
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RETHINKING HEAVY MODELS IN
MULTIVARIATE TIME SERIES ANOMALY DETECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multivariate time series anomaly detection (MTS-AD) is widely used, but real-
world deployments often face tight computational budgets that limit the practical-
ity of deep learning. We revisit whether heavy deep models (high-FLOPs archi-
tectures) are necessary to achieve strong detection performance in such settings.
We conduct a systematic, compute-aware comparison of statistical, classical ma-
chine learning, and deep learning methods across diverse MTS-AD benchmarks,
measuring detection with AUROC (threshold-free, thus application-agnostic) and
cost with FLOPs (a hardware-agnostic proxy enabling fair cross-method com-
parison). We find that traditional approaches often match or surpass deep models,
which appear less frequently among the top performers, and that the effectiveness-
efficiency trade-off commonly favors non-deep alternatives under limited budgets.
These results indicate that deep learning is not uniformly superior for MTS-AD
and that heavy architectures can be counterproductive in resource-constrained de-
ployments. These findings offer practical guidance for practitioners designing
anomaly monitoring systems under compute constraints, highlighting cases where
lightweight models are sufficient and heavy deep models may be worth the cost.

1 INTRODUCTION

Time series anomaly detection is a fundamental task in machine learning with wide-ranging ap-
plications in domains such as industrial control systems, aerospace telemetry, and cyber security
(Kim et al., 2023; Hundman et al., 2018; Landauer et al., 2025). In practice, anomalies are rare
and difficult to label, which makes unsupervised anomaly detection methods trained on normal data
an essential approach. Over the past decade, deep learning methods have gained prominence for
anomaly detection, achieving impressive performance across a variety of benchmark datasets (Za-
manzadeh Darban et al., 2024).

However, real-world deployment environments often impose severe hardware and operational con-
straints. For example, safety-critical systems may need to operate without external connectivity due
to security restrictions, preventing the use of cloud-based solutions (Bhamare et al., 2020). Simi-
larly, embedded monitoring devices may lack GPUs or operate under strict thermal and power lim-
itations, making it impractical to deploy computationally intensive deep learning methods (Shuvo
et al., 2023; Singh & Gill, 2023). In such cases, the assumption that deep learning is the univer-
sally superior solution becomes questionable. While recent research has emphasized novel neural
architectures, comparatively little work has jointly examined both effectiveness and efficiency un-
der constrained computing conditions. Most studies focus on accuracy alone (Jia et al., 2025), with
only a few recent benchmarks considering accuracy together with runtime and memory usage (Qiu
et al., 2025). In addition, several works have highlighted inconsistencies in evaluation protocols and
metrics for time series anomaly detection in industry (Si et al., 2024).

This gap encourages us to consider two central questions: (i) What are the most effective options for
time series anomaly detection under limited computational resources, and are deep learning methods
always the best options? (ii) Does a trade-off between detection performance and computational cost
truly exist in practice? Our own experience in industrial applications, including monitoring of air
defense systems and equipment in manufacturing settings, has made clear the difficulty of balancing
computational demands with detection performance. We believe that many practitioners working in
real-world deployments encounter the same challenge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Summary of resource-constrained environments

Typical Domain Representative Constraint Common Approach Key References

Limited memory

IoT/Wireless Sensor Network nodes;
streaming telemetry in manufactur-
ing and equipment monitoring

devices cannot buffer long histo-
ries; models must adapt with small
working sets under drift

online/streaming learning; feature
selection; memory-efficient sum-
maries/sketches

Bifet & Gavaldà (2007)
Nancy et al. (2020)
Jain et al. (2022)
Chatterjee & Ahmed (2022)
Mfondoum et al. (2024)

GPU unavailable

ICS and OT; manufacturing cells;
safety/certification-constrained envi-
ronments

power/thermal, enclosure, and cer-
tification constraints preclude ac-
celerators; inference must be CPU-
only on-prem

quantization; pruning/compression;
CPU-optimized runtime

Han et al. (2016)
Jacob et al. (2018)
Sipola et al. (2022)
Das & Luo (2023)
Singh & Gill (2023)
Liu et al. (2024a)
Fährmann et al. (2025)

Limited CPU capacity

PLC/RTU-adjacent controllers; fan-
less industrial PCs; battery-powered
sensing

very limited CPU cycles and RAM;
strict cycle-time determinism

quantization; low-FLOPs model de-
sign; online/streaming updates; se-
lective features

Liu et al. (2008)
Goldstein & Dengel (2012)
Singh & Gill (2023)

Restricted communication

air-gapped ICS/OT; secure manufac-
turing cells; remote or intermittently
connected sites

on-prem/offline operation and strin-
gent latency disallow cloud round-
trips; data egress may be restricted

local inference at the edge;
federated/on-site adaptation; mini-
mal upstream telemetry

Belenguer et al. (2022)
Das & Luo (2023)
Dehlaghi-Ghadim et al. (2023)
Stouffer et al. (2023)

In this paper, we therefore address the questions by conducting a systematic comparative study of
unsupervised anomaly detection methods that range from traditional approaches to deep learning
methods. Unlike prior studies that have primarily emphasized accuracy, we introduce an evalu-
ation framework that considers both detection performance and computational cost (Mejri et al.,
2024). This perspective enables a fair comparison across different methodological approaches. Our
evaluation covers diverse real-world datasets drawn from industrial, server, and aerospace domains,
ensuring that our findings generalize across multiple application settings.

2 LITERATURE REVIEW

2.1 RESOURCE CONSTRAINED ENVIRONMENTS

The deployment of models in industrial system is not solely governed by algorithmic accuracy but
is equally constrained by system-level limitations. As summarized in Table 1, the literature consis-
tently highlights four recurring scenarios in resource-constrained environments, which encompass
limited memory, GPU unavailable, limited CPU capacity, and restricted communication. These sce-
narios illustrate the historical progression of research toward resource-aware solutions and motivate
the comparative analysis conducted in this study.

Limited memory Several studies have demonstrated that real-world industrial environments, in-
cluding IoT nodes, wireless sensor networks, and manufacturing telemetry systems, often operate
under severe limitations in storage and energy, making the buffering of long historical windows
infeasible (Jain et al., 2022; Mfondoum et al., 2024; Chatterjee & Ahmed, 2022). In time series
anomaly detection, such constraints require models to process data incrementally while maintaining
only a limited working set. Consequently, prior research has emphasized memory-efficient repre-
sentations, dimensionality reduction through feature selection (Nancy et al., 2020), and online or
adaptive windowing techniques, which dynamically adjust to evolving conditions (Bifet & Gavaldà,
2007).

GPU unavailable In operational technology (OT) and industrial control system (ICS) environ-
ments, the use of GPU accelerators is often infeasible due to strict power, thermal, and certification
constraints (Das & Luo, 2023; Liu et al., 2024a; Singh & Gill, 2023; Sipola et al., 2022). As a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

result, inference is typically performed on CPUs, making model-level optimization essential. In
this context, two advances stand out as particularly effective. Integer-only quantization executes in-
ference entirely with INT8 arithmetic, while deep compression combines pruning and quantization
to reduce both computation and memory requirements. These techniques together enable efficient
CPU-centric optimization (Fährmann et al., 2025; Jacob et al., 2018; Han et al., 2016).

Limited CPU capacity A related constraint emerges when devices rely on modest CPUs, such as
PLC/RTU-adjacent controllers, fanless industrial PCs, or battery-powered IoT nodes. In these set-
tings, the need for cycle time determinism combined with limited computational throughput requires
fundamentally low complexity designs. Traditional detectors such as Isolation Forest or histogram-
based method remain attractive due to their favorable time and memory complexity (Liu et al.,
2008; Goldstein & Dengel, 2012). Recent surveys on Edge AI further emphasize that such CPU-
constrained deployments require models explicitly tailored to minimize FLOPs while preserving
detection capability (Singh & Gill, 2023; Sipola et al., 2022).

Restricted communication In many industrial and critical infrastructure domains, data transfer
to the cloud is either infeasible or prohibited due to latency requirements and strict security policies.
Authoritative guideline from National Institute of Standard and Technology explicitly recommend
isolation of OT networks, reinforcing the necessity of on-device or on-premise models (Stouffer
et al., 2023). Research has therefore explored federated learning approaches to enable collaborative
learning without raw data sharing, particularly in distributed industrial environments, as well as
lightweight edge frameworks (Belenguer et al., 2022; Dehlaghi-Ghadim et al., 2023).

2.2 TIME SERIES ANOMALY DETECTION ALGORITHMS

Early research on time series anomaly detection was largely grounded in basic statistical models,
which assumed stationary distributions and relatively simple dependency structures. Among the
most influential were multivariate monitoring methods such as Hotelling’s T 2 statistic that leveraged
distributional thresholds to detect deviations in industrial manufacturing processes (H.Hotelling,
1947; Ye & Chen, 2001; Zheng et al., 2016). However, their reliance on linearity and stationarity
assumptions rendered them less effective when confronted with the high-dimensional, noisy, and
non-stationary signals that characterize modern industrial systems.

The subsequent wave of research introduced non-parametric machine learning approaches that re-
laxed restrictive distributional assumptions. Distance and density-based detectors identified anoma-
lies as local deviations within the data manifold (Angiulli & Pizzuti, 2002; Breunig et al., 2000),
while clustering-based techniques grouped time series patterns to distinguish normal from abnormal
behavior (He et al., 2003). Ensemble-based strategies, such as Isolation Forest, improved robustness
and scalability through randomized partitioning and aggregation (Liu et al., 2008).

Driven by advances in representation learning, the field has recently shifted toward deep learning
approaches that explicitly model sequential dependencies and nonlinear structures. Early works
employed recurrent neural networks and detected anomalies by reconstructing temporal sequences
(Malhotra et al., 2016; Park et al., 2018). This paradigm was later extended by probabilistic gen-
erative models, adversarially trained architectures, and attention-based models (Su et al., 2019; Li
et al., 2019; Geiger et al., 2020; Zhou et al., 2019; Akcay et al., 2019; Tuli et al., 2022). Collectively,
these approaches represent a clear trajectory toward increasingly complex and expressive models,
often achieving state-of-the-art accuracy across widely used benchmarks. Nevertheless, their heavy
reliance on GPU accelerators and large memory footprints has raised practical concerns regarding
deployment in resource-constrained industrial environments.

