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ABSTRACT

Since the advent of AI, games have served as progress benchmarks. Meanwhile,
imperfect-information variants of chess have existed for over a century, present ex-
treme challenges, and have been the focus of decades of AI research. Beyond cal-
culation needed in regular chess, they require reasoning about information gath-
ering, the opponent’s knowledge, signaling, etc. The most popular variant, Fog
of War (FoW) chess (a.k.a. dark chess), has been a major challenge problem in
imperfect-information game solving since superhuman performance was reached
in no-limit Texas hold’em poker. We present Obscuro, the first superhuman AI
for FoW chess. It introduces advances to search in imperfect-information games,
enabling strong, scalable reasoning. Experiments against the prior state-of-the-art
AI and human players—including the world’s best—show that Obscuro is signif-
icantly stronger. FoW chess is the largest (by amount of imperfect information)
turn-based zero-sum game in which superhuman performance has been achieved
and the largest zero-sum game in which imperfect-information search has been
successfully applied.

1 INTRODUCTION

The concept of breaking a large problem into subproblems and searching through them individually
has been with us since time immemorial. In artificial intelligence (AI), search is a core capability that
is required for strong performance in many applications. In game solving, this commonly takes the
form of subgame solving. In games of perfect information, subgame solving is conceptually straight-
forward, because every new state induces a subgame that can be analyzed independently of the rest
of the game. Subgame solving in perfect-information games is as old as computers themselves: Alan
Turing and David Champernowne wrote a chess engine Turochamp in 1948 using minimax search
and a hand-crafted function for evaluating nodes (Kasparov and Friedel, 2018). In landmark results,
subgame solving has played a key role in reaching superhuman level in chess (Campbell et al., 2002)
and go (Silver et al., 2016; 2017; 2018).

In contrast to such perfect-information games, most real-world settings are imperfect-information
games. These include negotiation, business, finance, and defense applications. Thus it is crucial for
the field of AI to develop strong techniques for imperfect-information games. Such games involve
additional challenges not present in perfect-information games. For example, AIs for imperfect-
information games might need to randomize their actions to prevent the opponent from learning
too much information, and a player’s optimal action in a state can depend on that same player’s
action in a totally different state. Therefore, subgame solving in imperfect-information games is
drastically more difficult. Methods for real-time subgame solving in imperfect-information games
have only been developed relatively recently (Gilpin and Sandholm, 2006; 2007; Waugh et al.,
2009; Ganzfried and Sandholm, 2015; Burch et al., 2014; Moravcik et al., 2016; Brown and Sand-
holm, 2017; Moravčı́k et al., 2017; Brown and Sandholm, 2018; 2019; Brown et al., 2020; Sokota
et al., 2024), and they were key to achieving superhuman performance in no-limit Texas hold’em
poker (Brown and Sandholm, 2018; 2019; Moravčı́k et al., 2017). Strong AI performance has also
been achieved in a few imperfect-information zero-sum games that are even larger (Vinyals et al.,
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2019; Berner et al., 2019; Perolat et al., 2022). However, these were accomplished with learning
alone and did not enjoy the further performance benefits that search could bring, due largely to the
lack of scalability of subgame solving algorithms for imperfect-information games larger than poker.

In this paper we present dramatically more scalable general-purpose subgame solving techniques
for imperfect-information games. We used these techniques to create Obscuro, an AI that achieved
superhuman performance in Fog of War (FoW) chess (a.k.a. dark chess), the most popular variant
of imperfect-information chess. Over 120 games against humans of varying skill levels—including
the #1-ranked human—and 1,000 games against the previous state-of-the-art FoW chess AI (Zhang
and Sandholm, 2021), we conclusively demonstrate that Obscuro is stronger than any other current
agent—human or artificial—for FoW chess. FoW chess is now the largest (measured by amount of
imperfect information) turn-based game in which superhuman performance has been achieved and
the largest game in which imperfect-information search techniques have been successfully applied.

In the next section we will introduce the game and discuss the challenges that players in these types
of games must tackle. In the section after that, we present our AI agent Obscuro and the algorithms
therein. In the section after that, we present our experiments. Finally we present conclusions and
future research directions.

2 CHALLENGES IN IMPERFECT-INFORMATION GAMES SUCH AS FOG OF WAR
CHESS

Imperfect-information versions of chess have captured the imagination of chess players and scien-
tists alike for over a century. To our knowledge, the first imperfect-information version of chess
was Kriegspiel, invented in 1899 and based on the earlier game Kriegsspiel, a war game used by the
Prussian army in the early 19th century for training (Pritchard, 1994). In the modern day, there are
multiple imperfect-information variants of chess, including Kriegspiel, reconnaissance blind chess
(RBC), and Fog of War (FoW) chess.1 Imperfect-information chess is a recognized challenge prob-
lem in AI. Although there has been AI research in Kriegspiel (Parker et al., 2005; Russell and Wolfe,
2005; Ciancarini and Favini, 2009) and RBC (Gardner et al., 2023), strong performance has not been
achieved in Kriegspiel, and RBC is not played competitively by humans. By comparison, FoW chess
has surged in popularity due to its implementation on the major chess website chess.com, and strong
human experts have emerged among thousands of active players.2 It is the most popular variant of
imperfect-information chess by far, and strong human experts exist who can serve as challenging
benchmarks of progress.

FoW chess presents a unique combination of challenges that did not exist in prior superhuman AI
milestones.3 First, chess itself is a highly tactical game often requiring careful lookahead, and
FoW chess is no different: there are often positions where one player has perfect or near-perfect
information and can execute a sequence of moves that results in an advantage. Thus, a strong
agent must have solid lookahead capability. Lookahead in other games is usually accomplished by
subgame solving. Thus it would be desirable to be able to conduct subgame solving in FoW chess
too.

Second, private information is rapidly gained and lost. It is possible for the size of a player’s infor-
mation set (infoset)—i.e., set of indistinguishable positions given a player’s observations—to rapidly
increase and then decrease again, for example, from hundreds up to millions and then back down to
hundreds, in a matter of a few moves. Thus, a strong agent must have the ability to reason about this
rapidly-changing information.

Third, a strong agent must at least somewhat play a mixed strategy—that is, it must randomize its
actions. Otherwise, an adversary who knows the strategy, or has learned the strategy from past
observation, can easily exploit that knowledge.

1Despite its similar name, Chinese dark chess has no private information, and thus does not require the
types of reasoning that are required in FoW chess.

2As of April 2025, the Fog of War chess leaderboard on chess.com (Chess.com, 2025a) listed 19,150 active
players.

3The complete rules of FoW chess can be found in Appendix A
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Finally, in games like FoW chess, reasoning about common knowledge is difficult. This is a key
challenge because most algorithms for subgame solving—including those that led to breakthroughs
in no-limit Texas hold’em poker—rely on the ability to reason about common knowledge, or often
even the ability to enumerate the entire common-knowledge set—that is, the smallest set of histo-
ries C with the property that it is common knowledge that the true history lies in C (Brown and
Sandholm, 2018; 2019). So, to prepare for solving a subgame, prior algorithms need to reason about
what the agent knows about what the opponent knows about what the agent knows, and so on. This
need can dramatically expand the set of states that need to be incorporated into the subgame solving
algorithm, making such methods impractical for games much larger than no-limit Texas hold’em.

For example, consider the two FoW chess positions in Fig. 1.4 Although seemingly completely
distinct, it is possible to show (see Appendix E.1) that these two positions are connected by no fewer
than nine levels of “I think that you think that...” reasoning. Prior techniques would require the
ability to generate this complex connection before starting subgame solving from either of the two
positions.

8 rmblkans
7 opo0opZp
6 0Z0Z0Z0Z
5 Z0ZpZ0o0
4 0Z0Z0Z0Z
3 Z0M0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmbZkans
7 opopZpop
6 0Z0Z0Z0Z
5 Z0Z0o0Z0
4 0Z0Z0Z0l
3 Z0Z0ZNZP
2 POPOPOPZ
1 SNAQJBZR

a b c d e f g h

A B

Figure 1: Two FoW chess positions in the same common-knowledge set. (A) position after moves 1.
Nc3 g5 2. Nh3 d5; (B) position after moves 1. Nf3 e5 2. h3 Qh4. The boxed squares mark pieces
visible to the opponent.

Such intricacies make it difficult to reason about common knowledge efficiently. For example,
common-knowledge sets in FoW chess can quickly grow prohibitively large, so they cannot be held
directly in memory (Zhang and Sandholm, 2021). In FoW chess, individual infosets often have size
as large as 106 and can have size 109. Common-knowledge sets can have size 1018—far too large
to be enumerated in reasonable time or space during search. (Detailed calculations for these lower
bounds can be found in Appendix E.1.) Perhaps even more troubling is the fact that it is not even
clear that it is possible to efficiently decide whether two histories can be distinguished by common
knowledge, so in some sense reasoning about common knowledge may require enumerating the
common-knowledge set in the worst case.5

This is in sharp contrast to poker, which has special structure that has driven the success of past ef-
forts in that game. First, at least in two-player (heads-up) Texas hold’em poker, common-knowledge
sets are not very large. They have size at most

(
52
2

)(
50
2

)
≈ 1.6× 106, and can thus easily be held in

memory. Moreover, thanks to poker-specific optimizations (Johanson et al., 2011), subgame solv-
ing in poker can be implemented in such a way that its complexity depends not on the size of the
common-knowledge set but merely on the size of the infoset, enabling feasible subgame solving even

4The sequence of moves in the figure is purely for the purpose of illustrating common knowledge, and does
not represent strong play. For example, Obscuro never plays 1... g5 or 2... Qh4.

5Solinas et al. (2023) formally state and study this and similar computational problems in general games,
showing that they are intractable in the worst case, so it should perhaps not come as a surprise that they appear
to be hard in FoW chess.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

when the common-knowledge sets are large, as is the case in multi-player poker.6 In more general
games where these domain-specific techniques do not apply—such as FoW chess—the complexity
of traditional subgame-solving techniques for imperfect-information games would scale with the
size of the common-knowledge set, which in our case renders such techniques totally infeasible.

