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Figure 1: We present LinPrim, a new take on novel view synthesis, that leverages linear primitives
- octahedra and tetrahedra - for differentiable volumetric rendering in order to facilitate 3D scene
reconstruction. To this end, we propose a differentiable rendering pipeline in conjunction with a
real-time capable rasterizer tailored to such primitives, thus achieving interactive frame rates for
novel-view rendering and showcasing the potential of polyhedral primitives in NVS workflows.

Abstract

Volumetric rendering has become central to modern novel view synthesis meth-
ods, which use differentiable rendering to optimize 3D scene representations
directly from observed views. While many recent works build on NeRF [18]
or 3D Gaussians [13], we explore an alternative volumetric scene representa-
tion. More specifically, we introduce two new scene representations based on
linear primitives—octahedra and tetrahedra—both of which define homogeneous
volumes bounded by triangular faces. To optimize these primitives, we present a
differentiable rasterizer that runs efficiently on GPUs, allowing end-to-end gradient-
based optimization while maintaining real-time rendering capabilities. Through
experiments on real-world datasets, we demonstrate comparable performance to
state-of-the-art volumetric methods while requiring fewer primitives to achieve
similar reconstruction fidelity. Our findings deepen the understanding of 3D repre-
sentations by providing insights into the fidelity and performance characteristics of
transparent polyhedra and suggest that adopting novel primitives can expand the
available design space. 1

1Website: https://nicolasvonluetzow.github.io/LinPrim/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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1 Introduction

Novel View Synthesis (NVS) enables a holistic understanding of 3D scenes given only 2D observations.
This capability is essential to a range of applications, including VR/AR, robotics, and autonomous
driving. The success of state-of-the-art NVS approaches depends heavily on the chosen scene
representations and the processes used to render them. In addition to visual quality, the representations
have inherent characteristics that largely impact the ability to work with the reconstructed scenes in
downstream applications. Explicit representations have proven particularly desirable due to their
easily interpretable and manipulable structures.

Approaches in NVS utilize a wide range of scene representations that differ significantly from the
conventional triangle-mesh-based pipelines used in most 3D applications. While triangle meshes are
central to standard 3D content creation, their direct optimization in NVS tasks remains challenging [21,
6]. Instead, it is essential to explore the extensive design space of possible representations to assess
how they impact fidelity, performance, and stability in NVS settings.

The strongest visual quality in NVS applications is currently achieved by approaches relying on
Neural Radiance Fields (NeRF) [18, 3, 1, 2]. Although the results are impressive, NeRFs encode
an implicit function, making them suboptimal for downstream applications. For instance, editing or
scene animation require elements to be easily identified, accessed, or manipulated, which is inherently
difficult with NeRF representations [31, 22]. Additionally, the corresponding volumetric rendering
process is computationally expensive, often making real-time applications infeasible. More recently,
3D Gaussian Splatting (3DGS) [13] introduced a real-time capable, explicit representation that also
achieves strong visual performance. The 3DGS representation consists of 3D Gaussian kernels, which
are optimized on known views to adjust their position and features. As evidenced by the large body
of derivative works relying on 3DGS [30, 12, 17, 5, 25], the explicit nature of the representation
simplifies integration into other pipelines and settings.

Motivated by the scientific curiosity of how simple, bounded primitives can be used to reconstruct
high-fidelity real-world scenes, we explore an alternative to 3DGS by employing transparent polyhe-
dra as our scene representation. Specifically, we introduce two novel scene representations based
on octahedron and tetrahedron primitives. Each primitive is characterized by a compact set of
features that describe its position, vertices, opacity, and view-dependent appearance. These primi-
tives are bounded by triangular faces and of homogeneous density, which makes them an intuitive
representation that can be easily understood and modified.

We build on the 3DGS pipeline to accommodate the new primitives. Our method first constructs poly-
hedra from a concise set of features in a fully differentiable manner. During rendering, we then rely
on simple ray-triangle intersections to determine the opacity of each primitive and successively blend
them. As a result, we can backpropagate image-space errors through the intersection calculations
to distribute gradients onto the geometric features of each polyhedron. The optimization remains
analogous to 3DGS, yet the bounded, triangular geometry of our primitives expands the applicability
of differentiable rendering pipelines. Finally, we analyze the photometric reconstruction quality and
performance of our approaches on real-world scenes. We are able to show comparable results while
retaining real-time rendering speeds.

To sum up, our contributions are as follows:

• We introduce two novel scene representations based on transparent octahedron and tetrahe-
dron primitives.

• We derive gradient-based optimization processes for the representations to adjust the primi-
tives and population based on known views.

• We demonstrate that our differentiable, GPU-based rendering pipeline is real-time capable
and produces high-fidelity scene reconstructions on real-world datasets.

2 Related Works

Volumetric Rendering of Radiance Fields A major innovation in NVS has been the development
of volumetric rendering approaches that represent scenes as continuous radiance fields. The seminal
Neural Radiance Fields [18] demonstrated how to learn a 5D function, mapping 3D coordinates
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and viewing directions to color and density, using a neural network. The rendering process used
is differentiable, enabling the optimization of the representation given a known set of input views.
Since its introduction, many subsequent works have improved on the initial approach. In particular,
Mip-NeRF [1, 2] and Zip-NeRF [3] have drastically improved the visual quality by introducing
multi-scale representations, anti-aliasing, and learned compression techniques. Instant-NGP [20]
takes a different approach by accelerating both training and inference times via a multiresolution
hash-based encoding strategy, allowing near real-time reconstruction and rendering.

Despite these advancements, NeRF-based methods remain primarily implicit, often resulting in
comparatively high rendering and optimization costs. Their implicit nature can limit usability in
downstream tasks. Since geometry and appearance are learned as continuous fields, no explicit
surface representation is available by default. Using NeRF-based representations in downstream
applications thus relies on specialized approaches or expensive post-processing [27, 26].

Differentiable Point-based Rendering Point-based rendering has traditionally been seen as an
alternative to mesh-based pipelines due to its simplicity in handling geometry and varying levels of
surface detail [32, 10]. More recently, differentiable point-based methods have emerged, enabling
end-to-end optimization of both geometry and appearance from image supervision [23, 28, 16].

