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ABSTRACT

Multivariate time series anomaly detection (MTS-AD) is widely used, but real-
world deployments often face tight computational budgets that limit the practical-
ity of deep learning. We revisit whether heavy deep models (high-FLOPs archi-
tectures) are necessary to achieve strong detection performance in such settings.
We conduct a systematic, compute-aware comparison of statistical, classical ma-
chine learning, and deep learning methods across diverse MTS-AD benchmarks,
measuring detection with AUROC (threshold-free, thus application-agnostic) and
cost with FLOPs (a hardware-agnostic proxy enabling fair cross-method com-
parison). We find that traditional approaches often match or surpass deep models,
which appear less frequently among the top performers, and that the effectiveness-
efficiency trade-off commonly favors non-deep alternatives under limited budgets.
These results indicate that deep learning is not uniformly superior for MTS-AD
and that heavy architectures can be counterproductive in resource-constrained de-
ployments. These findings offer practical guidance for practitioners designing
anomaly monitoring systems under compute constraints, highlighting cases where
lightweight models are sufficient and heavy deep models may be worth the cost.

1 INTRODUCTION

Time series anomaly detection is a fundamental task in machine learning with wide-ranging ap-
plications in domains such as industrial control systems, aerospace telemetry, and cyber security
(Kim et al., [2023} [Hundman et al, |2018} |[Landauer et al., |2025). In practice, anomalies are rare
and difficult to label, which makes unsupervised anomaly detection methods trained on normal data
an essential approach. Over the past decade, deep learning methods have gained prominence for
anomaly detection, achieving impressive performance across a variety of benchmark datasets (Za-
manzadeh Darban et al.,[2024).

However, real-world deployment environments often impose severe hardware and operational con-
straints. For example, safety-critical systems may need to operate without external connectivity due
to security restrictions, preventing the use of cloud-based solutions (Bhamare et al., 2020). Simi-
larly, embedded monitoring devices may lack GPUs or operate under strict thermal and power lim-
itations, making it impractical to deploy computationally intensive deep learning methods (Shuvo
et al.| [2023; |Singh & Gill, [2023). In such cases, the assumption that deep learning is the univer-
sally superior solution becomes questionable. While recent research has emphasized novel neural
architectures, comparatively little work has jointly examined both effectiveness and efficiency un-
der constrained computing conditions. Most studies focus on accuracy alone (Jia et al.| 2025)), with
only a few recent benchmarks considering accuracy together with runtime and memory usage (Qiu
et al.;,2025). In addition, several works have highlighted inconsistencies in evaluation protocols and
metrics for time series anomaly detection in industry (S1 et al., 2024)).

This gap encourages us to consider two central questions: (i) What are the most effective options for
time series anomaly detection under limited computational resources, and are deep learning methods
always the best options? (ii) Does a trade-off between detection performance and computational cost
truly exist in practice? Our own experience in industrial applications, including monitoring of air
defense systems and equipment in manufacturing settings, has made clear the difficulty of balancing
computational demands with detection performance. We believe that many practitioners working in
real-world deployments encounter the same challenge.
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Table 1: Summary of resource-constrained environments

Typical Domain

Representative Constraint

Common Approach

Key References

Limited memory

ToT/Wireless Sensor Network nodes;
streaming telemetry in manufactur-
ing and equipment monitoring

devices cannot buffer long histo-
ries; models must adapt with small
working sets under drift

online/streaming learning; feature
selection; memory-efficient sum-
maries/sketches

Bifet & Gavalda|(2007)
Nancy et al.|(2020)

Jain et al.|(2022)

Chatterjee & Ahmed|(2022)
Mfondoum et al.|(2024)

GPU unavailable

ICS and OT; manufacturing cells;
safety/certification-constrained envi-
ronments

power/thermal, enclosure, and cer-
tification constraints preclude ac-
celerators; inference must be CPU-
only on-prem

quantization; pruning/compression;
CPU-optimized runtime

Han et al.|(2016)
Jacob et al.|(2018)
Sipola et al.|(2022)
Das & Luo|(2023)
Singh & Gill|(2023)
Liu et al.|(2024a)
Fihrmann et al.|(2025)

Limited CPU capacity

PLC/RTU-adjacent controllers; fan-
less industrial PCs; battery-powered
sensing

very limited CPU cycles and RAM;
strict cycle-time determinism

quantization; low-FLOPs model de-
sign; online/streaming updates; se-
lective features

Liu et al.|(2008)
Goldstein & Dengel|(2012)
Singh & Gill|(2023)

Restricted communication

air-gapped ICS/OT; secure manufac-
turing cells; remote or intermittently
connected sites

on-prem/offline operation and strin-
gent latency disallow cloud round-
trips; data egress may be restricted

local inference at the edge;

federated/on-site adaptation; mini-
mal upstream telemetry

Belenguer et al.|(2022)
Das & Luo|(2023)
Dehlaghi-Ghadim et al. |(2023)

Stouffer et al.|(2023)

In this paper, we therefore address the questions by conducting a systematic comparative study of
unsupervised anomaly detection methods that range from traditional approaches to deep learning
methods. Unlike prior studies that have primarily emphasized accuracy, we introduce an evalu-
ation framework that considers both detection performance and computational cost (Mejri et al.
2024). This perspective enables a fair comparison across different methodological approaches. Our
evaluation covers diverse real-world datasets drawn from industrial, server, and aerospace domains,
ensuring that our findings generalize across multiple application settings.

2 LITERATURE REVIEW

2.1 RESOURCE CONSTRAINED ENVIRONMENTS

The deployment of models in industrial system is not solely governed by algorithmic accuracy but
is equally constrained by system-level limitations. As summarized in Table[I} the literature consis-
tently highlights four recurring scenarios in resource-constrained environments, which encompass
limited memory, GPU unavailable, limited CPU capacity, and restricted communication. These sce-
narios illustrate the historical progression of research toward resource-aware solutions and motivate
the comparative analysis conducted in this study.

Limited memory Several studies have demonstrated that real-world industrial environments, in-
cluding IoT nodes, wireless sensor networks, and manufacturing telemetry systems, often operate
under severe limitations in storage and energy, making the buffering of long historical windows
infeasible (Jain et al., [2022; [Mfondoum et al., [2024} |Chatterjee & Ahmed, [2022)). In time series
anomaly detection, such constraints require models to process data incrementally while maintaining
only a limited working set. Consequently, prior research has emphasized memory-efficient repre-
sentations, dimensionality reduction through feature selection (Nancy et al., [2020), and online or
adaptive windowing techniques, which dynamically adjust to evolving conditions (Bifet & Gavalda,
2007).

GPU unavailable In operational technology (OT) and industrial control system (ICS) environ-
ments, the use of GPU accelerators is often infeasible due to strict power, thermal, and certification
constraints (Das & Luo)} 2023} [Liu et al.l 2024a; [Singh & Gill, 2023} |Sipola et al., [2022). As a
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result, inference is typically performed on CPUs, making model-level optimization essential. In
this context, two advances stand out as particularly effective. Integer-only quantization executes in-
ference entirely with INT8 arithmetic, while deep compression combines pruning and quantization
to reduce both computation and memory requirements. These techniques together enable efficient
CPU-centric optimization (Fihrmann et al., 2025} [Jacob et al.,|2018};|Han et al., 2016).

Limited CPU capacity A related constraint emerges when devices rely on modest CPUs, such as
PLC/RTU-adjacent controllers, fanless industrial PCs, or battery-powered IoT nodes. In these set-
tings, the need for cycle time determinism combined with limited computational throughput requires
fundamentally low complexity designs. Traditional detectors such as Isolation Forest or histogram-
based method remain attractive due to their favorable time and memory complexity (Liu et al.,
2008; |Goldstein & Dengel, 2012). Recent surveys on Edge Al further emphasize that such CPU-
constrained deployments require models explicitly tailored to minimize FLOPs while preserving
detection capability (Singh & Gill, [2023} [Sipola et al., [2022)).

