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ABSTRACT

Low-rank adaptation (LoRA) is a fine-tuning technique that can be applied to
conditional generative diffusion models. LoRA utilizes a small number of context
examples to adapt the model to a specific domain, character, style, or concept.
However, due to the limited data utilized during training, the fine-tuned model
performance is often characterized by strong context bias and a low degree of
variability in the generated images. To solve this issue, we introduce AutoLoRA,
a novel guidance technique for diffusion models fine-tuned with the LoRA ap-
proach. Inspired by other guidance techniques, AutoLoRA searches for a trade-
off between consistency in the domain represented by LoRA weights and sample
diversity from the base conditional diffusion model. Moreover, we show that in-
corporating classifier-free guidance for both LoRA fine-tuned and base models
leads to generating samples with higher diversity and better quality. The experi-
mental results for several fine-tuned LoRA domains show superiority over existing
guidance techniques on selected metrics.

1 INTRODUCTION

The key aspects of image-generating diffusion models focus on image quality, the variability in the
results, and the production of images tailored to specific conditions (Zhang et al., 2023a). Classifier-
free guidance (CFG) (Ho & Salimans, 2022) is a sampling method for generating diverse, good-
quality images utilizing a conditional diffusion model. The idea of this approach is to use a combi-
nation of constrained and unconstrained diffusion models to find the trade-off between diversity and
consistency with the conditioning factor.

In AutoGuidance (Karras et al., 2024), the fully-trained diffusion model is conditioned using a less-
trained version. This approach parallels the technique employed in Classifier-Free Guidance (CFG),
where two models are combined during the sampling process. However, unlike CFG, which uses
conditioned and unconditioned models, AutoGuidance leverages different stages of training within a
single model. The fully trained model, which tends to overfit to the training data, is counterbalanced
by the partially trained model, thereby introducing greater diversity in the generated outputs. This
approach is critical for enhancing the variability of generated images, a fundamental requirement
for improving generative model performance.

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a fine-tuning technique widely applied in large
diffusion models to adjust them to some specific dataset and enforce generating images in particular
style, character, or some other specific concepts. However, the adaptation process is usually made
using a relatively small number of data examples, which causes a small degree of variability in the
output, and the tuned model is biased towards the training examples.

In this paper, we present AutoLoRA, which allows for an increase in the variety of images generated
from LoRA models and a reduction of data bias. AutoLoRA use the general idea of AutoGuidance,
which claims that overfit model can be improved by conditioning by the model with a lower quality
but greater diversity. AutoLoRA increase LoRA generation variability by conditioning LoRA with a
base diffusion model. In practice, we use a model before LoRA tuning to condition the final variant
fine-tuned with the LoRA approach. In this work, we focus on diffusion models with additional
context inputs, like prompts. For such an approach, we additionally apply classifier-free guidance
for both base and fine-tuned versions of the diffusion models. With this approach, we incorporate
an additional level of regularisation and new degrees of freedom to increase the variety of the details
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in the image that are not controlled by context inputs. As a consequence, we observe an increase in
the prompt alignment and diversity of generated samples.

The following constitutes a list of our key contributions. First, we show that the CFG and AutoGu-
idance mechanism can solve a problem with a low variety of generated images in the LoRA model.
Second, we provide a guidance approach that enables us to find the trade-off between prompt ad-
justment, LoRA consistency, and generalization. Third, AutoLoRA reduces bias in the LoRA model
caused by using a relatively small data set to tune the model.

2 RELATED WORK

In this section, we review the related work, starting with the development of general diffusion mod-
els, followed by an overview of guided diffusion models, and concluding with methods for low-rank
adaptations.

Diffusion models The concept of diffusion models in the deep learning community was first intro-
duced in Sohl-Dickstein et al. (2015). Utilizing Stochastic Differential Equations (SDEs), diffusion
models enable the transformation of a simple initial distribution (e.g., a normal distribution) into a
more complex target distribution through a series of tractable diffusion steps. Subsequent advance-
ments, such as reducing the number of trajectory steps (Bordes et al., 2017), led to more efficient
diffusion models.

A major breakthrough occurred with the introduction of Denoising Diffusion Probabilistic Models
(DDPMs) in (Ho et al., 2020; Dhariwal & Nichol, 2021). DDPMs employ a weighted variational
bound objective by combining diffusion probabilistic models with denoising score matching (Song
& Ermon, 2019). While these models exhibited strong generative performance (i.e., high-quality
samples), their computational cost remained a significant limitation.

