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Abstract

Prediction of a molecule’s 3D conformer ensemble from the molecular graph holds
a key role in areas of cheminformatics and drug discovery. Existing generative
models have several drawbacks including lack of modeling important molecular
geometry elements (e.g., torsion angles), separate optimization stages prone to error
accumulation, and the need for structure fine-tuning based on approximate classical
force-fields or computationally expensive methods. We propose GEOMOL — an
end-to-end, non-autoregressive, and SE(3)-invariant machine learning approach
to generate distributions of low-energy molecular 3D conformers. Leveraging the
power of message passing neural networks (MPNNSs) to capture local and global
graph information, we predict local atomic 3D structures and torsion angles, avoid-
ing unnecessary over-parameterization of the geometric degrees of freedom (e.g.,
one angle per non-terminal bond). Such local predictions suffice both for both the
training loss computation and for the full deterministic conformer assembly (at
test time). We devise a non-adversarial optimal transport based loss function to
promote diverse conformer generation. GEOMOL predominantly outperforms pop-
ular open-source, commercial, or state-of-the-art machine learning (ML) models,
while achieving significant speed-ups. We expect such differentiable 3D structure

generators to significantly impact molecular modeling and related applications.

1 Overview

Problem & importance. We tackle the problem of
molecular conformer generation (MCQG), i.e., predict-
ing the ensemble of low-energy 3D conformations
of a small molecule solely based on the molecular
graph (fig.[I). A single conformation is represented
by the list of 3D coordinates for each atom in the
respective molecule. In this work, we assume that the
low-energy states are implicitly defined by the given
dataset, i.e., our training data consist of molecular
graphs and corresponding sets of energetically favor-
able 3D conformations. Low-energy structures are
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Figure 1: We generate a representative set
of low-energy 3D conformers from the input
molecular graph. This example molecule has
both rigid (rings) and flexible parts. Conform-
ers are shown aligned and juxtaposed.

the most stable configurations and, thus, expected to be observed most often experimentally.
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Dealing with molecules in their natural 3D structure is of great importance in areas such as chemin-
formatics or computational drug discovery because conformations determine biological, chemical,
and physical properties [[Guimaraes et al., 2012} Schiitt et al., 2018, |[Klicpera et al.,|2019}|Axelrod and
Gomez-Bombarelli, 2020b, Schiitt et al.; 2021} |Liu et al., 2021] such as charge distribution, potential
energy, docking poses [McGann, |2011]], shape similarity [Kumar and Zhang, |2018]], pharmacophore
searching [Schwab, 2010, or descriptors for 3/4D QSAR [Verma et al.,|2010]. For instance, in drug
design it is crucial to understand how a molecule binds to a specific target protein; this process heavily
depends on the 3D structures of the two components, both in terms of geometric (shape matching)
and chemical (hydrophobic/hydrophilic) interactions [|Gainza et al.,|[2020, [Sverrisson et al., 2020].

Motivation & challenges of existing methods. The main challenge in MCG comes from the
enormous size of the 3D structure space consisting of bond lengths, bond angles, and torsion angles.
It is known that the molecular graph imposes specific constraints on possible 3D conformations, e.g.,
bond length ranges depend on the respective bond types, while tetrahedral centers dictate local spatial
arrangement. However, the space of possible conformations grows exponentially with the graph size
and number of rotatable bonds, thus hindering exhaustive brute force exploration even for relatively
small molecules. Additionally, the number of plausibly-stable low-energy states is unknown a priori
and can vary between one and several thousand conformations for a single molecule [Chan et al.,
2021]]. Nevertheless, various facets of the curse of dimensionality have been favorably tackled by ML
models in different contexts, and our goal is to build on the recent ML efforts for MCG [Mansimov
et al., 2019, |Simm and Hernandez-Lobato, [2020, |[Lemm et al., 2021, [ Xu et al., 2021]].

