

000 001 002 003 004 005 006 007 008 GENERAL SEARCH TECHNIQUES WITHOUT COMMON 009 KNOWLEDGE FOR IMPERFECT-INFORMATION GAMES, 010 AND APPLICATION TO SUPERHUMAN FOG OF WAR 011 CHESS 012 013

014 **Anonymous authors**
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Since the advent of AI, games have served as progress benchmarks. Meanwhile, imperfect-information variants of chess have existed for over a century, present extreme challenges, and have been the focus of decades of AI research. Beyond calculation needed in regular chess, they require reasoning about information gathering, the opponent’s knowledge, signaling, *etc.* The most popular variant, *Fog of War (FoW) chess* (a.k.a. *dark chess*), has been a major challenge problem in imperfect-information game solving since superhuman performance was reached in no-limit Texas hold’em poker. We present *Obscuro*, the first superhuman AI for FoW chess. It introduces advances to search in imperfect-information games, enabling strong, scalable reasoning. Experiments against the prior state-of-the-art AI and human players—including the world’s best—show that *Obscuro* is significantly stronger. FoW chess is the largest (by amount of imperfect information) turn-based zero-sum game in which superhuman performance has been achieved and the largest zero-sum game in which imperfect-information search has been successfully applied.

1 INTRODUCTION

The concept of breaking a large problem into subproblems and *searching* through them individually has been with us since time immemorial. In artificial intelligence (AI), search is a core capability that is required for strong performance in many applications. In game solving, this commonly takes the form of *subgame solving*. In games of perfect information, subgame solving is conceptually straightforward, because every new state induces a subgame that can be analyzed independently of the rest of the game. Subgame solving in perfect-information games is as old as computers themselves: Alan Turing and David Champernowne wrote a chess engine *Turochamp* in 1948 using minimax search and a hand-crafted function for evaluating nodes (Kasparov and Friedel, 2018). In landmark results, subgame solving has played a key role in reaching superhuman level in chess (Campbell et al., 2002) and go (Silver et al., 2016; 2017; 2018).

In contrast to such perfect-information games, most real-world settings are *imperfect-information* games. These include negotiation, business, finance, and defense applications. Thus it is crucial for the field of AI to develop strong techniques for imperfect-information games. Such games involve additional challenges not present in perfect-information games. For example, AIs for imperfect-information games might need to randomize their actions to prevent the opponent from learning too much information, and a player’s optimal action in a state can depend on that same player’s action in a totally different state. Therefore, subgame solving in imperfect-information games is drastically more difficult. Methods for real-time subgame solving in imperfect-information games have only been developed relatively recently (Gilpin and Sandholm, 2006; 2007; Waugh et al., 2009; Ganzfried and Sandholm, 2015; Burch et al., 2014; Moravčík et al., 2016; Brown and Sandholm, 2017; Moravčík et al., 2017; Brown and Sandholm, 2018; 2019; Brown et al., 2020; Sokota et al., 2024), and they were key to achieving superhuman performance in no-limit Texas hold’em poker (Brown and Sandholm, 2018; 2019; Moravčík et al., 2017). Strong AI performance has also been achieved in a few imperfect-information zero-sum games that are even larger (Vinyals et al.,

054 2019; Berner et al., 2019; Perolat et al., 2022). However, these were accomplished with learning
 055 alone and did not enjoy the further performance benefits that search could bring, due largely to the
 056 lack of scalability of subgame solving algorithms for imperfect-information games larger than poker.
 057

058 In this paper we present dramatically more scalable general-purpose subgame solving techniques
 059 for imperfect-information games. We used these techniques to create *Obscuro*, an AI that achieved
 060 superhuman performance in *Fog of War (FoW) chess* (a.k.a. *dark chess*), the most popular variant
 061 of imperfect-information chess. Over 120 games against humans of varying skill levels—including
 062 the #1-ranked human—and 1,000 games against the previous state-of-the-art FoW chess AI (Zhang
 063 and Sandholm, 2021), we conclusively demonstrate that *Obscuro* is stronger than any other current
 064 agent—human or artificial—for FoW chess. FoW chess is now the largest (measured by amount of
 065 imperfect information) turn-based game in which superhuman performance has been achieved and
 the largest game in which imperfect-information search techniques have been successfully applied.

066 In the next section we will introduce the game and discuss the challenges that players in these types
 067 of games must tackle. In the section after that, we present our AI agent *Obscuro* and the algorithms
 068 therein. In the section after that, we present our experiments. Finally we present conclusions and
 069 future research directions.
 070

072 2 CHALLENGES IN IMPERFECT-INFORMATION GAMES SUCH AS FOG OF WAR 073 CHESS

074 Imperfect-information versions of chess have captured the imagination of chess players and scientists
 075 alike for over a century. To our knowledge, the first imperfect-information version of chess
 076 was *Kriegspiel*, invented in 1899 and based on the earlier game *Kriegsspiel*, a war game used by the
 077 Prussian army in the early 19th century for training (Pritchard, 1994). In the modern day, there are
 078 multiple imperfect-information variants of chess, including *Kriegspiel*, *reconnaissance blind chess*
 079 (RBC), and *Fog of War (FoW) chess*.¹ Imperfect-information chess is a recognized challenge problem
 080 in AI. Although there has been AI research in *Kriegspiel* (Parker et al., 2005; Russell and Wolfe,
 081 2005; Ciancarini and Favini, 2009) and RBC (Gardner et al., 2023), strong performance has not been
 082 achieved in *Kriegspiel*, and RBC is not played competitively by humans. By comparison, FoW chess
 083 has surged in popularity due to its implementation on the major chess website chess.com, and strong
 084 human experts have emerged among thousands of active players.² It is the most popular variant of
 085 imperfect-information chess by far, and strong human experts exist who can serve as challenging
 086 benchmarks of progress.
 087

088 FoW chess presents a unique combination of challenges that did not exist in prior superhuman AI
 089 milestones.³ First, chess itself is a highly tactical game often requiring careful lookahead, and
 090 FoW chess is no different: there are often positions where one player has perfect or near-perfect
 091 information and can execute a sequence of moves that results in an advantage. Thus, a strong
 092 agent must have solid lookahead capability. Lookahead in other games is usually accomplished by
 093 subgame solving. Thus it would be desirable to be able to conduct subgame solving in FoW chess
 094 too.

095 Second, private information is rapidly gained and lost. It is possible for the size of a player’s *information set*
 096 (info-set)—i.e., set of indistinguishable positions given a player’s observations—to rapidly
 097 increase and then decrease again, for example, from hundreds up to millions and then back down to
 098 hundreds, in a matter of a few moves. Thus, a strong agent must have the ability to reason about this
 099 rapidly-changing information.

100 Third, a strong agent must at least somewhat play a *mixed strategy*—that is, it must randomize its
 101 actions. Otherwise, an adversary who knows the strategy, or has learned the strategy from past
 102 observation, can easily exploit that knowledge.
 103

104 ¹Despite its similar name, *Chinese dark chess* has no private information, and thus does not require the
 105 types of reasoning that are required in FoW chess.

106 ²As of April 2025, the Fog of War chess leaderboard on chess.com (Chess.com, 2025a) listed 19,150 active
 107 players.

³The complete rules of FoW chess can be found in Appendix A

108 Finally, in games like FoW chess, reasoning about *common knowledge* is difficult. This is a key
 109 challenge because most algorithms for subgame solving—including those that led to breakthroughs
 110 in no-limit Texas hold’em poker—rely on the ability to reason about common knowledge, or often
 111 even the ability to *enumerate* the entire common-knowledge set—that is, the smallest set of histories
 112 C with the property that it is common knowledge that the true history lies in C (Brown and
 113 Sandholm, 2018; 2019). So, to prepare for solving a subgame, prior algorithms need to reason about
 114 what the agent knows about what the opponent knows about what the agent knows, and so on. This
 115 need can dramatically expand the set of states that need to be incorporated into the subgame solving
 116 algorithm, making such methods impractical for games much larger than no-limit Texas hold’em.

117 For example, consider the two FoW chess positions in Fig. 1.⁴ Although seemingly completely
 118 distinct, it is possible to show (see Appendix E.1) that these two positions are connected by no fewer
 119 than nine levels of “I think that you think that...” reasoning. Prior techniques would require the
 120 ability to generate this complex connection before starting subgame solving from either of the two
 121 positions.

139 Figure 1: Two FoW chess positions in the same common-knowledge set. (A) position after moves 1.
 140 $\mathbf{Nc3}$ $\mathbf{g5}$ 2. $\mathbf{Nh3}$ $\mathbf{d5}$; (B) position after moves 1. $\mathbf{Nf3}$ $\mathbf{e5}$ 2. $\mathbf{h3}$ $\mathbf{Qh4}$. The **boxed squares** mark pieces
 141 visible to the opponent.

142 Such intricacies make it difficult to reason about common knowledge efficiently. For example,
 143 common-knowledge sets in FoW chess can quickly grow prohibitively large, so they cannot be held
 144 directly in memory (Zhang and Sandholm, 2021). In FoW chess, individual *infosets* often have size
 145 as large as 10^6 and can have size 10^9 . Common-knowledge sets can have size 10^{18} —far too large
 146 to be enumerated in reasonable time or space during search. (Detailed calculations for these lower
 147 bounds can be found in Appendix E.1.) Perhaps even more troubling is the fact that it is not even
 148 clear that it is possible to efficiently decide whether two histories can be distinguished by common
 149 knowledge, so in some sense reasoning about common knowledge may *require* enumerating the
 150 common-knowledge set in the worst case.⁵

151 This is in sharp contrast to poker, which has special structure that has driven the success of past ef-
 152 forts in that game. First, at least in two-player (heads-up) Texas hold’em poker, common-knowledge
 153 sets are not very large. They have size at most $\binom{52}{2} \binom{50}{2} \approx 1.6 \times 10^6$, and can thus easily be held in
 154 memory. Moreover, thanks to poker-specific optimizations (Johanson et al., 2011), subgame solv-
 155 ing in poker can be implemented in such a way that its complexity depends not on the size of the
 156 common-knowledge set but merely on the size of the infoset, enabling feasible subgame solving even

157
 158 ⁴The sequence of moves in the figure is purely for the purpose of illustrating common knowledge, and does
 159 not represent strong play. For example, *Obscuro* never plays 1... $\mathbf{g5}$ or 2... $\mathbf{Qh4}$.

160 ⁵Solinas et al. (2023) formally state and study this and similar computational problems in general games,
 161 showing that they are intractable in the worst case, so it should perhaps not come as a surprise that they appear
 to be hard in FoW chess.

162 when the common-knowledge sets are large, as is the case in multi-player poker.⁶ In more general
 163 games where these domain-specific techniques do not apply—such as FoW chess—the complexity
 164 of traditional subgame-solving techniques for imperfect-information games would scale with the
 165 size of the common-knowledge set, which in our case renders such techniques totally infeasible.
 166

167 **3 DESCRIPTION OF OUR AI AGENT *Obscuro* AND THE NEW ALGORITHMS
 168 THEREIN**

171 The technical innovations of *Obscuro* are in its search algorithms. At a high level, they operate
 172 as follows. At all times, the program maintains the full set P of possible positions⁷ given the
 173 observations that it has seen so far in the game, as well as a partial game tree $\hat{\Gamma}$ consisting of its
 174 calculations from the previous move. At the beginning of the game, P contains only the starting
 175 position s_0 , and $\hat{\Gamma}$ consists of a single node s_0 , since the program has done no calculation. Although
 176 P is small enough to fit in memory (usually $|P| \leq 10^6$), it is too large to feasibly allow nontrivial
 177 reasoning about every single position in P on every move. Therefore, the program instead samples
 178 a small subset $I \subseteq P$ at random, whose size is no more than a few hundred positions.

179 Given a subset I , the program at a high level executes the following steps.

- 181 1. Construct an imperfect-information subgame Γ incorporating the saved computation from
 182 the previous move ($\hat{\Gamma}$), as well as the positions in the sampled subset I .
- 183 2. Compute an (approximately) optimal strategy profile (*i.e.*, an approximate Nash equilib-
 184 rium) of Γ .
- 185 3. Use the Nash equilibrium to expand the game tree Γ .
- 186 4. Repeat the above two steps until a time budget is exceeded.
- 187 5. Select a move.

190 We now elaborate on each step individually. Full detail about our techniques, including formal
 191 descriptions of all techniques, proofs, and comparisons to prior work, can be found in Appendix C.