The first notable improvement in terms of scalability, particularly sample efficiency, came from
generalizing DDPMs to non-Markovian diffusion processes, resulting in shorter generative Markov
chains, called Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2020).

Finally, the high computational cost of scaling diffusion models to high-dimensional problems was
alleviated by Latent Diffusion Models (Rombach et al., 2022), which proposed performing diffusion
in the lower-dimensional latent space of an autoencoder. One notable example of a latent diffusion
model is Stable Diffusion (Rombach et al., 2022), which demonstrated the practical application of
this approach. Further improvements in scalability were achieved in models like SDXL (Podell
et al., 2023), which extended the capabilities of latent diffusion models to even larger and more
complex tasks.

Guidance of diffusion models In diffusion models, the underlying Stochastic Differential Equa-
tion (SDE) process plays a crucial role. While it enables strong generative performance, im-
proved scalability, and faster training compared to models based on Ordinary Differential Equations
(ODEs) (Dinh et al., 2014; Rezende & Mohamed, 2015; Grathwohl et al., 2018), the stochastic in-
ference process requires guidance to produce desirable samples. To steer the generation process in
a preferred direction, several guidance techniques have been developed, which can be broadly cate-
gorized based on different strategies: classifier-based guidance, Langevin dynamics, Markov Chain
Monte Carlo (MCMC), external guiding signals, architecture-specific features, and others. Despite
their differences, most of these techniques direct the diffusion process toward regions of minimal
energy, estimated through various proxies.

One of the most well-known techniques is Classifier Guidance (Dhariwal & Nichol, 2021; Poleski
et al., 2024), which uses an external classifier trained to predict the class from noisy intermediate
diffusion steps. In contrast, Classifier-Free Guidance (Ho & Salimans, 2022) eliminates the need for
a separate classifier by training a single model in two modes—conditioned and unconditioned.

Other approaches are inspired by sampling techniques. For instance, in the diffusion sampling com-
munity, Langevin dynamics is commonly used for off-policy steering, where at each trajectory step,
the model follows the scaled gradient norm toward regions of lowest energy (the highest log proba-
bility), as demonstrated in works like Zhang & Chen (2021) and Sendera et al. (2024). Alternatively,
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MCMC-based sampling strategies are also applied directly in diffusion processes (Song et al., 2023;
Chung et al., 2023).

A few methods incorporate external guiding functions to smooth the generative trajectory toward
desired outcomes, such as in Bansal et al. (2023). Others leverage architectural properties of diffu-
sion models, for example, using intermediate self-attention maps (Hong et al., 2023) or training an
external discriminator network (Kim et al., 2022).

Most recently, AutoGuidance (Karras et al., 2024) extends classifier-free guidance by replacing the
unconditional model with a smaller, less-trained version of the model itself to guide the conditional
one. Our approach is inspired by AutoGuidance but diverges by introducing small adapters (i.e.,
LoRA modules) to enhance the diversity of generated samples in diffusion models.

Parameter-efficient fine-tuning and LoRA With the increasing size of modern deep learning
models, full fine-tuning for downstream tasks is becoming increasingly impractical, and this chal-
lenge will only grow as models scale further. This has led to the rise of Parameter-Efficient Fine-
Tuning (PEFT) methods, which typically involve adding small, trainable modules to a pretrained
model, such as Adapters (Houlsby et al., 2019).

Among PEFT techniques, Low-Rank Adaptation (LoRA) (Hu et al., 2021) has emerged as the most
widely adopted solution, originating from the large language model (LLM) community. LoRA intro-
duces low-rank adaptations to each weight matrix, factorizing updates into two low-rank matrices.
This allows LoRA to achieve fine-tuning results comparable to full fine-tuning, but with significantly
fewer parameters (ranging from 100 to even 10,000 times smaller).

Due to its effectiveness, numerous LoRA variants have been proposed. For example, methods
like Dy-LoRA (Valipour et al., 2022), AdaLoRA (Zhang et al., 2023c), and IncreLoRA (Zhang
et al., 2023b) dynamically adjust the rank hyperparameter. GLoRA (Chavan et al., 2023) general-
izes LoRA by incorporating a prompt module, while Delta-LoRA (Zi et al., 2023) simultaneously
updates pretrained model weights using the difference between LoRA weights. Further model size
reductions have been achieved with QLoRA (Dettmers et al., 2023). Additionally, ongoing research
continues to propose new LoRA-based approaches (including, e.g., Kopiczko et al. (2023); Hao
et al. (2024); Hayou et al. (2024); Zhang & Pilanci (2024)) and deepen theoretical understanding
(Fu et al., 2023; Jang et al., 2024).