Molecular conformations can be determined experimentally, but existing techniques are very ex-
pensive. As a consequence, predictive computational models have been developed over the past
few decades, traditionally being categorized as either stochastic or systematic (rule-based) meth-
ods [Hawkins| 2017]. Stochastic approaches have traditionally been based on molecular dynamics
(MD) or Markov chain Monte Carlo (MCMC) techniques, potentially combined with genetic algo-
rithms (GAs). They can do extensive explorations of the energy landscape and accurately sample
equilibrium structures, but quickly become prohibitively slow for larger molecules [Shim and MacK-
erell Jr, 2011, |Ballard et al., 2015} |De Vivo et al.|[2016, Hawkins| [2017], e.g., they require several
CPU minutes for a single drug-like molecule. Moreover, stochastic methods have difficulties sam-
pling diverse and representative conformers, prioritizing quantity over quality. On the other hand,
rule-based systematic methods achieve state-of-the-art in commercial software [Friedrich et al.|
2017] with OMEGA [Hawkins et al.,|2010, [Hawkins and Nicholls, 2012] being a popular example.
They usually process a single drug-like molecule under a second. They address the aforementioned
challenges of stochastic methods by relying on carefully curated torsion templates (torsion rules),
rule-based generators, and knowledge bases of rigid 3D fragments, which are assembled together
and combined with subsequent stability score ranking. However, torsion angles are mostly varied
independently (based on their fragments), without explicitly capturing their global interactions, which
results in difficulties for larger and more flexible molecules. Furthermore, the curated fragments and
rules are inadequate for more challenging inputs (e.g., transition states or open-shell molecules).

Both types of methods can be combined with Distance Geometry (DG) techniques to generate the
initial 3D conformation. First, the 3D atom distance matrix is generated based on a set of distance
constraints or from a specialized model. Subsequently, the corresponding 3D atom coordinates are
learned to approximately match these predicted distances [Havel et al., [ 1983bla, [Crippen et al., |1988|
Havell [1998| |Lagorce et al.,|2009} Riniker and Landrum, [2015]. Indeed, modern stochastic algorithms
are entirely based on DG methods [Riniker and Landrum| 2015]. The inductive bias of rotational
and translational invariance is guaranteed for DG, thus being appealing for ML models [Simm and
Hernandez-Lobato, 2020, Xu et al., 2021, |Pattanaik et al., [2020b]. However, several drawbacks
weaken this important direction: i) the distance matrix is overparameterized compared to the actual
number of degrees of freedom, ii) it is difficult to enforce 3D Euclidean distance constraints as well
as geometric graph constraints (e.g., on torsion angles or rings [Riniker and Landrum, 2015]); iii)
important aspects of molecular geometry are not explicitly modeled, e.g., torsion angles of rotatable
bonds or tetrahedral centers; iv) expensive force-field energy fine-tuning of the generated conformers
is vital for a reasonable quality [Xu et al.,|2021,|Simm and Hernandez-Lobato, 2020]; iv) the resulting
multi-stage pipeline is prone to error accumulation as opposed to an end-to-end model.

Previous methods often rely on a force field (FF) energy function minimization to fine-tune the
conformers. These are hand-designed energy models which use parameters estimated from experi-



ment and/or computed from quantum mechanics (e.g., Universal Force Field [Rappé et al.,|[1992],
Merck Molecular Force Field [Halgren, |1996]). However, FFs are crude approximations of the
true molecular potential energy surface [Kanal et al.l 2018], limited in the interactions they can
capture in biomolecules due to their strong assumptions [Barman et al.|[2015]. In addition, FF energy
optimization is relatively slow and increases error accumulation in a multi-pipeline method.

Relation to protein folding. = There has been impressive recent progress on modeling protein
folding dynamics [Ingraham et al.| 2018, |AlQuraishi, 2019, |[No¢ et al.| |2019, [Senior et al., [2020],
where crystallized 3D structures are predicted solely from the amino-acid sequence using ML
methods. However, molecules pose unique challenges, being highly branched graphs containing
cycles, different types of bonds, and chirality information. This makes protein folding approaches not
readily transferable to general molecular data.

Our key contributions & model in a nutshell. In this work, we investigate the question:

Can we design a fast and generalizable deep learning model to predict high-quality, representative,
and diverse 3D conformational ensembles from input molecular graphs?

To tackle this question, we propose GEOMOL (shown in fig. [2), exhibiting the following merits:

* It is end-to-end trainable, non-autoregressive, and does not rely on DG techniques (thus avoiding
aforementioned drawbacks). More precisely, it outputs a minimal set of geometric quantities (i.e.,
angles and distances) sufficient for full deterministic reconstruction of the 3D conformer.

¢ It models conformers in an SE(3)-invariant (translation/rotation) manner by design. This desirable
inductive bias was previously either achieved using multi-step DG methods [Simm and Hernandez-
Lobato, 2020] or not captured at all [Mansimov et al.,|2019].

* It explicitly models and predicts essential molecular geometry elements: torsion angles and local
3D structures (bond distances and bond angles adjacent to each atom). Together with the input
molecular graph, these are used for k-hop distance computation at train time and full deterministic
conformation assembly at test time. Crucially, we do not over-parameterize these predictions, i.e.,
a single torsion angle is computed per each non-terminal bond, irrespective of the number and
permutation of the neighboring atoms at each end-point of the respective bond.

