse vehicle
control scenarios. The final dataset comprises 20,000 samples: 6,000 positive chains (unambiguous
instructions), 8,000 negative chains (fuzzy, incomplete, or conflicting instructions), and 6,000 dialogue
sequences (contextual interactions). It is partitioned into training, validation, and test sets at a 7:1:2
ratio to facilitate robust evaluation and training.

A.2 HYBRID BENCHMARK CONSTRUCTION WITH REAL-WORLD GROUNDING

We clarify that our benchmark is not purely simulation-based, but rather a hybrid approach that
integrates extensive real-world grounding with controlled LLM-augmented generation. This de-
sign ensures both scalability and authenticity, addressing concerns about human involvement and
distributional overfitting simultaneously.

Real-World Data Foundation and Human Validation The foundation of our dataset consists of
over 20,000 carefully selected real-world user utterances from an extensive, industrial-scale corpus of
over 4 million authentic vehicle interaction logs (2022–2024). Such large-scale automotive voice
datasets are rarely accessible in academic or industry research, highlighting the benchmark’s unique
value.

After generation, dialogues underwent rigorous real-world validation. Domain experts manually
validated dialogues through practical in-car system simulations, ensuring alignment with actual usage
scenarios and filtering out unnatural artifacts. This human-in-the-loop validation included:

- Manual verification of dialogue coherence and realistic ambiguity representation. - Hands-on testing
in real-car infotainment system simulations. - Retention only of dialogues meeting strict human
validation criteria.

Additionally, we performed a dedicated human-grounding validation test on a sampled subset of
500 generated dialogues. The results (Table 5) demonstrate high scores across linguistic realism,
ambiguity plausibility, dialogue coherence, and practical applicability, confirming the benchmark’s
real-world relevance.
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Table 5: Human grounding test on 500 sampled benchmark dialogues. Mean scores ± standard
deviations reported from five independent annotators.

Evaluation Metric Score (1–5) Agreement Rate
Linguistic Realism 4.6± 0.2 93%
Ambiguity Plausibility 4.6± 0.1 96%
Dialogue Coherence 4.7± 0.2 94%
Practical Applicability 4.5± 0.3 91%

Controlled Generation and Distributional Alignment To prevent feedback loops and overfitting,
we employ a strict separation between generation and evaluation models:

• Generation: DeepSeekR1-based instruction-tuned LLMs.
• Evaluation: GPT-4, Qwen2.5, Claude 3 (architecturally distinct from generation models).

We further ensure realism and consistency through structured prompt engineering at each agent stage:

• SPA prompts enforce inter-entity schemas and intent-slot alignment.
• FIA prompts introduce ambiguity via realistic linguistic perturbations.
• AGA prompts inject adversarial ambiguity under entropy thresholds.
• MEA prompts maintain multi-turn coherence and causal continuity.

To quantitatively assess distributional alignment, we compared synthetic and real dialogues across
multiple in-cabin scenarios. As shown in Table 6, intent coverage and KL-divergence values confirm
close fidelity to real-world usage distributions.

Table 6: Distribution alignment between synthetic and real-world dialogues.

Scenario Intent Coverage (Real) Intent Coverage (Synthetic) KL-Divergence
HVAC Control 93.8% 95.2% 0.06
Infotainment System 89.2% 90.0% 0.05
Navigation Commands 91.5% 90.9% 0.04
Comfort Adjustments 88.7% 89.1% 0.05

This hybrid methodology—combining real-world seeds, human validation, and controlled LLM
generation—ensures that our benchmark is both scalable and faithful to real-world automotive voice
interactions. We will explicitly highlight these aspects in the revised manuscript to reinforce the
benchmark’s credibility and practical relevance.

The design of our ClarifyVC-Eval: objectives, challenges, and metrics The specifics of this
design are summarized in Table 7

B EXPERIMENTAL SETUP

This section details the experimental environment and the agent-orchestrated pipeline used to generate
the evaluation test sets, as referenced in Section 3 of the main text.

B.1 SOFTWARE AND HARDWARE ENVIRONMENT

Experiments were conducted using Python 3.10 on servers equipped with Intel Xeon Platinum 8380
CPUs and NVIDIA A100 GPUs, running a Linux operating system. This configuration ensures
efficient data processing and model training for the agent-orchestrated collaborative generation
framework.