193 **3.1 STEP 1: GENERATING THE INITIAL GAME TREE AT THE BEGINNING OF A TURN**

195 The imperfect-information subgame Γ is constructed from the old game tree $\hat{\Gamma}$ and the sampled
 196 additional positions $s \in I$ according to a new algorithm which we call *knowledge-limited unfrozen*
 197 *subgame solving* (KLUSS). It is more effective than the *knowledge-limited subgame solving* (KLSS)
 198 algorithm of Zhang and Sandholm (Zhang and Sandholm, 2021) (a comparison is presented in Ap-
 199 pendix C). At a high level, KLSS and KLUSS address the issue of reasoning about common knowl-
 200 edge by assuming that sufficiently high-order knowledge is essentially irrelevant to game play: if
 201 there is a position s in the old tree $\hat{\Gamma}$ such that we know that the opponent knows that we know that
 202 s is not the true state, we remove s from Γ as it is assumed to be irrelevant. As an example, consider
 203 the game in Fig. 2. There are two players, \blacktriangle and \blacktriangledown . Suppose that we are \blacktriangle , and we have arrived at
 204 the circled node (which is alone in its infoset, *i.e.*, at this node, \blacktriangle has perfect information).

205 The infosets (dotted lines) define a *connectivity graph* G among the five nodes in that layer of the
 206 tree: two nodes u and v are connected if there is an infoset connecting any descendant of u (including
 207 u itself) to any descendant of v (including v itself). The nodes in that layer are labeled according to
 208 their distance from the circled node; the node labeled ∞ is not connected. Distance corresponds to
 209 order of knowledge: if the true node is the circled node, then the distance is the smallest integer k
 210 for which the statement

211 everyone knows that everyone knows that ... everyone knows that the true node is not u
 212 $\underbrace{\phantom{\text{everyone knows that everyone knows that ... everyone knows that the true node is not } u}}_{k \text{ repetitions}}$

214 ⁶Specifically, *Pluribus* (Brown and Sandholm, 2019) would not have been feasible without these poker-
 215 specific optimizations.

7 A position describes where pieces are as well as the castling and *en passant* rights.

Figure 2: An example game tree, to illustrate KLUSS. The box (\square) is a chance node. Dotted lines connect nodes in the same info-set.

is false. Thus the shaded red region corresponds to nodes that will be removed: everyone knows that these nodes are not the true nodes. This allows the game tree to be kept to a manageable size, even when the common-knowledge set (which the program never computes or uses) is large.

Our approach has two important properties. First, it enables the agent to reason about the opponent’s information in a more powerful way than assuming something pessimistic, such as the opponent having perfect information (Parker et al., 2005; Russell and Wolfe, 2005). This allows behavior such as bluffing, which is important to strong play. Second, it accomplishes this while essentially only examining states s that are relevant in the sense that, as far as our agent knows, the opponent might believe that s is the true state. This ensures that, even when the common-knowledge set is large and poorly structured (e.g., even when the vast majority of states in the common-knowledge set are irrelevant), subgame solving is still possible and effective.

The difference between KLUSS and KLSS is that in KLSS, the strategy at the two-node info-set for \blacktriangle in Fig. 2 (and more generally all \blacktriangle -nodes at distance 1 and their descendants) is frozen to that node’s strategy from the previous move. In KLUSS, it is unfrozen and will be game-theoretically optimized together with the rest of the subgame that is not removed (i.e., not red).

KLSS and KLUSS are not always game-theoretically sound in theory because some of the removed (red in the figure) part of the game tree could be relevant to the decision, but they are often sound in practice (Zhang and Sandholm, 2021; Liu et al., 2023). They can be viewed as a computationally feasible alternative to traditional game-theoretically sound subgame solving.

3.2 STEP 2: EQUILIBRIUM COMPUTATION

The remaining steps are inspired by the *growing-tree counterfactual regret minimization* (GT-CFR) algorithm (Schmid et al., 2023): a game tree Γ is simultaneously solved using an iterative equilibrium-finding algorithm and expanded using an expansion policy.

For equilibrium finding we use a state-of-the-art algorithm, *predictive CFR+* (PCFR+) (Farina et al., 2021). PCFR+ is an iterative, anytime algorithm for solving imperfect-information games, that can handle the fact that our game tree Γ is changing over time. At all times t , PCFR+ maintains a profile (x^t, y^t) , where x^t is our strategy and y^t is the opponent’s strategy.

PCFR+ has only been proven to converge *in average strategies*. That is, the empirical strategy profile $(\bar{x}^t, \bar{y}^t) := (\frac{1}{t} \sum_{s=1}^t x^s, \frac{1}{t} \sum_{s=1}^t y^s)$ converges to Nash equilibrium as $t \rightarrow \infty$. However, instead of computing the empirical average strategy, we circumvent this step and maintain only the last iterate (x^t, y^t) . There are several reasons for this choice, which are detailed in Appendix C.7.

3.3 STEP 3: EXPANDING THE GAME TREE

Nodes are selected for expansion by using carefully-designed *expansion policies* that balance exploration and exploitation. Our program chooses a node to expand by the following process. Fix one player to be the *exploring player*. (The choice of which player is exploring alternates: on odd-numbered iterations, P1 is the exploring player; on even-numbered iterations, P2 is the exploring player.) For this exposition, we will take P1 to be the exploring player. The *non-exploring* player will play according to its current strategy as computed by PCFR+, in this case y^t . The *exploring* player will play a perturbed version \tilde{x}^t of its current strategy x^t . The strategy \tilde{x}^t is designed to

balance between exploitation and exploration. *Exploitation* here means playing actions with high possible reward, that is, actions that have positive probability in x^t . *Exploration* means assigning positive probability to every possible action, to hedge against the possibility that the current tree incorrectly estimates the value of the action due to lacking search depth. For this, we use a method based on the *polynomial upper confidence bounds for trees* (PUCT) algorithm (Silver et al., 2016). Finally, a leaf node of the current tree Γ is selected for expansion according to the strategy profile (\tilde{x}^t, y^t) .

One major difference between our algorithm and the GT-CFR algorithm lies in having only one player use the exploring strategy \tilde{x}^t , rather than both. Intuitively, this remains sound, because tree nodes that *neither* player plays to reach are irrelevant to equilibrium play, and thus do not need to be expanded. In Appendix C.4, we formally show that this variant, like GT-CFR, will find an exact equilibrium of any two-player zero-sum game given infinite search time. Thus, allowing one player to play directly from their equilibrium strategy (here, y^t) allows the tree expansion to be more focused. We call this GT-CFR variant *one-sided GT-CFR*.

Once a leaf node z is chosen by the above process, its children are evaluated by a node heuristic and added to the game tree. The node heuristic is an estimate of the perfect-information value of z , as evaluated by the chess engine *Stockfish 14* (Stockfish). If z is the first node in its infoset that has been expanded, a local regret minimizer is created for PCFR+, and it is initialized to pick the action with highest value according to the node heuristic. Theoretically, the guarantees of PCFR+ do not depend on the initialization, which can be arbitrary. However, practically, we find that initializing to a “good guess” of a good action leads to faster empirical convergence to equilibrium. More details can be found in Appendix C.5.

3.4 STEP 4: REPEAT

The above two steps are repeated, in parallel using a multi-threaded implementation, until a time budget is exceeded. Our implementation uses one thread running CFR and two threads expanding the game tree, which is shared across all three threads. The node expansion threads use locks to avoid expanding the same node, but the equilibrium computation thread uses no locks and only works on the already-expanded portion of the game tree. The time budget is set heuristically based on the amount of time remaining on the player’s clock. Once the time budget is exceeded, the tree expansion threads (Step 3) are stopped first, and then, after a delay, the equilibrium computation thread (Step 2). The added time allocated to equilibrium computation is present so that a more precise equilibrium can be computed without the tree constantly changing.

3.5 STEP 5: SELECTING A MOVE

After those computations have stopped, a move is selected based on the (possibly mixed) strategy that PCFR+ has computed. Instead of directly sampling from this distribution, we first *purify* it (Ganzfried et al., 2012)—that is, we limit the amount of randomness. In particular, we sample from only the m highest-probability actions, where $1 \leq m \leq 3$ is chosen based on the computed strategies. We only allow mixing ($m > 1$) when the algorithm believes that its computed strategy is *safe*—intuitively, this is when the algorithm’s final strategy x^T can guarantee expected value at least as good as what the algorithm thought to be possible before the turn. This purification technique made a significant difference in practice, detailed via an ablation test in Section 4.1.

4 EXPERIMENTAL EVALUATION

To evaluate our techniques, we conducted several experiments. The first was a 1,000-game match against the previous state-of-the-art AI for FoW chess (Zhang and Sandholm, 2021) (hereafter ZS21). Our new AI scored 85.1% (+834 -33 -133)⁸, confidently establishing its superiority.

We then ran two experiments against human players. The first of these was a series of games against human players of varying skill levels. *Obscuro* played a total of 117 games (with time control 3 minutes + 2 seconds per move). This time control was selected because it was the most popular time

⁸This notation means 834 wins, 33 draws, and 133 losses.

control played on the most popular website for FoW chess (chess.com) at the time of the experiment. While in regular chess both fast and slow games are common, in FoW chess slow games are typically not played. The skill levels of the players, measured by their chess.com Fog of War chess ratings, ranged from 1450 to 2006. We excluded 17 of the games for various reasons such as disconnections, the opponent leaving before the game finished, or the opponent clearly losing on purpose, leaving 100 completed games. *Obscuro* scored 97% (+97 =0 -3), establishing conclusively that it is stronger than humans of this level.

Finally, we invited the top FoW chess player to a 20-game match (again at 3+2 time control). At the time of our match, *i.e.*, as of the rating list on August 16, 2024 (Chess.com, 2024), this player was rated 2318 and ranked #1 on the chess.com Fog of War blitz leaderboard. The games were played over the course of two days, 10 games per day, giving the human player an opportunity to analyze the first set of games overnight. In this match, *Obscuro* scored 80% (+16 =0 -4, +241 Elo), a conclusive and statistically significant ($p = 0.0118$ using an exact binomial test) victory against the world’s strongest player. We thus conclude that *Obscuro* is superhuman.

The 20 games played against the top human are available through the following link: <https://lichess.org/study/sja93Uc0>

A curated sample of particularly interesting games from our 100 games played against humans of varying skill levels, including all three games lost by *Obscuro*, is available through the following link: <https://lichess.org/study/1zHFym7e>

In both links, each game lists which side *Obscuro* played (Black or White) and the game result (Win or Loss). All games are shown from the perspective of *Obscuro*.

4.1 ABLATIONS

In addition, we conducted multiple ablations with *Obscuro*. In each of these experiments, we turned off one or more of the new techniques introduced in this paper in order to evaluate the contributions of the different techniques to the performance of *Obscuro*. All ablations were run at a time control of 5 seconds per move. Unless otherwise stated, all ablations were *Obscuro* playing against a version of *Obscuro* with the single stated technique turned off. Recall from above that *Obscuro* with all techniques turned on scored 85.1% against ZS21 and 80% against the top human.

1. *Purification off*. This version allowed mixing among all stable actions, even if the current margin is negative or there are more than three of them.

In a 1,000-game match, *Obscuro* scored 70.2% (+662 =79 -259).

2. *KLSS off*. In this version, the strategies in infosets not touching our infoset were frozen, as in 1-KLSS.

In a 1,000-game match, *Obscuro* scored 58.0% (+532 =96 -372).

3. *One-sided GT-CFR off*. In this version we use the two-sided node expansion algorithm proposed by the original GT-CFR paper (Schmid et al., 2023).

In a 10,000-game match, *Obscuro* scored 53.3% (+4535 =1583 -3882).

4. *Non-uniform Resolve distribution off*. In Appendix C.3, we describe a modification to the *Resolve* subgame solving (Burch et al., 2014) algorithm that we made for *Obscuro*, in which the root nodes of the game tree are weighted using a nonuniform distribution, instead of the uniform distribution prescribed by Burch et al. (2014). For this ablation, we turned this modification off, and instead used the uniform distribution, as was done in prior papers on subgame solving including ZS21.

In a 10,000-game match, *Obscuro* scored 53.3% (+4595 =1478 -3927).

5. *Two-sided GT-CFR only, against ZS21*. In this ablation, we turned off all the above improvements 1, 2, 3, and 4, and matched the resulting agent against that of ZS21. This serves to isolate the effect of using GT-CFR compared to using the LP-based equilibrium computation and iterative deepening node expansion as in ZS21.

In a 1,000-game match, the two-sided GT-CFR version scored 72.6% (+711 =30 -259) against ZS21.