To contextualize the performance of these approaches, several benchmark studies have systemat-
ically compared classical and deep learning methods (Han et al., 2022; Paparrizos et al., 2022; Si
et al., 2024). However, most prior studies emphasize accuracy while giving limited attention to com-
putational cost. In this work, we provide a more balanced evaluation by jointly examining detection
performance and computational cost across both traditional and deep learning models. Further dis-
cussion of the scope and limitations for existing benchmarks is presented in the Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 EXPERIMENTAL DESIGN

3.1 PROBLEM DEFINITION

3.1.1 UNSUPERVISED ANOMALY DETECTION IN TIME SERIES

Unsupervised anomaly detection in multivariate time series is the task of identifying abnormal be-
haviors without access to anomaly labels during training (Pang et al., 2021). This setting is common
in practice because anomalies are rare, labeling is costly (Blázquez-Garcı́a et al., 2021).

A multivariate time series is defined as x ∈ RN×D and can be expressed as

X = {xt ∈ RD | t = 1, . . . , N} (1)

where N denotes the sequence length and xt is the D-dimensional observation at time t. Based on
the learned representation of normal behaviors, the model provides a decision function that assigns
each observation an anomaly score

st = F (xt), {st}Nt=1 ∈ RN (2)

where observations with higher scores are regarded as anomalies, typically determined by calibrating
a threshold from training scores (Su et al., 2019; Audibert et al., 2020; Xu et al., 2022).

The unsupervised formulation is particularly important in real-world applications, since annotated
anomalies are typically unavailable, occur infrequently, or vary significantly across domains (Salehi
& Rashidi, 2018). By modeling normality directly from unlabeled data, unsupervised approaches
provide a practical and general framework for anomaly detection in time series.

3.1.2 RESEARCH QUESTIONS

Building on the above definition, we aim to investigate how unsupervised anomaly detection in mul-
tivariate time series can be evaluated not only in terms of effectiveness but also efficiency under
realistic deployment settings. While prior work has primarily emphasized improving detection ac-
curacy, comparatively less attention has been paid to the computational and operational feasibility
of different methods. To address this gap, we define the following research questions:

(i) What are the most effective options for time series anomaly detection under limited com-
putational resources, and are deep learning methods always the best options? This question
is motivated by the observation that many deployment environments face practical constraints, in-
cluding restricted computational capacity, memory, or energy availability. Although deep learn-
ing methods have shown strong benchmark performance, their dependence on substantial resources
raises doubts about their universal applicability. It is therefore important to examine whether tradi-
tional statistical or machine learning methods may provide more practical alternatives under such
constrained conditions.

(ii) Does a trade-off between detection performance and computational cost truly exist in prac-
tice? Deep learning models are generally associated with higher computational cost due to their
larger architectures and resource requirements. The literature also shows that traditional statistical
and machine learning methods can remain competitive in certain scenarios. This raises the question
of whether such cost is justified by consistently superior detection performance. This question there-
fore seeks to clarify whether higher computational cost truly translates into superior performance,
or whether certain approaches can offer a more balanced relationship that challenges the prevailing
view.

3.2 EVALUATION PROTOCOL

3.2.1 CHOICE OF METHODS AND DATASETS

Algorithms We survey the historical development of unsupervised time series anomaly detec-
tion and curate a representative set of models for evaluation. The selection of models follow three
principles. First, to ensure chronological coverage, we consider landmark contributions from the
early multivariate statistical monitoring methods through contemporary deep learning methods, so
that each major period is represented. Second, to reflect differences in operating mechanisms, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

partition the candidate methods into three families, namely statistical, one-class classification, and
reconstruction-based, and we select representative exemplars from each family. Third, we focus on
models that are well-established in the field and have been widely adopted in prior studies. Detailed
descriptions of the included methods are provided in the Appendix B.1.

Datasets To support reproducible and deployment relevant evaluation, we prioritize datasets that
capture real operational complexity and are widely used in the literature. We also focus on datasets
from machinery and electronic system contexts where anomaly detection techniques are routinely
deployed. Accordingly, we include SMD (Su et al., 2019) and PSM (Abdulaal et al., 2021) from
server environments, SMAP and MSL from NASA engineering telemetry (Hundman et al., 2018),
and SWaT (Mathur & Tippenhauer, 2016) and WADI (Ahmed et al., 2017) from industrial water
treatment and distribution testbeds. Each dataset is multivariate and displays cross-channel depen-
dencies and non-stationary dynamics, with rare anomalies as in real-world environments. Detailed
descriptions of the included datasets are provided in the Appendix B.2.

3.2.2 METRICS

Detection Performance We compare detection performance across models using a threshold-
agnostic metric, the Area Under the Receiver Operating Characteristic Curve (AUROC), to ensure
fairness. Although certain methods are often paired with post hoc thresholding procedures such as
Peaks Over Threshold, we do not apply such schemes to evaluate the intrinsic ranking quality of
each model. To ensure a uniform basis of comparison, each implementation outputs a real-valued
anomaly score at every time step, aligned with the original sequence length. AUROC is therefore
computed at the same temporal resolution for all methods.

Computational Cost To enable a fair comparison of computational demands across both tradi-
tional algorithms and deep learning models, we adopt floating-point operations (FLOPs) as a uni-
fying metric. FLOPs are model-agnostic and can be meaningfully related to hardware capabilities,
making them particularly suitable for analyzing hardware-constrained scenarios. Unlike elapsed real
time, FLOPs isolate algorithmic complexity from hardware variability. However, estimating FLOPs
is nontrivial because the operations that dominate computational cost differ substantially across
models and are highly sensitive to hyperparameter settings (e.g. tree depth in ensemble methods,
number of neighbors in k-NN, or hidden dimension in neural networks). Consequently, prior work
has rarely reported FLOPs for traditional machine learning methods, focusing only on deep learning
models. We therefore derive closed-form or tight counting formulas for each traditional method and
instantiate them with the exact hyperparameters used in our experiments. For deep learning models,
we employed the PyTorch-based package calflops, which provides automatic FLOPs accounting
given model architectures and input shapes (Ye, 2023).

In conducting FLOPs estimation, we adhere to the following principles:

• Dataset specificity FLOPs are computed separately for each dataset, as input dimensionality,
sequence length, and sample size directly affect operation counts.

• Training vs. inference We compute FLOPs for both training and inference phases, reflecting
their distinct computational characteristics.

• Epoch sensitivity in deep learning models Because training until convergence is ambiguous
and dependent on hyperparameter optimization, we report FLOPs for a single epoch of training
and the epoch at which the best AUROC is achieved during hyperparameter search.

• Fair treatment of comparison operations While FLOPs conventionally account only for
addition and multiplication, algorithms such as k-NN and distance-based methods (ABOD,
LOF) are dominated by comparison operations. Excluding these will unfairly understate their
complexity, therefore, we count each comparison as a single FLOP.

• Data-dependent structures For models where computational complexity depends on data dis-
tribution such as clustering-based models, FLOPs are computed from the fitted model structure
on the actual data rather than theoretical worst-case bounds.

• Approximation for non-primitive operations For procedures such as sorting, where exact
FLOPs are impractical to enumerate, we adopt widely accepted complexity-based approxima-
tions (e.g. O(n log n), where n is the number of instances).

We summarize the final FLOPs formulations of the chosen methods in Table 2 and present their
detailed derivations in Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Operation counts (FLOPs) for each method. We count additions, multiplications, and com-
parisons equally as 1 FLOP. The notation ntr, ninf , and d denote the number of training instances,
the number of test instances, and the input dimension, respectively. Model-specific notations are
explained in the Notation column.

Model Type FLOPs Notation

Hotelling
Train 2ntrd

2 + 2ntrd+ d3

Inference ninf(2d
2 + 2d− 1)

PCA
Train 2ntrd

2 + 2ntrd+ 3d2
• p: # of PCA components

Inference ninf(4pd− p+ 2d− 1)

ABOD

Train

1.5ntr(ntr − 1)d

• k: # of neighbors

+ntr(ntr − 1) log2(ntr − 1)

+ntrk(k − 1)(d+ 2) + ntr

Inference

1.5ninf(ninf − 1)d

+ninf(ninf − 1) log2(ninf − 1)

+ninfk(k − 1)(d+ 2) + ninf

LOF

Train

1.5ntr(ntr − 1)d

• k: # of neighbors

+ntr(ntr − 1) log2(ntr − 1)

+ntrk + ntr(k + 1) + 2ntrk

Inference

1.5ninf(ninf − 1)d

+ninf(ninf − 1) log2(ninf − 1)

+ninfk + ninf(k + 1) + 2ninfk

CBLOF
Train

Inference

ntrI(3Cd+ d− 1) + 3d((ntr − |LC|)L+ |LC|)

ninfI(3Cd+ d− 1) + 3d((ninf − |LC|)L+ |LC|)

• I: max iterations for clustering
• C: # of clusters
• L: # of large clusters
• |LC|: # of instances in large clusters

HBOS
Train 2ntrd+ 5bd

• b: # of bins
Inference 3ninfd+ 2bd

LODA
Train ntrc(2

√
d+ log2 b− 1) • b: # of bins

• c: # of random cutsInference ninf(2c
√
d+ c log2 b+ 1)

Isolation Forest
Train T (2s log2 s)

• T : # of estimators
• s: max samples per estimator
• γ: Euler–Mascheroni const.Inference ninf(T (2 log s− 2 + γ)− 2(1− 1/s) + (T + 2))

HS-Tree
Train T (ψ(h+ 1) + 5(2h+1 − 1)) • T : # of estimators

• h: max depth of tree
• ψ: reference window sizeInference ninfT (5h+ 7)

4 RESULTS AND ANALYSES

In this section we present three experiments to examine performance versus efficiency, estimated
time comparison under hardware-constrained settings, and model scalability. The first experiment
evaluates the trade-off between detection accuracy, measured by AUROC, and the computational
cost quantified by training and inference FLOPs. For traditional models, training and inference
FLOPs are given in Table 2. For deep learning models, we report training FLOPs per epoch, and
full-training FLOPs correspond to the sum overall epochs. In subsequent analyses, we use full-
training FLOPs for deep learning models. The second experiment leverages the fact that, compared
to other efficiency metrics, FLOPs have the key advantage of being directly comparable to hardware
performance, typically expressed as floating-point operations per second (FLOPS), where FLOPs
denote algorithmic operation counts and FLOPS denote hardware throughput. Dividing algorithmic
FLOPs by the FLOPS of a target hardware allows us to approximate training and inference time
under GPU-free, hardware-constrained deployments. The third experiment examines scalability by

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Top five models for each dataset with AUROC and gigaFLOPs (GFLOPs). AUROC scores
are reported as the mean over five runs with different random seeds.