Restricted communication In many industrial and critical infrastructure domains, data transfer
to the cloud is either infeasible or prohibited due to latency requirements and strict security policies.
Authoritative guideline from National Institute of Standard and Technology explicitly recommend
isolation of OT networks, reinforcing the necessity of on-device or on-premise models (Stouffer
et al.,[2023)). Research has therefore explored federated learning approaches to enable collaborative
learning without raw data sharing, particularly in distributed industrial environments, as well as
lightweight edge frameworks (Belenguer et al.| 2022} Dehlaghi-Ghadim et al., [2023).

2.2 TIME SERIES ANOMALY DETECTION ALGORITHMS

Early research on time series anomaly detection was largely grounded in basic statistical models,
which assumed stationary distributions and relatively simple dependency structures. Among the
most influential were multivariate monitoring methods such as Hotelling’s T2 statistic that leveraged
distributional thresholds to detect deviations in industrial manufacturing processes (H.Hotelling,
1947; |Ye & Chen| 2001} Zheng et all [2016). However, their reliance on linearity and stationarity
assumptions rendered them less effective when confronted with the high-dimensional, noisy, and
non-stationary signals that characterize modern industrial systems.

The subsequent wave of research introduced non-parametric machine learning approaches that re-
laxed restrictive distributional assumptions. Distance and density-based detectors identified anoma-
lies as local deviations within the data manifold (Angiulli & Pizzuti, 2002} Breunig et al.l |2000),
while clustering-based techniques grouped time series patterns to distinguish normal from abnormal
behavior (He et al.,2003). Ensemble-based strategies, such as Isolation Forest, improved robustness
and scalability through randomized partitioning and aggregation (Liu et al.l 2008)).

Driven by advances in representation learning, the field has recently shifted toward deep learning
approaches that explicitly model sequential dependencies and nonlinear structures. Early works
employed recurrent neural networks and detected anomalies by reconstructing temporal sequences
(Malhotra et al., 2016} [Park et al., 2018). This paradigm was later extended by probabilistic gen-
erative models, adversarially trained architectures, and attention-based models (Su et al., 2019; |L1
et al., 2019} |Geiger et al., 20205 Zhou et al.,2019; |Akcay et al.| [2019; [Tuli et al., 2022)). Collectively,
these approaches represent a clear trajectory toward increasingly complex and expressive models,
often achieving state-of-the-art accuracy across widely used benchmarks. Nevertheless, their heavy
reliance on GPU accelerators and large memory footprints has raised practical concerns regarding
deployment in resource-constrained industrial environments.

To contextualize the performance of these approaches, several benchmark studies have systemat-
ically compared classical and deep learning methods (Han et al., 2022} [Paparrizos et al.l [2022; |Si
et al.,[2024)). However, most prior studies emphasize accuracy while giving limited attention to com-
putational cost. In this work, we provide a more balanced evaluation by jointly examining detection
performance and computational cost across both traditional and deep learning models. Further dis-
cussion of the scope and limitations for existing benchmarks is presented in the Appendix
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3 EXPERIMENTAL DESIGN

3.1 PROBLEM DEFINITION

3.1.1 UNSUPERVISED ANOMALY DETECTION IN TIME SERIES

Unsupervised anomaly detection in multivariate time series is the task of identifying abnormal be-
haviors without access to anomaly labels during training (Pang et al., 2021)). This setting is common
in practice because anomalies are rare, labeling is costly (Blazquez-Garcia et al.l 2021]).

A multivariate time series is defined as x € RV and can be expressed as
X={x;eRP|t=1,...,N} (1)

where N denotes the sequence length and x; is the D-dimensional observation at time ¢. Based on
the learned representation of normal behaviors, the model provides a decision function that assigns
each observation an anomaly score

s =F(z), {si}ie; eRY 2

where observations with higher scores are regarded as anomalies, typically determined by calibrating
a threshold from training scores (Su et al.l|2019; |Audibert et al.l 2020; Xu et al.| [2022).

The unsupervised formulation is particularly important in real-world applications, since annotated
anomalies are typically unavailable, occur infrequently, or vary significantly across domains (Salehi
& Rashidi, 2018)). By modeling normality directly from unlabeled data, unsupervised approaches
provide a practical and general framework for anomaly detection in time series.

3.1.2 RESEARCH QUESTIONS

Building on the above definition, we aim to investigate how unsupervised anomaly detection in mul-
tivariate time series can be evaluated not only in terms of effectiveness but also efficiency under
realistic deployment settings. While prior work has primarily emphasized improving detection ac-
curacy, comparatively less attention has been paid to the computational and operational feasibility
of different methods. To address this gap, we define the following research questions:

(i) What are the most effective options for time series anomaly detection under limited com-
putational resources, and are deep learning methods always the best options? This question
is motivated by the observation that many deployment environments face practical constraints, in-
cluding restricted computational capacity, memory, or energy availability. Although deep learn-
ing methods have shown strong benchmark performance, their dependence on substantial resources
raises doubts about their universal applicability. It is therefore important to examine whether tradi-
tional statistical or machine learning methods may provide more practical alternatives under such
constrained conditions.

(i) Does a trade-off between detection performance and computational cost truly exist in prac-
tice? Deep learning models are generally associated with higher computational cost due to their
larger architectures and resource requirements. The literature also shows that traditional statistical
and machine learning methods can remain competitive in certain scenarios. This raises the question
of whether such cost is justified by consistently superior detection performance. This question there-
fore seeks to clarify whether higher computational cost truly translates into superior performance,
or whether certain approaches can offer a more balanced relationship that challenges the prevailing
view.

3.2 EVALUATION PROTOCOL
3.2.1 CHOICE OF METHODS AND DATASETS

Algorithms We survey the historical development of unsupervised time series anomaly detec-
tion and curate a representative set of models for evaluation. The selection of models follow three
principles. First, to ensure chronological coverage, we consider landmark contributions from the
early multivariate statistical monitoring methods through contemporary deep learning methods, so
that each major period is represented. Second, to reflect differences in operating mechanisms, we
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partition the candidate methods into three families, namely statistical, one-class classification, and
reconstruction-based, and we select representative exemplars from each family. Third, we focus on
models that are well-established in the field and have been widely adopted in prior studies. Detailed
descriptions of the included methods are provided in the Appendix

Datasets To support reproducible and deployment relevant evaluation, we prioritize datasets that
capture real operational complexity and are widely used in the literature. We also focus on datasets
from machinery and electronic system contexts where anomaly detection techniques are routinely
deployed. Accordingly, we include SMD (Su et al., 2019) and PSM (Abdulaal et al., 2021)) from
server environments, SMAP and MSL from NASA engineering telemetry (Hundman et al.| [2018)),
and SWaT (Mathur & Tippenhauer, 2016) and WADI (Ahmed et al., [2017)) from industrial water
treatment and distribution testbeds. Each dataset is multivariate and displays cross-channel depen-
dencies and non-stationary dynamics, with rare anomalies as in real-world environments. Detailed
descriptions of the included datasets are provided in the Appendix [B.2]

3.2.2 METRICS

Detection Performance We compare detection performance across models using a threshold-
agnostic metric, the Area Under the Receiver Operating Characteristic Curve (AUROC), to ensure
fairness. Although certain methods are often paired with post hoc thresholding procedures such as
Peaks Over Threshold, we do not apply such schemes to evaluate the intrinsic ranking quality of
each model. To ensure a uniform basis of comparison, each implementation outputs a real-valued
anomaly score at every time step, aligned with the original sequence length. AUROC is therefore
computed at the same temporal resolution for all methods.

Computational Cost To enable a fair comparison of computational demands across both tradi-
tional algorithms and deep learning models, we adopt floating-point operations (FLOPs) as a uni-
fying metric. FLOPs are model-agnostic and can be meaningfully related to hardware capabilities,
making them particularly suitable for analyzing hardware-constrained scenarios. Unlike elapsed real
time, FLOPs isolate algorithmic complexity from hardware variability. However, estimating FLOPs
is nontrivial because the operations that dominate computational cost differ substantially across
models and are highly sensitive to hyperparameter settings (e.g. tree depth in ensemble methods,
number of neighbors in £-NN, or hidden dimension in neural networks). Consequently, prior work
has rarely reported FLOPs for traditional machine learning methods, focusing only on deep learning
models. We therefore derive closed-form or tight counting formulas for each traditional method and
instantiate them with the exact hyperparameters used in our experiments. For deep learning models,
we employed the PyTorch-based package calflops, which provides automatic FLOPs accounting
given model architectures and input shapes (Yel 2023).