- 378 6. *Weaker evaluation function.* To test the impact of the evaluation function, we hand-crafted
 379 a simple evaluation function that takes into account only the material difference and num-
 380 ber of squares visible to each player. We substituted this evaluation function in place of
 381 *Stockfish 14*’s neural network-based evaluation function, creating a new agent that we call
 382 *simple-eval (SE) Obscuro*. This evaluation function is very simple, and would not be well
 383 suited to regular chess. We tested *simple-eval Obscuro* against both *Obscuro* and ZS21.
 384 In a 1,000-game match, *Obscuro* scored 81.9% (+787 =63 -150) against *SE Obscuro*.
 385 In a 10,000-game match, *SE Obscuro* scored 55.0% (+5258 =486 -4256) against ZS21.
 386 This experiment shows that the evaluation function has a significant impact on the perfor-
 387 mance of *Obscuro*. Yet, the search algorithm is also vital: even a simplistic evaluation
 388 function with our improved search techniques is enough to be superior to ZS21.

389 All results in this and the next subsection are highly statistically significant ($z > 5$). The results
 390 suggest that each improvement played a significant role in the improvement of *Obscuro* over the
 391 previous state-of-the-art AI.

393 4.2 OTHER EXPERIMENTS

395 Finally, to test the effect of the time limit on the performance of *Obscuro*, we tested versions of
 396 *Obscuro* with different time limits against each other. The results were as follows. All matches
 397 consisted of 10,000 games.

- 399 • *Obscuro* with $\frac{1}{8}$ s/move scored 56.4% (+5162 =943 -3895) against *Obscuro* with $\frac{1}{16}$ s/move.
- 400 • *Obscuro* with $\frac{1}{4}$ s/move scored 56.5% (+5031 =1231 -3738) against *Obscuro* with $\frac{1}{8}$ s/move.
- 401 • *Obscuro* with $\frac{1}{2}$ s/move scored 56.7% (+4923 =1503 -3574) against *Obscuro* with $\frac{1}{4}$ s/move.
- 402 • *Obscuro* with 1s/move scored 54.0% (+4617 =1566 -3817) against *Obscuro* with $\frac{1}{2}$ s/move.
- 403 • *Obscuro* with 2s/move scored 53.7% (+4589 =1561 -3850) against *Obscuro* with 1s/move.
- 404 • *Obscuro* with 4s/move scored 52.3% (+4463 =1530 -4007) against *Obscuro* with 2s/move.
- 405 • *Obscuro* with 8s/move scored 52.4% (+4501 =1482 -4017) against *Obscuro* with 4s/move.
- 406 • *Obscuro* with 16s/move scored 52.3% (+4448 =1563 -3989) against *Obscuro* with 8s/move.

409 These results, converted to the standard Elo scale, are visualized in Fig. 3. As expected and in line
 410 with known results for other settings (e.g., for regular chess (Silver et al., 2017)), increasing search
 411 time has a significant impact on playing strength, but with somewhat diminishing returns.

413 Finally as a sanity check, we also tested *Obscuro* against a random opponent. The only realistic
 414 way for *Obscuro* to lose to a random opponent is by not defending against *Qa4+* or *Qa5+* in the
 415 opening as previously discussed, which happens with only very small probability. As previously
 416 discussed, occasionally losing to a weak (here, random) player would not in itself evidence that
 417 *Obscuro* is playing suboptimally, since even an exact equilibrium player should lose to a random
 418 player with positive probability. Nonetheless, *Obscuro* won 1000 consecutive games against the
 419 random opponent.

421 5 CONCLUSIONS AND FUTURE RESEARCH

423 We presented the first superhuman agent for FoW chess, *Obscuro*. Our agent is completely based
 424 on real-time search. Thus, *Obscuro* ran on regular consumer hardware, in contrast to most prior
 425 superhuman efforts involving search that we have discussed, which have run on large computing
 426 clusters with far more computing power at play time. This demonstrates the power of search alone.
 427 FoW chess is now the largest (measured by amount of imperfect information) turn-based game
 428 in which superhuman performance has been achieved and the largest game in which imperfect-
 429 information search techniques have been successfully applied.

430 Since FoW chess is somewhat similar to regular chess, it was sufficient to combine a perfect-
 431 information evaluation function from regular chess (namely, that used by *Stockfish*) with our game-
 independent state-of-the-art search algorithms for imperfect-information games. Also, *Obscuro*

Figure 3: Visualization of time scaling of *Obscuro*. The y -axis is relative to the playing strength of *Obscuro* with 5 seconds per move.

stores at all times the entire set of possible states in memory. While these techniques were feasible for FoW chess—due to the similarity to regular chess and the relatively small infosets—one can imagine even more complex games on which they will not work directly.

Even more complex settings could be tackled by merging our techniques with deep reinforcement learning to learn the evaluation function, instead of using a perfect-information-game evaluation function (in our case, from *Stockfish*), and/or using *continuation strategies* (Brown and Sandholm, 2019) to mitigate game-theoretic issues caused by using node-based evaluation functions in imperfect-information games. In a different direction, further play strength and scalability could be achieved by sampling from an infoset using a model of opponent behavior instead of doing so uniformly.

REFERENCES

- Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. *arXiv preprint arXiv:1912.06680*, 2019.
- Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In *Neural Information Processing Systems (NeurIPS)*, 2015.
- Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information games. In *Neural Information Processing Systems (NeurIPS)*, 2017. First published in AAAI-17 Workshop on Computer Poker and Imperfect Information Games, submitted November 4, 2016.
- Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. *Science*, 359(6374):418–424, 2018.
- Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. *Science*, 365(6456): 885–890, 2019.
- Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-information games. In *Neural Information Processing Systems (NeurIPS)*, 2018.
- Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep reinforcement learning and search for imperfect-information games. In *Neural Information Processing Systems (NeurIPS)*, 2020.

- 486 Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games using
 487 decomposition. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2014.
 488
- 489 Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. *Artificial Intelligence*, 134
 490 (1-2):57–83, 2002.
- 491 Chess.com. Fog of War Chess - Leaderboards - Play Chess Variants Online - chess.com. <https://www.chess.com/variants/fog-of-war/leaderboards>, 2024. [Online; accessed
 492 16-August-2024].
 493
- 494 Chess.com. Fog of War Chess - Leaderboards - Play Chess Variants Online - chess.com. <https://www.chess.com/variants/fog-of-war/leaderboards>, 2025a. [Online; accessed
 495 13-April-2025].
 496
- 497 Chess.com. What is Fog Of War chess? — Chess.com Help Center. <https://support.chess.com/en/articles/8708650-what-is-fog-of-war-chess>, 2025b. [On-
 498 line; accessed 13-April-2025].
 499
- 500 Chessgames.com. Chess Statistics. <https://www.chessgames.com/chessstats.html>,
 501 2024. [Online; accessed 16-Sep-2024].
 502
- 503 Paolo Ciancarini and Gian Piero Favini. Monte Carlo tree search techniques in the game of
 504 Kriegspiel. In *International Joint Conference on Artificial Intelligence (IJCAI)*, 2009.
 505
- 506 Gabriele Farina and Tuomas Sandholm. Fast payoff matrix sparsification techniques for structured
 507 extensive-form games. In *AAAI Conference on Artificial Intelligence (AAAI)*, volume 36, pages
 508 4999–5007, 2022.
 509
- 510 Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive Black-
 511 well approachability: Connecting regret matching and mirror descent. In *AAAI Conference on
 512 Artificial Intelligence (AAAI)*, pages 5363–5371, 2021.
 513
- 514 Gabriele Farina, Julien Grand-Clément, Christian Kroer, Chung-Wei Lee, and Haipeng Luo. Regret
 515 matching+: (in)stability and fast convergence in games. *Neural Information Processing Systems
 516 (NeurIPS)*, 36, 2024.
 517
- 518 Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games. In
 519 *International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS)*, 2015. Early
 520 version in AAAI-13 workshop on Computer Poker and Imperfect Information.
 521
- 522 Sam Ganzfried, Tuomas Sandholm, and Kevin Waugh. Strategy purification and thresholding: Ef-
 523 fective non-equilibrium approaches for playing large games. In *International Conference on
 524 Autonomous Agents and Multi-Agent Systems (AAMAS)*, 2012.
 525
- 526 Ryan W Gardner, Gino Perrotta, Anvay Shah, Shivaram Kalyanakrishnan, Kevin A Wang, Gregory
 527 Clark, Timo Bertram, Johannes Fürnkranz, Martin Müller, Brady P Garrison, et al. The machine
 528 reconnaissance blind chess tournament of neurips 2022. In *NeurIPS 2022 Competition Track*,
 529 pages 119–132. PMLR, 2023.
 530
- 531 Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via automated
 532 abstraction and real-time equilibrium computation. In *National Conference on Artificial Intelli-
 533 gence (AAAI)*, pages 1007–1013, 2006.
 534
- 535 Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for imperfect in-
 536 formation games, with application to Texas Hold’em poker. In *International Conference on Au-
 537 tonomous Agents and Multi-Agent Systems (AAMAS)*, pages 1168–1175, 2007.
 538
- 539 Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating best re-
 540 sponse calculation in large extensive games. In *International Joint Conference on Artificial Intel-
 541 ligence (IJCAI)*, 2011.
 542
- 543 Garry Kasparov and Frederic Friedel. Reconstructing turing’s “paper machine”. *ICGA Journal*, 3
 544 (2):1–8, 2018.

- 540 Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In *European Conference*
 541 *on Machine Learning (ECML)*, pages 282–293. Springer, 2006.
- 542
- 543 Vojtěch Kovařík, Dominik Seitz, and Viliam Lisý. Value functions for depth-limited solving in
 544 imperfect-information games. In *AAAI Reinforcement Learning in Games Workshop*, 2021.
- 545
- 546 Weiming Liu, Haobo Fu, Qiang Fu, and Yang Wei. Opponent-limited online search for imperfect
 547 information games. In *International Conference on Machine Learning (ICML)*, pages 21567–
 548 21585. PMLR, 2023.
- 549
- 550 Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladík, and Stephen Gaukrodger. Refining
 551 subgames in large imperfect information games. In *AAAI Conference on Artificial Intelligence*
 552 (*AAAI*), 2016.
- 553
- 554 Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
 555 Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. DeepStack: Expert-level artificial
 556 intelligence in heads-up no-limit poker. *Science*, 356(1667):508–513, May 2017.
- 557
- 558 Austin Parker, Dana Nau, and VS Subrahmanian. Game-tree search with combinatorially large
 559 belief states. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pages 254–259,
 560 2005.
- 561
- 562 Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
 563 Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
 564 stratego with model-free multiagent reinforcement learning. *Science*, 378(6623):990–996, 2022.
- 565
- 566 David Brine Pritchard. *The encyclopedia of chess variants*. Games & Puzzles Publications, 1994.
- 567
- 568 Stuart Russell and Jason Wolfe. Efficient belief-state AND-OR search, with application to
 569 Kriegspiel. In *National Conference on Artificial Intelligence (AAAI)*, 2005.
- 570
- 571 Martin Schmid, Matej Moravčík, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan
 572 Bard, Finbarr Timbers, Marc Lanctot, G Zacharias Holland, et al. Student of games: A unified
 573 learning algorithm for both perfect and imperfect information games. *Science Advances*, 9(46):
 574 eadg3256, 2023.
- 575
- 576 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 577 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 578 the game of Go with deep neural networks and tree search. *Nature*, 529(7587):484, 2016.
- 579
- 580 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 581 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
 582 without human knowledge. *Nature*, 550(7676):354–359, 2017.
- 583
- 584 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 585 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
 586 learning algorithm that masters chess, shogi, and go through self-play. *Science*, 362(6419):1140–
 587 1144, 2018.
- 588
- 589 Samuel Sokota, Gabriele Farina, David J Wu, Hengyuan Hu, Kevin A Wang, J Zico Kolter, and
 590 Noam Brown. The update-equivalence framework for decision-time planning. In *International
 591 Conference on Learning Representations (ICLR)*, 2024.
- 592
- 593 Christopher Solinas, Doug Rebstock, Nathan Sturtevant, and Michael Buro. History filtering in
 594 imperfect information games: algorithms and complexity. *Neural Information Processing Systems*
 595 (*NeurIPS*), 36:43634–43645, 2023.
- 596
- 597 Stockfish. Stockfish - Strong open source chess engine. [https://stockfishchess.org/
 598 download/](https://stockfishchess.org/download/).
- 599
- 600 Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
 601 oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
 602 level in StarCraft II using multi-agent reinforcement learning. *Nature*, 575(7782):350–354, 2019.