Dataset Model Type
GFLOPs ↓

AUROC ↑
Train Inference Full-training

PSM

Hotelling Statistical 0.17 0.11 − 0.77± 0.00

LSTM-AE Reconstruction 2.45 0.55 244.67 0.76± 0.01

ABOD Statistical 926.33 421.87 − 0.75± 0.00

LOF One-class 917.76 416.07 − 0.73± 0.00

HBOS Statistical 0.01 0.01 − 0.73± 0.00

MSL

CBLOF One-class 0.89 2.60 − 0.65± 0.01

HS-Tree One-class < 0.01 0.08 − 0.64± 0.03

ABOD Statistical 334.71 536.74 − 0.63± 0.00

HBOS Statistical 0.01 0.01 − 0.62± 0.00

Isolation Forest One-class < 0.01 0.14 − 0.62± 0.01

SMAP

Isolation Forest One-class < 0.01 0.48 − 0.64± 0.01

ABOD Statistical 998.15 10281.98 − 0.64± 0.00

LOF One-class 996.76 10277.64 − 0.62± 0.00

CBLOF One-class 2.48 10.76 − 0.62± 0.01

HBOS Statistical 0.01 0.03 − 0.61± 0.00

SMD

LSTM-AE Reconstruction 16.54 5.51 1653.89 0.77± 0.01

Hotelling Statistical 2.10 2.10 − 0.73± 0.00

CBLOF One-class 36.30 34.65 − 0.72± 0.01

ABOD Statistical 38426.94 38428.58 − 0.71± 0.00

OmniAnomaly Reconstruction 39.62 13.21 792.44 0.69± 0.02

SWaT

HBOS Statistical 0.05 0.07 − 0.85± 0.00

Isolation Forest One-class < 0.01 0.36 − 0.83± 0.00

OmniAnomaly Reconstruction 5.13 1.55 102.60 0.83± 0.00

LODA Statistical 1.39 1.39 − 0.82± 0.02

PCA Reconstruction 2.64 2.42 − 0.82± 0.00

WADI

HBOS Statistical 0.19 0.06 − 0.74± 0.00

Isolation Forest One-class < 0.01 0.33 − 0.74± 0.02

LODA Statistical 1.46 0.34 − 0.72± 0.04

HS-Tree One-class < 0.01 0.20 − 0.63± 0.05

OmniAnomaly Reconstruction 71.70 5.26 1433.97 0.58± 0.00

varying the amount of data and observing how computational cost changes with dataset size. Model
hyperparameters are chosen as those yielding the highest AUROC within the defined search space,
with the detailed specification of the search space given in Appendix D.

4.1 PERFORMANCE VS. EFFICIENCY

Table 3 summarizes the main results, showing that the highest AUROC values are largely achieved
by traditional models. Deep learning methods do not consistently surpass these baselines, and the
performance gap is generally small. Notably, deep learning models appear only a few times among
the top five performers overall, indicating that they are not dominant in terms of detection accu-
racy. Figure 1 further illustrates this trend by plotting AUROC against the total FLOPs, obtained
by summing training and inference FLOPs, where the top five models from Table 3 are highlighted
in orange. The highlighted points show that most of the best performing methods are traditional
approaches, which achieve competitive or superior AUROC with substantially lower FLOPs, while
deep learning models are generally concentrated on the higher cost side without clear performance
gains. This consistent pattern across datasets underscores that the balance between effectiveness and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD CBLOF

DAGMM

DeepSVDD

HBOS

HS-Tree

Hotelling

IForest
LODA

LOF

LUAD

OmniAnomaly

PCA

USAD

LSTM-AE

LSTM-VAE

(a) PSM

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD

CBLOF

DAGMM

DeepSVDD

HBOS
HS-Tree

Hotelling
IForest

LODA

LOF

LUAD

OmniAnomaly

PCA

USAD

LSTM-AE

LSTM-VAE

(b) MSL

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD CBLOF

DAGMM

DeepSVDD HBOS

HS-Tree

Hotelling

IForest

LODA

LOF

LUAD
OmniAnomaly PCA

USAD

LSTM-AE

LSTM-VAE

(c) SMAP

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD

CBLOF

DAGMM
DeepSVDD

HBOS

HS-Tree

Hotelling

IForest

LODA

LOF

LUAD
OmniAnomaly

PCA

USAD

LSTM-AE

LSTM-VAE

(d) SMD

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD

CBLOF

DAGMM

DeepSVDD
HBOS

HS-Tree

Hotelling

IForest

LODA
LOF

LUAD

OmniAnomaly

PCA

USAD

LSTM-AE
LSTM-VAE

(e) SWaT

10710810910101011101210131014

Total FLOPs
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Statistical
One-class
Reconstruction

ABOD
CBLOF

DAGMM
DeepSVDD

HBOS

HS-TreeHotelling

IForestLODA

LOF LUAD

OmniAnomaly

PCA
USAD

LSTM-AELSTM-VAE

(f) WADI

Figure 1: AUROC vs. Total FLOPs (sum of training and inference FLOPs) for each dataset. Orange
markers denote the top five models in terms of AUROC.

efficiency often favors traditional models. Entire results for all models and datasets are provided in
Appendix E.1.

4.2 COMPARISON OF ESTIMATED TIME

15000

30000

45000
Highly Resourced Mobile Edge

1500

3000

4500

150

300

450

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

4

8

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

500

1500

2500
Highly Resourced Mobile Edge

100

200

300

5

10

15

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

1

2

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 2: Estimated execution time of anomaly detection models under three hardware scenarios
(Highly Resourced, Mobile, and Edge). Models are ordered in ascending runtime according to the
Highly Resourced scenario, with deep learning models highlighted by gray shading. The results are
averaged across datasets.

Estimate of the minimal execution time can be calculated as FLOPS/FLOPs. To capture variability
across deployment conditions, we assume three hardware scenarios: a highly resourced environ-
ment represented by our experimental setup (Intel(R) Core(TM) i9-14900K CPU, NVIDIA GeForce
RTX 5070 Ti GPU), a mobile environment corresponding to Samsung Galaxy A32 (Cortex-A75 &
Cortex-A55 CPU, Arm Mali-G52 MC2 GPU), and a resource-constrained edge environment repre-
sented by Raspberry Pi 3B+ (Asutkar et al., 2023; Trilles et al., 2024). The FLOPS of each device

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

are computed using only the number of cores C and clock frequency f , as formalized in Equation 3.

FLOPSpeak
CPU =

∑
t∈{Performance,Efficient}

Ct × ft, FLOPSpeak
GPU = C × f (3)

A practically significant observation emerging from Figure 2 is that deep learning models are fea-
sible only in highly resourced environments, where the abundance of GPU cores substantially mit-
igates their computational burden. In sharp contrast, under mobile or edge scenarios these mod-
els incur prohibitively high costs, making their deployment virtually infeasible. By comparison,
tree-based algorithms such as Isolation Forest and HS-Tree, along with histogram-based algorithms
such as HBOS and LODA consistently maintain extremely low computational overhead during both
training and inference across all hardware settings. Finally, approaches that rely on k-NN, includ-
ing ABOD and LOF, exhibit comparatively elevated costs, underscoring their limited practicality in
data-abundant contexts. Results for individual datasets are provided in Appendix E.2.

4.3 MODEL SCALABILITY

20000 40000 60000 80000 100000 120000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000

GF
LO

Ps

Train FLOPs SMAP (dim=25)

20000 40000 60000 80000 100000 120000
Data size (instances)

Inference FLOPs SMAP (dim=25)

HBOS
HS-Tree

Hotelling
IForest

LOF
LUAD

OmniAnomaly
LSTM-AE

Figure 3: Training (left) and inference (right) FLOPs of eight representative models evaluated on
the SMAP dataset. Both y-axes are presented on a logarithmic scale.

As illustrated in Figure 3, tree-based methods such as Isolation Forest and HS-Tree demonstrate
high scalability, with computational requirements scaling sublinearly with respect to n, thereby
making them well-suited for large-scale deployment. In contrast, methods using k-NN such as
ABOD and LOF, exhibit a steep rise in both training and inference FLOPs, reflecting their quadratic
dependence on n and highlighting their limited practicality for large datasets. Deep learning models
exhibit a consistently linear increase in FLOPs with data size. Although they scale more favorably
than k-NN approaches, their computational cost still poses a substantial burden as n becomes large.
This divergence underscores the importance of considering algorithmic scalability when selecting
anomaly detection models for real-world applications where data volumes can be substantial. Entire
results for all models and datasets are provided in Appendix E.3.

5 CONCLUSION

This work presented a systematic comparison of traditional and deep learning methods for unsuper-
vised time series anomaly detection under hardware-constrained settings. By jointly evaluating AU-
ROC and FLOPs, we explored two central questions concerning the effectiveness of models under
limited resources and whether and how performance differences arise between traditional and deep
learning methods. Our results showed that traditional models often rank among the top performers,
deep learning models do not consistently surpass them, and the balance between effectiveness and
efficiency favors traditional approaches. Estimated time analysis further revealed that while deep
learning models are feasible only in highly resourced environments, traditional models remain prac-
tical under resource-constrained settings while offering comparable detection performance. Overall,
these findings challenge the view that deep learning is always the superior choice and emphasize the
continued viability of traditional methods for real-world deployment. In doing so, we aim for this
work to inspire new avenues of research while also providing practitioners with a useful point of
reference when building anomaly detection systems under real-world constraints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have undertaken several efforts to ensure the reproducibility of our work. FLOPs derivations for
all algorithms are provided in Appendix C, and the definition of hyperparameter search spaces is
given in Appendix D. Extensive experimental results across datasets are presented in Appendix E.
The supplementary material contains our full experimental pipeline, including model implementa-
tions, configuration files, and data preprocessing scripts, thereby facilitating independent reproduc-
tion of our findings.

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, KDD ’21, pp. 2485–2494, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383325. doi: 10.
1145/3447548.3467174.

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P. Mathur. Wadi: a water distri-
bution testbed for research in the design of secure cyber physical systems. In Proceedings of
the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks, CySWA-
TER ’17, pp. 25–28, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450349758. doi: 10.1145/3055366.3055375.

Samet Akcay, Amir Atapour-Abarghouei, and Toby P. Breckon. Ganomaly: Semi-supervised
anomaly detection via adversarial training. In C. V. Jawahar, Hongdong Li, Greg Mori, and
Konrad Schindler (eds.), Computer Vision – ACCV 2018, pp. 622–637. Springer International
Publishing, 2019. ISBN 978-3-030-20893-6.

Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional spaces. In Tapio
Elomaa, Heikki Mannila, and Hannu Toivonen (eds.), Principles of Data Mining and Knowledge
Discovery, pp. 15–27, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-
45681-0.