The seminal work of 3D Gaussian Splatting [13] replaces traditional point primitives with elliptical
Gaussian kernels. By optimizing the position and shape of the kernels from known views, they can
create an explicit 3D reconstruction from known views. Additionally, each Gaussian can be efficiently
"splatted" onto the screen space, allowing for real-time rendering performance. Building on the
foundation of 3D Gaussian Splatting, Mip-Splatting [30] tackles aliasing by controlling the maximum
frequency of the splats, effectively reducing flickering and dilation artifacts. This is achieved by
filtering and scaling Gaussian primitives to better match the level of detail required at different
viewing distances, preventing excessively sharp or overlapping splats.

Other works replace the Gaussian distributions with other primitives to achieve improved performance.
Beyond Gaussians [4], replaces Gaussian kernels with linear kernels to achieve sharper and more
precise results in high-frequency regions. Compared to our work, however, the primitives remain
elliptical and non-homogeneous in density. In contrast, EVER [17] uses homogeneous density
ellipsoids to replace alpha-blending with an exact rendering process, which avoids popping artifacts.
3D Convex Splatting [11] employs 3D smooth convexes, completely detaching it from the Gaussian
context. Their primitives offer improved flexibility and reconstruction quality.

Although these methods offer notable improvements, we instead aim to explore novel representations
that rely on simple distinct primitives. While all of the above methods introduce novel primitives or
rendering processes, they share the general optimization process using known views and differentiable
rendering. As such, we aim to foster innovation by exploring foundational primitives to improve the
general understanding of the scene representations used in NVS settings. For this, our work focuses
on transparent polyhedra bounded by triangular faces, keeping compatibility with conventional
geometry-processing tools while maintaining high fidelity and rendering speed.

3 Method

3.1 Linear Rendering Primitives

We introduce two representations based primarily on polyhedron primitives. For each primitive, a
set of features that can accurately describe its shape needs to be defined. In our case, these include
geometric parameters, position, opacity, and color.

Octahedra. Importantly, there is a wide range of possible octahedra of which we only model a
subset. We specifically ignore cases with non-triangular faces, which are difficult to handle and can
lead to unpredictable numbers of vertices and edges. Moreover, to prevent degenerate cases, we
limit the degrees of freedom by restricting vertex positions to lie on the coordinate axes relative to
the center. To increase expressiveness, we instead optimize a rotation quaternion for each primitive,
which ensures the shape can be oriented arbitrarily in space.

We enforce symmetry by choosing a single distance to describe opposing corners. Hence, each pair
of opposite vertices shares the same distance from the center, effectively reducing the complexity
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Figure 2: Overview of our method. Primitives are constructed from SfM points. During rendering,
primitives are preprocessed according to the camera pose and sorted front-to-back. Afterward, the list
is traversed and the individual color contributions are blended for each pixel. Through comparison
with a known view, the primitives’ features and the population are adjusted based on gradient flow.

of shape parameters. Aside from improving stability, this ensures that the center is always the
true geometric center of the octahedron, simplifying downstream tasks such as bounding volume
calculations and ray space approximation.

Tetrahedra. Although we focus primarily on octahedra, the same principles can be extended to
accommodate many types of homogeneous volumes. As a particular example, we demonstrate the
usage of tetrahedron primitives to reconstruct scenes. Contrary to octahedra, even regular tetrahedra
are not symmetric along all axes and thus require adjustments to the stored features. In particular, we
define four basis vectors, which describe directions from the center on which corners are located. All
basis vectors are equally spaced such that they can represent regular tetrahedra. We then once again
optimize for the distance between the center and each corner, keeping the process largely the same.
Contrary to octahedra, this means that the optimized position can differ from the geometric center of
the primitive.

Memory Requirements. In total, omitting color, each primitive is fully described by its center,
rotation, corner distances, and opacity. For octahedra, this yields 11 floats in total, matching the
parameter budget of a standard Gaussian kernel. Due to the absence of symmetry in our formulation,
tetrahedra require 12 floats instead.

To describe colors and their view-dependent appearance, we utilize Spherical Harmonics (SH)
coefficients, following the same approach described in 3DGS. Each primitive thus also stores a set
of 48 SH coefficients, which aim to capture complex reflectance properties under varying angles
of illumination and view. Because each coefficient is stored as a float, this set of SH parameters
accounts for the majority of the memory used per primitive—by a significant margin compared to the
geometric parameters. Thus, reducing memory consumption, in practice, hinges largely on either
lowering the SH degree or decreasing the total number of primitives in the scene.

3.2 Rendering Process

We use a two-stage rendering process, beginning with per-primitive preprocessing and followed by
per-pixel rasterization. This approach enables efficient parallelization by allowing many primitives to
be processed in parallel before the final compositing stage.

Preprocessing. During preprocessing, we construct each primitive from the aforementioned features
(i.e. the position, distances, and rotation). Given the camera pose, we then transform the primitives into
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the camera’s coordinate system and calculate the view-dependent color based on the viewing direction.
Afterward, we project these primitives into the 3D affine ray space approximation introduced in EWA
Splatting [32, 33]. Because small primitives are needed to achieve high-fidelity reconstructions, and
because the approximation error grows with increasing distance from the center points, we found
that the resulting error remains negligible while still reducing overall performance overhead (see
Appendix D). Lastly, we compute each primitive’s projected bounding box in screen space to later
derive the pixels from which it is visible.

Global Sorting and Tiling. Following preprocessing, we leverage the tiling and global sorting
techniques from 3DGS to map primitives to their corresponding pixels efficiently. We tile the screen
into regions and sort primitives within each tile according to approximate front-to-back order.

Rasterization. During rasterization, each pixel ray either intersects a given primitive twice or not
at all, since the introduced primitives are convex. To find intersections, we use the Möller-Trumbore
intersection algorithm (MTIA) [19], which is fully differentiable and thus usable in our gradient-based
optimization. If there are no intersections, the primitive is not visible; if there are two, the opacity
depends on the distance between the intersection points. As our reconstruction is scale ambiguous, we
must normalize the obtained intersection distances to ensure consistent appearance across different
scene sizes. We do this by determining the smallest distance d of the primitives and then scaling all
distance measurements accordingly in a manner similar to EVER [17]. I.e. given the opacity of a
primitive α, we define the density of an octahedron as:

σ(α) = − log(1− 0.99 · α)
2 ·min(dx, dy, dz)

. (1)

We did experiment with optimizing for the unnormalized densities directly instead of the intermediate
value of the opacity, but found no performance gains in practice, while decreasing the interpretability
of the feature values.