» The above geometric elements (torsion angles, local structures) are SE(3)-invariant (by definition
or usage) and we jointly predict them using MPNNs [Gilmer et al., 2017] and self-attention
networks. Thus, unlike [Mansimov et al.,[2019], we are not affected by MPNNs’ pitfalls that
obstruct direct predictions of 3D atom coordinates from node embeddings, e.g., symmetric or
locally isomorphic nodes would always have identical MPNN embeddings [Xu et al., 2019} |Garg
et al., 2020]] and, as a consequence, would be inappropriately assigned identical 3D coordinates.

» To promote diverse conformer ensembles with good coverage, we devise a tailored generative
loss that does not use slow or difficult-to-optimize adversarial training techniques. Using optimal
transport, GEOMOL finds the best matching between generated and ground truth conformers
based on their pairwise log-likelihood loss, requiring only minimization.

* It explicitly and deterministically distinguishes reflected structures (enantiomers) by solving
tetrahedral stereocenters using oriented volumes and local chiral descriptors, bypassing the need
for iterative optimization usually done in DG approaches.

* Empirically, we conduct experiments on two benchmarks: GEOM-QM?9 (smaller molecules
relevant to gas-phase chemistry) and GEOM-DRUGS (drug-like molecules) [Axelrod and Gomez-
Bombarelli, [2020a]]. Our method often outperforms previous ML and two popular open-source or
commercial methods in different metrics. Moreover, we show competitive quality even without
the frequently-used computationally-demanding fine-tuning FF strategies.

* GEOMOL processes drug-like molecules in seconds or less, being orders of magnitude faster
than popular baselines (e.g., ETKDG/RDK:it[Riniker and Landrum, [2015]), without sacrificing
quality.
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Figure 2: Overview of the GEOMOL model, which is SE(3)-invariant by design. Given a molecular
graph, we first compute MPNNs atom embeddings. Next, we predict the local 3D structures (LS) of
each non-terminal atom in a permutation invariant way, explicitly solving chirality. Third, for each
bond connecting non-terminal vertices, we assemble the two LS by predicting a single torsion angle,
avoiding overparameterization. Finally, the full conformer is assembled (only) at test time.

2 Method

Problem setup & notations. Our input is any molecular graph G = (V, E) with node and edge

features, x, € R/ Vv € V and e, , € Rf /,V(u, v) € F representing atom types, formal charges,
bond types, etc. For each molecular graph G, we have a variable-size set of low-energy ground

truth 3D conformers {C;'}; that we predict with a model {Cy} ¢ (@). A conformer is a map
C : V — R3 from graph nodes to 3D coordinates, but a simplified notation is c,, € R3 forv € V.
We use additional notations: d(X,Y’) = ||cx — cy|| is the 3D distance between X and Y; /XY Z
is the counter-clockwise (CCW) angle Zcxcycy; Z(XY Z, XYT) is the CCW dihedral angle
of the 2D planes cxcycyz and cxcycr (formula is in appendix @) We use the corresponding
¢, d"(X,Y),£,* XY Z, /(XY Z, XYT) when manipulating a ground truth conformer.

Any conformer is defined up to a SE(3) transformation, i.e., any translation or rotation applied to the
set {c, }yev. A classic conformer distance function that satisfies this constraint is root-mean-square
deviation of atomic positions (RMSD), computed by the Kabsch alignment algorithm [Kabsch, |1976].

2.1 GEOMOoL high-level overview

Our approach, shown in fig. 2} comprises three steps. First, we predict the local 3D structure of
each non-terminal atom, which we deem local structure (LS), by combining self-attention layers and
MPNNs with deterministic corrections for tetrahedral centers. Bond distances and bond angles are
computed from the predicted LS. Next, we assemble all neighboring pairs of LSs by predicting the
torsion angles and aligning them. Importantly, since LSs are fixed, it suffices to only predict a single
value for the dihedral angle of each bond. Towards this goal, we develop a canonical representation of
torsion angles via a local coordinate system defined SE(3)-equivariantly w.r.t. the full structure, which
allows us to predict exactly the number of degrees of freedom. Finally, at test time, we assemble
all predicted pairs of neighboring LSs to construct the full conformer, applying deterministic ring
corrections. In order to generate diverse conformers, we append random Gaussian noise vectors to
each initial node feature vector and use an optimal transport-based loss function for training.