3 DESCRIPTION OF OUR AI AGENT Obscuro AND THE NEW ALGORITHMS
THEREIN

The technical innovations of Obscuro are in its search algorithms. At a high level, they operate
as follows. At all times, the program maintains the full set P of possible positions7 given the
observations that it has seen so far in the game, as well as a partial game tree Γ̂ consisting of its
calculations from the previous move. At the beginning of the game, P contains only the starting
position s0, and Γ̂ consists of a single node s0, since the program has done no calculation. Although
P is small enough to fit in memory (usually |P | ≤ 106), it is too large to feasibly allow nontrivial
reasoning about every single position in P on every move. Therefore, the program instead samples
a small subset I ⊆ P at random, whose size is no more than a few hundred positions.

Given a subset I , the program at a high level executes the following steps.

1. Construct an imperfect-information subgame Γ incorporating the saved computation from
the previous move (Γ̂), as well as the positions in the sampled subset I .

2. Compute an (approximately) optimal strategy profile (i.e., an approximate Nash equilib-
rium) of Γ.

3. Use the Nash equilibrium to expand the game tree Γ.

4. Repeat the above two steps until a time budget is exceeded.

5. Select a move.

We now elaborate on each step individually. Full detail about our techniques, including formal
descriptions of all techniques, proofs, and comparisions to prior work, can be found in Appendix C.

3.1 STEP 1: GENERATING THE INITIAL GAME TREE AT THE BEGINNING OF A TURN

The imperfect-information subgame Γ is constructed from the old game tree Γ̂ and the sampled
additional positions s ∈ I according to a new algorithm which we call knowledge-limited unfrozen
subgame solving (KLUSS). It is more effective than the knowledge-limited subgame solving (KLSS)
algorithm of Zhang and Sandholm (Zhang and Sandholm, 2021) (a comparison is presented in Ap-
pendix C). At a high level, KLSS and KLUSS address the issue of reasoning about common knowl-
edge by assuming that sufficiently high-order knowledge is essentially irrelevant to game play: if
there is a position s in the old tree Γ̂ such that we know that the opponent knows that we know that
s is not the true state, we remove s from Γ as it is assumed to be irrelevant. As an example, consider
the game in Fig. 2. There are two players, ▲ and ▼. Suppose that we are ▲, and we have arrived at
the circled node (which is alone in its infoset, i.e., at this node, ▲ has perfect information).

The infosets (dotted lines) define a connectivity graph G among the five nodes in that layer of the
tree: two nodes u and v are connected if there is an infoset connecting any descendant of u (including
u itself) to any descendant of v (including v itself). The nodes in that layer are labeled according to
their distance from the circled node; the node labeled∞ is not connected. Distance corresponds to
order of knowledge: if the true node is the circled node, then the distance is the smallest integer k
for which the statement

everyone knows that everyone knows that ... everyone knows that︸ ︷︷ ︸
k repetitions

the true node is not u

6Specifically, Pluribus (Brown and Sandholm, 2019) would not have been feasible without these poker-
specific optimizations.

7A position describes where pieces are as well as the castling and en passant rights.
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1 2 3 ∞

Figure 2: An example game tree, to illustrate KLUSS. The box (□) is a chance node. Dotted lines
connect nodes in the same infoset.

is false. Thus the shaded red region corresponds to nodes that will be removed: everyone knows that
these nodes are not the true nodes. This allows the game tree to be kept to a manageable size, even
when the common-knowledge set (which the program never computes or uses) is large.

Our approach has two important properties. First, it enables the agent to reason about the opponent’s
information in a more powerful way than assuming something pessimistic, such as the opponent
having perfect information (Parker et al., 2005; Russell and Wolfe, 2005). This allows behavior
such as bluffing, which is important to strong play. Second, it accomplishes this while essentially
only examining states s that are relevant in the sense that, as far as our agent knows, the opponent
might believe that s is the true state. This ensures that, even when the common-knowledge set is
large and poorly structured (e.g., even when the vast majority of states in the common-knowledge
set are irrelevant), subgame solving is still possible and effective.

The difference between KLUSS and KLSS is that in KLSS, the strategy at the two-node infoset for
▲ in Fig. 2 (and more generally all ▲-nodes at distance 1 and their descendants) is frozen to that
node’s strategy from the previous move. In KLUSS, it is unfrozen and will be game-theoretically
optimized together with the rest of the subgame that is not removed (i.e., not red).

KLSS and KLUSS are not always game-theoretically sound in theory because some of the removed
(red in the figure) part of the game tree could be relevant to the decision, but they are often sound
in practice (Zhang and Sandholm, 2021; Liu et al., 2023). They can be viewed as a computationally
feasible alternative to traditional game-theoretically sound subgame solving.

3.2 STEP 2: EQUILIBRIUM COMPUTATION

The remaining steps are inspired by the growing-tree counterfactual regret minimization (GT-
CFR) algorithm (Schmid et al., 2023): a game tree Γ is simultaneously solved using an iterative
equilibrium-finding algorithm and expanded using an expansion policy.

For equilibrium finding we use a state-of-the-art algorithm, predictive CFR+ (PCFR+) (Farina et al.,
2021). PCFR+ is an iterative, anytime algorithm for solving imperfect-information games, that can
handle the fact that our game tree Γ is changing over time. At all times t, PCFR+ maintains a profile
(xt, yt), where xt is our strategy and yt is the opponent’s strategy.

PCFR+ has only been proven to converge in average strategies. That is, the empirical strategy
profile (x̄t, ȳt) := ( 1t

∑t
s=1 x

s, 1
t

∑T
s=1 y

s) converges to Nash equilibrium as t → ∞. However,
instead of computing the empirical average strategy, we circumvent this step and maintain only the
last iterate (xt, yt). There are several reasons for this choice, which are detailed in Appendix C.7.

3.3 STEP 3: EXPANDING THE GAME TREE

Nodes are selected for expansion by using carefully-designed expansion policies that balance ex-
ploration and exploitation. Our program chooses a node to expand by the following process. Fix
one player to be the exploring player. (The choice of which player is exploring alternates: on odd-
numbered iterations, P1 is the exploring player; on even-numbered iterations, P2 is the exploring
player.) For this exposition, we will take P1 to be the exploring player. The non-exploring player
will play according to its current strategy as computed by PCFR+, in this case yt. The exploring
player will play a perturbed version x̃t of its current strategy xt. The strategy x̃t is designed to
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balance between exploitation and exploration. Exploitation here means playing actions with high
possible reward, that is, actions that have positive probability in xt. Exploration means assigning
positive probability to every possible action, to hedge against the possibility that the current tree
incorrectly estimates the value of the action due to lacking search depth. For this, we use a method
based on the polynomial upper confidence bounds for trees (PUCT) algorithm (Silver et al., 2016).
Finally, a leaf node of the current tree Γ is selected for expansion according to the strategy profile
(x̃t, yt).

One major difference between our algorithm and the GT-CFR algorithm lies in having only one
player use the exploring strategy x̃t, rather than both. Intuitively, this remains sound, because tree
nodes that neither player plays to reach are irrelevant to equilibrium play, and thus do not need
to be expanded. In Appendix C.4, we formally show that this variant, like GT-CFR, will find an
exact equilibrium of any two-player zero-sum game given infinite search time. Thus, allowing one
player to play directly from their equilibrium strategy (here, yt) allows the tree expansion to be more
focused. We call this GT-CFR variant one-sided GT-CFR.

Once a leaf node z is chosen by the above process, its children are evaluated by a node heuristic and
added to the game tree. The node heuristic is an estimate of the perfect-information value of z, as
evaluated by the chess engine Stockfish 14 (Stockfish). If z is the first node in its infoset that has
been expanded, a local regret minimizer is created for PCFR+, and it is initialized to pick the action
with highest value according to the node heuristic. Theoretically, the guarantees of PCFR+ do not
depend on the initialization, which can be arbitrary. However, practically, we find that initializing to
a “good guess” of a good action leads to faster empirical convergence to equilibrium. More details
can be found in Appendix C.5.

3.4 STEP 4: REPEAT

The above two steps are repeated, in parallel using a multi-threaded implementation, until a time
budget is exceeded. Our implementation uses one thread running CFR and two threads expanding
the game tree, which is shared across all three threads. The node expansion threads use locks to
avoid expanding the same node, but the equilibrium computation thread uses no locks and only
works on the already-expanded portion of the game tree. The time budget is set heuristically based
on the amount of time remaining on the player’s clock. Once the time budget is exceeded, the tree
expansion threads (Step 3) are stopped first, and then, after a delay, the equilibrium computation
thread (Step 2). The added time allocated to equilibrium computation is present so that a more
precise equilibrium can be computed without the tree constantly changing.

3.5 STEP 5: SELECTING A MOVE

After those computations have stopped, a move is selected based on the (possibly mixed) strat-
egy that PCFR+ has computed. Instead of directly sampling from this distribution, we first purify
it (Ganzfried et al., 2012)—that is, we limit the amount of randomness. In particular, we sample
from only the m highest-probability actions, where 1 ≤ m ≤ 3 is chosen based on the computed
strategies. We only allow mixing (m > 1) when the algorithm believes that its computed strategy is
safe—intuitively, this is when the algorithm’s final strategy xT can guarantee expected value at least
as good as what the algorithm thought to be possible before the turn. This purification technique
made a significant difference in practice, detailed via an ablation test in Section 4.1.

4 EXPERIMENTAL EVALUATION

To evaluate our techniques, we conducted several experiments. The first was a 1,000-game match
against the previous state-of-the-art AI for FoW chess (Zhang and Sandholm, 2021) (hereafter
ZS21). Our new AI scored 85.1% (+834 =33 -133)8, confidently establishing its superiority.

We then ran two experiments against human players. The first of these was a series of games against
human players of varying skill levels. Obscuro played a total of 117 games (with time control 3
minutes + 2 seconds per move). This time control was selected because it was the most popular time

8This notation means 834 wins, 33 draws, and 133 losses.
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control played on the most popular website for FoW chess (chess.com) at the time of the experiment.
While in regular chess both fast and slow games are common, in FoW chess slow games are typically
not played. The skill levels of the players, measured by their chess.com Fog of War chess ratings,
ranged from 1450 to 2006. We excluded 17 of the games for various reasons such as disconnections,
the opponent leaving before the game finished, or the opponent clearly losing on purpose, leaving
100 completed games. Obscuro scored 97% (+97 =0 -3), establishing conclusively that it is stronger
than humans of this level.