B.2 AGENT-ORCHESTRATED GENERATION PIPELINE

The test sets were generated using an agent-orchestrated pipeline comprising four agents, each
responsible for a specific task in creating complex, ambiguous, and multi-turn commands.
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Table 7: ClarifyVC-Eval: objectives, challenges, and metrics.

Tier Objective Challenges Captured Metrics

Tier 1: Single-Round
Fuzzy Parsing

Parse mildly ambiguous single-
turn commands.

Under-specified parameters,
vague references, subjective
expressions.

IRA: 1
N

∑N
i=1 I(li = l̂i)

PEP: |P̂∩P |
|P̂ |

Tier 2: Extreme Fuzzy
Counter-Questioning

Detect severe ambiguity and ask
clarifying questions.

Extreme uncertainty, vague pro-
nouns, clarification relevance.

FDR: TP
TP+FN

CQC: Human-rated (1–
5)

Tier 3: Dynamic Multi-
Turn Understanding

Retain context and execute accu-
mulated commands.

Multi-turn dependency, memory,
parameter coherence.

DC:
1
T

∑T
t=1 cos(st, st+1)

FESR:
1
N

∑N
i=1 I(Exec(ĉi) =

Exec(ci))

Semantic Parsing Agent (SPA). The SPA parses an input command c into a semantic representation
s = (I, E, P ), where I , E, and P denote intent, entity, and parameters, respectively. The prompt is:

PromptSPA = "Given the command: {c}, extract the
intent, entities, and parameters in the format (I,
E, P)."

The semantic consistency score SC validates the prompt’s effectiveness:

SC =
1

3

∑
i∈{I,E,P}

I(i = i∗) (3)

A prompt is considered valid if SC ≥ 0.9 on a validation set.

Fuzz Injection Agent (FIA). The FIA introduces ambiguity into commands, generating a fuzzed
version c′. The prompt is:

PromptFIA = "Given the command: {c},
introduce ambiguity by {f} with intensity
{ϵ}, where {f} is one of {omit parameter, subjective expression, ...}.”

Ambiguity types are sampled from a categorical distribution, optimized to maximize entropy H(F ) =
−
∑

f∈F ϕf log ϕf for diverse coverage.

Multi-Turn Evolution Agent (MEA). The MEA generates dialogue sequences D =
{(c1, r1), . . . , (cT , rT )}. The prompt is:

PromptMEA = "Given the dialogue history: {(c1, r1),
..., (ct)}, generate the next system response rt and
user command ct+1."

Dialogue coherence is measured by:

DC =
1

T − 1

T−1∑
t=1

cos(ht, ht+1) (4)

A prompt is effective if DC ≥ 0.85.

Adversarial Generation Agent (AGA). The AGA generates adversarial commands cadv using
protocol-constrained seed queries. The prompt is:

PromptAGA = "Given the command: {c}, refer to the
slot information provided in the protocol constraints,
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generalize the seed query, and generate an adversarial
variant by introducing extreme ambiguity while keeping
it plausible."

Adversarial strength AS is measured as the perplexity of cadv, computed using a pretrained GPT-2
model.

The joint probability of generating a complete sample via the full pipeline is expressed as:

P (cadv|c) = P (s|c, PromptSPA) · P (cadv|s, PromptAGA) (5)

P (c′|c) = P (cadv|c) · P (c′|cadv, PromptFIA) (6)

P (D|c) = P (c′|c) · P (D|c′, PromptMEA) (7)

Ptotal(cadv, c
′, D|c) = P (cadv|c) + P (c′|c) + P (D|c) (8)

Pipeline Algorithm. The agents are integrated into a pipeline, as shown in Algorithm 1.

Algorithm 1 Agents Pipeline Algorithm

Require: User Command c
Ensure: Data Pools (Tier-1, Tier-2, Tier-3)

1: procedure PROCESSCOMMAND(c)
2: s← SPA(c) ▷ Semantic Parsing Agent
3: cadv ← AGA(s) ▷ Adversarial Generation Agent
4: DataPoolTier-1 ← DataPoolTier-1 ∪ {cadv}
5: c′ ← FIA(cadv) ▷ Fuzz Injection Agent
6: DataPoolTier-2 ← DataPoolTier-2 ∪ {c′}
7: D ← MEA(c′) ▷ Multi-turn Evolution Agent,
8: D = {⟨c1, r1⟩, . . . , ⟨cn, rn⟩}
9: DataPoolTier-3 ← DataPoolTier-3 ∪D

10: end procedure

Agent-orchestrated Generation Framework Components The generation agents use instruction-
tuned open-source LLMs via prompt orchestration, without fine-tuning, as detailed in Table 8.