2.2 Message passing neural networks (MPNNs)

Given an input graph G, an MPNN [Gilmer et al.| 2017, Battaglia et al., 2018} |Yang et al.| 2019]
computes node embeddings h, € R%, Vv € V using T layers of iterative message passing:

h{+h) = ( Z #(mP h® e, v)) . where b0 ¥ concat[x,, z,], z, ~ N(0, sI,)
vENy,
1

foreacht € [0.. T — 1], where N, = {v € V|(u,v) € E}, while ¢ and ¢ are generic functions,
e.g., implemented using multilayer perceptrons (MLP) or attention [Velickovic et al.,|2017]. Final

node embeddings are obtained by the embedding of the last layer: h, o hE)T) ,Yv € V. Finally, we



also compute a molecular embedding: h,,,; M LP(ZU cv h,). We leave comparison with other

MPNN variants for future work, e.g.,|Kipf and Welling [2017], |Velickovi¢ et al.|[2017], Hamilton
et al.|[2017], Xu et al. [2019].

2.3 Local structure (1-hop) prediction model

Following notations in fig. [3, for each non-terminal graph vertex X € V having n graph neighbors
Nx = {Ti}icpr..n)» we predict its local 3D structure (LS), i.e., the relative 3D positions of all
T;, when X is centered in the origin. The generic model is a function f(hp,...,hy ;hy) =
(P1,--.,Pn) € R3*™ that, additionally, should satisfy permutation equivariance w.r.t. T;’s, namely,
the 3D position of each neighbor 7T; should not change regardless of the ordering of the X’s neighbors:

f(hTﬂ(Da ) hT,,,(,,L) ; hX) = (p‘n'(l)a s 7p7r(n))7V7T S S’n (2)
Our choice is the encoder part of a transformer [Vaswani et al.,
2017], without any positional encoding, thus satisfying per- 9
mutation equivariance. This model takes as input the set
{concat|hr,, hx];i € [1..n]} in any order and synchronously @G- (X @D
updates the n embeddings based on several transformer layers. 1
The final layer projects the embeddings to 3 dimensions, result- &
ing in a list (p1, ..., Pn) € R3*™ having the exact same node
order as the input list. Figure 3: For each non-terminal

atom X, we predict the relative 3D
position of each of its graph neigh-
bors, {7 }ic[1..n]> in @ permutation
equivariant manner.

Enforcing local consistency. We desire the LS model f()
to be distance-consistent, i.e., any bond distance d(X,Y) is
the same, no matter if it is computed from the LS of node X
or of node Y. To achieve this, we use the above transformer
just to compute bond directions (which will be aligned using a separate approach described in
section [2.4), while we obtain the bond distances with a separate symmetric model. Concretely,
let the above transformer f() predict (p1,...,Pn) € R3*™, while the final local 3D coordinates

are p); e ﬁdc ~n(hx,hr,), Vi, where each bond distance is predicted with a symmetric model

denn (hx, hy ) € softplus(y(hx, hy ) +(hy, hx)),¥(X,Y) € E, with the same shared 1) (e.g.,
an MLP). For notation simplicity, we will just use p; instead of p!.

Regarding SE(3) invariance. The above model is not SE(3)-invariant per se, but it
is used as such. Namely, on one hand we compute SE(3)-invariant quantities: 1-
hop distances d(T;,X), 2-hop distances d(T;,T;), and bending angles ZT;X7T;. These
will be compared to their ground-truth counterparts in the final loss, see section

On the other hand, the LS of adjacent graph nodes are assem-
bled together for computing torsion angles or for building the

H
H
full conformer at test time. This process is explicitly defined /é il N: 3D i 5

to be SE(3)-invariant as described in section "o \ H 9 '
Tetrahedral chiral corrections. When embedding the local O/H 9
neighborhood of a node in 3D space, one has to carefully ac- | Mo 5

count for tetrahedral stereocenters (fig. [d). Tetrahedral chirality C il N >

is a common form of stereochemistry which restricts the 3D H H &) 5

location of neighboring substituents of a central atom with

four distinct neighbors; molecules which differ by a single Figure 4: Chirality: even if the two
tetrahedral stereocenter, i.e., enantiomers, are mirror images shown graphs are isomorphic, they
of each other. Chirality heavily impacts some properties of have distinct 3D structures that can
small molecules—e.g., bioactivity. Existing MPNNSs using only ~be distinguished by the order of the
the molecular graph cannot distinguish chiral centers (fig. @), carbon center’s neighbors.