Compositing. Finally, we aggregate the color contributions of all visible primitives via alpha
blending in front-to-back order. Because we maintain a sorted list of primitives for each tile, we
can stop blending once cumulative opacity reaches a predefined threshold (i.e. 0.999), improving
performance without noticeably affecting quality. While this approach simplifies behavior when
primitives overlap, the end result is a high-fidelity rendering that faithfully reproduces fine geometry
while being efficient enough for real-time applications, as shown in Appendix A.

3.3 Anti-Aliasing

In the context of Gaussian kernels, Mip-Splatting [30] introduced two antialiasing methods for
Gaussian primitives: a 3D smoothing filter and a 2D Mip filter. In conjunction, they are able to
control the maximum frequency of primitives, mitigating aliasing and dilation artifacts.

We adopt their 3D smoothing strategy to limit how small primitives can become based on visibility
from the training views. As a result, each primitive is visible from at least one pixel of a training view.
However, applying their 2D Mip filter approach is not possible for our primitives because they rely
on modifying the screen space Gaussian distribution. Instead, for each primitive, we identify vertices
that lie on the bounding box used for tiling and shift them outward, parallel to the screen. This
effectively enlarges the bounding box footprint and increases the minimum size at which the primitive
appears. Moreover, because the fall-off within each primitive is still treated as linear, expanding
the distance from the center raises the opacity along the primitive as it is evaluated over a larger
extent. Conceptually, this approach acts as a coarse approximation that serves to band-limit the
high frequencies that would otherwise cause visible aliasing. Although this approach is not fully
mathematically equivalent to a 2D Mip filter, it captures its function and empirically mirrors its
behavior. We evaluate the effectiveness of the filters in Appendix C.

3.4 Optimization

We employ differentiable rendering to optimize our primitives’ features from known views. For this,
we use the loss formulation of 3DGS [13], consisting of L1 and SSIM terms. The gradients are then
optimized using ADAM [15] and backpropagated through the entire rendering pipeline, effectively
distributing the updates across the primitive features.
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Rasterization Backpropagation. As a first step, backpropagation through the blending process
yields gradients with respect to each primitive’s alpha and color. When these gradients are propagated
further, the alpha gradient indicates whether the primitive should be more or less transparent and,
consequently, whether the intersections should move closer together or farther apart along the pixel’s
ray. By following the resulting intersection gradients, we can adjust each primitive’s center and
vertices accordingly to achieve the desired changes. This corresponds to backpropagation through
the MTIA, where the intersection depth is influenced by the position of each of the corners of the
triangle. In turn, the positions of the corners depend on the position of the ray space center and the
offsets to it. Combining the above, by aggregating over the corners and both intersections, we can
propagate gradients from alpha to the geometric features. Further details are in Appendix E.

Preprocessing Backpropagation. By this point, the gradients describe the loss w.r.t. the features
that were originally passed to the rasterization step. While they already describe desired changes
to the position of the center and corners, they do so in ray space. As a consequence, propagation
through the preprocessing first involves reversing the projection and view transformations, yielding
world space gradients. The final center gradients are a combination of the propagated ray space center
gradients and the impact of the position on the ray space approximation and view-dependent color.
Finally, the gradient flow w.r.t. to the corners splits when undoing the rotation, onto quaternion and
distance features, respectively. As our scenes are scale ambiguous, we use the maximum distance
between two training cameras to approximate their size and adjust the learning rates for position and
distances accordingly.

3.5 Population Control

While the above optimization process can effectively optimize a set of primitives, it cannot create or
remove them if required. In addition to an initialization scheme, this raises the need for additional
processes to control the population of primitives. While we generally adapt the processes introduced
by 3DGS, they require adjustments to accommodate the novel primitives.

Figure 3: Visualization of our scene representa-
tion. We show all octahedra with an opacity of
at least 0.25 on an optimized Mip-NeRF 360 [2]
Bicycle scene reconstruction.

Initialization. We initialize a primitive for
each Structure-from-Motion (SfM) [24] point
using its position and color. Every primitive
is constructed with equal distance features to
all corners, using the distance between the cor-
responding SfM point and its closest neighbor
as a starting point. While Gaussian kernels are
circular when initialized and thus unaffected by
rotations, our kernels are not. Thus, we initialize
the primitives with a uniformly random rotation
quaternion to create a more homogeneous spa-
tial coverage.

Adaptive Population Control. Efficient pop-
ulation control requires processes to prune unde-
sired primitives and create ones that can improve
fidelity. For pruning, primitives are removed if
they are too transparent, too large relative to the
scene extent, or take up too much screen space of a known view. This necessitates defining the size
of a primitive to determine these criteria. For octahedra, we define their size as their longest axis, i.e.
twice the size of the longest distance. For tetrahedra, determining their largest possible depth is more
involved, and we instead approximate using

√
2 times the distance to the furthest corner.

Creating new primitives is realized as either cloning or splitting existing ones. For this, primitives that
have large view-space positional gradients are chosen, with smaller ones being cloned and larger ones
being split based on the size of the primitives, as described above, and the size of the scene. Cloning
a primitive creates a new primitive with the same features but without the gradient momentum, which
is directly applicable to our representations.

Splitting, on the other hand, usually involves creating two new primitives with smaller sizes and
placing them by sampling from the original Gaussian as a PDF. To adjust this for octahedra, since the
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distances are aligned with the coordinate axes and symmetric, we sample the new positions from a
PDF with standard deviations set to the corresponding distance and apply rotation afterwards. This
way, primitives are more likely to spread along the longer dimensions of the octahedra. For tetrahedra,
this is not trivially possible, and we instead set all standard deviations to half the largest distance. A
sample result of the resulting population of octahedra can be seen in Figure 3.

LinPrim-MCMC. We aim to keep as many factors - apart from the primitives themselves - fixed
between our approach and the Gaussian baseline. As such, our population control paradigms closely
mirror the behavior of 3DGS. Nonetheless, we demonstrate the fact that LinPrim remains compatible
with advancements made on Gaussian kernels and analyze the impact of population control by
implementing a separate population control technique from GS-MCMC [14] for our octahedron
primitives. They rethink population control as drawing samples from the distribution of the scene,
which not only improves performance but also allows precise control over the final population size.