Supriya Asutkar, Chaitravi Chalke, Kajal Shivgan, and Siddharth Tallur. Tinyml-enabled edge
implementation of transfer learning framework for domain generalization in machine fault di-
agnosis. Expert Systems with Applications, 213:119016, 2023. ISSN 0957-4174. doi: https:
//doi.org/10.1016/j.eswa.2022.119016.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga.
Usad: Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20,
pp. 3395–3404, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450379984. doi: 10.1145/3394486.3403392.

Aitor Belenguer, Javier Navaridas, and Jose A. Pascual. A review of federated learning in intrusion
detection systems for iot, 2022.

Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan, and Nader Meskin. Cyber-
security for industrial control systems: A survey. Computers & Security, 89:101677, 2020. ISSN
0167-4048. doi: https://doi.org/10.1016/j.cose.2019.101677.

Albert Bifet and Ricard Gavaldà. Learning from time-changing data with adaptive windowing. In
Proceedings of the 2007 SIAM International Conference on Data Mining (SDM), pp. 443–448,
2007. doi: 10.1137/1.9781611972771.42.

Ane Blázquez-Garcı́a, Angel Conde, Usue Mori, and Jose A. Lozano. A review on outlier/anomaly
detection in time series data. ACM Comput. Surv., 54(3), April 2021. ISSN 0360-0300. doi:
10.1145/3444690.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’00, pp. 93–104, New York, NY, USA, 2000. Association for
Computing Machinery. ISBN 1581132174. doi: 10.1145/342009.335388.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ayan Chatterjee and Bestoun S. Ahmed. Iot anomaly detection methods and applications: A survey.
Internet of Things, 19:100568, 2022. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.2022.
100568.

Ronit Das and Tie Luo. Lightesd: Fully-automated and lightweight anomaly detection framework
for edge computing. In 2023 IEEE International Conference on Edge Computing and Communi-
cations (EDGE), pp. 150–158, 2023. doi: 10.1109/EDGE60047.2023.00032.

Alireza Dehlaghi-Ghadim, Tijana Markovic, Miguel Leon, David Söderman, and Per Erik Strand-
berg. Federated learning for network anomaly detection in a distributed industrial environment.
In 2023 International Conference on Machine Learning and Applications (ICMLA), pp. 218–225,
2023. doi: 10.1109/ICMLA58977.2023.00038.

Daniel Dobos, Tien Thanh Nguyen, Truong Dang, Allan Wilson, Helen Corbett, John McCall,
and Phil Stockton. A comparative study of anomaly detection methods for gross error detec-
tion problems. Computers & Chemical Engineering, 175:108263, 2023. ISSN 0098-1354. doi:
https://doi.org/10.1016/j.compchemeng.2023.108263.

Jin Fan, Zhentao Liu, Huifeng Wu, Jia Wu, Zhanyu Si, Peng Hao, and Tom H. Luan. Luad: A
lightweight unsupervised anomaly detection scheme for multivariate time series data. Neurocom-
puting, 557:126644, 2023. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.126644.

Daniel Fährmann, Malte Ihlefeld, Arjan Kuijper, and Naser Damer. Resource-efficient anomaly
detection in industrial control systems with quantized recurrent variational autoencoder. IET
Collaborative Intelligent Manufacturing, 7(1):e70032, 2025. doi: https://doi.org/10.1049/cim2.
70032.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan Veera-
machaneni. Tadgan: Time series anomaly detection using generative adversarial networks.
In 2020 IEEE International Conference on Big Data (Big Data), pp. 33–43, 2020. doi:
10.1109/BigData50022.2020.9378139.

Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): A fast unsupervised
anomaly detection algorithm. KI-2012: poster and demo track 9, 2012.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly
detection benchmark. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 32142–32159. Curran
Associates, Inc., 2022.

Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers. Pattern
Recognition Letters, 24(9):1641–1650, 2003. ISSN 0167-8655. doi: https://doi.org/10.1016/
S0167-8655(03)00003-5.

H.Hotelling. Multivariate quality control illustrated by air testing of sample bombsights. Techniques
of statistical analysis, pp. 111, 1947.

Thi Kieu Khanh Ho and Narges Armanfard. Contaminated multivariate time-series anomaly detec-
tion with spatio-temporal graph conditional diffusion models. In The 41st Conference on Uncer-
tainty in Artificial Intelligence, 2025.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom.
Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD ’18, pp. 387–395, New York, NY, USA, 2018. Association for Computing Machin-
ery. ISBN 9781450355520. doi: 10.1145/3219819.3219845.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Prarthi Jain, Seemandhar Jain, Osmar R. Zaı̈ane, and Abhishek Srivastava. Anomaly detection in
resource constrained environments with streaming data. IEEE Transactions on Emerging Topics
in Computational Intelligence, 6(3):649–659, 2022. doi: 10.1109/TETCI.2021.3070660.

Xudong Jia, Peng Xun, Wei Peng, Baokang Zhao, Haojie Li, and Chiran Shen. Deep anomaly
detection for time series: A survey. Computer Science Review, 58:100787, 2025. ISSN 1574-
0137. doi: https://doi.org/10.1016/j.cosrev.2025.100787.

Bedeuro Kim, Mohsen Ali Alawami, Eunsoo Kim, Sanghak Oh, Jeongyong Park, and Hyoungshick
Kim. A comparative study of time series anomaly detection models for industrial control systems.
Sensors, 23(3), 2023. ISSN 1424-8220. doi: 10.3390/s23031310.

Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based outlier detection in high-
dimensional data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’08, pp. 444–452, New York, NY, USA, 2008. Associa-
tion for Computing Machinery. ISBN 9781605581934. doi: 10.1145/1401890.1401946.

Max Landauer, Florian Skopik, Branka Stojanović, Andreas Flatscher, and Torsten Ullrich. A review
of time-series analysis for cyber security analytics: from intrusion detection to attack prediction.
International Journal of Information Security, 24(1):3, 2025.

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Mul-
tivariate anomaly detection for time series data with generative adversarial networks. In Igor V.
Tetko, Věra Kůrková, Pavel Karpov, and Fabian Theis (eds.), Artificial Neural Networks and
Machine Learning – ICANN 2019: Text and Time Series, pp. 703–716, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-30490-4.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422, 2008. doi: 10.1109/ICDM.2008.17.

Hou-I Liu, Marco Galindo, Hongxia Xie, Lai-Kuan Wong, Hong-Han Shuai, Yung-Hui Li, and
Wen-Huang Cheng. Lightweight deep learning for resource-constrained environments: A survey.
ACM Comput. Surv., 56(10), June 2024a. ISSN 0360-0300. doi: 10.1145/3657282.

Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly
detection benchmark. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp.
108231–108261. Curran Associates, Inc., 2024.

Zhe Liu, Xiang Huang, Jingyun Zhang, Zhifeng Hao, Li Sun, and Hao Peng. Multivariate time-
series anomaly detection based on enhancing graph attention networks with topological analysis.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge Man-
agement, CIKM ’24, pp. 1555–1564, New York, NY, USA, 2024b. Association for Computing
Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679614.

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, and
Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection. CoRR,
abs/1607.00148, 2016.

Aditya P. Mathur and Nils Ole Tippenhauer. Swat: a water treatment testbed for research and
training on ics security. In 2016 International Workshop on Cyber-physical Systems for Smart
Water Networks (CySWater), pp. 31–36, 2016. doi: 10.1109/CySWater.2016.7469060.

Nesryne Mejri, Laura Lopez-Fuentes, Kankana Roy, Pavel Chernakov, Enjie Ghorbel, and Djamila
Aouada. Unsupervised anomaly detection in time-series: An extensive evaluation and analysis of
state-of-the-art methods. Expert Systems with Applications, 256:124922, 2024. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2024.124922.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Roland N. Mfondoum, Antoni Ivanov, Pavlina Koleva, Vladimir Poulkov, and Agata Manolova.
Outlier detection in streaming data for telecommunications and industrial applications: A survey.
Electronics, 13(16), 2024. ISSN 2079-9292. doi: 10.3390/electronics13163339.

Periasamy Nancy, S. Muthurajkumar, S. Ganapathy, S.V.N. Santhosh Kumar, M. Selvi, and Kannan
Arputharaj. Intrusion detection using dynamic feature selection and fuzzy temporal decision
tree classification for wireless sensor networks. IET Communications, 14:888–895, 2020. doi:
10.1049/iet-com.2019.0172.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM Comput. Surv., 54(2), March 2021. ISSN 0360-0300. doi:
10.1145/3439950.

John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin.
Tsb-uad: an end-to-end benchmark suite for univariate time-series anomaly detection. Proc.
VLDB Endow., 15(8):1697–1711, April 2022. ISSN 2150-8097. doi: 10.14778/3529337.
3529354.

Daehyung Park, Yuuna Hoshi, and Charles C. Kemp. A multimodal anomaly detector for robot-
assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544–1551, 2018. doi: 10.1109/LRA.2018.2801475.

Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2):275–
304, 2016.

Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li, Chenjuan
Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu, Christian S. Jensen, and Bin Yang. TAB: Unified
benchmarking of time series anomaly detection methods. In Proc. VLDB Endow., 2025.

Ferdinand Rewicki, Joachim Denzler, and Julia Niebling. Is it worth it? comparing six deep and
classical methods for unsupervised anomaly detection in time series. Applied Sciences, 13(3),
2023. ISSN 2076-3417. doi: 10.3390/app13031778.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In Jennifer Dy
and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pp. 4393–4402. PMLR, 10–15 Jul
2018.

Mahsa Salehi and Lida Rashidi. A survey on anomaly detection in evolving data: [with application
to forest fire risk prediction]. SIGKDD Explor. Newsl., 20(1):13–23, May 2018. ISSN 1931-0145.
doi: 10.1145/3229329.3229332.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a
comprehensive evaluation. Proc. VLDB Endow., 15(9):1779–1797, May 2022. ISSN 2150-8097.
doi: 10.14778/3538598.3538602.

Md. Maruf Hossain Shuvo, Syed Kamrul Islam, Jianlin Cheng, and Bashir I. Morshed. Efficient
acceleration of deep learning inference on resource-constrained edge devices: A review. Pro-
ceedings of the IEEE, 111(1):42–91, 2023. doi: 10.1109/JPROC.2022.3226481.

Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. A novel anomaly
detection scheme based on principal component classifier. Technical report, Miami Univ Coral
Gables Fl Dept of Electrical and Computer Engineering, 2003.

Haotian Si, Jianhui Li, Changhua Pei, Hang Cui, Jingwen Yang, Yongqian Sun, Shenglin Zhang,
Jingjing Li, Haiming Zhang, Jing Han, Dan Pei, and Gaogang Xie. Timeseriesbench: An
industrial-grade benchmark for time series anomaly detection models. In 2024 IEEE 35th In-
ternational Symposium on Software Reliability Engineering (ISSRE), pp. 61–72, 2024. doi:
10.1109/ISSRE62328.2024.00017.