In conducting FLOPs estimation, we adhere to the following principles:

. Dataset specificity FLOPs are computed separately for each dataset, as input dimensionality,
sequence length, and sample size directly affect operation counts.

*  Training vs. inference We compute FLOPs for both training and inference phases, reflecting
their distinct computational characteristics.

. Epoch sensitivity in deep learning models Because training until convergence is ambiguous
and dependent on hyperparameter optimization, we report FLOPs for a single epoch of training
and the epoch at which the best AUROC is achieved during hyperparameter search.

e Fair treatment of comparison operations While FLOPs conventionally account only for
addition and multiplication, algorithms such as £-NN and distance-based methods (ABOD,
LOF) are dominated by comparison operations. Excluding these will unfairly understate their
complexity, therefore, we count each comparison as a single FLOP.

. Data-dependent structures For models where computational complexity depends on data dis-
tribution such as clustering-based models, FLOPs are computed from the fitted model structure
on the actual data rather than theoretical worst-case bounds.

*  Approximation for non-primitive operations For procedures such as sorting, where exact
FLOPs are impractical to enumerate, we adopt widely accepted complexity-based approxima-
tions (e.g. O(nlogn), where n is the number of instances).

We summarize the final FLOPs formulations of the chosen methods in Table [2] and present their
detailed derivations in Appendix
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Table 2: Operation counts (FLOPs) for each method. We count additions, multiplications, and com-
parisons equally as 1 FLOP. The notation ny;, nin¢, and d denote the number of training instances,
the number of test instances, and the input dimension, respectively. Model-specific notations are
explained in the Notation column.

Model Type FLOPs Notation

Train  2ny.d? 4 2ngd + d°
Inference nin(2d% +2d — 1)
PCA Train  2nu” o+ 2npd + 37 « p: # of PCA components
Inference nine(4dpd —p + 2d — 1)
1.5n¢ (nge — 1)d
Train  4ng, (ng — 1) logy (ng — 1)
+ngk(k —1)(d+2) + ng,

ABOD « k: # of neighbors
1‘5ninf(ninf - 1)d

Hotelling

Inference +n;,¢(nins — 1) logy (Nins — 1)
+ninek(k — 1)(d + 2) + nint
1.5n4 (nge — 1)d
Train  4ng,(ng — 1) logy (nge — 1)

+ngk + ng(k+ 1) 4+ 2ngk
LOF ‘ ol ) ‘ « k: # of neighbors
1~5ninf(ninf - 1)d
Inference  +ni,e(ning — 1) logy (nins — 1)

+nintk + Nine(k 4+ 1) + 2ninek

I: max iterations for clustering

C': # of clusters

L: # of large clusters

|LC|: # of instances in large clusters

Train  ny,J(3Cd+d — 1) + 3d((ni. — |LC|)L + |LC|)
CBLOF

Inference ninel(3Cd + d — 1) + 3d((nint — |LC|)L + | LCY)

Train  2ny.d + 5bd .
HBOS « b: # of bins

Inference 3nined + 2bd

LODA Train  ngc(2v/d + logy b — 1) « b: # of bins

Inference nins(2cV/d 4 clogy b + 1) + c: # of random cuts
. Train  T(2slog, s) « T': # of estimators '
Isolation Forest « s: max samples per estimator
Inference nine(T(2logs —2+7) —2(1 —1/s)+ (T'+2)) -« ~: Euler-Mascheroni const.
Train ~ T((h + 1) + 5(2"+1 — 1 o T # of estimators

HS-Tree W ) ( ) « h: max depth of tree

Inference ninsT(5h + 7) « . reference window size

4 RESULTS AND ANALYSES

In this section we present three experiments to examine performance versus efficiency, estimated
time comparison under hardware-constrained settings, and model scalability. The first experiment
evaluates the trade-off between detection accuracy, measured by AUROC, and the computational
cost quantified by training and inference FLOPs. For traditional models, training and inference
FLOPs are given in Table [2] For deep learning models, we report training FLOPs per epoch, and
full-training FLOPs correspond to the sum overall epochs. In subsequent analyses, we use full-
training FLOPs for deep learning models. The second experiment leverages the fact that, compared
to other efficiency metrics, FLOPs have the key advantage of being directly comparable to hardware
performance, typically expressed as floating-point operations per second (FLOPS), where FLOPs
denote algorithmic operation counts and FLOPS denote hardware throughput. Dividing algorithmic
FLOPs by the FLOPS of a target hardware allows us to approximate training and inference time
under GPU-free, hardware-constrained deployments. The third experiment examines scalability by
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Table 3: Top five models for each dataset with AUROC and gigaFLOPs (GFLOPs). AUROC scores
are reported as the mean over five runs with different random seeds.

Dataset Model Type . GFLOPs | — AUROC 1
Train Inference  Full-training

Hotelling Statistical 0.17 0.11 — 0.77£0.00

LSTM-AE Reconstruction 2.45 0.55 244.67 0.76 £0.01

PSM ABOD Statistical 926.33 421.87 — 0.754+0.00

LOF One-class 917.76 416.07 — 0.734+0.00

HBOS Statistical 0.01 0.01 — 0.73+0.00

CBLOF One-class 0.89 2.60 — 0.65+0.01

HS-Tree One-class < 0.01 0.08 — 0.64+0.03

MSL ABOD Statistical 334.71 536.74 —  0.63+0.00

HBOS Statistical 0.01 0.01 — 0.6240.00

Isolation Forest One-class < 0.01 0.14 — 0.6240.01

Isolation Forest One-class < 0.01 0.48 — 0.644+0.01

ABOD Statistical 998.15 10281.98 — 0.64 £0.00

SMAP LOF One-class 996.76  10277.64 — 0.62+0.00

CBLOF One-class 2.48 10.76 — 0.624+0.01

HBOS Statistical 0.01 0.03 — 0.61+0.00

LSTM-AE Reconstruction 16.54 5.51 1653.89 0.77 +0.01

Hotelling Statistical 2.10 2.10 — 0.73£0.00

SMD CBLOF One-class 36.30 34.65 — 0.7240.01

ABOD Statistical 38426.94 38428.58 — 0.71£0.00

OmniAnomaly Reconstruction 39.62 13.21 792.44 0.69 £0.02

HBOS Statistical 0.05 0.07 — 0.854+0.00

Isolation Forest One-class < 0.01 0.36 — 0.83+0.00

SWaT  OmniAnomaly Reconstruction 5.13 1.55 102.60  0.83 £0.00

LODA Statistical 1.39 1.39 — 0.824+0.02

PCA Reconstruction 2.64 2.42 —  0.824+0.00

HBOS Statistical 0.19 0.06 — 0.744+0.00

Isolation Forest One-class < 0.01 0.33 —  0.744+0.02

WADI LODA Statistical 1.46 0.34 — 0.724+0.04

HS-Tree One-class < 0.01 0.20 — 0.63+0.05

OmniAnomaly Reconstruction 71.70 5.26 1433.97  0.58 £ 0.00

varying the amount of data and observing how computational cost changes with dataset size. Model
hyperparameters are chosen as those yielding the highest AUROC within the defined search space,
with the detailed specification of the search space given in Appendix D}

4.1 PERFORMANCE VS. EFFICIENCY

Table [3| summarizes the main results, showing that the highest AUROC values are largely achieved
by traditional models. Deep learning methods do not consistently surpass these baselines, and the
performance gap is generally small. Notably, deep learning models appear only a few times among
the top five performers overall, indicating that they are not dominant in terms of detection accu-
racy. Figure [I] further illustrates this trend by plotting AUROC against the total FLOPs, obtained
by summing training and inference FLOPs, where the top five models from Table [3] are highlighted
in orange. The highlighted points show that most of the best performing methods are traditional
approaches, which achieve competitive or superior AUROC with substantially lower FLOPs, while
deep learning models are generally concentrated on the higher cost side without clear performance
gains. This consistent pattern across datasets underscores that the balance between effectiveness and
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Figure 1: AUROC vs. Total FLOPs (sum of training and inference FLOPs) for each dataset. Orange
markers denote the top five models in terms of AUROC.

efficiency often favors traditional models. Entire results for all models and datasets are provided in
Appendix [ET]

4.2 COMPARISON OF ESTIMATED TIME
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Figure 2: Estimated execution time of anomaly detection models under three hardware scenarios
(Highly Resourced, Mobile, and Edge). Models are ordered in ascending runtime according to the

Highly Resourced scenario, with deep learning models highlighted by gray shading. The results are
averaged across datasets.