We again adopt their approach as close as possible to minimize undesired performance impacts. In
this case, we essentially act as if our primitives are Gaussians with the same features. We account
for the differences in magnitude between octahedron distances and Gaussian standard deviations
by scaling down distances by a factor of 2.6. After this scaling, the size of the supposed Gaussians
more closely resembles the primitives they imitate. A related concept was explored as Distribution
Alignment in Beyond Gaussians [4].

4 Experiments

We evaluate our results on Mip-NeRF 360 [2] and ScanNet++ v2 [29]. For Mip-NeRF 360, we use
all 9 available scenes, while for ScanNet++, we use only the first five NVS scenes with available
test views. Mip-NeRF 360 primarily features forward-facing captures centered around a single
object or region of interest, whereas ScanNet++ consists of indoor scenes with more diverse camera
trajectories and test views located farther from the training coverage. We train and test on the official
splits provided by each dataset and maintain consistent parameters across all evaluated scenes. All
approaches are trained for 30k iterations.

Following prior work, we use Mip-NeRF 360 outdoor scenes at quarter resolution and indoor scenes
at half resolution. For ScanNet++ scenes, we use the official toolkit to undistort the images and use
them at full resolution. All approaches are trained, rendered, and evaluated at the same resolution.

While a large body of work has proposed improvements to 3DGS, we primarily focus on the original
formulation, the modifications introduced by Mip-Splatting, and the convex primitives from 3D
Convex Splatting (3DCS) [11], as these are most closely aligned with the foundational changes
introduced in our method. It is important to note that, although most evaluated approaches share
an equal number of parameters per primitive, each 3D convex in 3DCS is defined by six points,
resulting in a higher overall parameter count and making a direct comparison of parameter budgets
less straightforward.

4.1 Reconstruction Quality

We measure reconstruction quality using the standard image metrics PSNR, SSIM, and LPIPS. On
the ScanNet++ v2 dataset, our method consistently achieves scores close to 3DGS, Mip-Splatting,
and 3DCS despite using significantly fewer primitives, as visible in Table 1. We also compare against
GS-MCMC [14], which enables explicit control over the primitive population, and demonstrate that
our primitives can effectively leverage the same population heuristics, achieving improved average
performance at equal population counts. For Mip-NeRF 360 scenes, we see a similar trend of
comparable performance but with a more compact representation, as can be seen in Table 2. These
results align with other works that suggest that the number of used Gaussians can be drastically
reduced without a negative impact on performance through the introduction of more advanced
population control paradigms [8, 9].

Figure 4 illustrates that our method faithfully reconstructs many challenging regions while sometimes
showing slightly lower overall fidelity. These outcomes stem, in part, from the bounded nature
of our primitives, which enforce sharper, more “binary” decisions in underconstrained areas. In
practice, this can lead to better depth estimates and crisper reconstructions in reflective or transparent
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Figure 4: Qualitative Results on test views from ScanNet++ v2 scenes [29].

regions—such as glass or distant backgrounds—but can also result in more conspicuous edges on
rarely observed surfaces like ceilings (see Appendices F and F). Overall, we find our approach to
work the best in smaller, more densely captured scenes, as it retains strong geometric and visual
clarity without overly densifying frequently observed regions. Further results on Mip-NeRF 360
scenes can be seen in Appendix H.

4.2 Tetrahedra Evaluation

In Table 3, we evaluate our tetrahedron approach using the same datasets, parameter constraints,
and optimization framework described previously. By simply swapping octahedra for tetrahedra, we
demonstrate that our method generalizes well to polyhedra with different geometric constraints and
can still produce photorealistic reconstructions. Quantitatively, our tetrahedron approach performs
similarly to octahedra on the ScanNet++ scenes and struggles on Mip-NeRF 360, highlighting the
benefits of the increased symmetry and stability inherent to our octahedra. Although our existing
pipeline was designed primarily around octahedra, these results confirm that it is not narrowly
tailored to one specific primitive type. Nonetheless, tetrahedra could likely benefit from specialized
adaptive population control and projection techniques that fully consider their asymmetric geometry,
potentially closing the performance gap on currently challenging scenes. For instance, tuning how
we split tetrahedra could yield further gains in accuracy.

Notably, tetrahedra and octahedra both converge to similar final primitive counts. On average, we
obtained 259k tetrahedra for ScanNet++ scenes and 2.20M for Mip-NeRF 360, matching the counts
of octahedra used in our experiments reasonably well. This suggests that switching between these
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Table 1: Quantitative Results on ScanNet++ v2 scenes [29]. We limit the MCMC-based approaches
to use as many primitives as LinPrim and 3DGS do on average. Our method achieves comparable
performance while using much fewer primitives under default population control, and slightly
higher quality when combined with MCMC-based densification. Scene identifiers are shortened for
readability.

39f36d 5a269b dc263d 08bbbd fb564c Mean Prim.

3DGS [13] 27.70 23.68 23.44 22.44 23.21 24.09 738k
Mip-Splatting [30] 27.73 23.64 23.45 22.57 23.22 24.12 977k
3DCS [11] 27.59 24.19 22.92 22.78 23.84 24.26 440k
LinPrim 27.56 23.84 22.67 22.31 23.80 24.04 255k

GS-MCMC [14] 27.90 23.79 23.78 23.66 23.37 24.50 255k
27.70 23.40 23.80 23.44 22.28 24.12 738k

LinPrim + MCMC 27.62 24.03 23.33 22.98 24.07 24.41 255k
27.74 24.13 23.57 23.33 23.97 24.55 738k

Table 2: Quantitative Results on Mip-NeRF 360 scenes [2]. We limit the MCMC-based approaches
to use as many primitives as 3DGS do on average. † 3DCS [11] uses two different sets of hyperpa-
rameters for outdoor and indoor scenes.