Finally, we invited the top FoW chess player to a 20-game match (again at 3+2 time control). At
the time of our match, i.e., as of the rating list on August 16, 2024 (Chess.com, 2024), this player
was rated 2318 and ranked #1 on the chess.com Fog of War blitz leaderboard. The games were
played over the course of two days, 10 games per day, giving the human player an opportunity to
analyze the first set of games overnight. In this match, Obscuro scored 80% (+16 =0 -4, +241 Elo),
a conclusive and statistically significant (p = 0.0118 using an exact binomial test) victory against
the world’s strongest player. We thus conclude that Obscuro is superhuman.

The 20 games played against the top human are available through the following link: https:
//lichess.org/study/sja93Uc0

A curated sample of particularly interesting games from our 100 games played against humans of
varying skill levels, including all three games lost by Obscuro, is available through the following
link: https://lichess.org/study/1zHFym7e

In both links, each game lists which side Obscuro played (Black or White) and the game result (Win
or Loss). All games are shown from the perspective of Obscuro.

4.1 ABLATIONS

In addition, we conducted multiple ablations with Obscuro. In each of these experiments, we turned
off one or more of the new techniques introduced in this paper in order to evaluate the contributions
of the different techniques to the performance of Obscuro. All ablations were run at a time control of
5 seconds per move. Unless otherwise stated, all ablations were Obscuro playing against a version
of Obscuro with the single stated technique turned off. Recall from above that Obscuro with all
techniques turned on scored 85.1% against ZS21 and 80% against the top human.

1. Purification off. This version allowed mixing among all stable actions, even if the current
margin is negative or there are more than three of them.
In a 1,000-game match, Obscuro scored 70.2% (+662 =79 -259).

2. KLUSS off. In this version, the strategies in infosets not touching our infoset were frozen,
as in 1-KLSS.
In a 1,000-game match, Obscuro scored 58.0% (+532 =96 -372).

3. One-sided GT-CFR off. In this version we use the two-sided node expansion algorithm
proposed by the original GT-CFR paper (Schmid et al., 2023).
In a 10,000-game match, Obscuro scored 53.3% (+4535 =1583 -3882).

4. Non-uniform Resolve distribution off. In Appendix C.3, we describe a modification to the
Resolve subgame solving (Burch et al., 2014) algorithm that we made for Obscuro, in which
the root nodes of the game tree are weighted using a nonuniform distribution, instead of
the uniform distribution prescribed by Burch et al. (2014). For this ablation, we turned this
modification off, and instead used the uniform distribution, as was done in prior papers on
subgame solving including ZS21.
In a 10,000-game match, Obscuro scored 53.3% (+4595 =1478 -3927).

5. Two-sided GT-CFR only, against ZS21. In this ablation, we turned off all the above im-
provements 1, 2, 3, and 4, and matched the resulting agent against that of ZS21. This
serves to isolate the effect of using GT-CFR compared to using the LP-based equilibrium
computation and iterative deepening node expansion as in ZS21.
In a 1,000-game match, the two-sided GT-CFR version scored 72.6% (+711 =30 -259)
against ZS21.
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6. Weaker evaluation function. To test the impact of the evaluation function, we hand-crafted
a simple evaluation function that takes into account only the material difference and num-
ber of squares visible to each player. We substituted this evaluation function in place of
Stockfish 14’s neural network-based evaluation function, creating a new agent that we call
simple-eval (SE) Obscuro. This evaluation function is very simple, and would not be well
suited to regular chess. We tested simple-eval Obscuro against both Obscuro and ZS21.
In a 1,000-game match, Obscuro scored 81.9% (+787 =63 -150) against SE Obscuro.
In a 10,000-game match, SE Obscuro scored 55.0% (+5258 =486 -4256) against ZS21.
This experiment shows that the evaluation function has a significant impact on the perfor-
mance of Obscuro. Yet, the search algorithm is also vital: even a simplistic evaluation
function with our improved search techniques is enough to be superior to ZS21.

All results in this and the next subsection are highly statistically significant (z > 5). The results
suggest that each improvement played a significant role in the improvement of Obscuro over the
previous state-of-the-art AI.

4.2 OTHER EXPERIMENTS

Finally, to test the effect of the time limit on the performance of Obscuro, we tested versions of
Obscuro with different time limits against each other. The results were as follows. All matches
consisted of 10,000 games.

• Obscuro with 1
8 s/move scored 56.4% (+5162 =943 -3895) against Obscuro with 1

16 s/move.

• Obscuro with 1
4 s/move scored 56.5% (+5031 =1231 -3738) against Obscuro with 1

8 s/move.

• Obscuro with 1
2 s/move scored 56.7% (+4923 =1503 -3574) against Obscuro with 1

4 s/move.

• Obscuro with 1s/move scored 54.0% (+4617 =1566 -3817) against Obscuro with 1
2 s/move.

• Obscuro with 2s/move scored 53.7% (+4589 =1561 -3850) against Obscuro with 1s/move.
• Obscuro with 4s/move scored 52.3% (+4463 =1530 -4007) against Obscuro with 2s/move.
• Obscuro with 8s/move scored 52.4% (+4501 =1482 -4017) against Obscuro with 4s/move.
• Obscuro with 16s/move scored 52.3% (+4448 =1563 -3989) against Obscuro with 8s/move.

These results, converted to the standard Elo scale, are visualized in Fig. 3. As expected and in line
with known results for other settings (e.g., for regular chess (Silver et al., 2017)), increasing search
time has a significant impact on playing strength, but with somewhat diminishing returns.

Finally as a sanity check, we also tested Obscuro against a random opponent. The only realistic
way for Obscuro to lose to a random opponent is by not defending against Qa4+ or Qa5+ in the
opening as previously discussed, which happens with only very small probability. As previously
discussed, occasionally losing to a weak (here, random) player would not in itself evidence that
Obscuro is playing suboptimally, since even an exact equilibrium player should lose to a random
player with positive probability. Nonetheless, Obscuro won 1000 consecutive games against the
random opponent.

5 CONCLUSIONS AND FUTURE RESEARCH

We presented the first superhuman agent for FoW chess, Obscuro. Our agent is completely based
on real-time search. Thus, Obscuro ran on regular consumer hardware, in contrast to most prior
superhuman efforts involving search that we have discussed, which have run on large computing
clusters with far more computing power at play time. This demonstrates the power of search alone.
FoW chess is now the largest (measured by amount of imperfect information) turn-based game
in which superhuman performance has been achieved and the largest game in which imperfect-
information search techniques have been successfully applied.

Since FoW chess is somewhat similar to regular chess, it was sufficient to combine a perfect-
information evaluation function from regular chess (namely, that used by Stockfish) with our game-
independent state-of-the-art search algorithms for imperfect-information games. Also, Obscuro

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Visualization of time scaling of Obscuro. The y-axis is relative to the playing strength of
Obscuro with 5 seconds per move.

stores at all times the entire set of possible states in memory. While these techniques were fea-
sible for FoW chess—due to the similarity to regular chess and the relatively small infosets—one
can imagine even more complex games on which they will not work directly.

Even more complex settings could be tackled by merging our techniques with deep reinforce-
ment learning to learn the evaluation function, instead of using a perfect-information-game eval-
uation function (in our case, from Stockfish), and/or using continuation strategies (Brown and Sand-
holm, 2019) to mitigate game-theoretic issues caused by using node-based evaluation functions in
imperfect-information games. In a different direction, further play strength and scalability could
be achieved by sampling from an infoset using a model of opponent behavior instead of doing so
uniformly.
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A RULES OF FOW CHESS

FoW chess is identical to regular chess, except for the following differences (Chess.com, 2025b).

• A player wins by capturing the opposing king. There is no check or checkmate. Thus:

– Moving into (or failing to escape) a check is legal and thus results in immediate loss.
– Castling into, out of, or through check is legal (though, of course, castling into check

loses immediately).
– Stalemate is a forced win for the stalemating player.
– There is no draw by insufficient material. In particular, KN vs K is a strong position

for the KN, and even K vs K is not an immediate draw (although K vs K is drawn
in equilibrium except in some literal edge cases where one king is on the edge of the
board and cannot immediately escape.)

• After every move, each player observes all squares onto which her pieces can legally move.

• If a pawn is blocked from moving forward by an opposing piece (or pawn), the square on
which the opposing piece/pawn sits is not observed. Thus, the player knows that the pawn
is blocked, but not what is blocking it (unless, of course, some other piece can capture it.)

• If a pawn can capture en passant, the pawn that can be captured en passant is visible.
In particular, the above rules imply that both players always know their exact set of legal
moves.

• Threefold repetition and 50-move-rule draws do not need to be claimed. In particular, a
draw under either rule can happen without either player knowing for certain until it happens
and the game ends.

B NOTATION AND PRELIMINARIES

The techniques used in Obscuro are general, so in this section we will formulate them in terms of
general extensive-form games. To do this, we need to introduce some notation.

B.1 NOTATION AND PRELIMINARIES

A two-player zero-sum timeable extensive-form game (hereafter simply game) consists of:

1. a tree of histories H , rooted at the empty history ∅ ∈ H . The set of leaves (terminal nodes)
of H is denoted Z. Each downward edge out of a non-leaf node h ∈ H \Z is labeled with
a distinct action or move. The node reached by following the edge (action) a at node h is
denoted ha. The set of actions available at h is denoted A(h).

2. a payoff function u : Z → [−1,+1],

3. a partition H \ Z = HC ⊔ H▲ ⊔ H▼, denoting whose turn it is—that is, for each i ∈
{C,▲,▼}, Pi is the set of nodes at which player i moves. Player C is chance, who plays
according to a fixed strategy p(·|h).9

4. for each player i ∈ {▲,▼} and each h ∈ H , an observation oi(h) that player i receives
upon reaching h. The observation uniquely determines whether h ∈ Pi (i.e., whether it is
player i’s turn) and, if it is, the set of legal actions. That is, if oi(h) = oi(h

′), then h ∈ Pi

if and only if h′ ∈ Pi, and if so, A(h) = A(h′).