- 594 Kevin Waugh, Nolan Bard, and Michael Bowling. Strategy grafting in extensive games. In *Neural*
595 *Information Processing Systems (NeurIPS)*, 2009.
596
- 597 Brian Hu Zhang and Tuomas Sandholm. Subgame solving without common knowledge. *Neural*
598 *Information Processing Systems (NeurIPS)*, 34:23993–24004, 2021.
- 599 Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimization
600 in games with incomplete information. In *Neural Information Processing Systems (NeurIPS)*,
601 2007.
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 A RULES OF FoW CHESS
649650 FoW chess is identical to regular chess, except for the following differences (Chess.com, 2025b).
651

- 652 • A player wins by capturing the opposing king. There is no check or checkmate. Thus:
 - 653 – Moving into (or failing to escape) a check is legal and thus results in immediate loss.
 - 654 – Castling into, out of, or through check is legal (though, of course, castling into check
 - 655 – loses immediately).
 - 656 – Stalemate is a forced win for the stalemating player.
 - 657 – There is no draw by insufficient material. In particular, KN vs K is a strong position
 - 658 – for the KN, and even K vs K is not an immediate draw (although K vs K is drawn
 - 659 – in equilibrium except in some literal edge cases where one king is on the edge of the
 - 660 – board and cannot immediately escape.)
- 661 • After every move, each player observes all squares onto which her pieces can legally move.
- 662 • If a pawn is blocked from moving forward by an opposing piece (or pawn), the square on
- 663 – which the opposing piece/pawn sits is *not* observed. Thus, the player knows that the pawn
- 664 – is blocked, but not what is blocking it (unless, of course, some other piece can capture it.)
- 665 • If a pawn can capture *en passant*, the pawn that can be captured *en passant* is visible.
- 666 – In particular, the above rules imply that both players always know their exact set of legal
- 667 – moves.
- 668 • Threelfold repetition and 50-move-rule draws do not need to be claimed. In particular, a
- 669 – draw under either rule can happen without either player knowing for certain until it happens
- 670 – and the game ends.

674 B NOTATION AND PRELIMINARIES
675676 The techniques used in *Obscuro* are general, so in this section we will formulate them in terms of
677 general extensive-form games. To do this, we need to introduce some notation.
678679 B.1 NOTATION AND PRELIMINARIES
680681 A *two-player zero-sum timeable extensive-form game* (hereafter simply *game*) consists of:
682

- 683 1. a tree of *histories* H , rooted at the *empty history* $\emptyset \in H$. The set of leaves (*terminal nodes*)
684 of H is denoted Z . Each downward edge out of a non-leaf node $h \in H \setminus Z$ is labeled with
685 a distinct *action* or *move*. The node reached by following the edge (action) a at node h is
686 denoted ha . The set of actions available at h is denoted $A(h)$.
- 687 2. a *payoff function* $u : Z \rightarrow [-1, +1]$,
- 688 3. a partition $H \setminus Z = H_C \sqcup H_\blacktriangle \sqcup H_\blacktriangledown$, denoting whose turn it is—that is, for each $i \in \{C, \blacktriangle, \blacktriangledown\}$, P_i is the set of nodes at which player i moves. Player C is chance, who plays
689 according to a fixed strategy $p(\cdot|h)$,⁹
- 690 4. for each player $i \in \{\blacktriangle, \blacktriangledown\}$ and each $h \in H$, an *observation* $o_i(h)$ that player i receives
691 upon reaching h . The observation uniquely determines whether $h \in P_i$ (i.e., whether it is
692 player i 's turn) and, if it is, the set of legal actions. That is, if $o_i(h) = o_i(h')$, then $h \in P_i$
693 if and only if $h' \in P_i$, and if so, $A(h) = A(h')$.

694 We will use \preceq to denote the precedence relation on a tree. For example, if h, h' are histories then
695 $h \preceq h'$ means h is an ancestor of h' . If s, s' are sequences of player i , then $s \preceq s'$ means that s is
696 a prefix of s' . If S is a set, $s \succeq S$ means $s \succeq s'$ for some $s' \in S$. The *downward closure* of S is
697 $\bar{S} := \{h : h \succeq S\}$.¹⁰700 ⁹FoW chess contains no chance moves, but we include this in the interest of generality.701 ¹⁰In this paper, we visualize trees expanding from the top downwards, so \bar{S} is the set of descendants of S .

We will distinguish between *states* and *histories*. A *state* is a sufficient statistic for future play of the game. That is, all data about the subtree rooted at a history h is uniquely determined by the state at h . Multiple histories can have the same state.

The *sequence* of a player i upon reaching a node $h \in H$ is the sequence of observations made and actions played by i so far. Two nodes h, h' are *indistinguishable to player i* , written $h \sim_i h'$, if they have the same sequence for player i . An equivalence class of H under \sim_i is an *infoset*, for player i . Throughout this paper, I will denote a \blacktriangle -infoset, and J will denote a \blacktriangledown -infoset. We will assume, without loss of generality, that the player sequence and opponent sequence together uniquely specify a game tree node—that is, $|I \cap J| = 1$ for every \blacktriangle -infoset I and \blacktriangledown -infoset J .

By convention, information sets containing nodes at which player i is not the acting player are typically not drawn (and often not even defined); in our paper, we will need them in order to define the knowledge graph. Thus let \mathcal{I} (resp. \mathcal{J}) denote the set of infosets at which \blacktriangle (resp. \blacktriangledown) is the acting player. If a is a legal action at an infoset $I \in \mathcal{I}$, the sequence reached by playing a at I is (I, a) . The set of nodes $\{ha : h \in I\}$ will also be denoted (I, a) . Let $s_i(h)$ denote the sequence of player i at h , as of the last time player i played an action. Thus, $s_\blacktriangle(h)$ (resp. $s_\blacktriangledown(h)$) can be identified with a pair (I, a) where $I \in \mathcal{I}$ (resp. $J, a \in \mathcal{J}$).

A (*behavioral*) *strategy* of \blacktriangle (resp. \blacktriangledown) is a selection of a distribution of actions at each infoset, $x \in X = \bigtimes_{I \in \mathcal{I}} \Delta(A(I))$ (resp. $y \in Y = \bigtimes_{J \in \mathcal{J}} \Delta(A(J))$). We will use the general notation $x(u'|u)$, where $u \preceq u'$ to denote the probability that \blacktriangle plays *all* actions on the $u \rightarrow u'$ path, where u and u' are sequences, infosets, or nodes. Similarly, $x(a|u)$ denotes the probability that x takes action a at u (when $u \in \mathcal{I}$ or $u \in H_\blacktriangle$). If the right half is omitted, *e.g.*, $x(u)$, it is understood to be \emptyset , *e.g.*, $x(u) = x(u|\emptyset)$. In particular, $x(h)$ denotes the probability that \blacktriangle plays all actions on the $\emptyset \rightarrow h$ path. Similar notation is used for \blacktriangledown .

The expected value for \blacktriangle in strategy profile $\pi = (x, y)$ is $u(\pi) := \mathbb{E}_{z \sim \pi} u(z)$ where the expectation is over terminal nodes z when \blacktriangle plays x and \blacktriangledown plays y . (Since the game is zero sum, the value for \blacktriangledown is $-u(\pi)$.)

The *conditional value* $u(\pi|S)$ is the conditional expectation given that some node in the set S is hit. The (*conditional*) *best-response value* $u^*(x|J, a)$ to a \blacktriangle -strategy $x \in X$ upon playing action a at infoset J is the best possible conditional value that \blacktriangledown against x after playing a at J :

$$u^*(x|J, a) = \min_{y \in Y : y(J, a) = 1} u(x, y|J).$$

Counterfactual values (CFVs), which we will denote by u^{cf} , are defined similarly to conditional values, but scaled by the probability of the other players playing to J :

$$u_\blacktriangle^{\text{cf}}(x, y; J, a) = u(x, y|J, a) \cdot \sum_{h \in J} x(h)p(h) = \sum_{z \succeq J} x(z)p(z)y(z|h)u(z).$$

The best-response value at infoset J is $u^*(x|J) = \min_a u^*(x|J, a)$. The best-response value $u^*(x)$ is $\min_{y \in Y} u(x, y) = u^*(x|\emptyset)$. Analogous definitions hold when the players are swapped.

B.2 ORDER- k KNOWLEDGE, COMMON KNOWLEDGE, AND SUBGAME SOLVING

In this section, we present the mathematical notation we will use in the rest of the appendix, and relevant prior work on subgame solving (see, *e.g.*, (Kovařík et al., 2021) for an overview).

The *connectivity graph* G of a game Γ is the graph whose vertices are the nodes of Γ , and whose edges connect nodes in the same infoset of any player. Now let I be any infoset.¹¹ The *order- k knowledge set* I^k is the set of nodes at distance strictly less than k from some node in I . (In particular, $I^1 = I$.) The *common-knowledge set* I^∞ is the set of all nodes a finite distance away from some node in I , *i.e.*, it is the connected component in G containing I . Intuitively, the distance from I captures the level of common knowledge. If the true node is $h \in I$, then

1. \blacktriangle knows $h \in I$,

¹¹The definition of I^k can also be applied to arbitrary sets of nodes I , but here we will only need it for infosets.

- 756 2. \blacktriangle knows \blacktriangledown knows $h \in I^2$,
 757 3. \blacktriangle knows \blacktriangledown knows \blacktriangle knows $h \in I^3$,

759 and so on. Hence the statement $h \in I^\infty$ is common knowledge.

760 In the remainder of the paper, we take the perspective of the maximizing player \blacktriangle . Subgame solving
 761 starts with a *blueprint strategy profile* (x, y) . In *Obscuro*, the blueprint strategy profile is simply the
 762 saved strategy from the computation on the previous move; on the first move, subgame solving does
 763 not require a blueprint.

764 Suppose that we reach infoset I during a game. Before selecting a move at I , we would like to do
 765 some computation to compute a new strategy x' that we will use instead of x . That is, we would like
 766 to perform *subgame solving*.

767 We will first describe two common variants of *common-knowledge* subgame solving: *Resolve* (Burch
 768 et al., 2014) and *Maxmargin* (Moravcik et al., 2016), both of which we will use in *Obscuro*. Both
 769 variants begin by constructing a *gadget game* using common-knowledge set I^∞ , and are based
 770 on the principle of searching for a strategy x' that does not worsen the opponent’s best response
 771 values. More formally, let $M(x', J) := u^*(x'|J) - u^*(x|J)$ be the *margin* at \blacktriangledown -infoset $J \subseteq I^\infty$.
 772 The *alternate value* $u^*(x|J)$ is the value to which \blacktriangle must restrict \blacktriangledown at J in order to ensure that
 773 exploitability does not increase.

774 *Maxmargin* and *Resolve* differ in how they aggregate the margins across the different information
 775 sets $J \in \mathcal{J}_0$. The *Maxmargin* objective is to maximize the minimum margin:

$$\max_{x'} \min_{J \in \mathcal{J}_0} M(x', J).$$

776 The *Resolve* objective is to maximize the average margin truncated to zero:

$$\max_{x'} \frac{1}{|\mathcal{J}_0|} \sum_{J \in \mathcal{J}_0} [M(x', J)]^- \quad \text{where} \quad [z]^- := \min\{0, z\}.$$

777 and $\mathcal{J}_0 := \{J : J \subseteq I^\infty\}$ is the set of possible root infosets for \blacktriangledown in the subgame.

778 A subgame solving method is *safe* if applying it cannot increase exploitability of the overall agent
 779 compared to not applying it—*i.e.*, compared to playing the blueprint strategy. Both *Maxmargin* and
 780 *Resolve* are safe, assuming of course that subgames are solved exactly.¹²

781 Subgame solving via *Resolve* and *Maxmargin* can also be performed using *gadget games*. In *Re-
 782 solve*, the following gadget game is played. First, chance chooses a node $h \in I^\infty$ with probability
 783 proportional to $p(h)x(h)$. Then, \blacktriangledown observes the infoset $J \ni h$, and decides whether to *play* or *exit*.
 784 If \blacktriangledown exits, the game ends immediately with utility equal to the alternate value $u^*(x|J)$. Otherwise,
 785 the game continues as normal from node h . In *Maxmargin*, \blacktriangledown first selects the infoset $J \in \mathcal{J}_0$, and
 786 then chance samples a node $h \in J$ with probability proportional to $p(h)x(h)$. Then, \blacktriangle immediately
 787 receives utility $-u^*(x|J)$.¹³ Chance then selects a node $h \in J$ with probability proportional to
 788 $p(h)x(h)$, and the game continues from h .