Table 8: Agent-orchestrated generation framework components

Agent Implementation Primary Function
SPA,FIA
and MEA

DeepSeek-VL-R1
(API)

Semantic parsing, fuzzing, and
multi-turn evolution

AGA Qwen2.5-72B
(vLLM)

Protocol-constrained adversarial in-
struction generation

These models were chosen based on empirical performance during pilot generation trials across
ambiguity types and domains.

Crucially, our agent-orchestrated framework is model-agnostic: each agent relies on standardized
prompts and schema constraints, enabling drop-in replacement with other models (e.g., GPT-4,
Claude 3, ChatGLM3, LLaMA3) without modifying the overall pipeline logic.

Algorithmic Novelty and Ablation We provide ablation experiments analyzing the importance of
agent ordering in Table 9

Key Observations:

• The default pipeline (SPA→AGA→FIA→MEA) achieves optimal balance among diversity, coher-
ence, and adherence, confirming intentional design.
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Table 9: Ablation study of agent ordering and composition on key performance metrics

Pipeline Variant Ambiguity Diversity (↑) Dialogue Coherence (↑) Protocol Adherence (↑)
SPA→ AGA→ FIA→MEA (default) 0.85 0.88 0.98
SPA→ FIA→ AGA→MEA 0.79 0.82 0.95
AGA→ SPA→ FIA→MEA 0.75 0.78 0.92
SPA→ AGA→MEA (without FIA) 0.68 0.84 0.94
SPA→ FIA→MEA (without AGA) 0.71 0.85 0.95
SPA→MEA (without FIA & AGA) 0.55 0.87 0.96

Figure 6: Performance Comparison of Pipeline Variants

• Switching FIA and AGA reduces diversity, indicating FIA’s fuzz injection effectiveness decreases
without structured adversarial perturbation first.

• Removing either AGA or FIA notably decreases ambiguity diversity, underscoring each agent’s
essential role.

• Omitting both agents severely reduces ambiguity, though coherence remains high, emphasizing the
necessity of the pipeline for balanced ambiguity.

Variability statistics Variability statistics and significance tests are important to demonstrate the
robustness and reproducibility of our benchmark results. To explicitly address this concern, we
conducted additional experiments by performing 5 independent evaluation runs for each primary
model configuration reported in Table ??. We now include detailed mean ± standard deviation values
along with significance testing in Table 10(paired t-tests vs. GPT-4 baseline).

Observations:

• Standard deviations < 1%, confirming stability across independent runs.

• Paired t-tests indicate statistically significant differences, validating discriminative power.
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Table 10: Model Performance Stability and Significance Tests

Model Protocol Adherence (%) IRA (%) Dialogue Coherence (%) p-value (vs GPT-4)
GPT-4 98.2 ± 0.2 94.0 ± 0.3 89.5 ± 0.4 –
Qwen2.5-7B 97.8 ± 0.2 91.2 ± 0.5 86.7 ± 0.5 < 0.01
Claude 3 96.3 ± 0.4 90.8 ± 0.4 86.0 ± 0.6 < 0.01
LLaMA3-8B 95.5 ± 0.3 88.2 ± 0.7 83.4 ± 0.6 < 0.01

Additionally, our Data Generation Phase is deterministic due to structured prompting and controlled
API constraints, making multiple runs unnecessary at this stage.

C EVALUATION PROTOCOLS

This section describes the three-tier evaluation framework used to assess model performance, as
introduced in the main text (Section 4).

Table 11: Definitions of evaluation metrics used in ClarifyVC. All metrics are defined in this work to
capture different aspects of fuzzy command understanding and function-call execution.

Metric Definition and Description

Intent Recognition Accuracy
(IRA)

Measures whether the model correctly identifies the target intent (e.g., HVAC adjustment, navigation
command) from a fuzzy or underspecified natural language instruction. Equivalent to semantic classification
accuracy at the intent level.