We will use ⪯ to denote the precedence relation on a tree. For example, if h, h′ are histories then
h ⪯ h′ means h is an ancestor of h′. If s, s′ are sequences of player i, then s ⪯ s′ means that s is
a prefix of s′. If S is a set, s ⪰ S means s ⪰ s′ for some s′ ∈ S. The downward closure of S is
S̄ := {h : h ⪰ S}. 10

9FoW chess contains no chance moves, but we include this in the interest of generality.
10In this paper, we visualize trees expanding from the top downwards, so S̄ is the set of descendants of S.
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We will distinguish between states and histories. A state is a sufficient statistic for future play of the
game. That is, all data about the subtree rooted at a history h is uniquely determined by the state at
h. Multiple histories can have the same state.

The sequence of a player i upon reaching a node h ∈ H is the sequence of observations made and
actions played by i so far. Two nodes h, h′ are indistinguishable to player i, written h ∼i h

′, if they
have the same sequence for player i. An equivalence class of H under ∼i is an infoset, for player
i. Throughout this paper, I will denote a ▲-infoset, and J will denote a ▼-infoset. We will assume,
without loss of generality, that the player sequence and opponent sequence together uniquely specify
a game tree node—that is, |I ∩ J | = 1 for every ▲-infoset I and ▼-infoset J .

By convention, information sets containing nodes at which player i is not the acting player are
typically not drawn (and often not even defined); in our paper, we will need them in order to define
the knowledge graph. Thus let I (resp. J ) denote the set of infosets at which ▲ (resp. ▼) is the
acting player. If a is a legal action at an infoset I ∈ I, the sequence reached by playing a at I is
(I, a). The set of nodes {ha : h ∈ I} will also be denoted (I, a). Let si(h) denote the sequence
of player i at h, as of the last time player i played an action. Thus, s▲(h) (resp. s▼(h)) can be
identified with a pair (I, a) where I ∈ I (resp. (J, a) where J ∈ J ).

A (behavioral) strategy of ▲ (resp. ▼) is a selection of a distribution of actions at each infoset,
x ∈ X =×I∈I ∆(A(I)) (resp. y ∈ Y =×J∈J ∆(A(J))). We will use the general notation
x(u′|u), where u ⪯ u′ to denote the probability that ▲ plays all actions on the u → u′ path, where
u and u′ are sequences, infosets, or nodes. Similarly, x(a|u) denotes the probability that x takes
action a at u (when u ∈ I or u ∈ H▲). If the right half is omitted, e.g., x(u), it is understood to be
∅, e.g., x(u) = x(u|∅). In particular, x(h) denotes the probability that ▲ plays all actions on the
∅→ h path. Similar notation is used for ▼.

The expected value for ▲ in strategy profile π = (x, y) is u(π) := Ez∼π u(z) where the expectation
is over terminal nodes z when ▲ plays x and ▼ plays y. (Since the game is zero sum, the value for
▼ is −u(π).)
The conditional value u(π|S) is the conditional expectation given that some node in the set S is hit.
The (conditional) best-response value u∗(x|J, a) to a ▲-strategy x ∈ X upon playing action a at
infoset J is the best possible conditional value that ▼ against x after playing a at J :

u∗(x|J, a) = min
y∈Y :y(J,a)=1

u(x, y|J).

Counterfactual values (CFVs), which we will denote by ucf, are defined similarly to conditional
values, but scaled by the probability of the other players playing to J :

ucf
▲(x, y;J, a) = u(x, y|J, a) ·

∑
h∈J

x(h)p(h) =
∑
z⪰J

x(z)p(z)y(z|h)u(z).

The best-response value at infoset J is u∗(x|J) = mina u
∗(x|J, a). The best-response value u∗(x)

is miny∈Y u(x, y) = u∗(x|∅). Analogous definitions hold when the players are swapped.

B.2 ORDER-k KNOWLEDGE, COMMON KNOWLEDGE, AND SUBGAME SOLVING

In this section, we present the mathematical notation we will use in the rest of the appendix, and
relevant prior work on subgame solving (see, e.g., (Kovařı́k et al., 2021) for an overview).

The connectivity graph G of a game Γ is the graph whose vertices are the nodes of Γ, and whose
edges connect nodes in the same infoset of any player. Now let I be any infoset.11 The order-
k knowledge set Ik is the set of nodes at distance strictly less than k from some node in I . (In
particular, I1 = I .) The common-knowledge set I∞ is the set of all nodes a finite distance away
from some node in I , i.e., it is the connected component in G containing I . Intuitively, the distance
from I captures the level of common knowledge. If the true node is h ∈ I , then

1. ▲ knows h ∈ I ,
11The definition of Ik can also be applied to arbitrary sets of nodes I , but here we will only need it for

infosets.
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2. ▲ knows ▼ knows h ∈ I2,
3. ▲ knows ▼ knows ▲ knows h ∈ I3,

and so on. Hence the statement h ∈ I∞ is common knowledge.

In the remainder of the paper, we take the perspective of the maximizing player ▲. Subgame solving
starts with a blueprint strategy profile (x, y). In Obscuro, the blueprint strategy profile is simply the
saved strategy from the computation on the previous move; on the first move, subgame solving does
not require a blueprint.

Suppose that we reach infoset I during a game. Before selecting a move at I , we would like to do
some computation to compute a new strategy x′ that we will use instead of x. That is, we would like
to perform subgame solving.

We will first describe two common variants of common-knowledge subgame solving: Resolve (Burch
et al., 2014) and Maxmargin (Moravcik et al., 2016), both of which we will use in Obscuro. Both
variants begin by constructing a gadget game using common-knowledge set I∞, and are based
on the principle of searching for a strategy x′ that does not worsen the opponent’s best response
values. More formally, let M(x′, J) := u∗(x′|J) − u∗(x|J) be the margin at ▼-infoset J ⊆ I∞.
The alternate value u∗(x|J) is the value to which ▲ must restrict ▼ at J in order to ensure that
exploitability does not increase.

Maxmargin and Resolve differ in how they aggregate the margins across the different information
sets J ∈ J0. The Maxmargin objective is to maximize the minimum margin:

max
x′

min
J∈J0

M(x′, J).

The Resolve objective is to maximize the average margin truncated to zero:

max
x′

1

|J0|
∑
J∈J0

[M(x′, J)]− where [z]− := min{0, z}.

and J0 := {J : J ⊆ I∞} is the set of possible root infosets for ▼ in the subgame.

A subgame solving method is safe if applying it cannot increase exploitability of the overall agent
compared to not applying it—i.e., compared to playing the blueprint strategy. Both Maxmargin and
Resolve are safe, assuming of course that subgames are solved exactly.12

Subgame solving via Resolve and Maxmargin can also be performed using gadget games. In Re-
solve, the following gadget game is played. First, chance chooses a node h ∈ I∞ with probability
proportional to p(h)x(h). Then, ▼ observes the infoset J ∋ h, and decides whether to play or exit.
If ▼ exits, the game ends immediately with utility equal to the alternate value u∗(x|J). Otherwise,
the game continues as normal from node h. In Maxmargin, ▼ first selects the infoset J ∈ J0, and
then chance samples a node h ∈ J with probability proportional to p(h)x(h). Then, ▲ immediately
receives utility −u∗(x|J).13 Chance then selects a node h ∈ J with probability proportional to
p(h)x(h), and the game continues from h.

Maxmargin and Resolve have very different behavior. When it is impossible to make all margins
nonnegative (due to approximations), Maxmargin will make the pessimistic assumption that the op-
ponent will play the worst infoset, whereas Resolve will, roughly speaking, assume that the opponent
will play uniformly over all infosets with negative margin. On the other hand, when it is possible to
make all margins nonnegative, there is a set of subgame strategies that are maximizers of the Resolve
objective, that is, equilibria of the Resolve gadget game. Resolve allows any one of these strategies
to be selected, whereas Maxmargin enforces that the strategy be in particular the one that maximizes
the minimum margin.

In the state-of-the-art common knowledge subgame-solving technique, reach subgame solv-
ing (Brown and Sandholm, 2017), any gifts given to us by the opponent through mistakes in reaching
the subgame can be given back to the opponent within the subgame; this enlarges the strategy space

12In our application, safety is hard to reason about: neither the blueprint strategy x nor the subgame-solved
strategy x′ are full-game strategies, so asking the question of which is less exploitable is strange.

13This can be implemented, for example, by adding u∗(x|J) to the value of every terminal node z ⪰ J in
the subgame.
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that we can optimize over safely and thus has been shown to yield stronger play (e.g., in poker
games (Brown and Sandholm, 2017; 2018; Brown et al., 2018; Brown and Sandholm, 2019)). This
is done by adjusting the alternate values u∗(x|J) in the case when ▼ provably made a mistake(s) in
playing to reach J . Reach subgame solving can be applied on top of either Resolve or Maxmargin.
In particular, the value

g(J) :=
∑

J′a′⪯J

[
ucf*
▼ (x; J ′a′)− ucf*

▼ (x; J ′)
]
,

which is an estimate of the gift using the current strategy profile (x, y), is added to the alternate
value at each infoset J ∈ J0.

In those prior subgame-solving techniques and ours, the desired gadget game then replaces the full
game, and its solution is used to select a move at I . When a new infoset is reached, the process
repeats, with the solution to the previous subgame taking the place of the blueprint.

C FURTHER DETAILS ABOUT Obscuro

We now give more details about Obscuro. Appendix C.1 details the techniques that are identical
to the prior SOTA (ZS21). The remaining subsections detail the improvements over ZS21 that
we developed in Obscuro. We also include pseudocode for the major components of Obscuro, in
Figures 8-12.

C.1 PRIOR STATE OF THE ART IN FOW CHESS

Obscuro decides between Maxmargin and Resolve by examining the current objective value in the
subgame. If ▼ always chooses to exit in the resolve gadget (i.e., the current strategy is safe), Max-
margin is used. Otherwise, Resolve is used. This switch may happen, even multiple times, in the
middle of the search process for a move, if the subgame value is fluctuating. Intuitively, this choice
prevents the agent from being too pessimistic when faced with novel situations that it did not antic-
ipate.