Raghubir Singh and Sukhpal Singh Gill. Edge ai: A survey. Internet of Things and Cyber-Physical
Systems, 3:71–92, 2023. ISSN 2667-3452. doi: https://doi.org/10.1016/j.iotcps.2023.02.004.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tuomo Sipola, Janne Alatalo, Tero Kokkonen, and Mika Rantonen. Artificial intelligence in the iot
era: A review of edge ai hardware and software. In 2022 31st Conference of Open Innovations
Association (FRUCT), pp. 320–331, 2022. doi: 10.23919/FRUCT54823.2022.9770931.

Keith Stouffer, Keith Stouffer, Michael Pease, CheeYee Tang, Timothy Zimmerman, Victoria Pillit-
teri, Suzanne Lightman, Adam Hahn, Stephanie Saravia, Aslam Sherule, et al. Guide to opera-
tional technology (ot) security. National Institute of Standards and Technology, 2023.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection
for multivariate time series through stochastic recurrent neural network. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’19, pp. 2828–2837, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362016. doi: 10.1145/3292500.3330672.

Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for streaming data.
In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Volume Two, IJCAI’11, pp. 1511–1516. AAAI Press, 2011. ISBN 9781577355144.

Sergio Trilles, Sahibzada Saadoon Hammad, and Ditsuhi Iskandaryan. Anomaly detection based on
artificial intelligence of things: A systematic literature mapping. Internet of Things, 25:101063,
2024. ISSN 2542-6605. doi: https://doi.org/10.1016/j.iot.2024.101063.

Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. Tranad: deep transformer networks
for anomaly detection in multivariate time series data. Proc. VLDB Endow., 15(6):1201–1214,
February 2022. ISSN 2150-8097. doi: 10.14778/3514061.3514067.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
anomaly detection with association discrepancy. In International Conference on Learning Repre-
sentations, 2022.

Zheng Xu, Yumeng Yang, Xinwen Gao, and Min Hu. Dcff-mtad: A multivariate time-series anomaly
detection model based on dual-channel feature fusion. Sensors, 23(8), 2023. ISSN 1424-8220.
doi: 10.3390/s23083910.

Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square statistic for
detecting intrusions into information systems. Quality and Reliability Engineering International,
17(2):105–112, 2001. doi: https://doi.org/10.1002/qre.392.

Xiaoju Ye. Calflops: A flops and params calculate tool for neural networks in pytorch framework,
2023.

Zahra Zamanzadeh Darban, Geoffrey I. Webb, Shirui Pan, Charu Aggarwal, and Mahsa Salehi.
Deep learning for time series anomaly detection: A survey. ACM Comput. Surv., 57(1), October
2024. ISSN 0360-0300. doi: 10.1145/3691338.

Dequan Zheng, Fenghuan Li, and Tiejun Zhao. Self-adaptive statistical process control for anomaly
detection in time series. Expert Systems with Applications, 57:324–336, 2016. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2016.03.029.

Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye. Beatgan: anomalous rhythm
detection using adversarially generated time series. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, IJCAI’19, pp. 4433–4439. AAAI Press, 2019. ISBN
9780999241141.

Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In Inter-
national Conference on Learning Representations, 2018.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PREVIOUS BENCHMARKS

Table 4: Previous benchmark papers considering computational cost.

Paper Type Paper Cost Metric
Coverage Model Type Data Source Dimension

Stat. ML DL Real Multi

Benchmark

Schmidl et al. (2022) Memory, Time ✓ ✓ ✓ ✓ ✓

Paparrizos et al. (2022) Time ✓ ✓ ✓ ✓ ✗

Han et al. (2022) Time ✓ ✓ ✓ ✓ ✓

Dobos et al. (2023) Time ✓ ✓ ✓ ✗ ✓

Rewicki et al. (2023) Time ✓ ✓ ✓ ✓ ✗

Liu & Paparrizos (2024) Time ✓ ✓ ✓ ✓ ✓

Si et al. (2024) Time ✓ ✗ ✓ ✓ ✓

Qiu et al. (2025) Memory, Time ✓ ✓ ✓ ✗ ✓

Methodology
Xu et al. (2023) Params, FLOPs, Time ✗ ✗ ✓ ✓ ✓

Liu et al. (2024b) Params, FLOPs, Time ✗ ✗ ✓ ✓ ✓

Ho & Armanfard (2025) FLOPs, Time ✗ ✗ ✓ ✓ ✓

Ours FLOPs ✓ ✓ ✓ ✓ ✓

As summarized in Table 4, a number of benchmark studies on multivariate time series anomaly
detection have undertaken extensive comparisons across models and datasets. Despite this broad
of coverage, the evaluation of computational cost in these works remains limited in scope. Most
benchmarks have relied primarily on execution time as the cost metric, with a few additionally con-
sidering memory usage. However, runtime measurements are inherently dependent on hardware
specifications and experimental settings, which constrains their comparability across studies. Like-
wise, memory consumption does not fully capture the algorithmic complexity of the models and
therefore provides only a partial view of computational efficiency.

Beyond benchmark papers, some methodology studies have employed hardware-agnostic measures
such as parameter counts or FLOPs. However, these comparisons have typically been restricted to
deep learning models, leaving traditional statistical and machine learning approaches unexamined
even though they have compatible detection performance with deep learning models. To bridge this
gap, we adopt FLOPs, a hardware-agnostic metric, and apply it to both traditional and deep learning
models. This unified treatment enables fair and reproducible comparisons of computational cost
across paradigms and provides practitioners with a principled basis for model selection in resource-
constrained environments.

B ALGORITHMS AND DATASETS

B.1 ALGORITHMS

Hotelling (H.Hotelling, 1947). A multivariate statistical process control method that scores each
observation via its Mahalanobis distance under a Gaussian reference model, thereby capturing cor-
related variation across variables.

PCA (Shyu et al., 2003). Principal Component Analysis models normal structure in a low-
dimensional subspace. Deviations are quantified through reconstruction error. Anomalies arise
when observations project poorly onto the principal subspace.

ABOD (Kriegel et al., 2008). Angle-Based Outlier Detection ranks points by the variance of an-
gles formed with all other points, exploiting the geometric insight that outliers yield concentrated
angle distributions in high dimensions. Practical variants use subsampling or k-nearest neighbor-
hoods to reduce the quadratic cost while preserving discrimination.

LOF (Breunig et al., 2000). Local Outlier Factor contrasts a point’s local reachability density
with that of its neighbors to assess how isolated it is within its immediate neighborhood. Large LOF

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

scores indicate locally sparse regions, enabling detection of context-dependent anomalies that global
density models often miss.

CBLOF (He et al., 2003). Cluster-Based LOF assigns each point to a large or small cluster and
computes scores from cluster size and distance to representative large clusters. Points in small,
distant clusters receive high scores, capturing both rarity and separation.

HBOS (Goldstein & Dengel, 2012). Histogram-Based Outlier Score approximates feature-wise
densities with univariate histograms and aggregates inverse densities across dimensions, implicitly
assuming weak dependence.

LODA (Pevnỳ, 2016). The Lightweight online Detector of Anomalies ensembles sparse ran-
dom projections, building one-dimensional histograms in each projected space and combining their
anomaly evidences.

Isolation Forest (Liu et al., 2008). Random partitioning via isolation trees isolates anomalies
with fewer splits, producing shorter expected path lengths than normal points. Scores are obtained
by normalizing path lengths against the average in random trees, enabling fast, distribution-agnostic
detection.

HS-Tree (Tan et al., 2011). Half-Space Trees construct randomized, axis-aligned partitions geared
for streaming one-class detection. Points that consistently fall into underpopulated half-spaces ob-
tain higher anomaly scores.

DAGMM (Zong et al., 2018). The Deep Autoencoding Gaussian Mixture Model jointly learns
a compact representation and a GMM density in an end-to-end fashion, combining reconstruction
features with mixture-based energy for scoring. This coupling allows the representation to align
with density estimation, improving separability of rare patterns.

DeepSVDD (Ruff et al., 2018). A deep one-class objective trains a network to map normal data
into a minimal radius hypersphere in latent space, penalizing distances from a fixed center. Samples
that lie far from this center at test time are flagged as anomalies, avoiding reconstruction bias inherent
to autoencoders.

LSTM-AE (Malhotra et al., 2016). A sequence-to-sequence LSTM autoencoder learns normal
temporal dynamics and emits reconstruction errors over sliding windows. Sustained or abrupt in-
creases in error indicate departures from learned patterns, capturing both gradual drifts and transient
spikes.

LSTM-VAE (Park et al., 2018). A variational sequence model with LSTM encoder-decoder es-
timates a probabilistic generative process, enabling anomaly scoring via low evidence lower bound
or high reconstruction error.

USAD (Audibert et al., 2020). A dual-autoencoder architecture trained with an adversarial-
inspired objective where two decoders reconstruct each other’s outputs to improve robustness. At
inference, a calibrated combination of the two reconstruction errors yields stable anomaly scores
with strong generalization across regimes.

OmniAnomaly (Su et al., 2019). A stochastic recurrent VAE augmented with normalizing flows
models complex temporal dependencies and heteroscedastic noise, producing likelihood-based
anomaly scores, negative log-probability, its latent dynamics capture both short and long range de-
pendencies.

LUAD (Fan et al., 2023). A lightweight unsupervised detector that combines efficient temporal
encoder, TCN, with a compact probabilistic module and an auxiliary diagnosis head.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Dataset overview.

Dataset Dimensions Train size Test size Anomaly
Ratio (%)

PSM 25 129784 87841 27.76
MSL 55 58317 73729 10.53

SMAP 25 135183 427617 12.79
SMD 38 708405 708420 4.16
SWaT 51 496800 449919 12.14
WADI 123 784537 172801 5.77

B.2 DATASETS

Table 5 summarizes the key statistics of the benchmark datasets, including the input dimension, the
size of the train set, the size of the test set, and the anomaly ratio. Note that anomalies appear only
in test sets, and the reported ratios are calculated with respect to the test instances. In addition to
these summary statistics, we provide a description of the key characteristics of each dataset below.

PSM (Abdulaal et al., 2021). The Pooled Server Metrics dataset consists of multivariate time
series monitoring server behavior, including signals such as CPU utilization and memory usage. It
contains 13 weeks of training data and 8 weeks of testing data. Anomalies are present in both splits,
while labels are provided only for the test set and include both planned and unplanned events.

MSL (Hundman et al., 2018). The Mars Science Laboratory dataset was constructed from teleme-
try of NASA’s Curiosity rover. Anomalies were extracted from Incident Surprise, Anomaly reports
(ISA) and manually labeled across channels.