PSNR SSIM LPIPS Primitives

3DGS [13] 27.43 0.813 0.217 3.32M
Mip-Splatting [30] 27.79 0.827 0.203 4.17M
3DCS [11] † 27.22 0.801 0.208 1.02M
LinPrim 26.63 0.803 0.221 1.79M

GS-MCMC [14] 28.09 0.836 0.187 3.32M
LinPrim + MCMC 27.04 0.812 0.211 3.32M

primitive types does not inherently impose a significant memory or computational overhead. Future
work on refining geometric constraints, feature parameterization, and splitting heuristics could unlock
even better performance for tetrahedron-based approaches.

Table 3: Comparison of the performance of our Octahedron and Tetrahedron approaches on Scan-
Net++ v2 [29] and Mip-NeRF 360 [2] scenes. Both approaches produce comparable results on
ScanNet++ scenes, but our Octahedron approach reaches higher reconstruction quality on Mip-NeRF
360 scenes.

ScanNet++ Mip-NeRF 360
PSNR SSIM LPIPS PSNR SSIM LPIPS

Octahedron 24.04 0.849 0.281 26.63 0.803 0.221
Tetrahedron 24.05 0.848 0.302 25.96 0.790 0.247

4.3 Limitations

While our method demonstrates comparable results and is easily understood and modified, it is not
without drawbacks. First, the bounded nature of our primitives can introduce hard edges in poorly
observed regions, resulting in more "segment-like" artifacts under limited view coverage. In these
regions, the ability of Gaussian kernels to smoothly transition into each other leads to more visually
pleasing results, even if the reconstruction is not necessarily better. Second, while our adapted
population control and MCMC-based updates modulate primitive populations well, these processes
were originally designed for Gaussian primitives and are therefore not yet fully optimal for polyhedral
representations. Future work could explore more specialized strategies for splitting, cloning, and
sampling that better exploit the geometric structure of polyhedra. Finally, the rendering efficiency
of our current implementation remains below that of the optimized Gaussian-based rasterizer (see
Appendix A). Reducing the computational overhead of polygon-based rasterization by leveraging
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existing optimized tools and pipelines for triangle-based rendering would substantially enhance the
scalability and practicality of our approach.

Broader Impact. Our work provides a new approach to novel view synthesis, which extends the
design space of 3D scene representations. It has the potential to improve the quality and performance
of 3D reconstruction and downstream applications, benefiting research in graphics, vision, robotics,
and related fields. We do not anticipate any adverse environmental, societal, or ethical effects.

5 Conclusion

We introduced a novel framework for volumetric scene reconstruction based on linear primitives,
specifically octahedra and tetrahedra. Our formulation jointly optimizes geometry and appearance
through a compact set of shape parameters in a fully differentiable manner. Exploiting the inherent
symmetries of octahedra enables stable, high-fidelity reconstructions while maintaining a low memory
footprint. In addition, our experiments with tetrahedra show that the concept generalizes naturally to
other triangle-based volumes, highlighting its flexibility. Despite using significantly fewer primitives,
our method achieves competitive performance across challenging datasets, demonstrating its effec-
tiveness for real-world applications. At the same time, the bounded nature of our primitives promotes
more distinct structural representations, resulting in crisper reconstructions in highly view-dependent
areas and a more accurate geometric understanding, all without increasing sensitivity to initialization
(see Appendices B and F).

Promising future work could focus on further leveraging the inherent properties of our primitives.
For instance, their triangular faces closely resemble traditional meshes, suggesting a natural bridge
between primitive-based and mesh-based representations. Developing efficient and accurate methods
to binarize primitive opacity [7] could enable direct mesh optimization from images. Moreover,
while the rendering enhancements introduced by EVER [17] require substantial modifications for
Gaussian-based methods, our primitives naturally support intersection tests with homogeneous vol-
umes, eliminating the need for explicit ray tracing and allowing exact blending without additional
computational overhead. Leveraging existing triangle-mesh rendering pipelines could further ac-
celerate our approach, substantially improving efficiency while removing the need for ray-space
approximations (see Appendices A and D). Beyond static reconstruction, exploring downstream
applications of our primitives—such as dynamic or deformable scene representations—constitutes an
interesting direction for future research.

To summarize, we hope our linear primitives open up new possibilities for representing scenes in
NVS applications and foster the creation of novel scene representations.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
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Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Rendering Performance and Efficiency

Rendering Speed. We measure rendering speed as the average time required to render each train
and test of a scene. All timings are recorded on a single RTX 3090 GPU at the same resolutions
used for optimization, ensuring a fair comparison across all methods. As shown in Table 4, all
evaluated approaches achieve real-time performance, demonstrating that our primitives can be
rendered interactively. Our octahedron-based method reaches 68fps on ScanNet++ and 29fps on
Mip-NeRF 360. Meanwhile, our tetrahedron variant achieves 175fps on ScanNet++ and 66fps on
Mip-NeRF 360, making it about twice as fast as the octahedron approach due to having only half the
faces to process per primitive.

Table 4: Quantitative Results on the rendering speed
of tested approaches. We report the average time to
render every train and test view on ScanNet++ v2 and
Mip-NeRF 360 scenes.

ScanNet++ Mip-NeRF 360

3DGS [13] 5.7ms 8.8ms
Mip-Splatting [30] 11.0ms 20.3ms
LinPrim 14.6ms 34.6ms
LinPrim - Tetrahedron 5.7ms 15.2ms

Rendering Efficiency and Trade-offs. To
further assess efficiency, we optimize vari-
ants of the same scene with different prim-
itive counts and measure rendering speed
across these populations (Table 5). While
primitive subsampling would simplify com-
parisons, it fails to reflect realistic optimiza-
tion behavior, as smaller populations are
compensated by larger primitives. Render-
ing speed depends mainly on the number
of visible primitives rather than total popu-
lation: notably, GS-MCMC renders slower
than 3DGS despite using roughly one third
as many primitives. We can estimate a performance equilibrium of octahedra and Gaussians from
Table 5 at around five Gaussians per octahedron, or around 1.6 faces per Gaussian, providing a
starting point for future optimizations.

Table 5: Comparison of the rendering speed at varying primitive populations on optimized versions
of ScanNet++ scene 39f36da05b. †We subsample the initial SfM points to 1/3 for the 50k and 1/2 for
the 100k version since we cannot remove primitives when using MCMC densification.