Between moves, Obscuro maintains the list of all possible states given its current sequence of ob-
servations, as well as the search tree and current approximate equilibrium strategy profile (x, y)
from the previous search. This previous strategy profile (x, y) is used as the blueprint for subgame
solving.

When it is Obscuro’s turn, Obscuro first builds both the Maxmargin and Resolve gadget subgames.
The gadget subgames share the same game tree in memory after the subgame root layers. Thus, for
example, node expansions and strategy updates for infosets beyond the subgame root layers apply
to both subgame gadgets. This allows the transition between the two subgames, if necessary, to be
smoothly executed.

If insufficiently many nodes exist in the sample of Obscuro’s current infoset I , nodes are added by
sampling at random without replacement from the set of possible states. At newly-added nodes h,
the opponent is assumed to have perfect information, and the alternate value is set to min{ṽ(h), v∗}
where v∗ was the expected value of Obscuro in the previous search, and ṽ(h) is Stockfish’s evaluation
function evaluated at h.

C.2 BETTER ALTERNATE VALUES AND GIFT VALUES

For alternate values in both Resolve and Maxmargin, in Obscuro we use u(x, y|J) instead of the
best-response value u∗(x|J) which is more typically used in subgame solving as we described in Ap-
pendix B.2 (Brown and Sandholm, 2017). Similarly, we use the counterfactual values ucf(x, y;J, a)
and ucf(x, y;J) to define the gift instead of the counterfactual best responses ucf*(x; J, a) and
ucf*(x; J), resulting in the gift estimate

ĝ(J) :=
∑

J′a′⪯J

[ucf(x, y;J ′a′)− ucf(x, y;J ′)]+

These changes are for stability reasons: especially late in the tree, the current strategy x may be
inaccurate, and the best-response value u∗(x|J) may not be an accurate reflection of the quality
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of the blueprint strategy x, especially near the top of the tree. Of course, if (x, y) is actually an
equilibrium of the constructed subgame, then these values are the same.

C.3 BETTER ROOT DISTRIBUTION FOR Resolve

When using Resolve14 for the subgame solve in KLSS in games with no chance actions, the standard
algorithm for Resolve will choose an opponent infoset J uniformly at random from the distribution
of possible infosets. In reality, the correctness of Resolve does not depend on the distribution chosen,
so long as it is fully mixed. To be more optimistic, we therefore use a different distribution. We
choose an infoset J via an even mixture of a uniformly random distribution and the distribution
of infosets generated from the opponent strategy in the blueprint. That is, the probability of the
subgame root being infoset J is

α(J) :=
1

2

(
y(J)∑
J′ y(J ′)

+
1

m

)
,

where m is the number of ▼-infosets in the current subgame and the sum is taken over those same
infosets. In other words, the Resolve objective becomes

max
x′

∑
J∈J0

α(J)[M(x′, J)]−.

In this manner, more weight is given to those positions that were found to be likely in the previous
iteration, while maintaining at least some positive weight on every strategy.

C.4 BETTER NODE EXPANSION VIA GT-CFR

Growing-tree CFR (GT-CFR) (Schmid et al., 2023) is a general technique for computing good strate-
gies in games. Intuitively, it works, like PUCT, by maintaining a current game Γ̃ and simultaneously
executing two subroutines: one that attempts to solve the game Γ̃, and one that expands leaf nodes
of Γ̃. As mentioned in the body, we use PCFR+ for game solving.

For expansion, we use a new variant of GT-CFR which we call one-sided GT-CFR, which, unlike
PUCT and GT-CFR, may only expand a small fraction of nodes in the tree. As stated in the body,
our one-sided GT-CFR algorithm selects the node to expand according to the profile (x̃t, yt), where
yt is the non-expanding player’s current CFR strategy and x̃t is an exploration profile constructed
from the expanding player’s current strategy.15 As in GT-CFR, the expanding player’s strategy x̃t

is a mixture of a strategy x̃t
Max(a|I) derived from the player’s current strategy xt and an exploration

strategy x̃t
PUCT(a|I) derived from PUCT (Silver et al., 2016). In particular, we define

x̃t
Max(a|I) ∝ 1{xt(a|I) > 0}

to be the uniform distribution over the support of the current CFR strategy, and
x̃t

PUCT(a|I) = 1{a = argmax
a′

Q̄(I, a)}

where

Q̄(I, a) = u(xt, yt|I, a) + Cσt(I, a)

√
N t(I)

1 +N t(I, a)
.

Here, C is a tuneable parameter (which we set to 1); σt(I, a) is the empirical variance of
u(xt, yt|I, a) over the previous times we have visited I during expansion (with two prior samples of
−1 and +1 to ensure it is never zero); N t(I) is the number of times infoset I has been visited during
expansion; and N t(I, a) is the number of times action a has been selected. Finally, as in GT-CFR,
we define

x̃t
sample(a|I) =

1

2
x̃t

Max(a|I) +
1

2
x̃t

PUCT(a|I).

Unlike GT-CFR as originally described (Schmid et al., 2023), our one-sided GT-CFR works on the
game tree itself, not the public tree. The public tree in our setting would be difficult to work with
since the amount of common knowledge is very low.

14For Maxmargin, there is no prior distribution because the adversary picks the distribution.
15In this presentation, ▲ is the expanding player. When ▼ is the expanding player, the roles of x and y are

also flipped. As stated in the body, the expanding player alternates between ▲ and ▼ after every node expansion.
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F G H J

A B C

E

D

Figure 4: The game tree from Fig. 2, now with some nodes labeled, which will be referenced in the
text.

Our one-sided GT-CFR, unlike PUCT and GT-CFR (Kocsis and Szepesvári, 2006; Schmid et al.,
2023), is not guaranteed to eventually expand the whole game tree. For example, suppose that
our game Γ̃ is as in Fig. 4, and that both players are currently playing the strategy “always play
left”. Then Node F is reached by both players, nodes G and H are reached by only one of the two
players (▲ and ▼ respectively), and Node J is reached by neither player. As such, Node J will not
be expanded, and if the current strategy is an equilibrium, this can be proven without knowing the
details of any subtree that may exist at J.

Nonetheless, we can still show an asymptotic convergence result:

Theorem 1. For any given ϵ > 0, the average strategy profile (x̄, ȳ) in one-sided GT-CFR eventually
converges to an ϵ-Nash equilibrium of any finite two-player zero-sum Γ.16

Proof. Since Γ is finite, eventually one-sided GT-CFR stops expanding nodes. At this time, let Γ̃ be
the expanded game tree. Since no more nodes are expanded, and CFR is correct, one-sided GT-CFR
eventually converges to an approximate Nash equilibrium (x̄, ȳ) of Γ̃. At this time, it is perhaps
the case that there remain unexpanded nodes in the current tree Γ̃. However, any such nodes must
have been played with asymptotic probability 0 by both players; otherwise, if (say) ▼ plays to an
unexpanded node h with asymptotically positive probability, then h would have been expanded at
some point when ▲ was the expander. Thus, best-response values in Γ̃ are the same as they are in Γ,
and therefore (x̄, ȳ) is also an approximate equilibrium in Γ.

C.5 EVALUATING NEW LEAVES

When a (non-terminal) leaf node z of Γ̃ is selected, it is expanded. That is, all of its children are
added to the tree. To assign utility values the children of z, we run the open-source engine Stockfish
14 (Stockfish), in MultiPV mode, at depth 1 on node z, which gives evaluations for all children of z
in a single call,17 and clamp its result to [−1,+1] in the same manner as done by ZS21 (Zhang and
Sandholm, 2021).

When the children of z are added to the tree, z becomes a nonterminal node and hence will be
placed in an infoset. If z is the first node of its infoset to be expanded in Γ̃, we also need to initialize
a new regret minimizer to be used by PCFR+ at this new infoset. Doing so naively would cause a
sort of instability: the evaluation of z will be (approximately) equal to the largest evaluation of any
child of z (due to how regular perfect-information evaluation functions work), but PCFR+ normally
would initialize its strategy uniformly at random. Thus, the evaluation of z would suddenly change
to being the average of the evaluations of the children of z, which could be very different from the
maximum (for example, if the move at z is essentially forced). To mitigate this instability, we exploit

16Technically, (x̄, ȳ) is only a partial strategy in Γ, since it does not specify how to play after any unexpanded
nodes. However, this is fine: any extension of (x̄, ȳ) will be an equilibrium of Γ, and unexpanded nodes are not
reached by either player. For clarity, as is typical for extensive-form games (see, e.g., Zinkevich et al. (Zinkevich
et al., 2007)), the average of strategies is always taken in sequence form. That is, x̄ is the strategy for which
x̄(h) = 1

T

∑T
t=1 x

t(h).
17Using a single call has two minor advantages: first, it takes advantage of slight extensions that may be

used in Stockfish at low depth; second, it reduces the overhead of calling Stockfish to one call per node being
expanded, instead of one call per child of that node.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the property that, in CFR (and all its variants, including PCFR+), the first strategy can be arbitrary.
Conventionally it is set to the uniform random strategy, but we instead set it by placing all weight
on the best child of z as evaluated by Stockfish.

C.6 KNOWLEDGE-LIMITED SUBGAME SOLVING

ZS21 (Zhang and Sandholm, 2021) uses knowledge-limited subgame solving (KLSS). KLSS results
from two changes to common-knowledge subgame solving. Let I be the current infoset of ▲. As an
example, consider the game in Fig. 4, and let I be the infoset at A. Let k be an odd positive integer.
Then ZS21 (Zhang and Sandholm, 2021) defines k-KLSS by making the following two changes.

1. Nodes outside the downward closure Ik+1 are completely removed from the game tree. In
Fig. 4, this would amount to removing the subtrees rooted at C, D, and E.

2. ▲-nodes in Ik+1 \ Ik are frozen to their strategies in the blueprint, i.e., they are made into
chance nodes with fixed action probabilities. In Fig. 4, this amounts to making Node B a
chance node.

ZS21 sets k = 1 in their FoW chess agent. Freezing the ▲-nodes in I2 \ I1 allows their equilibrium-
finding module, which is based on linear programming, to scale more efficiently, since the nodes in
that subtree are now only dependent on ▼’s strategy, not ▲’s.