SMAP (Hundman et al., 2018). The Soil Moisture Active Passive dataset was derived from
telemetry collected during NASA’s satellite mission. Anomalies were identified through ISA, which
document unexpected spacecraft events during post-launch operations.

SMD (Su et al., 2019). The Server Machine Dataset is a 5 week multivariate time series collection
gathered from a large Internet company. It comprises logs with metrics such as CPU load, memory
usage, disk activity, and network traffic. The dataset is partitioned into training and testing halves,
with anomalies in the testing portion labeled by domain experts based on incident reports.

SWaT (Mathur & Tippenhauer, 2016). The Secure Water Treatment dataset was collected from a
fully operational 6 stage water treatment testbed. It comprises readings from sensors and actuators
recorded every second over 11 consecutive days, including 7 days of normal operation and 4 days
with controlled cyber-physical attacks. All attack instances were labeled by experts.

WADI (Ahmed et al., 2017). The Water Distribution dataset is derived from a scaled-down water
distribution network testbed that simulates real industrial control systems. It contains multivariate
time series of sensor and actuator signals across different stages of water storage and distribution.
The dataset includes normal operations as well as periods with cyber-physical attack scenarios, with
labels provided for the anomalous events.

C DERIVATIONS OF FLOPS

This section provides a detailed account of the FLOPs computations for both traditional and deep
learning models. For traditional models, FLOPs are derived from the algorithmic procedures, with
training and inference costs obtained by applying the formulas to the entire training and test sets,
respectively. In contrast, deep learning models operate on sequences generated by a rolling window.
To ensure consistency, all calculations used the same input shape, determined by the window length

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and feature dimension of each dataset. The FLOPs of deep learning models were computed using the
calflops package, applied to our predefined model architectures. Training FLOPs were estimated
as the sum of forward and backward passes, whereas inference FLOPs were measured from the
forward pass alone. Thus, training FLOPs are calculated as the operations required to process one
epoch of windowed training data with both forward and backward passes, while inference FLOPs
correspond to a forward pass over the windowed test set. The full-training FLOPs are then obtained
by multiplying the training FLOPs per epoch by the number of epochs used for each model. For
comparability across models, all FLOPs are expressed in GFLOPs.

Global notation and counting rule Given a common vector x ∈ Rd, we use following notations:
ntr denotes the number of training instances, ninf the number of inference instances, and d the input
dimensionality. Also, we denote FLOPs per sample by f , and the total FLOPs over the dataset by
F . If an algorithm supports per-sample inference, we report both f and F . For models that do not
involve a distinct training phase, we set n = ntr = ninf .

Additions, multiplications, divisions, and comparisons are all counted as 1 FLOP, and the FLOPs
required for matrix multiplication between A ∈ CM×N and B ∈ CN×L are calculated as

FAB = 2MNL−ML

which consists of MNL multiplication and ML(N − 1) additions.

C.1 HOTELLING

Training FLOPs Hotelling’s statistic is

T 2 = (x− µ)⊤Σ−1(x− µ),

where µ ∈ Rd and Σ ∈ Rd×d are mean and covariance of the training set. In the training phase, the
inverse covariance matrix is calculated.

(i) Mean: µ = 1
ntr

∑
i xi costs

Fµ = (ntr − 1)d+ d = ntrd.

(ii) Covariance: Σ = 1
ntr−1

∑ntr

i=1(xi − µ)(xi − µ)⊤ costs

FΣ = ntrd+ ntrd
2 + (ntr − 1)d2 + d2

= ntr(2d
2 + d)

with respect to subtraction, multiplication, addition, and division.

(iii) Inverse: Inverting Σ costs
FΣ−1 ≈ d3.

Summing up,

F train = Fµ + FΣ + FΣ−1

= 2ntrd
2 + 2ntrd+ d3.

Inference FLOPs In the inference phase, the monitoring statistics T 2 calculations are performed
sample by sample.

(i) Centering subtraction: v = x− µ costs

fcen = d.

(ii) Matrix multiplication: T 2 = v⊤Σ−1v costs

fmat = 2d2 + d− 1.

Therefore,
f infer = fcen + fmat = 2d2 + 2d− 1,

F infer = ninf(2d
2 + 2d− 1).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.2 PCA

Model-specific notation p: number of principal components retained (p ≤ d).

Training FLOPs We estimate the mean and covariance exactly as in section C.1, and then obtain
the top-p eigenspace with QR decomposition.

(i) Mean: µ = 1
ntr

∑
i xi costs

Fµ = (ntr − 1)d+ d = ntrd.

(ii) Covariance: Σ = 1
ntr−1

∑ntr

i (xi − µ)(xi − µ)⊤ costs

FΣ ≈ ntr(2d
2 + d).

(iii) QR decomposition of matrix: Computing QR decomposition costs

Fdec ≈ 3d2.

Summing up,

F train = Fµ + FΣ + Fdec

= 2ntrd
2 + 2ntrd+ 3d2.

Inference FLOPs In the inference phase, reconstructions can be performed sample by sample.
Given x ∈ Rd, let Up ∈ Rd×p be the loading matrix.

(i) Projection: z = U⊤
p x costs

fproj = p(2d− 1).

(ii) Reconstruction: x̂ = Upz costs
frec = d(2p− 1).

(iii) Error calculation: e = ∥x− x̂∥2 =
∑d

j=1(xj − x̂j)
2 costs

ferr = 3d− 1.

Therefore, for each instance and total ninf instances,

f infer = fproj + ferr + frec = 4pd− p+ 2d− 1,

F infer = ninf(4pd− p+ 2d− 1).

C.3 ABOD

Model-specific notation k: number of neighbors for Fast-ABOD.

Training/Inference FLOPs We first prepare k-NN neighborhoods, then evaluate the Angle Based
Outlier Factor (ABOF) score for a point using its k neighbors. This is Fast-ABOD which approxi-
mate original ABOD.

(i) All-pairs of Euclidean distances: Computing ∥xi − xj∥2 =
√∑d

l=1(xil − xjl)2 costs 3d. If
span this to all-pairs, it costs

Fdist =

(
n

2

)
(3d) =

3

2
n(n− 1)d.

(ii) Sorting distances: Sorting algorithms have approximated complexity of O(n log2 n). Therefore,
sorting all-pair distances costs

fsort ≈ (n− 1) log2(n− 1), Fsort ≈ n(n− 1) log2(n− 1).

(iii) ABOF calculation: ABOF is calculated by VARB,C∈Nk(A)

(⟨AB,AC⟩
∥AB∥2∥AC∥2

)
and

(
k
2

)
= 1

2k(k−1)

is the number of neighbor pair cases.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Reusing calculated distances, each pair needs one dot product and operations for multiplication and
normalization. Therefore, each pair needs 2d + 1 FLOPs and spans 1

2k(k − 1) times within one
sample.

With 1
2k(k − 1) pairs, VAR = 1

N

∑
v2 −

(
1
N

∑
v
)2

costs 3
2k(k − 1) + 1.

Then,

fabof =
1

2
k(k − 1)(2d+ 1) +

3

2
k(k − 1) + 1 = k(k − 1)(d+ 2) + 1

and
Fabof = nk(k − 1)(d+ 2) + n.

Summing up,

F train/infer = Fdist + Fsort + Fabof

= 1.5n(n− 1)d+ n(n− 1) log2(n− 1) + nk(k − 1)(d+ 2) + n.

C.4 LOF

Model-specific notation k: number of neighbors.

Training/Inference FLOPs We build k-NN neighborhoods and then compute reachability dis-
tances, local reachability density, and the LOF score.

(i) All-pairs of Euclidean distances: As calculated at Section C.3, it costs

Fdist =

(
n

2

)
(3d) =

3

2
n(n− 1)d.

(ii) Sorting distances: Sorting algorithms have approximated complexity of O(n log2 n). Therefore,
sorting all-pair distances costs

fsort ≈ (n− 1) log2(n− 1), Fsort ≈ n(n− 1) log2(n− 1).

(iii) Reachability distances: For each point xp and xo ∈ Nk(xp), comparison operation
reach dist(xp, xo) = max{distk(xo), dist(xp, xo)} is conducted. Total comparison costs

freach = k, Freach = nk.

(iv) Local reachability density (LRD): Formulation of LRD is

LRD(xp) =

 1

Nk(xp)

∑
xo∈Nk(xp)

reach dist(xp, xo)

−1

.

Per point, k − 1 additions, 1 division, and 1 scaling is conducted with total k + 1 FLOPs.

Therefore,
flrd = k + 1, Flrd = n(k + 1).

(v) LOF score: Formulation of LOF score is

LOF(xp) =
1

k

∑
xo∈Nk(xp)

LRD(xo)

LRD(xp)
.

Per point, k divisions, k − 1 additions, 1 division is conducted with total 2k FLOPs.

Therefore,
flof = 2k, Flof = 2nk.

Summing up,

F train/infer = Fdist + Fsort + Freach + Flrd + Flof

= 1.5n(n− 1)d+ n(n− 1) log2(n− 1) + nk + n(k + 1) + 2nk.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.5 CBLOF

Model-specific notation I: maximum k-means iterations, C: number of clusters, L: number of
large clusters, |LC|: number instances in large clusters.

Training/Inference FLOPs CBLOF fits C centroids with k-means and then scores samples using
the large-small cluster partition.

(i) K-means cluster assignment: For each sample x ∈ Rd and each centroid c, squared distance
∥x−c∥2 costs 3d−1 FLOPs. Also, finding minimum distance centroid over C centroids contributes
C − 1 comparisons.

Over n points and one iteration, it costs

Fassign/iter = n [C(3d− 1) + (C − 1)] .

(ii) K-means centroid update: For each centroid, we accumulate assigned points and normalize
once. As we have n points and C centroids, accumulation costs d(n − C) and normalization costs
Cd making total FLOPs for centroid update is nd.

Over n points and one iteration, it costs

Fupdate/iter = nd.

Therefore,

Fkmeans = I(Fassign/iter + Fupdate/iter)

= I(3Cdn− n+ nd).

(iii) Scoring with large/small partition: For each point xp, score is computed as

Score(xp) =

{
|Ci| ×minj∈LC dist(xp, Cj) , if xp ∈ Ci, Ci ∈ SC and Cj ∈ LC

|Ci| × dist(xp, Ci) , if xp ∈ Ci, and Ci ∈ LC

where Ci denotes ith cluster and |Ci| denotes the number of points in each cluster. Also, |LC| is the
number of instances that belong to large clusters and |SC| is the number of instances that belong to
small clusters, formally, |SC| = n− |LC|.
If p ∈ SC: As L large clusters exist, calculating distances to L cluster centroid costs L(3d − 1)
and comparing costs L − 1. Therefore, each point in small cluster need 3dL FLOPs, including
multiplication operation of cluster size.