Parameter Extraction Preci-
sion (PEP)

Evaluates the correctness of slot or parameter extraction (e.g., temperature value, media type, destination)
given an identified intent. Precision is computed against gold-standard annotations to ensure valid executable
function calls.

Fuzzy Detection Rate (FDR) Captures the proportion of ambiguous or underspecified instructions where the model successfully detects
the presence of fuzziness or uncertainty instead of over-confidently executing an unsafe action. High FDR
reflects safety-aware behavior.

Counter-Question Coverage
(CQC)

Quantifies how often the model responds with clarification questions in cases of ambiguity, rather than
hallucinating parameters or guessing. Coverage is measured as the ratio of appropriate counter-questions to
total ambiguous instructions.

Dialogue Consistency (DC) Assesses the model’s ability to maintain semantic and referential coherence across multiple turns of clarifica-
tion. Consistency is measured by tracking dialogue state alignment and the absence of contradictions.

Final Execution Success Rate
(FESR)

Measures whether the final resolved command (after possible clarifications) leads to a safe and correct
function execution in the system. This combines successful intent detection, parameter extraction, and
ambiguity resolution.

Intent Hit Rate (IHR) Evaluates whether the predicted intent label exactly matches the gold-standard intent. This focuses purely on
intent-level accuracy independent of parameter filling.

Function Hit Rate (FHR) Checks whether the predicted API/function name aligns with the gold-standard function call. This ensures
the correct system API is invoked.

Parameter Completeness (F1-
Score)

Measures both the precision and recall of extracted slots/parameters within the predicted function call. F1
balances coverage of required arguments with correctness of extracted values.

Protocol Compliance Rate
(PCR)

Assesses whether generated function calls comply with predefined API schema and safety constraints (e.g.,
correct slot types, no missing required arguments, no unsafe defaults). High PCR reflects reliability for
deployment.

C.1 TIER 1: SINGLE-ROUND FUZZY PARSING

This tier evaluates the model’s ability to interpret ambiguous single-turn commands with subtle
ambiguities (e.g., “Increase the temperature” without a target value). Metrics include:

• Intent Recognition Accuracy (IRA):

IRA =
1

N

N∑
i=1

I(li = l̂i) (9)

• Parameter Extraction Precision (PEP):

PEP =
|P̂ ∩ P |
|P̂ |

(10)
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C.2 TIER 2: EXTREME FUZZY COUNTER-QUESTIONING

This tier tests the model’s ability to detect and clarify highly ambiguous commands (e.g., “Turn that
switch off”). Metrics include:

• Fuzzy Detection Rate (FDR):

FDR =
TP

TP + FN
(11)

• Counter-Question Coverage (CQC):

CQC =

∑n
i=1 min(mi,Mi)∑n

i=1 Mi
(12)

C.3 TIER 3: DYNAMIC MULTI-TURN COMMAND UNDERSTANDING

This tier evaluates context retention and command execution in multi-turn dialogues. Metrics include:

• Dialogue Consistency (DC):

DC =
1

T

T∑
t=1

cos(st, st+1) (13)

• Final Execution Success Rate (FESR):

FESR =
1

N

N∑
i=1

I(Exec(ĉi) = Exec(ci)) (14)

C.4 SUPPLEMENTARY INSTRUCTION

Sensitivity of realism threshold (inverse perplexity) We performed a sensitivity analysis on
inverse perplexity (IP) realism thresholds across various percentiles in Table 12.

Table 12: Performance metrics under different inverse perplexity thresholds

Threshold (IP) Ambiguity ↑ Protocol ↑ Realism ↑ DQS ↑
5th (strict) 0.83 0.95 0.81 0.860
10th 0.86 0.94 0.81 0.869
20th (used) 0.89 0.95 0.82 0.887
50th (loose) 0.90 0.92 0.75 0.861

• Strict filtering reduces diversity; loose thresholds reduce realism.
• The chosen 20th percentile optimally balances realism, diversity, and adherence.

Rationale for λ1−λ3 = (0.4, 0.3, 0.3) in Eq. (2) The weight combination λ1−λ3 = (0.4, 0.3, 0.3)
used in Eq. (2) was selected based on careful expert consideration of the domain-specific importance
of each evaluation dimension:

• Ambiguity Diversity (AD=0.4): Primary goal to capture diverse ambiguities.
• Protocol Compliance & Realism (PC/R=0.3 each): Essential for validity and authenticity.