Primitives Rendering Speed

3DGS [13] 795k 4.94ms (202fps)
GS-MCMC [30] 255k 5.60ms (179fps)

LinPrim + MCMC
50k † 5.59ms (179fps)

100k † 8.55ms (117fps)
250k 15.87ms (63fps)

Runtime Profiling and Memory Usage. We profile both LinPrim and 3DGS under default and
MCMC-controlled populations (Table 6) to analyze runtime and memory behavior. The majority
of computation time occurs during rendering, where per-tile lists are traversed to accumulate color
contributions. In this stage, 3DGS only requires evaluating the function value of a Gaussian, while
LinPrim calculates intersections between the pixel ray and the primitives faces. Although LinPrim
processes fewer primitives per pixel, this stage is currently less optimized. Given the prevalence of
ray–triangle intersection in modern graphics pipelines, integrating hardware-accelerated or existing
optimized kernels offers clear potential for further speedups.

Table 6: Performance and storage analysis on ScanNet++ scene 39f36da05b. We report average
per-frame times for preprocessing, sorting and tiling, and rendering, as well as the total number of
optimized primitives and resulting file sizes.

Preprocessing Sort+Tile Rendering Primitives File Size

3DGS [13] 0.29ms 0.66ms 3.99ms 795k 193MB
GS-MCMC 255k [14] 0.18ms 1.85ms 3.57ms 255k 62MB
LinPrim 0.19ms 0.60ms 12.02ms 328k 81MB
LinPrim + MCMC 0.19ms 1.08ms 14.60ms 250k 62MB
LinPrim - Tetrahedron 0.20ms 0.90ms 5.27ms 325k 81MB
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We evaluate the memory demands of the methods by analyzing how many primitives are kept in
memory during each part of the rendering process and present the mean values on the tested views
in Table 7. We also include the values when limiting either method to a similar number of total
primitives (250k) by leveraging the corresponding MCMC-based approach.

As can be seen, the number of primitives in the view frustum is generally similar for both primitive
types when the scene’s population is similar. However, looking at the total length of the per-tile sorted
lists clearly shows that the bounding boxes of LinPrim are generally much smaller, as they intersect
fewer tiles. This trend is further exemplified by the total number of primitives that are iterated over.
Due to the distinct boundaries of linear primitives, we can further differentiate between primitives
that were only iterated over and those that were intersected and contributed to the output image. In
total, linear primitives create an image with only around 5-10% of the intersections of Gaussians.

Table 7: Analysis of the number of primitives in memory and in the tile-list, as well as the count of
total primitives iterated over and intersected by pixel rays. Output images are of size 1752× 1168
with patch size 16× 16, and values are evaluated on ScanNet++ v2 scene 39f36da05b.

Frustum Tile-List Iterated Intersected

3DGS [13] 327k 5.0M 937M 937M
GS-MCMC [14] 113k 5.5M 1.3B 1.3B
LinPrim 139k 1.4M 275M 52M
LinPrim + MCMC 102k 1.7M 373M 95M

B Depth and Surface Reconstruction

Depth Accuracy. We evaluate geometric accuracy by comparing predicted depth maps from our
method and 3DGS against ground-truth depths across all images of ScanNet++ v2 scenes. For
each pixel, the predicted depth is defined as the distance to the first primitive along the viewing ray
where cumulative opacity exceeds 0.5. Ground-truth depths are derived from the official ScanNet++
meshes, and metrics are computed only at pixels with valid predictions and ground-truth values. Both
methods achieve nearly complete coverage (3DGS: 99.97%, LinPrim: 99.72%) and yield visually
convincing results, as shown in Figure 5. Quantitatively, LinPrim attains slightly lower L1 errors
(Table 8), indicating more accurate average depth estimates, while the similar L2 errors suggest a
higher presence of occasional outliers.

Table 8: Pixel-wise depth errors on five ScanNet++ scenes. We report per-scene L1 and L2 distances
between predicted and ground-truth depth maps, computed over all valid pixels.

39f36da05b 5a269ba6fe dc263dfbf0 08bbbdcc3d fb564c935d
L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

3DGS 0.155 0.268 0.135 0.209 0.185 0.313 0.186 0.288 0.125 0.215
LinPrim 0.142 0.263 0.114 0.202 0.166 0.318 0.154 0.285 0.121 0.238

Surface Reconstruction. To further evaluate the 3D consistency of the scene geometries, we
reconstruct meshes from predicted depth maps using TSDF-Fusion with a 5 cm voxel size, followed
by Marching Cubes. We then compute the Chamfer Distance to ground-truth meshes by uniformly
sampling 5,000 surface points within the GT mesh boundaries. Results are summarized in Table 9.
Both approaches produce coherent surfaces, with LinPrim obtaining closer matches to the GT on
average.

Table 9: Surface reconstruction accuracy measured via Chamfer distance between meshes recon-
structed from predicted depth maps on five ScanNet++ scenes.

39f36da05b 5a269ba6fe dc263dfbf0 08bbbdcc3d fb564c935d Average

3DGS 0.126 0.092 0.096 0.088 0.093 0.099
LinPrim 0.070 0.052 0.123 0.092 0.060 0.079
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Ground Truth 3DGS Ours

Figure 5: Qualitative depth comparison on ScanNet++ v2 scenes. Predicted depth maps from
LinPrim and 3DGS are shown alongside depths rendered from ground truth meshes.

C Anti-Aliasing

Filter Ablation. We analyze the effect of our proposed anti-aliasing filters on reconstruction quality
for representative scenes from Mip-NeRF 360 and ScanNet++ v2 (Table 10). Enabling either filter
individually improves quantitative performance, most notably in PSNR, while LPIPS remains largely
unchanged—indicating that perceptual structure is preserved even as pixel-level similarity improves.
Combining both filters yields the strongest overall gains, confirming their complementary nature.
Importantly, neither filter significantly alters the number of primitives, which indicates that these
techniques refine visual fidelity without complicating the underlying geometry or increasing memory
overhead.

Table 10: Ablation showing the impact of the two filters used in our anti-aliasing efforts. Combining
both filters reduces the reconstruction error.

Filters Bonsai dc263dfbf0
2D 3D PSNR SSIM LPIPS PSNR SSIM LPIPS

30.84 0.929 0.196 22.46 0.870 0.267
✓ 30.96 0.931 0.196 22.59 0.870 0.266

✓ 30.97 0.930 0.195 22.66 0.871 0.266
✓ ✓ 31.21 0.936 0.195 22.67 0.871 0.266

Zoom-Out Evaluation. To assess robustness under scale changes, we evaluate single-scale training
at progressively smaller rendering scales, following the Mip-Splatting evaluation [30].