789 *Maxmargin* and *Resolve* have very different behavior. When it is impossible to make all margins
 790 nonnegative (due to approximations), *Maxmargin* will make the *pessimistic* assumption that the
 791 opponent will play the worst infoset, whereas *Resolve* will, roughly speaking, assume that the opponent
 792 will play uniformly over all infosets with negative margin. On the other hand, when it is possible to
 793 make all margins nonnegative, there is a set of subgame strategies that are maximizers of the *Resolve*
 794 objective, that is, equilibria of the *Resolve* gadget game. *Resolve* allows any one of these strategies
 795 to be selected, whereas *Maxmargin* enforces that the strategy be in particular the one that maximizes
 796 the minimum margin.

797 In the state-of-the-art common knowledge subgame-solving technique, *reach subgame solving*
 798 (Brown and Sandholm, 2017), any gifts given to us by the opponent through mistakes in reaching
 799 the subgame can be given back to the opponent within the subgame; this enlarges the strategy space

800 ¹²In our application, safety is hard to reason about: neither the blueprint strategy x nor the subgame-solved
 801 strategy x' are full-game strategies, so asking the question of which is less exploitable is strange.

802 ¹³This can be implemented, for example, by adding $u^*(x|J)$ to the value of every terminal node $z \succeq J$ in
 803 the subgame.

810 that we can optimize over safely and thus has been shown to yield stronger play (e.g., in poker
 811 games (Brown and Sandholm, 2017; 2018; Brown et al., 2018; Brown and Sandholm, 2019)). This
 812 is done by adjusting the alternate values $u^*(x|J)$ in the case when ∇ provably made a mistake(s) in
 813 playing to reach J . Reach subgame solving can be applied on top of either *Resolve* or *Maxmargin*.
 814 In particular, the value

$$815 \quad g(J) := \sum_{J'a' \preceq J} [u_{\nabla}^{cf^*}(x; J'a') - u_{\nabla}^{cf^*}(x; J')],$$

$$816$$

$$817$$

818 which is an estimate of the gift using the current strategy profile (x, y) , is added to the alternate
 819 value at each infoset $J \in \mathcal{J}_0$.

820 In those prior subgame-solving techniques and ours, the desired gadget game then replaces the full
 821 game, and its solution is used to select a move at I . When a new infoset is reached, the process
 822 repeats, with the solution to the previous subgame taking the place of the blueprint.

824 C FURTHER DETAILS ABOUT *Obscuro*

826 We now give more details about *Obscuro*. Appendix C.1 details the techniques that are identical
 827 to the prior SOTA (ZS21). The remaining subsections detail the improvements over ZS21 that
 828 we developed in *Obscuro*. We also include pseudocode for the major components of *Obscuro*, in
 829 Figures 8-12.

831 C.1 PRIOR STATE OF THE ART IN FOW CHESS

833 *Obscuro* decides between *Maxmargin* and *Resolve* by examining the current objective value in the
 834 subgame. If ∇ always chooses to exit in the resolve gadget (i.e., the current strategy is *safe*), *Max-
 835 margin* is used. Otherwise, *Resolve* is used. This switch may happen, even multiple times, in the
 836 middle of the search process for a move, if the subgame value is fluctuating. Intuitively, this choice
 837 prevents the agent from being too pessimistic when faced with novel situations that it did not antic-
 838 ipate.

839 Between moves, *Obscuro* maintains the list of all possible states given its current sequence of ob-
 840 servations, as well as the search tree and current approximate equilibrium strategy profile (x, y)
 841 from the previous search. This previous strategy profile (x, y) is used as the blueprint for subgame
 842 solving.

843 When it is *Obscuro*’s turn, *Obscuro* first builds both the *Maxmargin* and *Resolve* gadget subgames.
 844 The gadget subgames share the same game tree in memory after the subgame root layers. Thus, for
 845 example, node expansions and strategy updates for infosets beyond the subgame root layers apply
 846 to both subgame gadgets. This allows the transition between the two subgames, if necessary, to be
 847 smoothly executed.

848 If insufficiently many nodes exist in the sample of *Obscuro*’s current infoset I , nodes are added by
 849 sampling at random without replacement from the set of possible states. At newly-added nodes h ,
 850 the opponent is assumed to have perfect information, and the alternate value is set to $\min\{\tilde{v}(h), v^*\}$
 851 where v^* was the expected value of *Obscuro* in the previous search, and $\tilde{v}(h)$ is *Stockfish*’s evaluation
 852 function evaluated at h .

853 C.2 BETTER ALTERNATE VALUES AND GIFT VALUES

855 For alternate values in both *Resolve* and *Maxmargin*, in *Obscuro* we use $u(x, y|J)$ instead of the
 856 best-response value $u^*(x|J)$ which is more typically used in subgame solving as we described in Ap-
 857 pendix B.2 (Brown and Sandholm, 2017). Similarly, we use the counterfactual values $u^{cf}(x, y; J, a)$
 858 and $u^{cf}(x, y; J)$ to define the gift instead of the counterfactual best responses $u^{cf^*}(x; J, a)$ and
 859 $u^{cf^*}(x; J)$, resulting in the gift estimate

$$860 \quad \hat{g}(J) := \sum_{J'a' \preceq J} [u^{cf}(x, y; J'a') - u^{cf}(x, y; J')]^+$$

$$861$$

$$862$$

863 These changes are for stability reasons: especially late in the tree, the current strategy x may be
 864 inaccurate, and the best-response value $u^*(x|J)$ may not be an accurate reflection of the quality

864 of the blueprint strategy x , especially near the top of the tree. Of course, if (x, y) is actually an
 865 equilibrium of the constructed subgame, then these values are the same.
 866

867 **C.3 BETTER ROOT DISTRIBUTION FOR *Resolve***

869 When using *Resolve*¹⁴ for the subgame solve in KLSS in games with no chance actions, the standard
 870 algorithm for *Resolve* will choose an opponent infoset J uniformly at random from the distribution
 871 of possible infosets. In reality, the correctness of *Resolve* does not depend on the distribution chosen,
 872 so long as it is fully mixed. To be more optimistic, we therefore use a different distribution. We
 873 choose an infoset J via an even mixture of a uniformly random distribution and the distribution
 874 of infosets generated from the opponent strategy in the blueprint. That is, the probability of the
 875 subgame root being infoset J is

$$876 \alpha(J) := \frac{1}{2} \left(\frac{y(J)}{\sum_{J'} y(J')} + \frac{1}{m} \right),$$

878 where m is the number of \blacktriangledown -infosets in the current subgame and the sum is taken over those same
 879 infosets. In other words, the *Resolve* objective becomes

$$880 \max_{x'} \sum_{J \in \mathcal{J}_0} \alpha(J) [M(x', J)]^-.$$

882 In this manner, more weight is given to those positions that were found to be likely in the previous
 883 iteration, while maintaining at least some positive weight on every strategy.
 884

885 **C.4 BETTER NODE EXPANSION VIA GT-CFR**

887 *Growing-tree CFR* (GT-CFR) (Schmid et al., 2023) is a general technique for computing good strate-
 888 gies in games. Intuitively, it works, like PUCT, by maintaining a current game $\tilde{\Gamma}$ and simultaneously
 889 executing two subroutines: one that attempts to solve the game $\tilde{\Gamma}$, and one that expands leaf nodes
 890 of $\tilde{\Gamma}$. As mentioned in the body, we use PCFR+ for game solving.

892 For expansion, we use a new variant of GT-CFR which we call *one-sided GT-CFR*, which, unlike
 893 PUCT and GT-CFR, may only expand a small fraction of nodes in the tree. As stated in the body,
 894 our one-sided GT-CFR algorithm selects the node to expand according to the profile (\tilde{x}^t, y^t) , where
 895 y^t is the *non-expanding player’s current CFR strategy* and \tilde{x}^t is an exploration profile constructed
 896 from the expanding player’s current strategy.¹⁵ As in GT-CFR, the expanding player’s strategy \tilde{x}^t
 897 is a mixture of a strategy $\tilde{x}_{\text{Max}}^t(a|I)$ derived from the player’s current strategy x^t and an exploration
 898 strategy $\tilde{x}_{\text{PUCT}}^t(a|I)$ derived from PUCT (Silver et al., 2016). In particular, we define

$$898 \tilde{x}_{\text{Max}}^t(a|I) \propto \mathbf{1}\{x^t(a|I) > 0\}$$

900 to be the uniform distribution over the support of the current CFR strategy, and

$$901 \tilde{x}_{\text{PUCT}}^t(a|I) = \mathbf{1}\{a = \underset{a'}{\text{argmax}} \bar{Q}(I, a)\}$$

902 where

$$904 \bar{Q}(I, a) = u(x^t, y^t|I, a) + C\sigma^t(I, a) \frac{\sqrt{N^t(I)}}{1 + N^t(I, a)}.$$

906 Here, C is a tuneable parameter (which we set to 1); $\sigma^t(I, a)$ is the empirical variance of
 907 $u(x^t, y^t|I, a)$ over the previous times we have visited I during expansion (with two prior samples of
 908 -1 and $+1$ to ensure it is never zero); $N^t(I)$ is the number of times infoset I has been visited during
 909 expansion; and $N^t(I, a)$ is the number of times action a has been selected. Finally, as in GT-CFR,
 910 we define

$$911 \tilde{x}_{\text{sample}}^t(a|I) = \frac{1}{2} \tilde{x}_{\text{Max}}^t(a|I) + \frac{1}{2} \tilde{x}_{\text{PUCT}}^t(a|I).$$

913 Unlike GT-CFR as originally described (Schmid et al., 2023), our one-sided GT-CFR works on the
 914 *game tree itself*, not the *public tree*. The public tree in our setting would be difficult to work with
 915 since the amount of common knowledge is very low.

916 ¹⁴For *Maxmargin*, there is no prior distribution because the adversary picks the distribution.

917 ¹⁵In this presentation, \blacktriangle is the expanding player. When \blacktriangledown is the expanding player, the roles of x and y are
 918 also flipped. As stated in the body, the expanding player alternates between \blacktriangle and \blacktriangledown after every node expansion.

Figure 4: The game tree from Fig. 2, now with some nodes labeled, which will be referenced in the text.

Our one-sided GT-CFR, unlike PUCT and GT-CFR (Kocsis and Szepesvári, 2006; Schmid et al., 2023), is *not* guaranteed to eventually expand the whole game tree. For example, suppose that our game $\tilde{\Gamma}$ is as in Fig. 4, and that both players are currently playing the strategy “always play left”. Then Node F is reached by both players, nodes G and H are reached by only one of the two players (\blacktriangle and \blacktriangledown respectively), and Node J is reached by neither player. As such, *Node J will not be expanded*, and if the current strategy is an equilibrium, this can be proven without knowing the details of any subtree that may exist at J.

Nonetheless, we can still show an asymptotic convergence result:

Theorem 1. *For any given $\epsilon > 0$, the average strategy profile (\bar{x}, \bar{y}) in one-sided GT-CFR eventually converges to an ϵ -Nash equilibrium of any finite two-player zero-sum Γ .¹⁶*

Proof. Since Γ is finite, eventually one-sided GT-CFR stops expanding nodes. At this time, let $\tilde{\Gamma}$ be the expanded game tree. Since no more nodes are expanded, and CFR is correct, one-sided GT-CFR eventually converges to an approximate Nash equilibrium (\bar{x}, \bar{y}) of $\tilde{\Gamma}$. At this time, it is perhaps the case that there remain unexpanded nodes in the current tree $\tilde{\Gamma}$. However, any such nodes must have been played with asymptotic probability 0 by *both* players; otherwise, if (say) \blacktriangledown plays to an unexpanded node h with asymptotically positive probability, then h would have been expanded at some point when \blacktriangle was the expander. Thus, best-response values in $\tilde{\Gamma}$ are the same as they are in Γ , and therefore (\bar{x}, \bar{y}) is also an approximate equilibrium in Γ . \square

C.5 EVALUATING NEW LEAVES

When a (non-terminal) leaf node z of $\tilde{\Gamma}$ is selected, it is expanded. That is, all of its children are added to the tree. To assign utility values the children of z , we run the open-source engine *Stockfish 14* (Stockfish), in *MultiPV* mode, at depth 1 on node z , which gives evaluations for all children of z in a single call,¹⁷ and clamp its result to $[-1, +1]$ in the same manner as done by ZS21 (Zhang and Sandholm, 2021).