KLSS, as implemented by ZS21, already lacks safety guarantees: they have an explicit counterexam-
ple in which using KLSS may decrease the quality of the strategy relative to just using the blueprint.
We make one simple change to KLSS for Obscuro: we allow ▲-nodes in I2 \ I to be unfrozen
and hence re-optimized in the subgame. We may call this 2-knowledge-limited unfrozen subgame
solving (KLUSS),18 since its complexity depends on the order-2 subgame I2. 2-KLUSS essentially
amounts to pretending that I2 = I∞.

We now make a few remarks about KLUSS.

1. Like 1-KLSS, 2-KLUSS lacks safety guarantees in the worst case. However, KLSS is often
safe in practice (Zhang and Sandholm, 2021), and KLUSS outperforms KLSS in FoW chess
as we showed in the ablations in Section 4.1. There are two further considerations:
(a) Obscuro does not have a full-game blueprint: its blueprint is simply the strategy from

the previous timestep, which is depth limited. Thus, we must use some form of sub-
game solving to play the game. KL(U)SS is currently the only variation of subgame
solving that is both somewhat game-theoretically motivated for imperfect-information
games and computationally feasible in a game like FoW chess.

(b) Although both KLSS and KLUSS are unsafe in the worst case, it should be heuris-
tically intuitive that they should improve performance more when the blueprint itself
is of low quality. Indeed, we expect our “blueprints” (strategies carried over from the
previous timestep) to have rather low quality, especially deep in the search tree where
such strategies are based on very low-depth search! So, we believe heuristically that
using KL(U)SS in this manner should usually be game-theoretically sound.

2. Since our equilibrium-finding module for Obscuro is based on CFR instead of linear
programming—in particular, it uses the full game tree Γ̃ instead of a sequence-form
representation—it does not benefit from freezing the ▲-nodes in I2 \ I1, since those nodes
would still need to be maintained. Thus, there is less reason for us to freeze those nodes.
Further, with straightforward pruning techniques (namely, partial pruning (Brown and
Sandholm, 2015)), CFR iterations usually take sublinear time in the size of the game tree
(unlike linear programming, which takes at least linear time in the representation size),
reducing the need to optimize the size of the game representation.

3. Again since we use CFR, the solutions that are computed by the equilibrium-finding mod-
ule are inherently approximate, and especially at levels deep in the tree, their approxima-
tion can be relatively poor. As such, allowing these infosets to be unfrozen gives them the
chance to learn better actions.

18This can be easily generalized to k-KLUSS for any k.
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4. 1-KLSS removes the nodes in I2 \ I1, folding them into the sequence-form representation
for efficiency. In contrast, our approach of maintaining these nodes allows them to be
selected for expansion. This fixes a weakness of ZS21: ZS21 was only capable of searching
for bluff opportunities “locally”, since any ▲-node in I2 \ I1 would cease to be in the tree
once the search horizon was passed. In contrast, Obscuro is capable of maintaining ▲-
nodes in I2 \ I1 for a long time, allowing deeper bluff opportunities.

5. Liu et al. (2023) introduced a safe variant of KLSS, which they call safe KLSS, in which
the subgame solver attempts to find a subgame strategy x′ that maintains at least the same
value for every opponent strategy y, instead of against every infoset J . This is a much
stricter condition that is much more difficult to satisfy and thus substantially constrains
the strategy to be close to the blueprint. Therefore, the safety requirement significantly
decreases the power and value of subgame solving, especially when the blueprint is bad.
Moreover, safe KLSS drops all nodes outside I1, which once again introduces the problem
of the previously-listed item: if we were to use safe KLSS in our setting, our AI would not
be capable of exploiting long bluff opportunities.

C.7 SELECTING AN ACTION

As mentioned in the body, Obscuro selects its action using the last iterate of PCFR+, rather than the
average iterate which is known to converge to a Nash equilibrium. We do this for two reasons.

1. The stopping time of the algorithm, due to the inherent randomness of processor speeds, is
already slightly randomized. Thus, stopping on the last iterate does not actually stop at the
same timestep T every time: it in effect mixes among the last few strategies. Thus, we do
not need to actually randomize ourselves to gain the benefit of randomization.

2. PCFR+ is conjectured (e.g., Farina et al. (2024)) to exhibit last-iterate convergence as well.
Indeed, we measured the Nash gap of the last iterate (xT , yT ) (in the expanded game Γ̃),
and the typical Nash gap was approximately equivalent to half a pawn—much less than
the reward range of the game. This suggests that assuming last-iterate convergence is not
unreasonable for our setting.

C.8 STRATEGY PURIFICATION

As mentioned in the body, we partially purify our strategy before playing. When Maxmargin is used
as the subgame solving algorithm (i.e., when the margins are all nonnegative), we allow mixing
between k = 3 actions; when Resolve is used, we deterministically play the top action. Moreover,
we only allow mixing among actions other than the highest-probability action if they have appeared
continuously in the support of xt for every iteration t > T1/2, where T1/2 is chosen to be the iteration
number when half the time budget elapsed.19 We call such actions “stable”. These restrictions
reduce the chance that transient fluctuations in the strategy of the player, which occur commonly
during game solving especially with an algorithm like PCFR+, would affect the final action that is
played. Any probability mass that was assigned to actions that are excluded in the above manner is
shifted to the action with highest probability.

D HARDWARE

Obscuro, for its human matches, ran on a single desktop machine with a 6-core Intel i5 CPU. Abla-
tions and further matches were run on an AMD EPYC 64-core server machine using 10 cores (5 per
side). We now report statistics about the computational performance of Obscuro. These statistics
were collected over the course of a 1,000-game sample, at a time control of 5 seconds per move.20

• Average game length: 116.6 plies (58.3 full moves)
19It will almost always be the case that T1/2 < T/2. This is because, as the game tree grows larger, PCFR+

iterations, whose time complexity scales with the size of the game tree, get slower.
20For this and all other AI-vs-AI matches in this paper, the stated time control, usually 5 seconds per move,

is the time limit allocated to the main search loop, and does not include the time it takes to enumerate the set of
all legal positions.
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• Average search depth: 10.7 plies

• Average search tree size: 1,070,552 nodes, 14,404 infosets

• Average search tree size carried over from previous search: 181,421 nodes, 3,162 infosets

• Average number of possible positions: 17,264

E OBSERVATIONS ABOUT FOW CHESS

E.1 SIZE OF INFOSETS AND COMMON-KNOWLEDGE SETS

Here we elaborate on the discussions about common-knowledge sets and infosets, alluded to in the
introduction.

Consider the family of positions in which both sides have spent the first eight moves playing 1. a4
a5 2. b4 b5 ... 8. h4 h5, and subsequently shuffle all their remaining pieces around their first three
ranks. An example of such a position is in Fig. 5. Each player must have one bishop on a light square
(12 ways), one bishop on a dark square (12 ways), one queen, one king, two knights, and two rooks
(22 ·21 ·20 ·19 ·18 ·17/22 ways). When multiplied, this gives a total of approximately M = 2×109

ways. This is a lower bound on the maximum size of an infoset. For common-knowledge sets,
both players can arrange their pieces arbitrarily along the first three ranks, yielding approximately
M2 ≈ 4 × 1018 different arrangements, which provides a lower bound on the maximum size of a
common-knowledge set.21

8 qZ0j0Z0s
7 Z0Z0s0Zb
6 0Z0mna0Z
5 opopopop
4 POPOPOPO
3 ZNZ0Z0SB
2 QZ0Z0ZRZ
1 Z0J0ZNA0

a b c d e f g h

Figure 5: FoW chess position illustrating the existence of large infosets and common-knowledge
sets. A full explanation is given in the text.

Although infosets can get this large, they almost never do in practical games, because both sides are
making effort to obtain information.

We now elaborate on Fig. 1. In particular, we will show that the two positions in that figure are in the
same common-knowledge set. Consider the sequence of positions in Fig. 6, read in order from top-
left to bottom-right. The positions marked A and B are the same as those in in Fig. 1. Each position
is connected to the next one by an infoset of one of the players: the first pair by a White infoset, the
second pair by a Black infoset, and so on. A computer search showed that the depicted path, which

21These common-knowledge sets are measured with respect to states, not histories. Measuring common-
knowledge sets with histories would result in a significantly larger number, because the order of the moves
would matter.
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has length 9, is the shortest path between these two positions.22 Hence, if the true position is A, then
the statement Y = “The true position is not B” is 8th-order knowledge for both players. That is, it
is true that

everyone knows everyone knows ... everyone knows︸ ︷︷ ︸
8 repetitions

Y

yet the same statement would be false if there were 9 repetitions, so Y is not common knowledge.

8 rmblkans
7 opo0opZp
6 0Z0Z0Z0Z
5 Z0ZpZ0o0
4 0Z0Z0Z0Z
3 Z0M0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmblkans
7 opo0opZp
6 0Z0Z0Z0Z
5 Z0ZpZ0o0
4 0Z0Z0Z0Z
3 M0Z0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmblkans
7 ZpopopZp
6 0Z0Z0Z0Z
5 o0Z0Z0o0
4 0Z0Z0Z0Z
3 M0Z0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmblkans
7 ZpopopZp
6 0Z0Z0Z0Z
5 o0Z0Z0o0
4 0Z0Z0Z0Z
3 M0Z0Z0Z0
2 POPOPOPO
1 ZRAQJBMR

a b c d e f g h

8 rmblkans
7 Zpopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 pZ0Z0Z0Z
3 M0Z0Z0Z0
2 POPOPOPO
1 ZRAQJBMR

a b c d e f g h

1. Nc3 g5 2. Nh3 d5 1. Na3 g5 2. Nh3 d5 1. Na3 g5 2. Nh3 a5 1. Na3 g5 2. Rb1 a5 1. Na3 a5 2. Rb1 a4
A

8 rmblkans
7 Zpopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 pZ0Z0Z0Z
3 M0Z0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmblkans
7 opopopo0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0o
3 M0Z0Z0ZN
2 POPOPOPO
1 S0AQJBZR

a b c d e f g h

8 rmblkans
7 opopopo0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0o
3 Z0M0Z0ZP
2 POPOPOPZ
1 S0AQJBMR

a b c d e f g h

8 rmbZkans
7 opopZpop
6 0Z0Z0Z0Z
5 Z0Z0o0Z0
4 0Z0Z0Z0l
3 Z0M0Z0ZP
2 POPOPOPZ
1 S0AQJBMR

a b c d e f g h

8 rmbZkans
7 opopZpop
6 0Z0Z0Z0Z
5 Z0Z0o0Z0
4 0Z0Z0Z0l
3 Z0Z0ZNZP
2 POPOPOPZ
1 SNAQJBZR

a b c d e f g h

1. Na3 a5 2. Nh3 a4 1. Na3 h5 2. Nh3 h4 1. Nc3 h5 2. h3 h4 1. Nc3 e5 2. h3 Qh4 1. Nf3 e5 2. h3 Qh4
B

Figure 6: Sequence of positions illustrating the connectivity between the two positions in Fig. 1.
Circles mark squares that the opponent knows are occupied by some piece, but not by which piece.
A full explanation is given in the text.