As shown in Table 11, anti-aliasing consistently improves performance across all zoom-out factors,
even though absolute gains are modest. These results show that our filtering strategy generalizes
beyond the training scale and maintains visual quality in downsampled views.

D Ray Space Approximation

We analyze the impact of the ray-space approximation [32, 33], which our method employs to simplify
the rasterization. We use MCMC-based densification [14] to minimize differences in performance
caused by population control, and since the gradient magnitudes differ, which would require re-tuning
hyperparameters. Furthermore, we conduct the experiments at the smallest primitive count (255k) we
observed in our evaluations, as this should maximize average primitive size, and consequently the
influence of the ray-space approximation, which is most accurate for small primitives.
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Table 11: Ablation of zoom-out performance on NeRF synthetic scenes. Results are PSNR values
on test set images. Approaches are optimized at full resolution and evaluated on smaller resolutions
simulating zoom-outs.

Chair Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg.

No AA 35.67 34.39 30.29 27.17 31.88
LinPrim 35.70 34.47 30.42 27.28 31.97

Drums Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg.

No AA 25.96 26.42 25.34 23.14 25.22
LinPrim 25.98 26.44 25.43 23.31 25.29

Ficus Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg.

No AA 34.49 34.38 31.02 26.17 31.52
LinPrim 34.53 34.39 31.14 26.45 31.63

As shown in Table 12, disabling the approximation yields minor increases in reconstruction quality.
However, our simple implementation incurs considerable runtime costs from removing the approxi-
mation: on the ScanNet++ scene 39f36da05b, the average rendering time increases from 15.87ms
(with ray space) to 29.15ms (without ray space). This increase comes solely from the rasterization
step, which increases from 14.60ms to 28.34ms. A more efficient implementation of the rendering
could likely achieve the improved quality without the drastic impact on performance by leveraging
efficient hardware-accelerated or optimized kernels.

Table 12: Ablation of the influence of the ray space approximation [32, 33] on ScanNet++ v2
scenes [29]. Since the version without the ray space does not use our 2D filter, we also give results
without it. Scene identifiers are shortened for readability.

39f36d 5a269b dc263d 08bbbd fb564c PSNR SSIM LPIPS

LinPrim + MCMC 27.62 24.03 23.33 22.98 24.07 24.41 0.858 0.272
no 2D Filter 27.60 24.01 23.52 22.95 23.99 24.42 0.857 0.272
no Ray Space 27.62 24.14 23.64 23.01 24.07 24.50 0.857 0.272

E Gradient Computation

In the following we provide the gradient computation of the intersection depths i w.r.t. to the ray
space corners vray that span a triangle. After passing through the blending process, gradients are
propagated onto the intersection depths following the opacity calculation:

o(i1, i2) = 1− exp(−σ(α) · (i2 − i1)). (2)

From here, we derive the impact on either intersection and aggregate afterward. Given the barycentric
coordinates {1− u− v, u, v} of the intersection, the resulting partial derivatives are:
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In the case of octahedra, since the vertices are either in positive or negative direction from the center,
the gradient onto the actual ray space feature can be negated, which we omit for the sake of readability.

To obtain the derivatives of the barycentric coordinates w.r.t. to the triangle corners, we backpropagate
through the MTIA [19]. Below, we give the results for corner v0, the formulas for v1 and v2 are
analogous. Notably, the barycentric coordinates are invariant to the depth and as such have only two
non-zero components. Let r denote pixel ray coordinates and d the determinant, then:
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d
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(6)
Gradient flow towards the ray space center follows the same process as to that of the corners.
Since they are just matrix multiplications, undoing ray space and view-space transformations is
straightforward. Finally, once the gradients have been mapped back into world space, we propagate
each corner’s gradient into the primitive’s distance and rotation parameters.

F Robustness and Failure Analyses

Sensitivity to Initialization. We evaluate the robustness of LinPrim and 3DGS to initialization
perturbations by modifying the structure-from-motion (SfM) input used for primitive initialization.
The ablation is conducted on the first ScanNet++ scene 39f36da05b, where both methods achieve
comparable baseline performance. We test three variants: (i) Noisy Points, where Gaussian noise
with a standard deviation of 5% of the maximum camera distance (about 14 cm) is added to each SfM
point; (ii) Half Points, where half of the SfM points are randomly removed; and (iii) Half-Size, where
initial primitive sizes are halved, reducing spatial coverage. As shown in Table 13, all of the above
methods reduce performance across all metrics and for either approach. Noticeably, reducing the
coverage through smaller initial primitives hurts 3DGS’s performance more than ours. This suggests
that even though LinPrim boundaries are distinct and intersections are fewer, relevant visual cues can
be transferred onto the primitives without issue.

Table 13: Sensitivity to initialization. We evaluate robustness to initialization on ScanNet++ scene
39f36da05b by comparing reconstructions from perturbed training setups.

3DGS LinPrim
PSNR SSIM LPIPS PSNR SSIM LPIPS

Base 27.70 0.859 0.211 27.56 0.857 0.225
Noisy Points 27.61 0.858 0.217 27.54 0.855 0.228
Half Points 27.69 0.859 0.214 27.51 0.854 0.232
Half-Size 27.25 0.849 0.235 27.44 0.856 0.227

Per-Class Reconstruction and Failure Cases. To better understand where each approach excels
or struggles, we compute per-class PSNR on ScanNet++ v2 using semantic renderings from the
first three scenes. Results for a selection of classes are shown in Table 14. In absolute terms, the
failure cases of our approach were the classes of Storage Cabinet and Computer Tower, in which
LinPrim achieved the lowest relative performance compared to 3DGS. On the contrary, the classes
that exhibit the strongest view-dependent appearance in the scenes - windows (+0.41), doors (+1.59),
and monitors (+2.77) - are better reconstructed by LinPrim. There further seem to be types of
geometry and appearance LinPrim is better able to capture, e.g., whiteboards (+1.95), blinds (+0.64),
and heaters (+0.96). These results suggest that linear and Gaussian primitives capture complementary
appearance and geometry properties, and that hybrid representations combining both may alleviate
such edge-case failures.