When the children of z are added to the tree, z becomes a nonterminal node and hence will be placed in an infoset. If z is the first node of its infoset to be expanded in $\tilde{\Gamma}$, we also need to initialize a new regret minimizer to be used by PCFR+ at this new infoset. Doing so naively would cause a sort of instability: the evaluation of z will be (approximately) equal to the largest evaluation of any child of z (due to how regular perfect-information evaluation functions work), but PCFR+ normally would initialize its strategy uniformly at random. Thus, the evaluation of z would suddenly change to being the *average* of the evaluations of the children of z , which could be very different from the maximum (for example, if the move at z is essentially forced). To mitigate this instability, we exploit

¹⁶Technically, (\bar{x}, \bar{y}) is only a partial strategy in Γ , since it does not specify how to play after any unexpanded nodes. However, this is fine: *any* extension of (\bar{x}, \bar{y}) will be an equilibrium of Γ , and unexpanded nodes are not reached by either player. For clarity, as is typical for extensive-form games (see, e.g., Zinkevich et al. (Zinkevich et al., 2007)), the average of strategies is always taken in sequence form. That is, \bar{x} is the strategy for which $\bar{x}(h) = \frac{1}{T} \sum_{t=1}^T x^t(h)$.

¹⁷Using a single call has two minor advantages: first, it takes advantage of slight extensions that may be used in Stockfish at low depth; second, it reduces the overhead of calling Stockfish to one call per node being expanded, instead of one call per child of that node.

972 the property that, in CFR (and all its variants, including PCFR+), the first strategy can be arbitrary.
 973 Conventionally it is set to the uniform random strategy, but we instead set it by placing all weight
 974 on the best child of z as evaluated by *Stockfish*.
 975

976 C.6 KNOWLEDGE-LIMITED SUBGAME SOLVING

978 ZS21 (Zhang and Sandholm, 2021) uses *knowledge-limited subgame solving* (KLSS). KLSS results
 979 from two changes to common-knowledge subgame solving. Let I be the current infoset of Δ . As an
 980 example, consider the game in Fig. 4, and let I be the infoset at A. Let k be an odd positive integer.
 981 Then ZS21 (Zhang and Sandholm, 2021) defines k -KLSS by making the following two changes.
 982

- 983 1. Nodes outside the downward closure $\overline{I^{k+1}}$ are completely removed from the game tree. In
 Fig. 4, this would amount to removing the subtrees rooted at C, D, and E.
 984
- 985 2. Δ -nodes in $\overline{I^{k+1}} \setminus \overline{I^k}$ are frozen to their strategies in the blueprint, *i.e.*, they are made into
 chance nodes with fixed action probabilities. In Fig. 4, this amounts to making Node B a
 chance node.
 987

988 ZS21 sets $k = 1$ in their FoW chess agent. Freezing the Δ -nodes in $\overline{I^2} \setminus \overline{I^1}$ allows their equilibrium-
 989 finding module, which is based on linear programming, to scale more efficiently, since the nodes in
 990 that subtree are now only dependent on ∇ 's strategy, not Δ 's.
 991

992 KLSS, as implemented by ZS21, already lacks safety guarantees: they have an explicit counterexample
 993 in which using KLSS may decrease the quality of the strategy relative to just using the blueprint.
 994 We make one simple change to KLSS for *Obscuro*: we allow Δ -nodes in $\overline{I^2} \setminus \overline{I^1}$ to be unfrozen
 995 and hence re-optimized in the subgame. We may call this 2-knowledge-limited *unfrozen* subgame
 996 solving (KLUSS),¹⁸ since its complexity depends on the order-2 subgame $\overline{I^2}$. 2-KLUSS essentially
 997 amounts to pretending that $\overline{I^2} = \overline{I^\infty}$.
 998

999 We now make a few remarks about KLUSS.

- 1000 1. Like 1-KLSS, 2-KLUSS lacks safety guarantees in the worst case. However, KLSS is often
 safe in practice (Zhang and Sandholm, 2021), and KLUSS outperforms KLSS in FoW chess
 as we showed in the ablations in Section 4.1. There are two further considerations:
 1001
 - 1002 (a) *Obscuro* does not *have* a full-game blueprint: its blueprint is simply the strategy from
 the previous timestep, which is depth limited. Thus, we *must* use some form of sub-
 game solving to play the game. KL(U)SS is currently the only variation of subgame
 solving that is both somewhat game-theoretically motivated for imperfect-information
 games and computationally feasible in a game like FoW chess.
 1003
 - 1004 (b) Although both KLSS and KLUSS are unsafe in the worst case, it should be heuris-
 tically intuitive that they should improve performance *more* when the blueprint itself
 is of low quality. Indeed, we *expect* our “blueprints” (strategies carried over from the
 previous timestep) to have rather low quality, especially deep in the search tree where
 such strategies are based on very low-depth search! So, we believe heuristically that
 using KL(U)SS in this manner should usually be game-theoretically sound.
 1005
 1006
- 1007 2. Since our equilibrium-finding module for *Obscuro* is based on CFR instead of linear
 programming—in particular, it uses the full game tree $\tilde{\Gamma}$ instead of a sequence-form
 representation—it does not benefit from freezing the Δ -nodes in $\overline{I^2} \setminus \overline{I^1}$, since those nodes
 would still need to be maintained. Thus, there is less reason for us to freeze those nodes.
 Further, with straightforward pruning techniques (namely, *partial pruning* (Brown and
 Sandholm, 2015)), CFR iterations usually take *sublinear* time in the size of the game tree
 (unlike linear programming, which takes at least linear time in the representation size),
 reducing the need to optimize the size of the game representation.
 1008
- 1009 3. Again since we use CFR, the solutions that are computed by the equilibrium-finding mod-
 ule are inherently *approximate*, and especially at levels deep in the tree, their approxima-
 tion can be relatively poor. As such, allowing these infosets to be unfrozen gives them the
 chance to learn better actions.
 1010

¹⁸This can be easily generalized to k -KLUSS for any k .

- 1026 4. 1-KLSS removes the nodes in $\overline{I^2} \setminus \overline{I^1}$, folding them into the sequence-form representation
 1027 for efficiency. In contrast, our approach of maintaining these nodes allows them to be
 1028 *selected for expansion*. This fixes a weakness of ZS21: ZS21 was only capable of searching
 1029 for bluff opportunities “locally”, since any Δ -node in $\overline{I^2} \setminus \overline{I^1}$ would cease to be in the tree
 1030 once the search horizon was passed. In contrast, *Obscuro* is capable of maintaining Δ -
 1031 nodes in $\overline{I^2} \setminus \overline{I^1}$ for a long time, allowing deeper bluff opportunities.
 1032 5. Liu et al. (2023) introduced a *safe* variant of KLSS, which they call *safe KLSS*, in which
 1033 the subgame solver attempts to find a subgame strategy x' that maintains at least the same
 1034 value for every *opponent strategy* y , instead of against every *infoset* J . This is a much
 1035 stricter condition that is much more difficult to satisfy and thus substantially constrains
 1036 the strategy to be close to the blueprint. Therefore, the safety requirement significantly
 1037 decreases the power and value of subgame solving, especially when the blueprint is bad.
 1038 Moreover, safe KLSS drops all nodes outside $\overline{I^1}$, which once again introduces the problem
 1039 of the previously-listed item: if we were to use safe KLSS in our setting, our AI would not
 1040 be capable of exploiting long bluff opportunities.

1041 **C.7 SELECTING AN ACTION**

1042 As mentioned in the body, *Obscuro* selects its action using the *last iterate* of PCFR+, rather than the
 1043 average iterate which is known to converge to a Nash equilibrium. We do this for two reasons.
 1044

- 1045 1. The stopping time of the algorithm, due to the inherent randomness of processor speeds, is
 1046 already slightly randomized. Thus, stopping on the last iterate does not actually stop at the
 1047 same timestep T every time: it in effect mixes among the last few strategies. Thus, we do
 1048 not need to actually randomize ourselves to gain the benefit of randomization.
 1049 2. PCFR+ is conjectured (e.g., Farina et al. (2024)) to exhibit last-iterate convergence as well.
 1050 Indeed, we measured the Nash gap of the last iterate (x^T, y^T) (in the expanded game $\tilde{\Gamma}$),
 1051 and the typical Nash gap was approximately equivalent to half a pawn—much less than
 1052 the reward range of the game. This suggests that assuming last-iterate convergence is not
 1053 unreasonable for our setting.
 1054

1055 **C.8 STRATEGY PURIFICATION**

1056 As mentioned in the body, we partially *purify* our strategy before playing. When *Maxmargin* is used
 1057 as the subgame solving algorithm (i.e., when the margins are all nonnegative), we allow mixing
 1058 between $k = 3$ actions; when *Resolve* is used, we deterministically play the top action. Moreover,
 1059 we only allow mixing among actions other than the highest-probability action if they have appeared
 1060 continuously in the support of x^t for every iteration $t > T_{1/2}$, where $T_{1/2}$ is chosen to be the iteration
 1061 number when half the time budget elapsed.¹⁹ We call such actions “stable”. These restrictions
 1062 reduce the chance that transient fluctuations in the strategy of the player, which occur commonly
 1063 during game solving especially with an algorithm like PCFR+, would affect the final action that is
 1064 played. Any probability mass that was assigned to actions that are excluded in the above manner is
 1065 shifted to the action with highest probability.
 1066

1067 **D HARDWARE**

1068 *Obscuro*, for its human matches, ran on a single desktop machine with a 6-core Intel i5 CPU. Ablations
 1069 and further matches were run on an AMD EPYC 64-core server machine using 10 cores (5 per
 1070 side). We now report statistics about the computational performance of *Obscuro*. These statistics
 1071 were collected over the course of a 1,000-game sample, at a time control of 5 seconds per move.²⁰
 1072

- 1073 • Average game length: 116.6 plies (58.3 full moves)

1074 ¹⁹It will almost always be the case that $T_{1/2} < T/2$. This is because, as the game tree grows larger, PCFR+
 1075 iterations, whose time complexity scales with the size of the game tree, get slower.

1076 ²⁰For this and all other AI-vs-AI matches in this paper, the stated time control, usually 5 seconds per move,
 1077 is the time limit allocated to the main search loop, and does *not* include the time it takes to enumerate the set of
 1078 all legal positions.

- Average search depth: 10.7 plies
- Average search tree size: 1,070,552 nodes, 14,404 infosets
- Average search tree size carried over from previous search: 181,421 nodes, 3,162 infosets
- Average number of possible positions: 17,264

E OBSERVATIONS ABOUT FoW CHESS

E.1 SIZE OF INFOSETS AND COMMON-KNOWLEDGE SETS

Here we elaborate on the discussions about common-knowledge sets and infosets, alluded to in the introduction.

Consider the family of positions in which both sides have spent the first eight moves playing **1. a4 a5 2. b4 b5 ... 8. h4 h5**, and subsequently shuffle all their remaining pieces around their first three ranks. An example of such a position is in Fig. 5. Each player must have one bishop on a light square (12 ways), one bishop on a dark square (12 ways), one queen, one king, two knights, and two rooks ($22 \cdot 21 \cdot 20 \cdot 19 \cdot 18 \cdot 17/2^2$ ways). When multiplied, this gives a total of approximately $M = 2 \times 10^9$ ways. This is a lower bound on the maximum size of an infoset. For common-knowledge sets, *both* players can arrange their pieces arbitrarily along the first three ranks, yielding approximately $M^2 \approx 4 \times 10^{18}$ different arrangements, which provides a lower bound on the maximum size of a common-knowledge set.²¹

Figure 5: FoW chess position illustrating the existence of large infosets and common-knowledge sets. A full explanation is given in the text.

Although infosets *can* get this large, they almost never *do* in practical games, because both sides are making effort to obtain information.

We now elaborate on Fig. 1. In particular, we will show that the two positions in that figure are in the same common-knowledge set. Consider the sequence of positions in Fig. 6, read in order from top-left to bottom-right. The positions marked A and B are the same as those in Fig. 1. Each position is connected to the next one by an infoset of one of the players: the first pair by a White infoset, the second pair by a Black infoset, and so on. A computer search showed that the depicted path, which

²¹These common-knowledge sets are measured with respect to *states*, not *histories*. Measuring common-knowledge sets with *histories* would result in a significantly larger number, because the order of the moves would matter.