Estimate of the minimal execution time can be calculated as FLOPS /FLOPs. To capture variability
across deployment conditions, we assume three hardware scenarios: a highly resourced environ-
ment represented by our experimental setup (Intel(R) Core(TM) 19-14900K CPU, NVIDIA GeForce
RTX 5070 Ti GPU), a mobile environment corresponding to Samsung Galaxy A32 (Cortex-A75 &
Cortex-A55 CPU, Arm Mali-G52 MC2 GPU), and a resource-constrained edge environment repre-
sented by Raspberry Pi 3B+ (Asutkar et al., |2023} |Trilles et al., 2024). The FLOPS of each device
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are computed using only the number of cores C' and clock frequency f, as formalized in Equation[3]

peak __ peak

FLOPSCPU o Zte{Performance,Efﬁcient} Ci x ft’ FLOPSGPU =0x f )
A practically significant observation emerging from Figure [2]is that deep learning models are fea-
sible only in highly resourced environments, where the abundance of GPU cores substantially mit-
igates their computational burden. In sharp contrast, under mobile or edge scenarios these mod-
els incur prohibitively high costs, making their deployment virtually infeasible. By comparison,
tree-based algorithms such as Isolation Forest and HS-Tree, along with histogram-based algorithms
such as HBOS and LODA consistently maintain extremely low computational overhead during both
training and inference across all hardware settings. Finally, approaches that rely on k-NN, includ-
ing ABOD and LOF, exhibit comparatively elevated costs, underscoring their limited practicality in
data-abundant contexts. Results for individual datasets are provided in Appendix[E.2]

4.3 MODEL SCALABILITY
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Figure 3: Training (left) and inference (right) FLOPs of eight representative models evaluated on
the SMAP dataset. Both y-axes are presented on a logarithmic scale.

As illustrated in Figure [3] tree-based methods such as Isolation Forest and HS-Tree demonstrate
high scalability, with computational requirements scaling sublinearly with respect to n, thereby
making them well-suited for large-scale deployment. In contrast, methods using k-NN such as
ABOD and LOF, exhibit a steep rise in both training and inference FLOPs, reflecting their quadratic
dependence on n and highlighting their limited practicality for large datasets. Deep learning models
exhibit a consistently linear increase in FLOPs with data size. Although they scale more favorably
than k-NN approaches, their computational cost still poses a substantial burden as n becomes large.
This divergence underscores the importance of considering algorithmic scalability when selecting
anomaly detection models for real-world applications where data volumes can be substantial. Entire
results for all models and datasets are provided in Appendix

5 CONCLUSION

This work presented a systematic comparison of traditional and deep learning methods for unsuper-
vised time series anomaly detection under hardware-constrained settings. By jointly evaluating AU-
ROC and FLOPs, we explored two central questions concerning the effectiveness of models under
limited resources and whether and how performance differences arise between traditional and deep
learning methods. Our results showed that traditional models often rank among the top performers,
deep learning models do not consistently surpass them, and the balance between effectiveness and
efficiency favors traditional approaches. Estimated time analysis further revealed that while deep
learning models are feasible only in highly resourced environments, traditional models remain prac-
tical under resource-constrained settings while offering comparable detection performance. Overall,
these findings challenge the view that deep learning is always the superior choice and emphasize the
continued viability of traditional methods for real-world deployment. In doing so, we aim for this
work to inspire new avenues of research while also providing practitioners with a useful point of
reference when building anomaly detection systems under real-world constraints.
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REPRODUCIBILITY STATEMENT

We have undertaken several efforts to ensure the reproducibility of our work. FLOPs derivations for
all algorithms are provided in Appendix [C} and the definition of hyperparameter search spaces is
given in Appendix [D] Extensive experimental results across datasets are presented in Appendix [E]
The supplementary material contains our full experimental pipeline, including model implementa-
tions, configuration files, and data preprocessing scripts, thereby facilitating independent reproduc-
tion of our findings.
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A PREVIOUS BENCHMARKS

Table 4: Previous benchmark papers considering computational cost.

Coverage Model Type Data Source Dimension

Paper Type Paper Cost Metric
Stat. ML DL Real Multi
Schmidl et al. |(2022) Memory, Time v v v v v
Paparrizos et al.|(2022) Time v v v v X
Han et al.|(2022) Time v v v v v
Benchmark Dobos et al.|(2023) Time 4 v v X v
Rewicki et al.|(2023) Time v v v v X
Liu & Paparrizos|(2024) Time v v v v v
Si et al.|(2024) Time v X v v v
Qiu et al.|(2025) Memory, Time v v v X v
Xu et al.|[(2023) Params, FLOPs, Time X X v v v
Methodology Liu et al.|(2024b) Params, FLOPs, Time X X v v v
Ho & Armanfard|(2025) FLOPs, Time X X v v v
Ours FLOPs v v v v v

As summarized in Table 4} a number of benchmark studies on multivariate time series anomaly
detection have undertaken extensive comparisons across models and datasets. Despite this broad
of coverage, the evaluation of computational cost in these works remains limited in scope. Most
benchmarks have relied primarily on execution time as the cost metric, with a few additionally con-
sidering memory usage. However, runtime measurements are inherently dependent on hardware
specifications and experimental settings, which constrains their comparability across studies. Like-
wise, memory consumption does not fully capture the algorithmic complexity of the models and
therefore provides only a partial view of computational efficiency.

Beyond benchmark papers, some methodology studies have employed hardware-agnostic measures
such as parameter counts or FLOPs. However, these comparisons have typically been restricted to
deep learning models, leaving traditional statistical and machine learning approaches unexamined
even though they have compatible detection performance with deep learning models. To bridge this
gap, we adopt FLOPs, a hardware-agnostic metric, and apply it to both traditional and deep learning
models. This unified treatment enables fair and reproducible comparisons of computational cost
across paradigms and provides practitioners with a principled basis for model selection in resource-
constrained environments.

B ALGORITHMS AND DATASETS

B.1 ALGORITHMS

Hotelling (H.Hotelling, |1947). A multivariate statistical process control method that scores each
observation via its Mahalanobis distance under a Gaussian reference model, thereby capturing cor-
related variation across variables.

PCA (Shyu et al| [2003). Principal Component Analysis models normal structure in a low-
dimensional subspace. Deviations are quantified through reconstruction error. Anomalies arise
when observations project poorly onto the principal subspace.

ABOD (Kriegel et al., [2008). Angle-Based Outlier Detection ranks points by the variance of an-
gles formed with all other points, exploiting the geometric insight that outliers yield concentrated
angle distributions in high dimensions. Practical variants use subsampling or k-nearest neighbor-
hoods to reduce the quadratic cost while preserving discrimination.

LOF (Breunig et al.| 2000). Local Outlier Factor contrasts a point’s local reachability density
with that of its neighbors to assess how isolated it is within its immediate neighborhood. Large LOF
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scores indicate locally sparse regions, enabling detection of context-dependent anomalies that global
density models often miss.

CBLOF (He et al., [2003). Cluster-Based LOF assigns each point to a large or small cluster and
computes scores from cluster size and distance to representative large clusters. Points in small,
distant clusters receive high scores, capturing both rarity and separation.