but solutions exist [Pattanaik et al.| [2020a]. Mathematically,

enantiomers can be differentiated based on the oriented volume around the tetrahedral center. That is,
given the ordered set of neighbor 3D coordinates around the center, namely p1, p2, P3, P4 € R?, the



sign of the volume of the tetrahedron formed by the neighbors is

1 1 1 1
oV : ’ d:ef . 1 X2 T3 X4
(P1,P2,P3,Pa) = sign | |\ 5 0

21 R2 23 %4

Enantiomeric structures always have opposite signs for the oriented volume [Crippen et al., |1988].
Since we generate local 3D structures directly, we can also use local 3D chiral descriptors to ensure
the correct generation of tetrahedral stereocenters. RDKit internally keeps track of these local chiral
labels, denoted by CW/CCW labels (detailed in e.g., Pattanaik et al.|[2020a]]). Importantly, each
local chiral label corresponds to a certain oriented volume (CW = +1 and CCW = -1). Thus, when
generating an LS for a tetrahedral center, we calculate the oriented volume and check against the
internal RDKit label. If it results in the incorrect oriented volume (i.e., the incorrect stereocenter
was generated), we simply reflect the structure by flipping against the z-axis. This ensures that all
tetrahedral stereocenters centers are generated exactly, and no iterative optimization is necessary as
with traditional DG-based generators.

2.4 Torsion angle representation and local structure (LS) assembly

Once the LS of each atom/vertex is predicted, we assemble them in pairs corresponding to each
non-terminal bond in the molecular graph. We describe this process for a bond connecting atoms X
and Y, each having additional graph neighbors {7 };c1..n) and, resp., {Z; } je[1..m)- See fig. E}

Torsion angle over-parameterization. We first note that, for any assembled bond XY (fig.[3] right),
and Vi, k € [1..n],Vj,1 € [1..m], the dihedral angles Z(XYT;, XYT},) and £(XY Z;, XY Z;) are
fully determined by the LS of nodes X and Y, respectively, so they do not depend on the torsion angle
of bond XY. Next, observe that there is exactly one torsion angle for any bond XY, given unique
indexing of the neighbors. This happens because of the following constraint:

LXYT, XY Z)) = [L(XY Ty, XY Z))+ L(XYT;, XYT},) + £(XY Z, XY Z;)](mod 27) (3)

Thus, in order to avoid unnecessary over-parameterization, we predict a single torsion angle « per
each bond XY connecting non-terminal atoms.

Torsion angle formulation. However, it is still unclear e B
at this point how to define this unique angle in a canonical Torsion angle Gas) ¥a) oy
way that is: i) permutation invariant w.r.t. the nodes in the Neural Net

set {T;}ic1..n) and, respectively, in the set {Z;}jc(1..p)» ii)
SE(3)-invariant w.r.t. the full 3D conformer, and iii) agrees
with eq. (3).

» det [cos(A;;
Let Aij = Z(XYT;, XY Z;) and s;j = {Sin((Aiﬁ

. def
cij € R be real coefficients such thats = 3", j CijSij € R?
is not the null vector. Then, we define the torsion angle a

]. Let

o atanZ(ﬁ). It is easy to see that this formulation satisfies

both invariances claimed above. We further state (and prove in  Figure 5: Assembly of the local
appendix [A) that our proposed formulation gives a torsion an-  structures of bonded atoms X and Y
gle uniquely determined by all local angles Z (Y XT;,Y XT}.), based on the predicted torsion angle.
Z(YXZ;,Y X Z;) and by the true underlying torsion angle:

Proposition 1. Given 3D coordinates of nodes X,Y,T;, Z; and fixed weights c;; € R such that
TSI

angle of bond XY, then « will change. Formally, if we rotate the set of bonds { XT;}; jointly around
the line XY with the same angle ~, then o will be exactly shifted with .

. def L .. .
Zi,j cijsi; € R? is not the null vector, then o = atan2(125) is unique, i.e., if we change the torsion

>We define atan2 slightly different than standard: atan2(r cos(a), 7 sin(a)) o a,Va € [0,27),r € RY.



How to set c;;? Breaking symmetries. A simple solution is to choose ¢;; = 1, V%, j. However,
in some important cases, local symmetries may result in s = 0. For example, this happens if, for
some j, we have A;; = 217” + ct.,Vi € [1..n]. One solution is to use different ¢;; to differentiate
between the different subgraphs rooted at different 7; (and similarly for Z;). This is reminiscent
of traditional group priorities used for distinguishing E/Z isomers. We devise a flexible solution to
distinguish these subgraphs: a differentiable real valued function computed from the MPNN node
embeddings as ¢;; = MLP(hr, +hz,) € R, with MLP being a neural network shared across all
bonds and molecules. Note that we constrain c¢;; = c;;, thus guaranteeing that the same « is obtained
if we swap X and Y (and their neighbors, respectively).