1134 has length 9, is the shortest path between these two positions.²² Hence, if the true position is A, then
 1135 the statement $Y = \text{“The true position is not B”}$ is 8th-order knowledge for both players. That is, it
 1136 is true that

1137 $\underbrace{\text{everyone knows everyone knows ... everyone knows } Y}_{8 \text{ repetitions}}$

1140 yet the same statement would be false if there were 9 repetitions, so Y is not common knowledge.

1158 Figure 6: Sequence of positions illustrating the connectivity between the two positions in Fig. 1.
 1159 Circles mark squares that the opponent knows are occupied by *some* piece, but not by *which* piece.
 1160 A full explanation is given in the text.

1162 E.2 MIXED STRATEGIES

1164 Playing a mixed strategy is a fundamental part of strong play in almost any imperfect information
 1165 game, and it is particularly important in games like FoW chess where there is no private information
 1166 assigned by chance, such as private cards in poker. Indeed, in small poker endgames, deterministic
 1167 strategies exist for playing near-optimally (Farina and Sandholm, 2022). However, in FoW chess, if
 1168 a player plays a pure strategy that the opponent knows, the opponent would essentially be playing
 1169 regular chess, because the opponent can predict with full certainty what the player would play. This
 1170 is a significant disadvantage that will result in a rapid loss against any competent opponent.

1171 Consider, for example, the position in Fig. 7(A). White can win almost a full pawn (in expectation)
 1172 by mixing between the moves 2. *Qa4* with low probability and 2. *Nc3* with high probability. No
 1173 move for Black simultaneously defends the threats against both the king and the pawn. (2... *c6* may
 1174 look like it does, but after 3. *cxd5*, Black cannot recapture the pawn without risking hanging a king
 1175 or queen.)²³

1176 This necessity of playing a mixed strategy explains why we do not adopt full purification of our
 1177 strategy and instead opt to allow mixing.

1179 E.3 FIRST-MOVER ADVANTAGE

1181 We evaluated the first-mover advantage in FoW chess by running 10,000 games with *Obscuro* play-
 1182 ing against itself at a time control of 5 seconds per move. Of these games, White scored 57.5%
 1183 (+4935 =1623 -3442). This is, with statistical significance ($z > 5$), larger than the empirical first-
 1184 move advantage in regular chess, which is about 55% (Chessgames.com, 2024). We believe that the

1185 ²²A similar computer search shows that this is nearly the longest possible shortest path between any pair of
 1186 nodes after two moves from each side: there is a shortest path of length 10, but no shortest paths longer than
 1187 that.

1188 ²³*Obscuro* prefers to also include 3. *Nf3* and 3. *e3* in its mixed strategy to dissuade 2... *d4*.

Figure 7: FoW chess positions from actual gameplay illustrating common themes. **(A)** Opening position after the common trap **1. c4 d5??** **(B)** An early-game bluff. White bluffs that its attacking bishop is defended by the queen on **d1**. **(C)** A highly-risky queen maneuver from a losing position. **(D)** An endgame position in which the disadvantaged side sacrifices material for a chance at the opposing king. Details can be found in the text.

	White	Black
d4	66.4%	Nc6 32.5%
c4	29.6%	c6 25.1%
e4	1.9%	e6 20.7%
Nc3	1.4%	Nf6 15.9%
c3	0.4%	c5 4.8%
Nf3	0.2%	d5 0.9%

Table 1: Distribution of first moves played by *Obscuro* as both White and Black, over a 10,000-game sample. Percentages may not add up to 100% due to rounding.

fundamental reason for this discrepancy is the weakness of the **a4-e8** diagonal, as already exhibited in Fig. 7(A), discussed above. This risk presents Black from developing in a natural manner against **1. c4** or **1. d4**, allowing White a healthy opening lead.

Indeed, our 10,000-game sample included 10 games with length 12 ply (6 moves from each player) or fewer; all 10 of these games ended with either Black failing to cover **Qa4+** or White failing to cover **Qa5+**:

- **1. c4 d5 2. Qa4+ d4 1-0**
- **1. c4 c6 2. d4 d5 3. cxd5 Qa5+ 4. Qa4 0-1**
- **1. c4 Nc6 2. d4 d5 3. Qa4 dxc4 4. d5 Nb8 1-0**
- **1. d4 c6 2. c4 d5 3. cxd5 Bf5 4. Qa4 cxd5 1-0 (This play-through occurred three times.)**
- **1. d4 c6 2. c3 e6 3. e4 d5 4. e5 c5 5. Qa4+ cxd4 1-0**
- **1. c4 e6 2. d4 c5 3. d5 Qa5+ 4. Nd2 Nf6 5. e4 Nxe4 6. Nxe4 0-1**
- **1. d4 c6 2. Nc3 d5 3. Qd3 Nf6 4. e4 dxe4 5. Nxe4 Qa5+ 6. Nxf6+ 0-1**
- **1. c4 d5 2. Qa4+ c6 3. cxd5 Nf6 4. dxc6 Nxc6 5. Nf3 e5 6. Nxe5 Nxe5 1-0**

These games may seem like they contain major mistakes, but that is not so. It is rather likely that *most or all of these play-throughs are part of optimal play*: after all, bluffs must sometimes get called!

In Table 1 we give *Obscuro*'s mixed strategy on the first move for both White and Black, over the 10,000-game sample. The above observation about the **a4-e8** diagonal has a large effect on opening choices. We believe that this explains why White strongly prefers opening with **d4** and **c4** rather than **e4** which is equally favored in regular chess, and why Black almost never opens with **d5** and instead prefers to immediately close the dangerous diagonal by moving something to **c6**.

1242 E.4 BLUFFS
1243

1244 *Obscuro* bluffs. An example bluff is in Fig. 7(B), which is from the aforementioned 10,000-game
1245 sample. White knows that **d6** is defended (in fact, White knows the exact position). Black does not
1246 know the location of the white queen (for example, it could be on **d1** instead). This allows White to
1247 play **Bxd6**, exploiting the fact that Black cannot recapture without risking losing the queen.
1248

1249 E.5 PROBABILISTIC TACTICS AND RISK-TAKING
1250

1251 The existence of hidden information in FoW chess allows tactics that would not work in regular
1252 chess. An example of this phenomenon as early as move 2 has already been described above, where
1253 mixing allows White to win a pawn after **1. c4 d5**. We now give additional examples.
1254

1255 Fig. 7(C) depicts a position encountered during our 20-game match against the top-rated human.
1256 *Obscuro* (White) was in a losing position, down a minor piece. It decided to play the highly risky
1257 queen maneuver **Qg8-g1-a1-a7-a8**, leaving its own king exposed in order to attempt to hunt the
1258 opposing king. This risky tactic worked: the game played out **68. Qg1 Qe7 69. Qa1 Nb8 70.**
1259 **Qa7 Nd7 71. Qa8+ Nxb6** 1-0.²⁴ This sequence of moves heavily exploits the opponent’s imperfect
1260 information: if Black knew that White was attempting this attack, Black could easily either defend
1261 the attack or launch a counterattack on the completely undefended white king.
1262

1263 For another example, consider the position in Fig. 7(D), again from the aforementioned 10,000-
1264 game sample, and suppose for the sake of the example that White has perfect information. White
1265 faces a slight material disadvantage in an endgame. However, *Obscuro* as White finds the tactical
1266 blow **1. Rxe6! Kxe6** upon which mixing evenly between **2. Be4+** and **2. Bh3+** wins on the spot
1267 with 50% probability.
1268

1269 E.6 EXPLOITATIVE VS. EQUILIBRIUM PLAY
1270

1271 The position in Fig. 7(D) is also an example of the difference between *exploitative* play and *equi-*
1272 *librium* play in FoW chess. The above tactic has expected value at least 50% against any player,
1273 because it wins on the spot with probability at least 50%. It is likely the best move if playing against
1274 a perfect opponent. However, against a substantially weaker player, it may be far from the best
1275 move: against a weak player, one can argue that the endgame is probably a win even with the slight
1276 material disadvantage, whereas the tactic will lead to a significant disadvantage (down three points
1277 of material) if it fails to win. Therefore, if one knew the strength of one’s opponent, one may opt to
1278 not go for this tactic and instead attempt to win the endgame in a “safer” manner. Another example
1279 of this phenomenon was also seen above. *Obscuro*, with small probability, can lose in two moves
1280 (**1. c4 d5 2. Qa4+ d4**). Any player, no matter how weak, can therefore beat *Obscuro* with pos-
1281 itive probability as White by simply playing the above move sequence. However, against opponents
1282 below a certain level, playing the above moves as Black may be considered a needless risk.
1283

1284 *Obscuro* does not know or attempt to model the opponent. It will simply play what it believes to
1285 be a near-equilibrium strategy. Therefore, it may not do as well against weak players as an agent
1286 designed specifically to exploit weak players. This design choice was intentional, and follows other
1287 efforts in superhuman game-playing AI such as those mentioned in the introduction, most of which
1288 attempted to find and play equilibria rather than to exploit a particular opponent.
1289

1290 E.7 VOLATILITY
1291

1292 FoW chess is a highly volatile, highly stochastic game. Indeed, the previous two observations re-
1293 garding risk taking and exploitative play are evidence of this. Most games, including a majority of
1294 our 20 games against the world #1 player, are ultimately decided by one side outright “blundering
1295 material” because of lack of knowledge of the opponent’s position. We emphasize, however, that
1296 this is not a sign of poor quality of play; rather, we believe that strong play in FoW chess involves
1297 calculated risk-taking that, with nontrivial probability, leads to such “blunders”. More skilled play-
1298

1299 ²⁴The immediate **70. Qa8** would have worked in this position as well, but it was not played, likely because
1300 it would have risked losing the queen in case the king were on **b8**.
1301

1296 ers are better at taking calculated risks while restricting the probability of losing material, and at
 1297 forcing their opponents into more risky situations.
 1298

1299 E.8 KING VS KING
 1300

1301 To make some of the above discussions about mixing, volatility, and equilibrium play more concrete,
 1302 we include here a partial analysis of the king-vs-king endgame, assuming the starting position of the
 1303 kings is common knowledge. While this endgame is an immediate draw in the rules of regular chess
 1304 (because a lone king cannot checkmate), FoW chess allows such endgames to play out, and not all
 1305 such endgames are immediately drawn; in fact, the analysis turns out rather intricate already. In the
 1306 below discussion, 0 is a draw, +1 is a certain win for White, and -1 is a certain win for Black.
 1307

1308 **Claim 1.** *Suppose that there are two legal moves for the black king that are 1) guaranteed to be
 1309 safe (i.e., guaranteed to not immediately lose), and 2) adjacent to each other (orthogonally or diag-
 1309 onally). Then Black secures at least a draw.*

1310 *Proof.* Black randomly moves to one of them on their first move, and shuffles between them forever
 1311 thereafter. The white king cannot approach without being captured half of the time. \square
 1312

1313 Thus, it remains only to discuss the case where one king is on the edge of the board. Assume,
 1314 without loss of generality, that this is the black king, and that it is on the 8th rank.
 1315

1316 **Claim 2.** *If the white king prevents the black king from immediately moving off the back rank (e.g.,
 1317 a6 and a8), the equilibrium value is strictly positive, regardless of which side is to move.*

1318 *Proof.* We will show that Black has no strategy that achieves expected value 0. Consider two cases.
 1319

1320 **Case 1.** Black's strategy involves attempting to move off the back rank with positive probability
 1321 on some move t (but not earlier). Then consider the following strategy for White. Let $x7$ (for
 1322 $x \in \{a, b, \dots, h\}$) be the square on the 7th rank with maximal probability $p > 0$ for the black king
 1323 after t moves. White places its king on $x6$ before Black's t th move. With probability p , White
 1324 wins immediately. Otherwise, White runs away downwards, executing the strategy from Claim 1,
 1325 forcing a draw.

1326 **Case 2.** Black's strategy is to always stay on the back rank. Then consider the following strategy
 1327 for White. Let $x8$ be the square on the back rank with *minimal* probability $q \leq 1/4$ for the black
 1328 king, at the time when White makes its 8th move. White places its king on $x7$ on its 8th move, then
 1329 moves left and right on the 7th rank until it wins. We claim that White has expected value at least
 1330 $1 - 2q = 1/2$ with this strategy. To see this, note that, since Black always stays on the back rank,
 1331 the *parity* of its rank alternates between moves; therefore, if the black king is *not* on $x8$, then White
 1332 will not lose on its 8th move. Further, also by a parity argument, White will eventually chase down
 1333 the black king and win the game. \square

1334 If the black king is on the edge of the board, it is always the case that either White can force the
 1335 kings to be two squares apart with common knowledge (Claim 2) or Black has a safe pair of adjacent
 1336 moves (Claim 1), so this completes the analysis.
 1337

1338 We complete this section by pointing out an interesting special case: If the black king starts in
 1339 the corner (**a8**), the white king starts on either **b6**, **c7**, or **c6**, and it is White to move, then White
 1340 can secure value strictly larger than 1/2: randomize between **Kb6**, **Kc7**, **Ka6**, or **Kc8** (whichever
 1341 are legal moves) on the first move. This wins with probability 1/2 immediately, and otherwise
 1342 immediately forces the kings to be two squares apart (Claim 2).