Effect of Spherical Harmonics Degree. We evaluate the impact of the spherical harmonics degree
on performance for LinPrim and 3DGS by optimizing scenes for either approach with reduced
maximal degrees and comparing test-view performance. We show results in Table 15 and omit SSIM
and LPIPS results for brevity reasons, and since they are less impacted by the changes to spherical
harmonics than PSNR.

Higher SH degrees do not always improve reconstruction quality and can even harm performance in
less observed regions by overfitting appearance while masking geometric inaccuracies. This trend
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Table 14: Per-class reconstruction quality on the first three ScanNet++ scenes. We report PSNR
for 3DGS and LinPrim across selected semantic categories, along with relative differences and pixel
counts per class.

3DGS LinPrim Relative Pixels

Wall (Top 1) 33.74 34.76 +1.02 2.7M
Floor (Top 2) 27.80 25.80 -2.00 1.1M
Table (Top 3) 32.65 32.88 +0.22 646k
Storage Cabinet 36.50 32.22 -4.28 283k
Monitor 26.50 29.27 +2.77 223k
Window 23.36 23.77 +0.41 110k
Computer Tower 34.93 23.41 -11.52 15k

is more evident on ScanNet++, where test views are farther from the training distribution than on
Mip-NeRF 360. In our ablation, we find that 3DGS generally benefits more from spherical harmonics
than LinPrim. As seen in Table 14, LinPrim nonetheless reaches higher visual quality in more
view-dependent areas. In conjunction, this can likely be attributed to a better understanding of the
underlying surfaces and geometry instead of an affinity to spherical harmonics.

Table 15: Ablation on the impact of reduced SH-degrees on the PSNR on three ScanNet++ and two
Mip-NeRF 360 scenes, and compared to the degree 3 baselines.

ScanNet++ Mip-NeRF 360
SH-degree 39f36da05b 5a269ba6fe dc263dfbf0 Bicycle Room

3DGS 2 -0.38 -0.55 -0.58 -0.64 -0.76
1 -0.37 -0.41 -0.64 -0.79 -0.88
0 -0.29 -0.37 -0.41 -1.01 -1.00

LinPrim 2 +0.05 +0.21 -0.22 -0.18 -0.09
1 +0.01 +0.15 -0.22 -0.47 -0.39
0 -0.01 +0.10 -0.33 -0.89 -0.58

G Experimental Setting

In this section, we give specific values for the hyperparameters used and the experimental setting
to ensure the reproducibility of our results. Experiments were performed using either a single
RTX A6000 or RTX 3090, rendering speed was evaluated using the same RTX 3090 setup for all
approaches.

We use the following learning rates for both our Octahedron and Tetrahedron approaches, the position
learning rates and the corresponding schedule are consistent with 3DGS [13]. Specific values were
chosen empirically.

Table 16: The learning rates used for our Octahedron and Tetrahedron approaches. † The distance
learning rate is scaled by the maximum distance between a known camera pose and the mean camera
pose to ensure consistent behavior even in scale-ambiguous settings.

Learning Rate

Color 2.5× 10−3

SH Coefficients 1.25× 10−4

Opacity 2.5× 10−2

Rotation 1× 10−3

Distance † 2.6−1 × 10−4

Other notable paradigms and parameters concerning the initialization and population of primitives
are as follows:

25



• Primitives are initialized with distances equal to the nearest SfM point, clamped between
10−5 and 0.5. Opacities are set to 0.1 and rotations are sampled uniformly at random.

• The population is adjusted every 250 iterations. Primitives with position gradients larger
than 1.5× 10−4 are considered for densification, and ones with opacity smaller than 0.025
are removed. Similarly, primitives with a size larger than 40% of the scene or 20 pixels are
removed.

• During densification, primitives smaller than 1% of the scene are duplicated. Larger ones
are replaced with two newer ones with a relative size of 1.2−1. For octahedra, the position
is chosen normally at random with a standard deviation aligned with, and equal to, the
distances in each dimension. For tetrahedra, we sample normally with standard deviations
equal to half of the largest distance.

• We do not propagate gradients through the density normalization factor (see Equation 1).
• For our anti-aliasing efforts, we set the kernel size of the 2D filter to 0.1. For octahedra, the

ray space vector is moved by half that amount, as the adjustment is mirrored on both sides.
The 3D filter remains consistent with Mip-Splatting.

H Additional Results

In Figure 6, we show qualitative results of our representation on Mip-NeRF 360 scenes. In Table 17,
we show the average PSNR, SSIM, and LPIPS metrics on the used ScanNet++ v2 scenes.

Table 17: Quantitative Results on ScanNet++ v2 scenes [29]. We limit the MCMC-based
approaches to use as many primitives as LinPrim and 3DGS do on average. The presented results are
the average over the five scenes considered during our evaluation.

PSNR SSIM LPIPS Primitives

3DGS [13] 24.09 0.853 0.263 738k
Mip-Splatting [30] 24.12 0.852 0.261 977k
3DCS [11] 24.26 0.848 0.273 440k
LinPrim 24.04 0.849 0.281 255k

GS-MCMC [14] 24.50 0.862 0.256 255k
24.12 0.861 0.251 738k

LinPrim + MCMC 24.41 0.858 0.272 255k
24.55 0.860 0.263 738k

I Existing Assets

• 3DGS [13]: Code can be accessed under https://github.com/graphdeco-inria/
gaussian-splatting and uses a custom License also found in the repository. For our
experiments and code, we use commit d9fad7b.

• Mip-Splatting [30]: Code can be accessed under https://github.com/
autonomousvision/mip-splatting and follows the 3DGS license. For our ex-
periments and code, we use commit dda02ab.

• 3DGS-MCMC [14]: Code can be accessed under https://github.com/ubc-vision/
3dgs-mcmc and follows the 3DGS license. For our experiments and code, we use commit
7b4fc9f.

• Mip-NeRF 360 Data [1]: Available from https://jonbarron.info/mipnerf360/ and
does not provide license terms.

• ScanNet++ v2 Data [29]: Available from https://kaldir.vc.in.tum.de/
scannetpp/ and uses a custom license also found on the website.
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Figure 6: Qualitative Results on test views from Mip-NeRF 360 scenes [2].
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