HBOS (Goldstein & Dengel, 2012). Histogram-Based Outlier Score approximates feature-wise
densities with univariate histograms and aggregates inverse densities across dimensions, implicitly
assuming weak dependence.

LODA (Pevny, 2016). The Lightweight online Detector of Anomalies ensembles sparse ran-
dom projections, building one-dimensional histograms in each projected space and combining their
anomaly evidences.

Isolation Forest (Liu et al) |2008). Random partitioning via isolation trees isolates anomalies
with fewer splits, producing shorter expected path lengths than normal points. Scores are obtained
by normalizing path lengths against the average in random trees, enabling fast, distribution-agnostic
detection.

HS-Tree (Tanetal.l2011). Half-Space Trees construct randomized, axis-aligned partitions geared
for streaming one-class detection. Points that consistently fall into underpopulated half-spaces ob-
tain higher anomaly scores.

DAGMM (Zong et al 2018). The Deep Autoencoding Gaussian Mixture Model jointly learns
a compact representation and a GMM density in an end-to-end fashion, combining reconstruction
features with mixture-based energy for scoring. This coupling allows the representation to align
with density estimation, improving separability of rare patterns.

DeepSVDD (Ruff et al., 2018)). A deep one-class objective trains a network to map normal data
into a minimal radius hypersphere in latent space, penalizing distances from a fixed center. Samples
that lie far from this center at test time are flagged as anomalies, avoiding reconstruction bias inherent
to autoencoders.

LSTM-AE (Malhotra et al) 2016). A sequence-to-sequence LSTM autoencoder learns normal
temporal dynamics and emits reconstruction errors over sliding windows. Sustained or abrupt in-
creases in error indicate departures from learned patterns, capturing both gradual drifts and transient
spikes.

LSTM-VAE (Park et al.| [2018). A variational sequence model with LSTM encoder-decoder es-
timates a probabilistic generative process, enabling anomaly scoring via low evidence lower bound
or high reconstruction error.

USAD (Audibert et al., 2020). A dual-autoencoder architecture trained with an adversarial-
inspired objective where two decoders reconstruct each other’s outputs to improve robustness. At
inference, a calibrated combination of the two reconstruction errors yields stable anomaly scores
with strong generalization across regimes.

OmniAnomaly (Su et al2019). A stochastic recurrent VAE augmented with normalizing flows
models complex temporal dependencies and heteroscedastic noise, producing likelihood-based
anomaly scores, negative log-probability, its latent dynamics capture both short and long range de-
pendencies.

LUAD (Fan et al.| 2023). A lightweight unsupervised detector that combines efficient temporal
encoder, TCN, with a compact probabilistic module and an auxiliary diagnosis head.
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Table 5: Dataset overview.

Dataset Dimensions Train size Test size liﬂﬁin(?g)
PSM 25 129784 87841 27.76
MSL 55 58317 73729 10.53

SMAP 25 135183 427617 12.79
SMD 38 708405 708420 4.16
SWaT 51 496800 449919 12.14

WADI 123 784537 172801 5.77

B.2 DATASETS

Table [5] summarizes the key statistics of the benchmark datasets, including the input dimension, the
size of the train set, the size of the test set, and the anomaly ratio. Note that anomalies appear only
in test sets, and the reported ratios are calculated with respect to the test instances. In addition to
these summary statistics, we provide a description of the key characteristics of each dataset below.

PSM (Abdulaal et al., [2021). The Pooled Server Metrics dataset consists of multivariate time
series monitoring server behavior, including signals such as CPU utilization and memory usage. It
contains 13 weeks of training data and 8 weeks of testing data. Anomalies are present in both splits,
while labels are provided only for the test set and include both planned and unplanned events.

MSL (Hundman et al.,[2018)). The Mars Science Laboratory dataset was constructed from teleme-
try of NASA’s Curiosity rover. Anomalies were extracted from Incident Surprise, Anomaly reports
(ISA) and manually labeled across channels.

SMAP (Hundman et al., [2018). The Soil Moisture Active Passive dataset was derived from
telemetry collected during NASA’s satellite mission. Anomalies were identified through ISA, which
document unexpected spacecraft events during post-launch operations.

SMD (Suetall2019). The Server Machine Dataset is a 5 week multivariate time series collection
gathered from a large Internet company. It comprises logs with metrics such as CPU load, memory
usage, disk activity, and network traffic. The dataset is partitioned into training and testing halves,
with anomalies in the testing portion labeled by domain experts based on incident reports.

SWaT (Mathur & Tippenhauer,[2016). The Secure Water Treatment dataset was collected from a
fully operational 6 stage water treatment testbed. It comprises readings from sensors and actuators
recorded every second over 11 consecutive days, including 7 days of normal operation and 4 days
with controlled cyber-physical attacks. All attack instances were labeled by experts.

WADI (Ahmed et al., 2017). The Water Distribution dataset is derived from a scaled-down water
distribution network testbed that simulates real industrial control systems. It contains multivariate
time series of sensor and actuator signals across different stages of water storage and distribution.
The dataset includes normal operations as well as periods with cyber-physical attack scenarios, with
labels provided for the anomalous events.

C DERIVATIONS OF FLOPs

This section provides a detailed account of the FLOPs computations for both traditional and deep
learning models. For traditional models, FLOPs are derived from the algorithmic procedures, with
training and inference costs obtained by applying the formulas to the entire training and test sets,
respectively. In contrast, deep learning models operate on sequences generated by a rolling window.
To ensure consistency, all calculations used the same input shape, determined by the window length
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and feature dimension of each dataset. The FLOPs of deep learning models were computed using the
calflops package, applied to our predefined model architectures. Training FLOPs were estimated
as the sum of forward and backward passes, whereas inference FLOPs were measured from the
forward pass alone. Thus, training FLOPs are calculated as the operations required to process one
epoch of windowed training data with both forward and backward passes, while inference FLOPs
correspond to a forward pass over the windowed test set. The full-training FLOPs are then obtained
by multiplying the training FLOPs per epoch by the number of epochs used for each model. For
comparability across models, all FLOPs are expressed in GFLOPs.

Global notation and counting rule Given a common vector z € R4, we use following notations:
nt, denotes the number of training instances, n;, the number of inference instances, and d the input
dimensionality. Also, we denote FLOPs per sample by f, and the total FLOPs over the dataset by
F. If an algorithm supports per-sample inference, we report both f and F'. For models that do not
involve a distinct training phase, we set n = Ny = Ning.

Additions, multiplications, divisions, and comparisons are all counted as 1 FLOP, and the FLOPs
required for matrix multiplication between A € CM*¥ and B € CV*F are calculated as

Fap=2MNL—- ML
which consists of M N L multiplication and M L(N — 1) additions.

C.1 HOTELLING

Training FLOPs Hotelling’s statistic is
%= (2 —p) 'Sz - p),

where 1 € R? and ¥ € R*? are mean and covariance of the training set. In the training phase, the
inverse covariance matrix is calculated.

(i) Mean: y = % >, Ti costs
F, = (ng — 1)d+d = ng,d.
(i) Covariance: %3 = == >3 (w; — ) (i — p) " costs
Fs = nged + need? + (ng — 1)d? + d?
= n, (2d% 4 d)
with respect to subtraction, multiplication, addition, and division.

(iii) Inverse: Inverting 32 costs
FE—I ~ d3.

Summing up,

Pt — F 4 By + Fya

= 2n4,d” + 2ng,d + d°.
Inference FLOPs In the inference phase, the monitoring statistics 7 calculations are performed
sample by sample.
(i) Centering subtraction: v = x — |1 COSts
feen =d.
(ii) Matrix multiplication: T? = v £~ 1w costs
froat = 2d*> +d — 1.

Therefore, )
flnfer = fcen + fmat = 2d2 + 2d — 1a
Finfer — e e(2d2 + 2d — 1).
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C.2 PCA

Model-specific notation p: number of principal components retained (p < d).