Final LS assembly for a single bond. We now describe the assembly process depicted in fig.[5] We
first predict the LS of node X as in section @, obtaining several 3D coordinates: px = 0, py, Pr; €
R3,Vi € [1..n], as well as the LS of node Y: qy = 0,qx,qz, € R? Vj € [1..m]. By design, we
have that ||qx || = ||py||- These two sets are currently not aligned. To achieve this, we first rotate the

LS of X such that py becomes [[|py] 0 O]T, while px remains 0. Next, we rotate and translate
the LS of Y such that qy becomes py and qx becomes px = 0. These two rotations have one
degree of freedom each, which we set randomly. Exact formulas are in appendix [B] Thus, the bond XY
is now matched, but the torsional rotation is still arbitrary/random. The remaining step is to rotate the
LS of X with an angle +y such that all dihedrals Z(XYT;, XY Z;) match their true counterparts. This

1 0 0
0 cos(y) — sin(fy)] .
0 sin(y) cos(v)

is done by applying to all vectors pr, the same rotation of type: H,, :=

How to compute v? The current dihedrals A{X" o £ (XYT;, XY Z;) depend on the random
torsional rotations from the initial assembly step of LS of X and of Y. After applying the H,
rotation, we obtain the new dihedral angles: [A{}" — ~] mod 27 that should match the ground

truth dihedral angles A7; & Z*(XYT;, XY Zj). This is equivalently written as s7; = Af"s,,

def |COs def |COS(ASHT sin( AS¥" def def
s, = 20 i # (28] O | e 5 =

> ;.5 CigAf;". The necessary condition for y becomes s, = (AC“")T s*, which is also sufficient due
to proposition This implies it is enough to predict only the normalized H:—H and, in practice, we do

def [cos(oz)

that by predicting s, = sin (a)} using a function commutative in X and Y (i.e., swapping X and Y

does not change «):

a = [¢(hX7 hy, hmol) + QS(hYa hX; hmol)]mOd 27 (4)
where ¢ is a neural network (e.g., MLP). Finally, s, = [Z?If((%) } = m (AC“T)T Sq-

2.5 An optimal transport (OT) loss function for diverse conformer generation

Loss per single conformer.  Assume first that we predict a single
conformer C. Based on all LS and torsion angle predictions, we
deterministically compute all 1/2/3-hop distances and bond/torsion
angles. If the corresponding ground truth conformer C* is known,
we feed those quantities into a negative log-likelihood loss, denote
by £(C,C*) and detailed in appendix [D. Similar to [Senior et al.
[2020]], we fit distances using normal distributions and angles using
von Mises distributions. This is a much faster approach compared Figure 6: Before (left) and af-
to habitual RMSD losses that compare full conformers. ter (right) introducing a match-
ing loss to distinguish symmet-
ric graph nodes. Hydrogen
predictions in both groups are
visibly improved.

Node symmetries. Our current formulation has difficulties dis-
tinguishing pairs of symmetric graph nodes that are less than 3
hops away, e.g., hydrogen groups. We address this using a tailored
matching loss detailed in appendix D and exemplified in fig. [6]



Table 1: Results on the GEOM-DRUGS dataset. All models are without FF fine-tuning. "R" and
"P" denote Recall and Precision. Note: OMEGA is an established commercial (C) software.

COV-R(%)1 || AMR-R(A)| || COV-P %)+ | AMR-P(A)|

Models Mean | Median || Mean [ Median || Mean | Median || Mean | Median
GraphDG (ML) 10.37 0.00 1.950 | 1.933 3.98 0.00 2420 | 2.420
CGCF (ML) 54.35 56.74 1.248 1.224 24.48 15.00 1.837 1.829
RDKit/ETKDG 68.78 76.04 1.042 0.982 71.06 88.24 1.036 0.943
OMEGA (C) 81.64 | 97.25 0.851 0.771 77.18 | 96.15 0.951 0.854
GEOMOL (s = 9.5) || 86.07 | 98.06 0.846 | 0.820 7178 | 83.77 1.039 | 0.982
GEOMOL (s = 5) 82.43 95.10 0.862 0.837 78.52 94.40 0.933 0.856

Table 2: Results on the GEOM-QMY dataset. See caption of table|1]