If p ∈ LC: Calculating distances to their own centroid costs 3d − 1 and multiplication costs 1
FLOPs. Therefore, each point in large cluster need 3d FLOPs.

Total scoring FLOPs for all n samples is

Fscore = 3d(|SC| · L+ |LC|)
= 3d

(
(n− |LC|)L+ |LC|

)
.

Combining k-means and scoring,

F train/infer = nI(3Cd+ d− 1) + 3d((n− |LC|)L+ |LC|).

C.6 HBOS

Model-specific notation b: number of bins per feature.

Training FLOPs The training cost consists of histogram construction. Each sample-feature value
is assigned to a bin with one subtraction and one division, giving 2ntrd FLOPs in total. Converting
counts to densities, computing bin widths, and performing the normalization check together require
5bd FLOPs.

Thus,
F train = 2ntrd+ 5bd.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Inference FLOPs At inference time, the score of each sample is computed based on the his-
tograms. Each feature requires the computation of log2(hist+α), which costs 2 FLOPs per bin and
yields 2bd FLOPs in total. For every sample and feature, assigning the score with boundary checks
adds about 3 FLOPs, giving 3ninfd FLOPs.

Therefore,
F infer = 3ninfd+ 2bd.

C.7 LODA

Model-specific notation b: number of bins, c: number of random projections.

Training FLOPs The training cost consists of sparse random projections and histogram construc-
tion, covering both the computation of projected values and the assignment of sample to bins for
density estimation.

(i) Sparse projection: Each projection vector has
√
d nonzero entries. Computing one projection

value zij = x⊤j wi requires 2
√
d− 1 FLOPs. With ntr training samples and c projections, the cost is

Fproj = ntrc(2
√
d− 1).

(ii) Histogram construction: Each projected value must be assigned to a histogram bin. Using binary
search over the b bin edges requires log2 b comparisons per assignment. The cost is therefore

Fbin = ntrc log2 b.

Summing up, the training FLOPs are

F train = Fproj + Fbin

= ntrc(2
√
d+ log2 b− 1).

Inference FLOPs During inference, each sample is projected onto the c, its bin is determined, and
the corresponding density values are used to compute the anomaly score.

(i) Sparse projection: Each projection requires 2
√
d − 1 FLOPs, and the total projection cost over

all histogram is
fproj = c(2

√
d− 1).

(ii) Bin lookup and score computation: For each projection, locating the appropriate bin via binary
search and computing log-density with accumulation require c log2 b+2 FLOPs. Over all projections
this becomes

fbinscore = c(log2 b+ 2).

Therefore, including the final division for averaging across projections, the inference cost is

f infer = fproj + fbinscore

= 2c
√
d+ c log2 b+ c+ 1,

F infer = ninf(2c
√
d+ c log2 b+ c+ 1).

C.8 ISOLATION FOREST

Model-specific notation T : number of trees, s: max samples per tree, γ: Euler-Mascheroni con-
stant (γ ≈ 0.5772).

Training FLOPs Each tree is grown on a random subsample of size s. At each internal node, we
pick a random feature, sample a split value within the feature’s range, and partition the instances by
comparison. Let nl denote the expected number of samples at a node in level l. At a level l node,
computing feature’s range costs nl, and partitioning the instances costs nl, since the tree is binary.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Also, we approximate the tree height as h ≈ log2 s, the number of nodes in level l as 2l, and number
of samples processed in a level l node as nl ≈ s

2l
. Therefore, computation at each node in level l

costs 2× s
2l

. The total cost for a single tree is
h−1∑
l=0

(2× s

2l
× 2l) = 2sh = 2s log2 s.

For T trees the training FLOPs are approximated as

F train = T (2s log2 s).

Inference FLOPs A sample is routed from the root to a leaf in every tree. The expected path
length c(s) for subsample size s is presented by authors of Isolation Forest (Liu et al., 2008).

c(s) = 2Hs−1 −
2(s− 1)

s
≈ 2(ln(s− 1) + γ)− 2 +

2

s

Each step down the tree costs one comparison, hence costs per sample across T trees are T · c(s).
Therefore,

fstep down = T · c(s) = T

[
2{ln (s− 1) + γ} − 2(1− 1

s
)

]
Anomaly score of the model is calculated by 2−

E(h(x))
c(s) .

Score calculation is performed by aggregating path lengths across the T trees. This requires T − 1
additions, followed by a normalization step that introduces two more scalar operations, division and
exponentiation. We thus fold these into an overall T + 2 overhead.

Therefore, per sample cost is

f infer = T · c(s) + (T + 2) = T

[
2 ln(s− 1) + 2γ − 2 +

2

s

]
+ (T + 2).

For ninf instances,

F infer = ninf(T · c(s) + (T + 2))

= ninf

(
T

[
2 ln(s− 1) + 2γ − 2 +

2

s

]
+ (T + 2)

)
.

C.9 HS-TREE

Model-specific notation T : number of trees, h: maximum depth of tree, ψ: reference window
size.

Training FLOPs Let |Node| =
∑h

l=0 2
l = 2h+1 − 1 be the number of nodes in a full binary tree

of height h. Each tree is built by updating simple per-node statistics and routing the ψ reference
samples level by level.

(i) Per-node statistic updates: For every node we find work range, yielding a constant cost of about
5 FLOPs per node.

Therefore, with a single tree,
Fstat/tree = 5(2h+1 − 1).

(ii) Routing the ψ reference samples: At level l there are 2l nodes and, on average, each processes
ψ/2l samples. With one comparison per routed sample, the cost per level is ψ.

Across levels,

Frouting/tree =

h∑
l=0

ψ = ψ(h+ 1).

Total FLOPs calculated is
F train = T (Fstat/tree + Frouting/tree)

= T (5(2h+1 − 1) + ψ(h+ 1)).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Inference FLOPs For each sample we route to level h and calculate score, and update leaf mass
statistics.

(i) Path routing and scoring: Per sample, one comparison per level is conducted with h levels and
scoring is conducted with the cumulative sum of Node.r× 2Node.k which costs 3 FLOPs.

Thus,
frouting/tree = h+ 3.

(ii) On-path mass updates: Along the visited path, we update mass with 4 operations including two
comparison for lower and upper bound, addition of count, and depth comparison.

As each point pass h+ 1 nodes,
fupdate/tree = 4(h+ 1).

Therefore,

f infer = T (frouting/tree + fupdate/tree)

= T (5h+ 7),

F infer = ninfT (5h+ 7).

D DETAILED EXPERIMENT SETTINGS

Hyperparameter Tuning For both traditional and deep learning models, we defined hyperparam-
eter search spaces based on ranges commonly adopted in prior benchmark studies. For each model,
the parameters of each algorithm (e.g. number of estimators, number of bins, neighborhood size,
clustering parameters, latent dimensions, dropout rates, training epochs) were specified as candi-
date sets. These search spaces were predetermined and systematically explored through grid search
across all datasets. For each dataset and model pair, all hyperparameter combinations were eval-
uated, and the configuration yielding the highest AUROC was selected as the final setting. This
procedure ensured that every model was tuned in a consistent and performance-oriented manner
while remaining faithful to the parameter ranges established in the literature.

E ADDITIONAL EXPERIMENT RESULTS

E.1 ADDITIONAL RESULTS OF SECTION 4.1

In our experiments, we provide the complete results for each dataset. The following tables report
AUROC and FLOPs across all evaluated models. We observe that GFLOPs for deep learning models
are generally much larger than those of traditional models, despite yielding comparable accuracy.
For clarity, the best AUROC in each table is highlighted in bold, while the second-best score is
underlined.

Table 6: All results on the PSM dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 0.17 0.11 − 0.77± 0.00
ABOD Statistical 926.33 421.87 − 0.75± 0.00
LOF One-class 917.76 416.07 − 0.73± 0.00

CBLOF One-class 6.56 9.91 − 0.70± 0.02
PCA Reconstruction 0.17 0.16 − 0.65± 0.00

HBOS Statistical 0.01 0.01 − 0.73± 0.00
LODA Statistical 0.13 0.10 − 0.65± 0.03

Isolation Forest One-class < 0.01 0.07 − 0.70± 0.02
HS-Tree One-class < 0.01 0.10 − 0.54± 0.02
DAGMM Statistical 53.04 11.97 5304.37 0.50± 0.03

DeepSVDD One-class 3.13 0.71 313.22 0.69± 0.01
LSTM-AE Reconstruction 2.45 0.55 244.67 0.76± 0.01

LSTM-VAE Reconstruction 54.73 12.35 13681.67 0.61± 0.06
USAD Reconstruction 0.26 0.06 65.79 0.52± 0.01

OmniAnomaly Reconstruction 2.03 0.46 40.6 0.61± 0.00
LUAD Reconstruction 991.13 223.60 29733.97 0.67± 0.01

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 7: All results on the MSL dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 0.36 0.45 − 0.53± 0.00
ABOD Statistical 334.71 536.74 − 0.63± 0.00
LOF One-class 334.41 536.36 − 0.56± 0.00

CBLOF One-class 0.89 2.60 − 0.65± 0.01
PCA Reconstruction 0.36 0.64 − 0.53± 0.00

HBOS Statistical 0.01 0.01 − 0.62± 0.00
LODA Statistical 0.15 0.21 − 0.47± 0.02
IForest One-class < 0.01 0.14 − 0.62± 0.01

HS-Tree One-class < 0.01 0.08 − 0.64± 0.03
DAGMM Statistical 10.22 4.31 510.87 0.50± 0.02

DeepSVDD One-class 25.34 10.68 2533.82 0.48± 0.03
LSTM-AE Reconstruction 4.55 1.92 91.03 0.56± 0.00

LSTM-VAE Reconstruction 2.12 0.89 530.67 0.53± 0.00
USAD Reconstruction 0.21 0.09 20.67 0.44± 0.00

OmniAnomaly Reconstruction 0.62 0.26 12.49 0.53± 0.00
LUAD Reconstruction 236.24 99.56 2362.43 0.50± 0.00

Table 8: All results on the SMAP dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 0.18 0.56 − 0.42± 0.00
ABOD Statistical 998.15 10281.98 − 0.64± 0.00
LOF One-class 996.78 10277.64 − 0.62± 0.00

CBLOF One-class 2.48 10.76 − 0.62± 0.01
PCA Reconstruction 0.18 0.36 − 0.41± 0.00

HBOS Statistical 0.01 0.03 − 0.61± 0.00
LODA Statistical 0.08 0.29 − 0.45± 0.09

Isolation Forest One-class < 0.01 0.48 − 0.64± 0.01
HS-Tree One-class 0.01 0.70 − 0.45± 0.01
DAGMM Statistical 55.25 58.27 5525.14 0.51± 0.01