Training FLOPs We estimate the mean and covariance exactly as in section and then obtain
the top-p eigenspace with QR decomposition.
(i) Mean: p = % >, T costs

Fp‘ = (ntr — 1)d+ d= ntrd.

(i) Covariance: 33 = == >3 (2 — p) (w; — p) " costs

Fs ~ ny.(2d% + d).
(iii) QR decomposition of matrix: Computing QR decomposition costs

Flee & 3d>.
Summing up,
Frain = B+ By + Fiee

= 2n4d? 4 2need + 3d2.
Inference FLOPs In the inference phase, reconstructions can be performed sample by sample.
Given r € R%, let U, € R?*? be the loading matrix.

(i) Projection: z = U, x costs

fproj = p(2d — ].)
(ii) Reconstruction: & = U,z costs

frec = d(2p - 1)

d
Jj=1

Jerr = 3d — 1.
Therefore, for each instance and total n;,¢ instances,
SR = foroj + ferr + frec = 4pd — p +2d — 1,
Fer — pie(dpd — p+2d — 1).

111 rror calculation. e = ||x — = XTi — T COSts
(iii) E leulati o — &[> = Y25, (x5 — &5)?

C.3 ABOD

Model-specific notation k: number of neighbors for Fast-ABOD.

Training/Inference FLOPs We first prepare k-NN neighborhoods, then evaluate the Angle Based
Outlier Factor (ABOF) score for a point using its k£ neighbors. This is Fast-ABOD which approxi-
mate original ABOD.

(i) All-pairs of Euclidean distances: Computing ||z; — x|z = \/Zle(a:il — x;1)? costs 3d. If
span this to all-pairs, it costs

Fuiss = (’;) (3d) = gn(n ~1)d.

(ii) Sorting distances: Sorting algorithms have approximated complexity of O(n log, n). Therefore,
sorting all-pair distances costs
Jsort = (n— 1) logs(n — 1),  Fyort = n(n —1)logy(n — 1).

(ili) ABOF calculation: ABOF is calculated by VAR p,ce, (4) (g s aez) and (5) = Sk(k—1)

is the number of neighbor pair cases.
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Reusing calculated distances, each pair needs one dot product and operations for multiplication and
normalization. Therefore, each pair needs 2d + 1 FLOPs and spans £k(k — 1) times within one
sample.

With 2k(k — 1) pairs, VAR = + > 0% — (% Zv)z costs 3k(k —1) + 1.
Then,
1 3
Jabot = ik(k —1)(2d+1)+ 5Ic(/c ~ D) +1=k(k-1)(d+2)+1
and
Fapot = nk(k — 1)(d + 2) + n.
Summing up,
Freinfinter = Fige + Faort + Fanot
=15n(n—1)d+ n(n —1)logy(n — 1) + nk(k — 1)(d + 2) + n.

C.4 LOF

Model-specific notation %: number of neighbors.

Training/Inference FLOPs We build £-NN neighborhoods and then compute reachability dis-
tances, local reachability density, and the LOF score.

(i) All-pairs of Euclidean distances: As calculated at Section|C.3] it costs

Fuisy = (Z) (3d) = %n(n ~1)d.

(ii) Sorting distances: Sorting algorithms have approximated complexity of O(n log, n). Therefore,
sorting all-pair distances costs

Jsort = (n —1)logy(n — 1),  Fiore = n(n — 1)logy(n —1).

(iii) Reachability distances: For each point =, and x, € Ni(x,), comparison operation
reach_dist(zp, x,) = max{disty(z,), dist(z,, z,)} is conducted. Total comparison costs

freach = k, Freach = nk.
(iv) Local reachability density (LRD): Formulation of LRD is

-1

1
LRD(zp) = | —— Z reach_dist(zp, x,)

Nil@p) | oo

Per point, £ — 1 additions, 1 division, and 1 scaling is conducted with total k + 1 FLOPs.

Therefore,
flrd:k+17 Hrd:n(k+1)
(v) LOF score: Formulation of LOF score is

1 LRD(z,)

LOF(z,) =+ Y LED(xo)
k 2oeNe(a) LRD(zp)

Per point, k divisions, k — 1 additions, 1 division is conducted with total 2k FLOPs.

Therefore,
flof - 2k', Eof = 2nk.

Summing up,

Ftrain/infer = Fdist + Fsort + Freach + Erd + Eof
= 1.5n(n — 1)d+n(n — 1)logy(n — 1) + nk + n(k + 1) 4 2nk.
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C.5 CBLOF

Model-specific notation [: maximum k-means iterations, C': number of clusters, L: number of
large clusters, |LC|: number instances in large clusters.

Training/Inference FLOPs CBLOF fits C' centroids with k-means and then scores samples using
the large-small cluster partition.

(i) K-means cluster assignment: For each sample z € R and each centroid ¢, squared distance
||z — c||? costs 3d — 1 FLOPs. Also, finding minimum distance centroid over C' centroids contributes
C — 1 comparisons.

Over n points and one iteration, it costs
Fassign/iter =n [C(3d - 1) + (C — 1)] .

(i) K-means centroid update: For each centroid, we accumulate assigned points and normalize
once. As we have n points and C' centroids, accumulation costs d(n — C') and normalization costs
Cd making total FLOPs for centroid update is nd.

Over n points and one iteration, it costs
Fupdate/iter = nd.
Therefore,
Fimeans = I (Figsign /iter T Fupdate/iter)
= I(3Cdn — n + nd).
(iii) Scoring with large/small partition: For each point x,,, score is computed as

|Cz| X minjeLc diSt(l‘p,Cj), if Tp € Ci, Cl € SC and Cj e LC

Seoreliy) = {|ci| x dist(zy, Cs) if z, € Cy, and G € LC

where C; denotes it" cluster and |C;| denotes the number of points in each cluster. Also, |LC/| is the
number of instances that belong to large clusters and |SC| is the number of instances that belong to
small clusters, formally, |SC| = n — |LC|.

If p € SC: As L large clusters exist, calculating distances to L cluster centroid costs L(3d — 1)
and comparing costs L — 1. Therefore, each point in small cluster need 3dL FLOPs, including
multiplication operation of cluster size.

If p € LC: Calculating distances to their own centroid costs 3d — 1 and multiplication costs 1
FLOPs. Therefore, each point in large cluster need 3d FLOPs.

Total scoring FLOPs for all n samples is
Fyore = 3d(|SC| - L+ |LCY)
= 3d((n —|LC|) L + |LC|).
Combining k-means and scoring,

Pt — p(3Cd + d — 1) + 3d((n — |[LC|) L + | LC)).

C.6 HBOS

Model-specific notation b: number of bins per feature.

Training FLOPs The training cost consists of histogram construction. Each sample-feature value
is assigned to a bin with one subtraction and one division, giving 2n,d FLOPs in total. Converting
counts to densities, computing bin widths, and performing the normalization check together require
5bd FLOPs.

Thus, '
Ftrain — on. d + 5bd.
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Inference FLOPs At inference time, the score of each sample is computed based on the his-
tograms. Each feature requires the computation of log, (hist + a), which costs 2 FLOPs per bin and
yields 2bd FLOPs in total. For every sample and feature, assigning the score with boundary checks
adds about 3 FLOPs, giving 3n;,sd FLOPs.

Therefore, )
Finfer — 3p. vd + 2bd.

C.7 LODA

Model-specific notation b: number of bins, ¢: number of random projections.

Training FLOPs The training cost consists of sparse random projections and histogram construc-
tion, covering both the computation of projected values and the assignment of sample to bins for
density estimation.

(i) Sparse projection: Each projection vector has v/d nonzero entries. Computing one projection
value z;; = ij w; requires 2v/d — 1 FLOPs. With ny, training samples and ¢ projections, the cost is

Froj = nie(2Vd — 1).

(i) Histogram construction: Each projected value must be assigned to a histogram bin. Using binary
search over the b bin edges requires log, b comparisons per assignment. The cost is therefore

Fyin = ngrclogy b.
Summing up, the training FLOPs are
prtrain _ Foroj + Foim
= nee(2Vd + logy b —1).
Inference FLOPs During inference, each sample is projected onto the c, its bin is determined, and
the corresponding density values are used to compute the anomaly score.