Robustness analysis across alternative weights confirms minimal variation in aggregate scores and
stable rankings, reinforcing the chosen default (0.4, 0.3, 0.3) configuration in Table ??.

D SUPPLEMENTARY RESULTS

This section provides additional visualizations to complement the results in the main text (Section 4).
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Figure 7: Performance Metrics under Different IP Thresholds

Figure 8: Bar chart comparing model performance across Intent Hit Rate (IHR), Function Hit Rate
(FHR), Parameter Completeness (F1-Score), and Protocol Compliance Rate (PCR).
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Table 13: Sensitivity of DQS weights. We report Spearman correlation (ρ) between automated DQS
and human validation (500 samples), and the percentage of datasets whose relative rankings remain
unchanged (% rank stability).

(λ1, λ2, λ3) ρ (vs. human) ↑ % Rank stability ↑
(0.40, 0.30, 0.30) (default) 0.95 100%
(0.33, 0.33, 0.34) 0.94 100%
(0.50, 0.25, 0.25) 0.93 100%
(0.30, 0.50, 0.20) 0.91 92%
(0.20, 0.20, 0.60) 0.89 88%

Figure 9: Diagram showing model responses to user queries in various automotive scenarios.

D.1 SUPPLEMENTARY VISUALIZATIONS

Table 14 reports the zero-shot performance (%) of four large language models—Qwen2.5-72B,
LLaMA3-70B, Claude 3, and GPT-4—across five distinct benchmarks. Each benchmark is evaluated
on four core metrics: Intent Accuracy, Function Accuracy, Parameter Coverage, and Multi-Turn
Success. Overall, GPT-4 consistently achieves the highest scores on all datasets, with the most
pronounced advantage observed on the challenging ClarifyVC-Data. The three open-source models
show competitive performance on standard tasks such as Talk2Car and CI-AVSR but exhibit sub-
stantial drops on APIGen and especially ClarifyVC-Data, highlighting the increased complexity and
real-world variability captured by these benchmarks.

The bar chart (Figure 8) highlights the superior performance of the fine-tuned Qwen2.5-7B-SFT model
across basic instruction-following metrics. The response diagram (Figure 9) illustrates model behavior
in automotive scenarios, while the plot chart (Figure 10) provides a comprehensive performance
overview.

Table 15 reports advanced scenario evaluation across complex, ambiguous, and multi-turn vehicle
control tasks. Baseline open-source and proprietary LLMs show moderate performance: smaller
backbones such as Qwen2.5-7B and LLaMA3-8B struggle with fuzzy disambiguation (FDR < 70)
and long-horizon grounding (FESR < 75), while larger backbones (e.g., Qwen2.5-72B, Claude 3)
achieve stronger accuracy yet incur high computational overhead. By contrast, our Qwen2.5-7B-SFT,
fine-tuned on ClarifyVC-Data, consistently outperforms all baselines across six metrics, achieving
92.7 IRA, 90.5 PEP, and 92.0 FESR.
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Table 14: Aggregated Zero-Shot Performance (%) of Four LLMs on Five Benchmarks and Four
Evaluation Metrics

Benchmark Metric Qwen2.5-72B LLaMA3-70B Claude 3 GPT-4

Talk2Car

Intent Accuracy 94.0 95.2 94.5 97.0
Function Accuracy 90.1 91.3 90.7 93.9
Parameter Coverage 86.6 87.9 86.8 90.5
Multi-Turn Success 79.6 81.0 80.3 84.5

CI-AVSR

Intent Accuracy 90.5 92.3 91.0 94.2
Function Accuracy 88.5 89.0 88.8 92.0
Parameter Coverage 84.8 86.0 84.5 88.9
Multi-Turn Success 77.2 78.7 77.4 82.1

doScenes

Intent Accuracy 91.5 90.8 91.7 93.5
Function Accuracy 89.0 87.5 89.4 91.5
Parameter Coverage 85.4 84.7 85.8 88.5
Multi-Turn Success 78.4 76.8 78.8 81.5

APIGen

Intent Accuracy 86.7 88.3 87.4 90.1
Function Accuracy 83.2 83.8 83.9 87.2
Parameter Coverage 80.2 81.0 80.5 84.8
Multi-Turn Success 72.1 73.0 72.6 76.3