DeepSVDD One-class 13.64 14.39 1364.39 0.60± 0.00
LSTM-AE Reconstruction 2.55 2.69 127.40 0.49± 0.03

LSTM-VAE Reconstruction 3.99 4.20 996.66 0.44± 0.02
USAD Reconstruction 1.14 1.20 283.82 0.41± 0.01

OmniAnomaly Reconstruction 3.44 3.63 68.85 0.47± 0.00
LUAD Reconstruction 516.11 544.28 5161.11 0.50± 0.01

Table 9: All results on the SMD dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 2.10 2.10 − 0.73± 0.00
ABOD Statistical 38426.94 38428.58 − 0.71± 0.00
LOF One-class 38357.60 38359.24 − 0.65± 0.00

CBLOF One-class 36.30 34.65 − 0.72± 0.01
PCA Reconstruction 2.10 2.09 − 0.65± 0.00

HBOS Statistical 0.05 0.08 − 0.63± 0.00
LODA Statistical 0.55 0.63 − 0.62± 0.02

Isolation Forest One-class < 0.01 0.90 − 0.68± 0.01
HS-Tree One-class < 0.01 0.81 − 0.64± 0.02
DAGMM Statistical 87.14 29.05 8714.30 0.53± 0.05

DeepSVDD One-class 26.72 8.91 6679.65 0.61± 0.02
LSTM-AE Reconstruction 16.54 5.51 1653.89 0.77± 0.01

LSTM-VAE Reconstruction 158.21 52.74 39551.96 0.63± 0.01
USAD Reconstruction 7.51 2.50 1878.44 0.39± 0.00

OmniAnomaly Reconstruction 39.62 13.21 792.44 0.69± 0.02
LUAD Reconstruction 5553.27 1851.13 166598.10 0.67± 0.00

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: All results on the SWaT dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 2.64 2.39 − 0.65± 0.00
ABOD Statistical 23615.66 19345.49 − 0.60± 0.00
LOF One-class 23551.21 19287.13 − 0.71± 0.00

CBLOF One-class 3.95 4.01 − 0.81± 0.01
PCA Reconstruction 2.64 2.42 − 0.82± 0.00

HBOS Statistical 0.05 0.07 − 0.85± 0.00
LODA Statistical 1.39 1.39 − 0.82± 0.02

Isolation Forest One-class < 0.01 0.36 − 0.83± 0.00
HS-Tree One-class 0.01 0.74 − 0.37± 0.08
DAGMM Statistical 40.48 12.22 4047.64 0.51± 0.00

DeepSVDD One-class 51.09 15.42 12773.36 0.82± 0.03
LSTM-AE Reconstruction 37.43 11.30 1871.30 0.76± 0.01

LSTM-VAE Reconstruction 116.89 35.29 29223.50 0.76± 0.11
USAD Reconstruction 6.56 1.98 655.69 0.81± 0.00

OmniAnomaly Reconstruction 5.13 1.55 102.60 0.83± 0.00
LUAD Reconstruction 565.27 170.64 16958.00 0.75± 0.01

Table 11: All results on the WADI dataset with AUROC and GFLOPs.

Model Type GFLOPs ↓ AUROC ↑
Train Inference Full-training

Hotelling Statistical 23.93 5.27 − 0.53± 0.00
ABOD Statistical 125697.00 6047.49 − 0.49± 0.00
LOF One-class 125611.70 6028.72 − 0.54± 0.00

CBLOF One-class 97.02 1.66 − 0.53± 0.01
PCA Reconstruction 23.93 3.18 − 0.50± 0.00

HBOS Statistical 0.19 0.06 − 0.74± 0.00
LODA Statistical 1.46 0.34 − 0.72± 0.04

Isolation Forest One-class < 0.01 0.33 − 0.74± 0.02
HS-Tree One-class < 0.01 0.20 − 0.63± 0.05
DAGMM Statistical 750.82 55.12 75081.59 0.45± 0.05

DeepSVDD One-class 97.48 7.16 24369.08 0.43± 0.03
LSTM-AE Reconstruction 49.08 3.60 4907.52 0.54± 0.00

LSTM-VAE Reconstruction 206.30 15.15 51575.30 0.54± 0.01
USAD Reconstruction 29.25 2.15 7312.16 0.45± 0.01

OmniAnomaly Reconstruction 71.70 5.26 1433.97 0.58± 0.00
LUAD Reconstruction 7269.83 533.72 218094.80 0.54± 0.00

E.2 ADDITIONAL RESULTS OF SECTION 4.2

For each dataset, we report the estimated execution time under Highly Resourced, Mobile, and Edge
scenarios. The following figures show dataset specific visualizations that highlight differences in
model feasibility across environments. These results confirm the overall trend that deep learning
models demand substantial resources, while traditional models remain efficient, although the degree
of variation differs across datasets.

10000

20000 Highly Resourced Mobile Edge

1000

2000

3000

50

100

150

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

5

10

15

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

100

200 Highly Resourced Mobile Edge

5

10

15

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

1

2

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 4: Estimated execution time on PSM.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

500

1000

1500
Highly Resourced Mobile Edge

50

100

150

200

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

5

10

15

20Es
tim

at
ed

 T
im

e
(s

)

(a) Train

50

100

150
Highly Resourced Mobile Edge

5

10

15

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

1

2

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 5: Estimated execution time on MSL.

1000

2000

3000 Highly Resourced Mobile Edge

100

200

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

10

20

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

1000

2000 Highly Resourced Mobile Edge

200

400

20

40

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

1

2

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 6: Estimated execution time on SMAP.

50000

100000 Highly Resourced Mobile Edge

5000

10000

15000

500

1000

1500

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

5

10

15

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

2500

5000

7500 Highly Resourced Mobile Edge

500

1000

10

20

30

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

5

10

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 7: Estimated execution time on SMD.

12500

15000

17500 Highly Resourced Mobile Edge

5000

10000

500

1000

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

25

50

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

2000

4000 Highly Resourced Mobile Edge

50

100

150

5

10

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0.0

0.5

1.0

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 8: Estimated execution time on SWaT.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

50000

100000 Highly Resourced Mobile Edge

5000

10000

15000

500

1000

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0

10

20

Es
tim

at
ed

 T
im

e
(s

)

(a) Train

500

1000
Highly Resourced Mobile Edge

50

100

150

5

10

HBOS
IForest

HS-Tre
e

LODA

OmniAnomaly PCA
Hotelling

USAD
LSTM-AE

CBLOF

DeepSVDD
DAGMM

LSTM-VAE
LUAD LOF

ABOD
0.0

0.5

1.0

Es
tim

at
ed

 T
im

e
(s

)

(b) Inference

Figure 9: Estimated execution time on WADI.

E.3 ADDITIONAL RESULTS OF SECTION 4.3

We report scalability tests conducted across datasets of varying dimensionality, where FLOPs were
calculated by progressively slicing the size of the dataset. For each dataset, the maximum test range
was defined by the smaller length of either the training or inference set, ensuring comparability
between the two phases. All models evaluated in this study are included. The left panel of each
figure depicts training FLOPs, while the right panel presents inference FLOPs, with both y-axes
plotted on a logarithmic scale. Overall, the results reveal consistent scaling patterns across datasets.
k-NN based methods exhibit steep growth in computational cost as data size increases, while tree-
based and projection methods remain relatively efficient.

10000 20000 30000 40000 50000 60000 70000 80000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000

10000

GF
LO

Ps

Train FLOPs PSM (dim=25)

10000 20000 30000 40000 50000 60000 70000 80000
Data size (instances)

Inference FLOPs PSM (dim=25)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 10: Scalability results on PSM.

10000 20000 30000 40000 50000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000

GF
LO

Ps

Train FLOPs MSL (dim=55)

10000 20000 30000 40000 50000
Data size (instances)

Inference FLOPs MSL (dim=55)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 11: Scalability results on MSL.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

20000 40000 60000 80000 100000 120000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000
GF

LO
Ps

Train FLOPs SMAP (dim=25)

20000 40000 60000 80000 100000 120000
Data size (instances)

Inference FLOPs SMAP (dim=25)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 12: Scalability results on SMAP.

100000 200000 300000 400000 500000 600000 700000
Data size (instances)

0.00
0.01
0.10
1.00

10
100

1000
10000

100000

GF
LO

Ps

Train FLOPs SMD (dim=38)

100000 200000 300000 400000 500000 600000 700000
Data size (instances)

Inference FLOPs SMD (dim=38)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 13: Scalability results on SMD.

50000 100000150000200000250000300000350000400000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000

10000

GF
LO

Ps

Train FLOPs SWaT (dim=51)

50000 100000150000200000250000300000350000400000
Data size (instances)

Inference FLOPs SWaT (dim=51)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 14: Scalability results on SWaT.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

20000 40000 60000 80000 100000 120000 140000 160000
Data size (instances)

0.00

0.01

0.10

1.00

10

100

1000

10000

GF
LO

Ps

Train FLOPs WADI (dim=123)

20000 40000 60000 80000 100000 120000 140000 160000
Data size (instances)

Inference FLOPs WADI (dim=123)

ABOD
CBLOF
DAGMM
DeepSVDD

HBOS
HS-Tree
Hotelling
IForest

LODA
LOF
LUAD
OmniAnomaly

PCA
USAD
LSTM-AE
LSTM-VAE

Figure 15: Scalability results on WADI.

E.4 LLM USAGE STATEMENT

The large language model (LLM) was used solely to improve the clarity and readability of the
manuscript. Specifically, they helped polish the writing, refine grammar, and improve phrasing. The
use of LLM was limited to language editing, and LLM did not contribute to the ideation of the
research, experimental design, implementation, analysis, or interpretation of the results.

30

	Introduction
	Literature Review
	Resource Constrained Environments
	Time Series Anomaly Detection Algorithms

	Experimental Design
	Problem Definition
	Unsupervised Anomaly Detection in Time Series
	Research Questions

	Evaluation Protocol
	Choice of Methods and Datasets
	Metrics

	Results and Analyses
	Performance vs. Efficiency
	Comparison of Estimated Time
	Model Scalability

	Conclusion
	Previous Benchmarks
	Algorithms and Datasets
	Algorithms
	Datasets

	Derivations of FLOPs
	Hotelling
	PCA
	ABOD
	LOF
	CBLOF
	HBOS
	LODA
	Isolation Forest
	HS-Tree

	Detailed Experiment Settings
	Additional Experiment Results
	Additional Results of Section 4.1
	Additional Results of Section 4.2
	Additional Results of Section 4.3
	LLM Usage Statement