(i) Sparse projection: Each projection requires 2v/d — 1 FLOPs, and the total projection cost over
all histogram is

Foroj = ¢(2Vd — 1).

(ii) Bin lookup and score computation: For each projection, locating the appropriate bin via binary
search and computing log-density with accumulation require ¢ log, b+2 FLOPs. Over all projections
this becomes

foinscore = 0(10g2 b+ 2)
Therefore, including the final division for averaging across projections, the inference cost is

inf
fm o= fproj + fbinscore

:2cx/g+clog2b+c—|—l,

Finfer — ninf(QC\/g +clog, b+ c+1).

C.8 ISOLATION FOREST

Model-specific notation 7': number of trees, s: max samples per tree, v: Euler-Mascheroni con-
stant (y =~ 0.5772).

Training FLOPs Each tree is grown on a random subsample of size s. At each internal node, we
pick a random feature, sample a split value within the feature’s range, and partition the instances by
comparison. Let n; denote the expected number of samples at a node in level [. At a level [ node,
computing feature’s range costs n;, and partitioning the instances costs n;, since the tree is binary.
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Also, we approximate the tree height as h ~ log, s, the number of nodes in level [ as 2!, and number
of samples processed in a level [ node as n; ~ 3;. Therefore, computation at each node in level /
costs 2 x 7. The total cost for a single tree is

h—1
2(2 X % x 21) = 2sh = 2s1log, s.
1=0

For T trees the training FLOPs are approximated as

F'ain — T(2slog, s).

Inference FLOPs A sample is routed from the root to a leaf in every tree. The expected path
length ¢(s) for subsample size s is presented by authors of Isolation Forest (Liu et al., 2008).

c(s) =2H,_1 — A= D

~o(in(s 1) +7) 24 >
Each step down the tree costs one comparison, hence costs per sample across T trees are 1" - ¢(s).
Therefore,

Fotepdown = T - c(s) =T [2{In (s — 1) +~} — 2(1 — é)

E(h(2))
Anomaly score of the model is calculated by 2™ (=) .

Score calculation is performed by aggregating path lengths across the T trees. This requires 7' — 1
additions, followed by a normalization step that introduces two more scalar operations, division and
exponentiation. We thus fold these into an overall 7" + 2 overhead.

Therefore, per sample cost is
. 2
finfer — . e(s) + (T +2) :T[an(s— 1)+2y—-2+ } + (T +2).
s

For n;,¢ instances,
Finfer — ninf(T . C(S) + (T + 2))

= Ninf (T [21n(3—1)—|—2’y—2+ﬂ +(T+2)>.

C.9 HS-TREE

Model-specific notation 7': number of trees, h: maximum depth of tree, : reference window
size.

Training FLOPs Let |Node| = Z?:o 2! = 2h*1 _ 1 be the number of nodes in a full binary tree
of height h. Each tree is built by updating simple per-node statistics and routing the ¢ reference
samples level by level.

(i) Per-node statistic updates: For every node we find work range, yielding a constant cost of about
5 FLOPs per node.

Therefore, with a single tree,
F‘stat/tree = 5(2h+1 - ]-)

(ii) Routing the 1 reference samples: At level [ there are 2! nodes and, on average, each processes
/2! samples. With one comparison per routed sample, the cost per level is ).

Across levels,
h
Frouting/tree = Z’lp = 1/)(h + 1)
1=0

Total FLOPs calculated is
Ftraln = T(Fstat/trcc + Frouting/trcc)
=T(2" —1) +¢(h+1)).
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Inference FLOPs For each sample we route to level h and calculate score, and update leaf mass
statistics.

(1) Path routing and scoring: Per sample, one comparison per level is conducted with h levels and
scoring is conducted with the cumulative sum of Node.r x 2N°d¢-k which costs 3 FLOPs.

Thus,

frouting/tree =h+3.
(ii) On-path mass updates: Along the visited path, we update mass with 4 operations including two
comparison for lower and upper bound, addition of count, and depth comparison.

As each point pass h + 1 nodes,
fupdate/tree = 4(h’ + 1)
Therefore,

- T(frouting/tree + fupdate/tree)
— T(5h +7),

finfer

Finfer — ¢ T(5h + 7).

D DETAILED EXPERIMENT SETTINGS

Hyperparameter Tuning For both traditional and deep learning models, we defined hyperparam-
eter search spaces based on ranges commonly adopted in prior benchmark studies. For each model,
the parameters of each algorithm (e.g. number of estimators, number of bins, neighborhood size,
clustering parameters, latent dimensions, dropout rates, training epochs) were specified as candi-
date sets. These search spaces were predetermined and systematically explored through grid search
across all datasets. For each dataset and model pair, all hyperparameter combinations were eval-
vated, and the configuration yielding the highest AUROC was selected as the final setting. This
procedure ensured that every model was tuned in a consistent and performance-oriented manner
while remaining faithful to the parameter ranges established in the literature.

E ADDITIONAL EXPERIMENT RESULTS

E.1 ADDITIONAL RESULTS OF SECTION[4.1]

In our experiments, we provide the complete results for each dataset. The following tables report
AUROC and FLOPs across all evaluated models. We observe that GFLOPs for deep learning models
are generally much larger than those of traditional models, despite yielding comparable accuracy.
For clarity, the best AUROC in each table is highlighted in bold, while the second-best score is
underlined.

Table 6: All results on the PSM dataset with AUROC and GFLOPs.

GFLOPs |

Model Type Train  Inference Full-training AUROC T
Hotelling Statistical 0.17 0.11 — 0.77+0.00
ABOD Statistical 926.33 421.87 —  0.75+0.00
LOF One-class 917.76 416.07 — 0.73£0.00
CBLOF One-class 6.56 9.91 — 0.70+0.02
PCA Reconstruction 0.17 0.16 —  0.65+0.00
HBOS Statistical 0.01 0.01 - 0.73+£0.00
LODA Statistical 0.13 0.10 —  0.65+0.03
Isolation Forest One-class < 0.01 0.07 - 0.70+0.02
HS-Tree One-class < 0.01 0.10 —  0.5440.02
DAGMM Statistical 53.04 11.97 5304.37  0.50 £ 0.03
DeepSVDD One-class 3.13 0.71 313.22  0.69+0.01
LSTM-AE Reconstruction 2.45 0.55 244.67  0.76 £ 0.01
LSTM-VAE Reconstruction  54.73 12.35 13681.67  0.61 £ 0.06
USAD Reconstruction 0.26 0.06 65.79  0.52+0.01
OmniAnomaly  Reconstruction 2.03 0.46 40.6  0.61 £0.00
LUAD Reconstruction  991.13 223.60 29733.97  0.67+0.01
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Table 7: All results on the MSL dataset with AUROC and GFLOPs.

GFLOPs |

Model Type Train  Inference Full-training AUROC T
Hotelling Statistical 0.36 0.45 —  0.53£0.00
ABOD Statistical 334.71 536.74 — 0.63+£0.00
LOF One-class 334.41 536.36 — 0.56 £0.00
CBLOF One-class 0.89 2.60 — 0.65+0.01
PCA Reconstruction 0.36 0.64 —  0.53£0.00
HBOS Statistical 0.01 0.01 — 0.62+£0.00
LODA Statistical 0.15 0.21 — 0.47+0.02
IForest One-class < 0.01 0.14 —  0.62£0.01
HS-Tree One-class < 0.01 0.08 —  0.64 £0.03
DAGMM Statistical 10.22 4.31 510.87  0.50 £0.02
DeepSVDD One-class 25.34 10.68 2533.82  0.48 +£0.03
LSTM-AE Reconstruction 4.55 1.92 91.03  0.56 £ 0.00
LSTM-VAE  Reconstruction 2.12 0.89 530.67  0.53 £0.00
USAD Reconstruction 0.21 0.09 20.67  0.44 £0.00
OmniAnomaly  Reconstruction 0.62 0.26 12.49  0.53+0.00
LUAD Reconstruction  236.24 99.56 2362.43  0.50 £ 0.00

Table 8: All results on the SMAP dataset with AUROC and GFLOPs.