COV-R (%)t || AMR-RA)| || COV-P %)+ || AMR-P(A) |
Models Mean | Median [[ Mean [ Median || Mean | Median || Mean | Median
GraphDG (ML) 74.66 | 100.00 0.373 0.337 63.03 77.60 0.450 0.404
CGCF (ML) 69.47 | 96.15 0425 | 0374 38.20 | 33.33 0.711 0.695
RDKit/ETKDG || 85.13 | 100.00 || 0.235 | 0.199 86.80 | 100.00 || 0.232 | 0.205
OMEGA (C) 85.51 | 100.00 || 0.177 | 0.126 82.86 | 100.00 || 0.224 | 0.186

GEOMOL (s = 5) || 91.52 | 100.00 || 0.225 | 0.193 | 86.71 | 100.00 | 0.270 | 0.241

Total OT loss per ensemble of conformers. In practice, our model generates a set of conform-
ers {Cx} ke[1.. k] that needs to match a variable sized set of low-energy ground truth conformers,
{C/} lef1..]- However, we do not know a priori the number L of true conformers or the matching
between generated and true conformers. We also wish to avoid expensive and problematic adversarial
training. Our solution is an OT-based, minimization-only, loss function:

Eense’mble def EMD[;(.’A)({C]@}IW {Cl*}l) = Téngin ZTklﬁ(Ck,Cl*)
KL

where EMD is the Earth Mover Distance, T is the transport plan satisfying QO . £ {T € Rf XL .
T1, = +1x,TT1x = +1.}. The minimization w.r.t. T is computed quickly using Earth Mover
Distance and the POT library [Flamary and Courty, 2017].

2.6 Full conformer assembly at test time

Knowing all true LSs and torsion angles is, in theory, enough for a deterministic unique SE(3)-
invariant reconstruction of the full conformer. However, in practice, these predictions might have
small errors that accumulate, e.g., in rings. To mitigate this issue, we deterministically build the full
conformer (only at test time) by first predicting a smoothed structure of (fused) rings separately, and
then assembling the full conformer following any graph traversal order (any order gives the same
conformer, so this procedure does not break the non-autoregressive behavior). We detail this step in
appendix [E.

3 Experiments

We empirically evaluate GEOMOL on the task of low-energy conformer ensemble generation for
small and drug-like molecules. We largely follow the evaluation protocols of recent methods [Simm
and Hernandez-Lobato, 2020,  Xu et al.,[2021], but also introduce new useful metrics.

Datasets & splits. ~ We use two popular datasets: GEOM-QM?9 [Ramakrishnan et al., [2014]
and GEOM-DRUGS [Axelrod and Gomez-Bombarelli, [2020a]]. Statistics and other details are in
fig.[I0 and in Mansimov et al. [2019]. Datasets are preprocessed as described in appendix [G] We
split them randomly based on molecules into train/validation/test (80%/10%/10%). At the end, for
each dataset, we sample 1000 random test molecules as the final test set. Thus, the splits contain
106586/13323/1000 and 243473/30433/1000 molecules for GEOM-QM9 and GEOM-DRUGS, resp.
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Figure 7: Left: Examples of generated structures. For every model, we show the best generated
conformer, i.e., with the smallest RMSD to the shown ground truth. More examples are in appendix [N.
Right/top: Number of rotatable bonds per DRUGS test molecule versus COV Recall (95% confidence
intervals). Right/bottom: conformer generation times for each model.

Baselines. We compare to established or recent baselines (discussed in section|1). ETKDG/RDKit
[Riniker and Landrum, [2015] is likely the most popular open-source software, a stochastic DG-based
method developed in the RDKit package. OMEGA [Hawkins et al.|[2010, [Hawkins and Nicholls,
[2012, [Friedrich et al.},[2017], a rule-based method, is one of the most established commercial software,
with more than a decade of continuous development. OMEGA and ETKDG are some of the fastest
and best scaling existing approaches. Finally, we compare with the recent ML models of highest
reported quality: GraphDG [Simm and Hernandez-Lobato| 2020] and CGCF [Xu et al., [2021]].