E.2 MIXED STRATEGIES

Playing a mixed strategy is a fundamental part of strong play in almost any imperfect information
game, and it is particularly important in games like FoW chess where there is no private information
assigned by chance, such as private cards in poker. Indeed, in small poker endgames, deterministic
strategies exist for playing near-optimally (Farina and Sandholm, 2022). However, in FoW chess, if
a player plays a pure strategy that the opponent knows, the opponent would essentially be playing
regular chess, because the opponent can predict with full certainty what the player would play. This
is a significant disadvantage that will result in a rapid loss against any competent opponent.

Consider, for example, the position in Fig. 7(A). White can win almost a full pawn (in expectation)
by mixing between the moves 2. Qa4 with low probability and 2. Nc3 with high probability. No
move for Black simultaneously defends the threats against both the king and the pawn. (2... c6 may
look like it does, but after 3. cxd5, Black cannot recapture the pawn without risking hanging a king
or queen.)23

This necessity of playing a mixed strategy explains why we do not adopt full purification of our
strategy and instead opt to allow mixing.

E.3 FIRST-MOVER ADVANTAGE

We evaluated the first-mover advantage in FoW chess by running 10,000 games with Obscuro play-
ing against itself at a time control of 5 seconds per move. Of these games, White scored 57.5%
(+4935 =1623 -3442). This is, with statistical significance (z > 5), larger than the empirical first-
move advantage in regular chess, which is about 55% (Chessgames.com, 2024). We believe that the

22A similar computer search shows that this is nearly the longest possible shortest path between any pair of
nodes after two moves from each side: there is a shortest path of length 10, but no shortest paths longer than
that.

23Obscuro prefers to also include 3. Nf3 and 3. e3 in its mixed strategy to dissuade 2... d4.
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8 rmblkans
7 opo0opop
6 0Z0Z0Z0Z
5 Z0ZpZ0Z0
4 0ZPZ0Z0Z
3 Z0Z0Z0Z0
2 PO0OPOPO
1 SNAQJBMR

a b c d e f g h

8 rZbZkZ0s
7 opZ0lpop
6 0Zno0m0Z
5 Z0o0Z0Z0
4 QZ0Z0A0Z
3 Z0O0Z0Z0
2 PO0ZPOPO
1 S0Z0JBMR

a b c d e f g h

8 0Z0jbZQZ
7 ZpZ0ZqZ0
6 nO0ZpM0Z
5 Z0ZpO0Z0
4 0Z0O0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0O0J
1 Z0Z0Z0Z0

a b c d e f g h

8 0Z0Z0Z0Z
7 Z0ZrZkZ0
6 0ZpZbopZ
5 o0A0Z0Zp
4 0m0Z0O0Z
3 ZPZ0Z0O0
2 0Z0Z0Z0O
1 Z0Z0SBJ0

a b c d e f g h

A B C D

Figure 7: FoW chess positions from actual gameplay illustrating common themes. (A) Opening
position after the common trap 1. c4 d5?! (B) An early-game bluff. White bluffs that its attacking
bishop is defended by the queen on d1. (C) A highly-risky queen maneuver from a losing position.
(D) An endgame position in which the disadvantaged side sacrifices material for a chance at the
opposing king. Details can be found in the text.

White Black
d4 66.4% Nc6 32.5%
c4 29.6% c6 25.1%
e4 1.9% e6 20.7%

Nc3 1.4% Nf6 15.9%
c3 0.4% c5 4.8%

Nf3 0.2% d5 0.9%

Table 1: Distribution of first moves played by Obscuro as both White and Black, over a 10,000-game
sample. Percentages may not add up to 100% due to rounding.

fundamental reason for this discrepancy is the weakness of the a4-e8 diagonal, as already exhibited
in Fig. 7(A), discussed above. This risk presents Black from developing in a natural manner against
1. c4 or 1. d4, allowing White a healthy opening lead.

Indeed, our 10,000-game sample included 10 games with length 12 ply (6 moves from each player)
or fewer; all 10 of these games ended with either Black failing to cover Qa4+ or White failing to
cover Qa5+:

• 1. c4 d5 2. Qa4+ d4 1-0

• 1. c4 c6 2. d4 d5 3. cxd5 Qa5+ 4. Qa4 0-1

• 1. c4 Nc6 2. d4 d5 3. Qa4 dxc4 4. d5 Nb8 1-0

• 1. d4 c6 2. c4 d5 3. cxd5 Bf5 4. Qa4 cxd5 1-0 (This play-through occurred three times.)

• 1. d4 c6 2. c3 e6 3. e4 d5 4. e5 c5 5. Qa4+ cxd4 1-0

• 1. c4 e6 2. d4 c5 3. d5 Qa5+ 4. Nd2 Nf6 5. e4 Nxe4 6. Nxe4 0-1

• 1. d4 c6 2. Nc3 d5 3. Qd3 Nf6 4. e4 dxe4 5. Nxe4 Qa5+ 6. Nxf6+ 0-1

• 1. c4 d5 2. Qa4+ c6 3. cxd5 Nf6 4. dxc6 Nxc6 5. Nf3 e5 6. Nxe5 Nxe5 1-0

These games may seem like they contain major mistakes, but that is not so. It is rather likely that
most or all of these play-throughs are part of optimal play: after all, bluffs must sometimes get
called!

In Table 1 we give Obscuro’s mixed strategy on the first move for both White and Black, over the
10,000-game sample. The above observation about the a4-e8 diagonal has a large effect on opening
choices. We believe that this explains why White strongly prefers opening with d4 and c4 rather
than e4 which is equally favored in regular chess, and why Black almost never opens with d5 and
instead prefers to immediately close the dangerous diagonal by moving something to c6.
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E.4 BLUFFS

Obscuro bluffs. An example bluff is in Fig. 7(B), which is from the aforementioned 10,000-game
sample. White knows that d6 is defended (in fact, White knows the exact position). Black does not
know the location of the white queen (for example, it could be on d1 instead). This allows White to
play Bxd6, exploiting the fact that Black cannot recapture without risking losing the queen.

E.5 PROBABILISTIC TACTICS AND RISK-TAKING

The existence of hidden information in FoW chess allows tactics that would not work in regular
chess. An example of this phenomenon as early as move 2 has already been described above, where
mixing allows White to win a pawn after 1. c4 d5. We now give additional examples.

Fig. 7(C) depicts a position encountered during our 20-game match against the top-rated human.
Obscuro (White) was in a losing position, down a minor piece. It decided to play the highly risky
queen maneuver Qg8-g1-a1-a7-a8, leaving its own king exposed in order to attempt to hunt the
opposing king. This risky tactic worked: the game played out 68. Qg1 Qe7 69. Qa1 Nb8 70.
Qa7 Nd7 71. Qa8+ Nxb6 1-0.24 This sequence of moves heavily exploits the opponent’s imperfect
information: if Black knew that White was attempting this attack, Black could easily either defend
the attack or launch a counterattack on the completely undefended white king.

For another example, consider the position in Fig. 7(D), again from the aforementioned 10,000-
game sample, and suppose for the sake of the example that White has perfect information. White
faces a slight material disadvantage in an endgame. However, Obscuro as White finds the tactical
blow 1. Rxe6! Kxe6 upon which mixing evenly between 2. Bc4+ and 2. Bh3+ wins on the spot
with 50% probability.

E.6 EXPLOITATIVE VS. EQUILIBRIUM PLAY

The position in Fig. 7(D) is also an example of the difference between exploitative play and equi-
librium play in FoW chess. The above tactic has expected value at least 50% against any player,
because it wins on the spot with probability at least 50%. It is likely the best move if playing against
a perfect opponent. However, against a substantially weaker player, it may be far from the best
move: against a weak player, one can argue that the endgame is probably a win even with the slight
material disadvantage, whereas the tactic will lead to a significant disadvantage (down three points
of material) if it fails to win. Therefore, if one knew the strength of one’s opponent, one may opt to
not go for this tactic and instead attempt to win the endgame in a “safer” manner. Another example
of this phenomenon was also seen above. Obscuro, with small probability, can lose in two moves
(1. c4 d5 2. Qa4+ d4). Any player, no matter how weak, can therefore beat Obscuro with posi-
tive probability as White by simply playing the above move sequence. However, against opponents
below a certain level, playing the above moves as Black may be considered a needless risk.

Obscuro does not know or attempt to model the opponent. It will simply play what it believes to
be a near-equilibrium strategy. Therefore, it may not do as well against weak players as an agent
designed specifically to exploit weak players. This design choice was intentional, and follows other
efforts in superhuman game-playing AI such as those mentioned in the introduction, most of which
attempted to find and play equilibria rather than to exploit a particular opponent.

E.7 VOLATILITY

FoW chess is a highly volatile, highly stochastic game. Indeed, the previous two observations re-
garding risk taking and exploitative play are evidence of this. Most games, including a majority of
our 20 games against the world #1 player, are ultimately decided by one side outright “blundering
material” because of lack of knowledge of the opponent’s position. We emphasize, however, that
this is not a sign of poor quality of play; rather, we believe that strong play in FoW chess involves
calculated risk-taking that, with nontrivial probability, leads to such “blunders”. More skilled play-

24The immediate 70. Qa8 would have worked in this position as well, but it was not played, likely because
it would have risked losing the queen in case the king were on b8.
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ers are better at taking calculated risks while restricting the probability of losing material, and at
forcing their opponents into more risky situations.