GFLOPs |

Model Type Train  Inference Full-training AUROCT
Hotelling Statistical 0.18 0.56 — 0.4240.00
ABOD Statistical 998.15 10281.98 —  0.64+0.00
LOF One-class 996.78  10277.64 —  0.62+0.00
CBLOF One-class 2.48 10.76 —  0.62+0.01
PCA Reconstruction 0.18 0.36 — 0.414+0.00
HBOS Statistical 0.01 0.03 —  0.61£0.00
LODA Statistical 0.08 0.29 —  0.45+£0.09
Isolation Forest One-class < 0.01 0.48 — 0.64+0.01
HS-Tree One-class 0.01 0.70 —  0.45+0.01
DAGMM Statistical 55.25 58.27 5525.14  0.51+0.01
DeepSVDD One-class 13.64 14.39 1364.39  0.60 £ 0.00
LSTM-AE Reconstruction 2.55 2.69 12740  0.49£0.03
LSTM-VAE Reconstruction 3.99 4.20 996.66  0.44 +0.02
USAD Reconstruction 1.14 1.20 283.82 0.414+0.01
OmniAnomaly  Reconstruction 3.44 3.63 68.85  0.47 +0.00
LUAD Reconstruction  516.11 544.28 5161.11  0.50 £ 0.01

Table 9: All results on the SMD dataset with AUROC and GFLOPs.
GFLOPs |

Model Type Train Inference  Full-training AUROC 1
Hotelling Statistical 2.10 2.10 —  0.73+£0.00
ABOD Statistical 38426.94 38428.58 — 0.71+0.00
LOF One-class 38357.60 38359.24 — 0.65+0.00
CBLOF One-class 36.30 34.65 —  0.72+0.01
PCA Reconstruction 2.10 2.09 — 0.65£0.00
HBOS Statistical 0.05 0.08 — 0.63+0.00
LODA Statistical 0.55 0.63 —  0.62+0.02
Isolation Forest One-class < 0.01 0.90 —  0.68£0.01
HS-Tree One-class < 0.01 0.81 —  0.64£0.02
DAGMM Statistical 87.14 29.05 8714.30  0.53 £0.05
DeepSVDD One-class 26.72 8.91 6679.65 0.61 +0.02
LSTM-AE Reconstruction 16.54 5.51 1653.89 0.77 +0.01
LSTM-VAE Reconstruction 158.21 52.74 39551.96  0.63 £ 0.01
USAD Reconstruction 7.51 2.50 1878.44  0.39 4+ 0.00
OmniAnomaly  Reconstruction 39.62 13.21 792.44  0.69 £0.02
LUAD Reconstruction ~ 5553.27  1851.13 166598.10  0.67 &+ 0.00
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Table 10: All results on the SWaT dataset with AUROC and GFLOPs.

GFLOPs |

Model Type Train Inference  Full-training AUROCT
Hotelling Statistical 2.64 2.39 — 0.65+0.00
ABOD Statistical 23615.66  19345.49 — 0.60+0.00
LOF One-class 23551.21  19287.13 — 0.7140.00
CBLOF One-class 3.95 4.01 —  0.81+0.01
PCA Reconstruction 2.64 2.42 —  0.82+0.00
HBOS Statistical 0.05 0.07 — 0.85+0.00
LODA Statistical 1.39 1.39 —  0.82+0.02
Isolation Forest One-class < 0.01 0.36 —  0.83+0.00
HS-Tree One-class 0.01 0.74 —  0.37+0.08
DAGMM Statistical 40.48 12.22 4047.64  0.51 £ 0.00
DeepSVDD One-class 51.09 15.42 12773.36  0.824+0.03
LSTM-AE Reconstruction 37.43 11.30 1871.30  0.76 +0.01
LSTM-VAE Reconstruction 116.89 35.29 29223.50  0.76 £0.11
USAD Reconstruction 6.56 1.98 655.69  0.81 +0.00
OmniAnomaly  Reconstruction 5.13 1.55 102.60  0.83 4+ 0.00
LUAD Reconstruction 565.27 170.64 16958.00  0.75 4 0.01

Table 11: All results on the WADI dataset with AUROC and GFLOPs.

GFLOPs |

Model Type Train Inference  Full-training AUROC T
Hotelling Statistical 23.93 5.27 —  0.563£0.00
ABOD Statistical 125697.00 6047.49 —  0.49+£0.00
LOF One-class 125611.70  6028.72 —  0.54£0.00
CBLOF One-class 97.02 1.66 —  0.53£0.01
PCA Reconstruction 23.93 3.18 —  0.50=%0.00
HBOS Statistical 0.19 0.06 — 0.74+0.00
LODA Statistical 1.46 0.34 —  0.72£0.04
Isolation Forest One-class < 0.01 0.33 —  0.744+0.02
HS-Tree One-class < 0.01 0.20 - 0.63%£0.05
DAGMM Statistical 750.82 55.12 75081.59  0.45+0.05
DeepSVDD One-class 97.48 7.16 24369.08  0.43 £0.03
LSTM-AE Reconstruction 49.08 3.60 4907.52  0.54 £ 0.00
LSTM-VAE Reconstruction 206.30 15.15 51575.30  0.54 £0.01
USAD Reconstruction 29.25 2.15 7312.16 0.45+0.01
OmniAnomaly  Reconstruction 71.70 5.26 1433.97  0.58 +0.00
LUAD Reconstruction 7269.83 533.72 218094.80  0.54 4+ 0.00

E.2 ADDITIONAL RESULTS OF SECTION[4.2]

For each dataset, we report the estimated execution time under Highly Resourced, Mobile, and Edge
scenarios. The following figures show dataset specific visualizations that highlight differences in
model feasibility across environments. These results confirm the overall trend that deep learning
models demand substantial resources, while traditional models remain efficient, although the degree
of variation differs across datasets.
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Figure 4: Estimated execution time on PSM.
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Figure 8: Estimated execution time on SWaT.
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Figure 9: Estimated execution time on WADI.

E.3 ADDITIONAL RESULTS OF SECTION[4.3]

We report scalability tests conducted across datasets of varying dimensionality, where FLOPs were
calculated by progressively slicing the size of the dataset. For each dataset, the maximum test range
was defined by the smaller length of either the training or inference set, ensuring comparability
between the two phases. All models evaluated in this study are included. The left panel of each
figure depicts training FLOPs, while the right panel presents inference FLOPs, with both y-axes
plotted on a logarithmic scale. Overall, the results reveal consistent scaling patterns across datasets.
k-NN based methods exhibit steep growth in computational cost as data size increases, while tree-
based and projection methods remain relatively efficient.

—e— ABOD —¥— HBOS LODA PCA
CBLOF —»— HS-Tree  —+— LOF USAD
-4 DAGMM Hotelling LUAD LSTM-AE
-4-- DeepSVDD —+— IForest OmniAnomaly LSTM-VAE
Train FLOPs — PSM (dim=25) Inference FLOPs — PSM (dim=25)
10000 p
1000 _-—4—-“""“""»‘"_‘"_’
b-
&
S %
T 1.00
v}
0.10
0.01 .
0.00 R
10000 0000 30000 4000 000 (0000 ;000 gq000 10000 0000 30000 4000 000 (000 ;00 gg000
Data size (instances) Data size (instances)
Figure 10: Scalability results on PSM.
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Figure 11: Scalability results on MSL.
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Figure 12: Scalability results on SMAP.
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Figure 13: Scalability results on SMD.
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Figure 14: Scalability results on SWaT.
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Figure 15: Scalability results on WADI.

E.4 LLM USAGE STATEMENT

The large language model (LLM) was used solely to improve the clarity and readability of the
manuscript. Specifically, they helped polish the writing, refine grammar, and improve phrasing. The
use of LLM was limited to language editing, and LLM did not contribute to the ideation of the
research, experimental design, implementation, analysis, or interpretation of the results.
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