ClarifyVC-Data

Intent Accuracy 72.4 74.1 73.5 77.8
Function Accuracy 67.8 68.9 68.3 72.5
Parameter Coverage 63.5 64.7 64.2 69.0
Multi-Turn Success 62.9 63.8 63.4 67.0

Figure 10: Plot chart illustrating the comprehensive performance profile of different models across
key metrics.
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Table 15: Advanced scenario evaluation across complex, ambiguous, and multi-turn vehicle-control
instructions. Means ± std over 5 runs; std <1% for all SFT rows. Closed-source API models are
evaluated once due to usage limits.

Model IRA PEP FDR CQC DC FESR
Qwen2.5-7B 71.5 69.4 68.9 64.7 65.4 70.3
Qwen2.5-14B 74.2 72.5 72.0 67.2 69.8 73.5
Qwen2.5-32B 78.1 75.6 75.2 70.3 73.6 77.4
Qwen2.5-72B 82.9 80.3 79.8 74.2 78.1 81.5
LLaMA3-8B 75.4 73.0 72.8 68.0 70.7 75.1
LLaMA3-70B 83.5 81.2 81.0 75.6 80.5 83.0
DeepSeek-R1 84.3 82.4 82.0 76.8 81.4 84.1
GPT4-function 88.5 86.2 85.7 80.3 85.0 87.8
GPT-4o 86.7 84.3 83.9 78.4 83.0 86.0
OpenAI-o1 86.1 83.5 83.0 77.6 82.2 85.2
Doubao 85.8 83.0 82.5 76.9 81.7 84.8
Claude 3 88.2 85.8 85.3 80.1 84.5 87.4

Qwen2.5-7B-SFT (Ours) 92.7 ±0.5 90.5 ±0.6 90.0 ±0.6 85.5 ±0.6 89.3 ±0.5 92.0 ±0.5
Qwen2.5-14B-SFT 91.8 ±0.4 89.7 ±0.5 88.9 ±0.6 83.8 ±0.6 88.1 ±0.5 90.1 ±0.5
Qwen2.5-32B-SFT 92.1 ±0.5 90.1 ±0.5 89.5 ±0.6 84.2 ±0.6 89.0 ±0.5 90.8 ±0.6
Qwen2.5-72B-SFT 93.0 ±0.5 90.2 ±0.6 89.6 ±0.6 83.9 ±0.6 90.2 ±0.5 91.3 ±0.6

Importantly, although Qwen2.5-72B attains competitive results, the gap between 7B-SFT and 72B
is modest (< 6.6pp across metrics), while the computational savings are substantial: training costs
drop by nearly an order of magnitude and inference latency is reduced ∼10×, making 7B-SFT far
more practical for deployment in resource-constrained, safety-critical environments. These results
demonstrate that targeted exposure to ambiguity-rich yet schema-compliant supervision substantially
improves semantic parsing, safe clarification, and multi-turn grounding, yielding models that are both
accurate and deployment-efficient compared to significantly larger backbones.

LIMITATIONS

While ClarifyVC-Data advances the evaluation of function call understanding in vehicle command
scenarios, several limitations remain:

• Modality Scope. Our benchmark primarily focuses on text-based instruction understanding.
Although future vehicle systems often involve multimodal contexts (e.g., vision, LiDAR,
spatial audio), these are not yet fully integrated into the current benchmark version.

• Domain Generalizability. Although the function-call schema is designed to be extensible,
current task templates are oriented toward the in-cabin control setting. Extending the dataset
to cover broader domains such as driving policy, diagnostics, or V2X communication would
improve general applicability.

• Evaluation Reliance on Static Metrics. Our proposed metrics (e.g., IRA, FDR, CQC)
evaluate alignment and robustness in a static fashion. However, real-time interaction
and downstream driving consequences (e.g., safety violations) are not yet modeled in the
evaluation pipeline.

• Language Biases. As the current benchmark is constructed in English, it may not generalize
across linguistic or cultural variations in vehicle command phrasing. Future work can
consider multilingual and dialectical command variants.

Despite these limitations, we believe ClarifyVC-Data lays a critical foundation for robust benchmark-
ing in vehicle-focused LLM deployments and opens pathways for future expansion in modality, task
complexity, and real-world grounding.
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