E.8 KING VS KING

To make some of the above discussions about mixing, volatility, and equilibrium play more concrete,
we include here a partial analysis of the king-vs-king endgame, assuming the starting position of the
kings is common knowledge. While this endgame is an immediate draw in the rules of regular chess
(because a lone king cannot checkmate), FoW chess allows such endgames to play out, and not all
such endgames are immediately drawn; in fact, the analysis turns out rather intricate already. In the
below discussion, 0 is a draw, +1 is a certain win for White, and −1 is a certain win for Black.
Claim 1. Suppose that there are two legal moves for the black king that are 1) guaranteed to be
safe (i.e., guaranteed to not immediately lose), and 2) adjacent to each other (orthogonally or diag-
onally). Then Black secures at least a draw.

Proof. Black randomly moves to one of them on their first move, and shuffles between them forever
thereafter. The white king cannot approach without being captured half of the time.

Thus, it remains only to discuss the case where one king is on the edge of the board. Assume,
without loss of generality, that this is the black king, and that it is on the 8th rank.
Claim 2. If the white king prevents the black king from immediately moving off the back rank (e.g.,
a6 and a8), the equilibrium value is strictly positive, regardless of which side is to move.

Proof. We will show that Black has no strategy that achieves expected value 0. Consider two cases.

Case 1. Black’s strategy involves attempting to move off the back rank with positive probability
on some move t (but not earlier). Then consider the following strategy for White. Let x7 (for
x ∈ {a, b, ..., h}) be the square on the 7th rank with maximal probability p > 0 for the black king
after t moves. White places its king on square x6 before Black’s tth move. With probability p, White
wins immediately. Otherwise, White runs away downwards, executing the strategy from Claim 1,
forcing a draw.

Case 2. Black’s strategy is to always stay on the back rank. Then consider the following strategy
for White. Let x8 be the square on the back rank with minimal probability q ≤ 1/4 for the black
king, at the time when White makes its 8th move. White places its king on x7 on its 8th move, then
moves left and right on the 7th rank until it wins. We claim that White has expected value at least
1 − 2q = 1/2 with this strategy. To see this, note that, since Black always stays on the back rank,
the parity of its rank alternates between moves; therefore, if the black king is not on x8, then White
will not lose on its 8th move. Further, also by a parity argument, White will eventually chase down
the black king and win the game.

If the black king is on the edge of the board, it is always the case that either White can force the
kings to be two squares apart with common knowledge (Claim 2) or Black has a safe pair of adjacent
moves (Claim 1), so this completes the analysis.

We complete this section by pointing out an interesting special case: If the black king starts in
the corner (a8), the white king starts on either b6, c7, or c6, and it is White to move, then White
can secure value strictly larger than 1/2: randomize between Kb6, Kc7, Ka6, or Kc8 (whichever
are legal moves) on the first move. This wins with probability 1/2 immediately, and otherwise
immediately forces the kings to be two squares apart (Claim 2).
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1: maintain
2: current game tree Γ (initially containing only the root ∅)
3: current strategy profile (x, y)
4: current expected value v∗

5: current set of possible positions P (initially containing only the root ∅)
6: procedure MOVE(observation sequence o)
7: CONSTRUCTSUBGAME(o)
8: in parallel
9: RUNSOLVERTHREAD()

10: RUNEXPANDERTHREAD() ▷ or multiple parallel copies of expansion thread
11: I ← our current infoset
12: a∗ ← argmaxa∈A(I) π(a|I) ▷ ties broken arbitrarily
13: if pmax = 0 then ▷ If using Resolve, just play a∗, i.e., purify completely.
14: S ← set of stable actions ∪ {a∗} ▷ “Stable” is defined in the text.
15: if |S| > MAXSUPPORT then ▷ The parameter MAXSUPPORT is set to 3.
16: remove all but the top MAXSUPPORT most likely actions in S

17: πplay(·|I)← π(·|I)
18: for action a ∈ A(h) \ S do ▷ Shift all mass of such actions onto a∗.
19: πplay(a

∗|I)← πplay(a
∗|I) + πplay(a|I)

20: πplay(a|I)← 0

21: sample a∗ ∼ π(·|I)
22: play action a∗

Figure 8: Pseudocode, Part 1.

1: procedure CONSTRUCTSUBGAME(observation sequence o)
2: ▷ The set of possible positions is updated on every move by simply enumerating
3: ▷ all possibilities
4: P ← all positions consistent with o
5: I ← set of nodes in Γ consistent with o
6: ▷ Construct KLUSS subgame:
7: for each opponent infoset J ⊆ I2 do
8: set alternate value valt(J)← u(x, y|J)− ĝ(J)

9: while |I| < min{|P |, MININFOSETSIZE} do ▷ Add more states to I if there are not enough.
10: ▷ The parameter MININFOSETSIZE is set to 256.
11: get random state s ∈ P \ I
12: ▷ Assume ▼ has perfect information at newly-sampled states:
13: add s to ▲-infoset I and ▼-infoset J = {s}
14: set alternate value valt(J)← min{ṽ▲(s), v∗}
15: ▷ Fix prior probabilities:
16: J0 ← {J : J ⊆ I2}
17: for each opponent infoset J ⊆ I2 do set prior probability α(J)← 1

2

(
y(J)∑
J′ y(J′) +

1
m

)
18: create new root node ∅ where ▼ selects infoset J ∈ J0, reaching node hJ

19: ▷ π−i(h) is the probability that all other players play all actions on the path to h in Γ.
20: for each J ∈ J0 do
21: make hJ a chance node where h ∈ J is selected w.p. ∝ π−▼(h)
22: make new regret minimizer RJ with strategy space [0, 1] using PRM+
23: ▷ Regret minimizer RJ controls the probability with which ▼ enters at J in Resolve.
24: Γ← game tree with root ∅
25: delete all game tree nodes not reachable from ∅

Figure 9: Pseudocode, Part 2.
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1: procedure RUNSOLVERTHREAD
2: while time permits do ▷ Run for longer than expander threads.
3: RUNCFRITERATION(▲)
4: RUNCFRITERATION(▼)
5: ▷ Special case, must be done separately: RM+ updates for the Resolve subgame:
6: for each J ∈ J0 do perform regret minimizer update at RJ with utility ucf

▼(J)

7: ▷ Transition between Resolve and Maxmargin smoothly,
8: ▷ based on whether Resolve chooses to enter at any infoset J :
9: ▷ πresolve

▼ (J) is the probability that Resolve (RJ ) enters at J .
10: ▷ πmaxmargin

▼ (J) is the probability Maxmargin picks J .
11: pmax ← maxJ∈J0

πresolve
▼ (J)

12: for each J ∈ J0 do π▼(J)← pmax · α(J) · πresolve
▼ (J) + (1− pmax) · πmaxmargin

▼ (J)

13: ▷ Note: it is possible for
∑

J∈J0
π▼(J) ̸= 1 if Resolve is being used!

14:
15: procedure RUNCFRITERATION(exploring player i)
16: MAKEUTILITIES(i, ∅) ▷ MAKEUTILITIES will mark some infosets VISITED.
17: ▷ ucf

▼(J) is ▼’s CFV for picking J at the root.
18: if i = ▼ then
19: for each J ∈ J0 do ucf

▼(J)← ucf
▼(J) + valt(J)

20: for each VISITED infoset I , in bottom-up order do
21: ▷ πi is player i’s strategy. σ(I) is the parent sequence of infoset I .
22: ▷ CFR value backpropagation:
23: ucf

i (σ(I))← ucf
i (σ(I)) +

∑
a∈A(I) πi(a|I)ucf

i (I, ·)
24: perform regret minimizer update at I using counterfactual values ucf

i (I, ·)
25: mark I not VISITED
26: ucf

i (I, ·)← 0 ▷ reset

Figure 10: Pseudocode, Part 3.

1: procedure MAKEUTILITIES(exploring player i, node h)
2: mark h as not NEW
3: if h is not EXPANDED or h is terminal then
4: (I, a)← σi(h)
5: mark I as VISITED
6: ▷ ṽi(h) is the Stockfish evaluation or terminal node value of h from i’s perspective.
7: ▷ ucf

i (I, a) stores the CFV at sequence (I, a). Initialized to 0.
8: ucf

i (I, a)← ucf
i (I, a) + π−i(h)ṽi(h)

9: else
10: ▷ No need to explore nodes to which the opponent does not play.
11: ▷ No locks needed: all EXPANDED nodes are safe to access.
12: for each legal action a at h do
13: if i plays at h or π−i(ha) > 0 then MAKEUTILITIES(i, ha)

Figure 11: Pseudocode, Part 4.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1: procedure RUNEXPANDERTHREAD
2: while time permits do
3: DOEXPANSIONSTEP(▲)
4: DOEXPANSIONSTEP(▼)
5:
6: procedure DOEXPANSIONSTEP(exploring player i)
7: h← root node of current subgame Γ
8: while h is EXPANDED do ▷ Find leaf to expand.
9: ▷ Terminal nodes cannot be expanded.

10: ▷ Also, we should expand nodes that CFR has not yet iterated on.
11: if h is terminal or h is NEW then return
12: ▷ Select action:
13: ▷ π̃i is the expansion strategy of player i as defined in the text.
14: for action a ∈ A(h) do
15: if h belongs to i then π̃(a|h)← π̃i(a|h)
16: else π̃(a|h)← π−i(a|h)
17: ▷ If h = ∅ and ▼ is using Resolve, π̃(·|h) may not be a distribution
18: sample a ∈ A(h) w.p. ∝ π̃(·|h)
19: h← ha
20: ▷ Expand h:
21: j ← active player at ha
22: add all children of h to Γ
23: let I be the infoset that h should be in
24: if I is not created then
25: create I
26: initialize current strategy as πj(a

∗|I) = 1 where a∗ := argmaxa∈A(h) ṽj(ha)

27: add h to I
28: mark h as EXPANDED

Figure 12: Pseudocode, Part 5.
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