Evaluation metrics.  We follow prior work [Simm and Hernandez-Lobato, [2020| [Xu et al.|[2021]]
and use root-mean-square deviation of atomic positions (RMSD) to compare any two conformers.
This is defined as the normalized Frobenius norm of the two corresponding matrices of 3D coordinates
after being SE(3)-aligned a priori (using the Kabsch alignment algorithm [1976]). Next,
we introduce four types of metrics to compare two conformer ensembles, generated by a method,
{Ck }re..x]» and ground truth, {C} };c(1..z). These metrics follow the established classification
metrics of Precision and Recall and are defined for a given threshold § > 0 as:

of 1
COV - R (Recall) & 7 L€ [1.1): 3k € [L.K], RMSD(Cy.Cf) < 6}

5
AMR - R (Recall) ® 1 > min RMSD(C;.C;) ©)
L ke[l..K]
le[l..L]
where AMR is "Average Minimum RMSD", COV is "Coverage", and COV - P (Precision) and AMR -
P (Precision) are defined as in eq. (5), but with the generated and ground truth conformer sets swapped.
The recall metrics measure how many of the ground truth conformers are correctly predicted, while
the precision metrics indicate how many generated structures are of high quality. Specifically, in
terms of recall, COV measures the percentage of correct generated conformers from the ground truth
set (where a correct conformer is defined as one within an RMSD threshold of the true conformer),
while AMR measures the average RMSD of each generated conformer with its closest groun truth
match ending on the application, either of the metrics might be of greater interest. We follow
iZOZl

] and set & = 0.5A for GEOM-QM9 and § = 1.25A for GEOM-DRUGS.

Training and test details. For each input molecule having K ground truth conformers, we generate
exactly 2K conformers using any of the considered methods. For GEOMOL, this is done by sampling



different random noise vectors that are appended to node and edge features before the MPNN (eq. (T)).
At train time, our model uses a standard deviation (std) s (see eq. ) of 5 for both GEOM-QM9 and
GEOM-DRUGS. At test time, GEOMOL can use the same or different s values, depending on the
downstream application, i.e., higher s results in more diverse conformers, while lower s gives more
quality (better precision). For OMEGA, it is not possible to specify a desired number of conformers.
So, we tune the RMSD threshold (which decides how many conformers to keep) such that the total
generated conformers by OMEGA are approximately 2/. For GEOM-QMD, this corresponds to
no RMSD cutoff (i.e., OMEGA generates all possible conformers), and for GEOM-DRUGS, this
corresponds to a cutoff of 0.7A (meaning no two generated conformers will have a distance smaller
than this cutoff). We discuss hyper-parameters and additional training details in appendix [H.

Results & discussion.  Results are shown in table[l and table [2, and confidence intervals are in
appendix [[. As noted above, GEOMOL can be run with different noise std at test time, depending on
which metric the user is interested in. Even though OMEGA is an established commercial software
with more than a decade of continuous development, our model remarkably frequently outperforms
it. Note that OMEGA fails to generate any conformers for 7% of the QM9 test set (many of which
include fused rings). Moreover, we also outperform the popular RDKit/ETKDG open-source model
(except for AMR-P on QM9) and very recent ML models such as GraphDG and CGCF, sometimes
by a large margin. For a qualitative insight, we show generated examples in fig. [7]and appendix [N,

Additionally, we show in fig.[7 how COV Recall results are affected by the increasing number of
rotatable bonds in the test molecule. As expected, having more rotatable bonds makes the problem
harder, and this affects all baselines, but GEOMOL maintains a reasonable coverage even for more
difficult molecules. Moreover, in appendix [Kand table[8]we show energy calculations of the generated
conformers to support their plausibility. Additionally, results with energy-based relaxations are given
in appendix [J|

Running time.  Fig. [7 shows conformer generation test running times. Our model is the fastest
method from the considered baselines, being much faster than CGCF or ETKDG/RDKit. Moreover,
GEOMOL scales favorably for molecules with increasing number of rotatable bonds.

4 Conclusion

We proposed GEOMOL, an end-to-end generative approach for molecular 3D conformation ensembles
that explicitly models various molecular geometric aspects such as torsion angles or chirality. We
expect that such differentiable structure generators will significantly impact small molecule conformer
generation along with many related applications (e.g., protein-ligand binding), thus speeding up areas
such as drug discovery. GEOMOL’s full source code will be made publicly available.

Limitations & future work. A few current limitations are highlighted and left for future exten-
sions (see also discussion in appendix [O). First, our model does not currently support disconnected
molecular graphs, e.g., ionic salts, but it can be applied to each connected component, followed
by a 3D alignment. Next, our approach would benefit from explicit modeling of long distance
interactions, especially for macrocycles or large molecules. This remains to be addressed in an
efficient manner. Third, explicitly using ground truth energy values could further improve GEOMOL.
Last, we look forward to fine-tune GEOMOL on applications such as generating molecular docking
poses or descriptors for 4D QSAR.
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