1343
 1344
 1345
 1346
 1347
 1348
 1349

```

1350 1: maintain
1351 2:   current game tree  $\Gamma$  (initially containing only the root  $\emptyset$ )
1352 3:   current strategy profile  $(x, y)$ 
1353 4:   current expected value  $v^*$ 
1354 5:   current set of possible positions  $P$  (initially containing only the root  $\emptyset$ )
1355 6: procedure MOVE(observation sequence  $o$ )
1356 7:   CONSTRUCTSUBGAME( $o$ )
1357 8:   in parallel
1358 9:     RUNSOLVERTHREAD()
1359 10:    RUNEXPANDERTHREAD()  $\triangleright$  or multiple parallel copies of expansion thread
1360 11:    $I \leftarrow$  our current infoset
1361 12:    $a^* \leftarrow \text{argmax}_{a \in A(I)} \pi(a|I)$   $\triangleright$  ties broken arbitrarily
1362 13:   if  $p_{\max} = 0$  then  $\triangleright$  If using Resolve, just play  $a^*$ , i.e., purify completely.
1363 14:      $S \leftarrow$  set of stable actions  $\cup \{a^*\}$   $\triangleright$  “Stable” is defined in the text.
1364 15:   if  $|S| > \text{MAXSUPPORT}$  then  $\triangleright$  The parameter MAXSUPPORT is set to 3.
1365 16:     remove all but the top MAXSUPPORT most likely actions in  $S$ 
1366 17:    $\pi_{\text{play}}(\cdot|I) \leftarrow \pi(\cdot|I)$ 
1367 18:   for action  $a \in A(h) \setminus S$  do  $\triangleright$  Shift all mass of such actions onto  $a^*$ .
1368 19:      $\pi_{\text{play}}(a^*|I) \leftarrow \pi_{\text{play}}(a^*|I) + \pi_{\text{play}}(a|I)$ 
1369 20:      $\pi_{\text{play}}(a|I) \leftarrow 0$ 
1370 21:   sample  $a^* \sim \pi(\cdot|I)$ 
1371 22:   play action  $a^*$ 

```

Figure 8: Pseudocode, Part 1.

```

1372
1373
1374
1375 1: procedure CONSTRUCTSUBGAME(observation sequence  $o$ )
1376 2:    $\triangleright$  The set of possible positions is updated on every move by simply enumerating
1377 3:    $\triangleright$  all possibilities
1378 4:    $P \leftarrow$  all positions consistent with  $o$ 
1379 5:    $I \leftarrow$  set of nodes in  $\Gamma$  consistent with  $o$ 
1380 6:    $\triangleright$  Construct KLUSS subgame:
1381 7:   for each opponent infoset  $J \subseteq \overline{I^2}$  do
1382 8:     set alternate value  $v^{\text{alt}}(J) \leftarrow u(x, y|J) - \hat{g}(J)$ 
1383 9:   while  $|I| < \min\{|P|, \text{MININFOSETSIZE}\}$  do  $\triangleright$  Add more states to  $I$  if there are not enough.
1384 10:     $\triangleright$  The parameter MININFOSETSIZE is set to 256.
1385 11:    get random state  $s \in P \setminus I$ 
1386 12:     $\triangleright$  Assume  $\blacktriangledown$  has perfect information at newly-sampled states:
1387 13:    add  $s$  to  $\blacktriangle$ -infoset  $I$  and  $\blacktriangledown$ -infoset  $J = \{s\}$ 
1388 14:    set alternate value  $v^{\text{alt}}(J) \leftarrow \min\{\tilde{v}_{\blacktriangle}(s), v^*\}$ 
1389 15:    $\triangleright$  Fix prior probabilities:
1390 16:    $\mathcal{J}_0 \leftarrow \{J : J \subseteq \overline{I^2}\}$ 
1391 17:   for each opponent infoset  $J \subseteq \overline{I^2}$  do set prior probability  $\alpha(J) \leftarrow \frac{1}{2} \left( \frac{y(J)}{\sum_{J'} y(J')} + \frac{1}{m} \right)$ 
1392 18:   create new root node  $\emptyset$  where  $\blacktriangledown$  selects infoset  $J \in \mathcal{J}_0$ , reaching node  $h_J$ 
1393 19:    $\triangleright \pi_{-i}(h)$  is the probability that all other players play all actions on the path to  $h$  in  $\Gamma$ .
1394 20:   for each  $J \in \mathcal{J}_0$  do
1395 21:     make  $h_J$  a chance node where  $h \in J$  is selected w.p.  $\propto \pi_{-\blacktriangledown}(h)$ 
1396 22:     make new regret minimizer  $R_J$  with strategy space  $[0, 1]$  using PRM+
1397 23:      $\triangleright$  Regret minimizer  $R_J$  controls the probability with which  $\blacktriangledown$  enters at  $J$  in Resolve.
1398 24:    $\Gamma \leftarrow$  game tree with root  $\emptyset$ 
1399 25:   delete all game tree nodes not reachable from  $\emptyset$ 

```

Figure 9: Pseudocode, Part 2.

```

1404
1405
1406
1407 1: procedure RUNSOLVERTHREAD
1408 2:   while time permits do  $\triangleright$  Run for longer than expander threads.
1409 3:     RUNCFRITERATION( $\triangle$ )
1410 4:     RUNCFRITERATION( $\nabla$ )
1411 5:      $\triangleright$  Special case, must be done separately: RM+ updates for the Resolve subgame:
1412 6:     for each  $J \in \mathcal{J}_0$  do perform regret minimizer update at  $R_J$  with utility  $u_{\nabla}^{\text{cf}}(J)$ 
1413 7:      $\triangleright$  Transition between Resolve and Maxmargin smoothly,
1414 8:      $\triangleright$  based on whether Resolve chooses to enter at any infoset  $J$ :
1415 9:      $\triangleright \pi_{\nabla}^{\text{resolve}}(J)$  is the probability that Resolve ( $R_J$ ) enters at  $J$ .
1416 10:     $\triangleright \pi_{\nabla}^{\text{maxmargin}}(J)$  is the probability Maxmargin picks  $J$ .
1417 11:     $p_{\text{max}} \leftarrow \max_{J \in \mathcal{J}_0} \pi_{\nabla}^{\text{resolve}}(J)$ 
1418 12:    for each  $J \in \mathcal{J}_0$  do  $\pi_{\nabla}(J) \leftarrow p_{\text{max}} \cdot \alpha(J) \cdot \pi_{\nabla}^{\text{resolve}}(J) + (1 - p_{\text{max}}) \cdot \pi_{\nabla}^{\text{maxmargin}}(J)$ 
1419 13:     $\triangleright$  Note: it is possible for  $\sum_{J \in \mathcal{J}_0} \pi_{\nabla}(J) \neq 1$  if Resolve is being used!
1420
1421 14: procedure RUNCFRITERATION(exploring player  $i$ )
1422 15:   MAKEUTILITIES( $i, \emptyset$ )  $\triangleright$  MAKEUTILITIES will mark some infosets VISITED.
1423 16:    $\triangleright u_{\nabla}^{\text{cf}}(J)$  is  $\nabla$ 's CFV for picking  $J$  at the root.
1424 17:   if  $i = \nabla$  then
1425 18:     for each  $J \in \mathcal{J}_0$  do  $u_{\nabla}^{\text{cf}}(J) \leftarrow u_{\nabla}^{\text{cf}}(J) + v^{\text{alt}}(J)$ 
1426 19:   for each VISITED infoset  $I$ , in bottom-up order do
1427 20:      $\triangleright \pi_i$  is player  $i$ 's strategy.  $\sigma(I)$  is the parent sequence of infoset  $I$ .
1428 21:      $\triangleright$  CFR value backpropagation:
1429 22:      $u_i^{\text{cf}}(\sigma(I)) \leftarrow u_i^{\text{cf}}(\sigma(I)) + \sum_{a \in A(I)} \pi_i(a|I) u_i^{\text{cf}}(I, \cdot)$ 
1430 23:     perform regret minimizer update at  $I$  using counterfactual values  $u_i^{\text{cf}}(I, \cdot)$ 
1431 24:     mark  $I$  not VISITED
1432 25:      $u_i^{\text{cf}}(I, \cdot) \leftarrow 0$   $\triangleright$  reset
1433
1434
1435
1436
1437
1438
1439
1440

```

Figure 10: Pseudocode, Part 3.

```

1441 1: procedure MAKEUTILITIES(exploring player  $i$ , node  $h$ )
1442 2:   mark  $h$  as not NEW
1443 3:   if  $h$  is not EXPANDED or  $h$  is terminal then
1444 4:      $(I, a) \leftarrow \sigma_i(h)$ 
1445 5:     mark  $I$  as VISITED
1446 6:      $\triangleright \tilde{v}_i(h)$  is the Stockfish evaluation or terminal node value of  $h$  from  $i$ 's perspective.
1447 7:      $\triangleright u_i^{\text{cf}}(I, a)$  stores the CFV at sequence  $(I, a)$ . Initialized to 0.
1448 8:      $u_i^{\text{cf}}(I, a) \leftarrow u_i^{\text{cf}}(I, a) + \pi_{-i}(h) \tilde{v}_i(h)$ 
1449 9:   else
1450 10:     $\triangleright$  No need to explore nodes to which the opponent does not play.
1451 11:     $\triangleright$  No locks needed: all EXPANDED nodes are safe to access.
1452 12:    for each legal action  $a$  at  $h$  do
1453 13:      if  $i$  plays at  $h$  or  $\pi_{-i}(ha) > 0$  then MAKEUTILITIES( $i, ha$ )
1454
1455
1456
1457

```

Figure 11: Pseudocode, Part 4.

```

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471 1: procedure RUNEXPANDERTHREAD
1472 2:   while time permits do
1473 3:     DOEXPANSIONSTEP( $\Delta$ )
1474 4:     DOEXPANSIONSTEP( $\nabla$ )
1475 5:
1476 6: procedure DoEXPANSIONSTEP(exploring player  $i$ )
1477 7:    $h \leftarrow$  root node of current subgame  $\Gamma$ 
1478 8:   while  $h$  is EXPANDED do  $\triangleright$  Find leaf to expand.
1479 9:      $\triangleright$  Terminal nodes cannot be expanded.
1480 10:     $\triangleright$  Also, we should expand nodes that CFR has not yet iterated on.
1481 11:    if  $h$  is terminal or  $h$  is NEW then return
1482 12:     $\triangleright$  Select action:
1483 13:     $\triangleright$   $\tilde{\pi}_i$  is the expansion strategy of player  $i$  as defined in the text.
1484 14:    for action  $a \in A(h)$  do
1485 15:      if  $h$  belongs to  $i$  then  $\tilde{\pi}(a|h) \leftarrow \tilde{\pi}_i(a|h)$ 
1486 16:      else  $\tilde{\pi}(a|h) \leftarrow \pi_{-i}(a|h)$ 
1487 17:       $\triangleright$  If  $h = \emptyset$  and  $\nabla$  is using Resolve,  $\tilde{\pi}(\cdot|h)$  may not be a distribution
1488 18:      sample  $a \in A(h)$  w.p.  $\propto \tilde{\pi}(\cdot|h)$ 
1489 19:       $h \leftarrow ha$ 
1490 20:       $\triangleright$  Expand  $h$ :
1491 21:       $j \leftarrow$  active player at  $ha$ 
1492 22:      add all children of  $h$  to  $\Gamma$ 
1493 23:      let  $I$  be the infoset that  $h$  should be in
1494 24:      if  $I$  is not created then
1495 25:        create  $I$ 
1496 26:        initialize current strategy as  $\pi_j(a^*|I) = 1$  where  $a^* := \text{argmax}_{a \in A(h)} \tilde{v}_j(ha)$ 
1497 27:      add  $h$  to  $I$ 
1498 28:      mark  $h$  as EXPANDED

```

Figure 12: Pseudocode, Part 5.

```

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

```