Most importantly for our work, LoRA has proven to be highly versatile and is now commonly ap-
plied in diffusion models (Ryu, 2023; Smith et al., 2023; Choi et al., 2023; Zheng et al., 2024). Given
the variety of possible LoRA-based methods, we follow the widely adopted and well-understood
procedure outlined in the original LoRA paper by Hu et al. (2021).

3 PRELIMINARIES

In this section, we present our AutoLoRA method dedicated for AutoGuidance of LoRa models. We
start by introducing LoRa, and then show how the Classifier-free guidance (CFG) and AutoGuidance
work. At the end we show how to utilize AutoLoRA to increase variability in LoRa models.

Diffusion Models Diffusion models, such as Denoising Diffusion Probabilistic Models (DDPMs)
(Ho et al., 2020; Dhariwal & Nichol, 2021), operate by modeling a Markov chain of successive noise
addition and denoising steps. These models involve a forward process, where noise is gradually
added to data, and a reverse process, where the model learns to remove noise, generating high-
quality samples from a noise vector.

The forward process is defined as a series of Gaussian noise steps applied to a data sample x0,
transitioning it into increasingly noisy versions xt as t progresses from 0 to T . This process can be
described as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where {βt ∈ (0, 1)}Tt=1 is a noise schedule parameter that controls the level of noise added at step t.

The reverse process, modeled by the diffusion model, attempts to reconstruct x0 from a noisy xT by
progressively denoising it. The goal of training is to learn a model pθ(xt−1|xt) that can reverse the
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Algorithm 1 Reverse Diffusion with CFG

Require: xT ∼ N (0, Id), 0 ≤ ω ∈ R, conditioning factor y
for t = T to 1 do

ϵ̂w(xt, y) = ϵ̂(xt) + w · (ϵ̂(xt, y)− ϵ̂(xt, ø))

x̂w(xt, y) = (x̂t −
√
1− ᾱt · ϵ̂w(xt, y))/

√
αt

xt−1 =
√
ᾱt−1 · x̂w(xt, y) +

√
1− ᾱt−1 · ϵ̂w(xt, y)

end for
return x0

Algorithm 2 Reverse Diffusion with AutoLoRA

Require: xT ∼ N (0, Id), 0 ≤ w1, w2, γ ∈ R, conditioning factor y
for t = T to 1 do

ϵ̂w1(xt, y) = ϵ(xt, ø) + w1 · (ϵ(xt, y)− ϵ(xt, ø))

ϵ̂w2

LoRA(xt, y) = ϵLoRA(xt, ø) + w2 · (ϵLoRA(xt, y)− ϵLoRA(xt, ø))

ϵ̂γ,w1,w2

AutoLoRA(xt, y) = ϵ̂w1(xt, y) + γ · (ϵ̂w2

LoRA(xt, y)− ϵ̂w1(xt, y))

x̂γ(xt, y) = (x̂t −
√
1− ᾱt · ϵ̂γAutoLoRA(xt, y))/

√
αt

xt−1 =
√
ᾱt−1 · x̂γ(xt, y) +

√
1− ᾱt−1 · ϵ̂AutoLoRA(xt, c)

end for
return x0

noise process. In practice, the model is often parametrized as ϵθ(xt, t) and is trained to predict real
noise applied on x0 following Equation 1.

In conditional generation, the model is conditioned on additional information such as a label or text
prompt, denoted as y. The model learns a conditional distribution pθ(xt−1|xt, y), which incorpo-
rates the conditioning information into the generative process.

Low-Rank Adaptation (LoRA) Low-Rank Adaptation (LoRA) (Hu et al., 2021) is a parameter-
efficient fine-tuning technique designed to adapt pre-trained models to new tasks by introducing low-
rank modifications to their weight matrices. LoRA was initially proposed to address the challenge
of fine-tuning large language models (LLMs) while significantly reducing the computational and
memory overhead associated with updating full sets of model parameters.

The application of LoRA to diffusion models is particularly advantageous in scenarios where large
pre-trained models are adapted to specific tasks or datasets with limited computational resources. By
leveraging LoRA, it becomes feasible to adapt diffusion models for new tasks (e.g., domain-specific
image generation or text-guided diffusion) without the need for full-scale retraining.

LoRA leverages the observation that the learned weight matrices in large-scale models, particularly
in attention-based architectures, often reside in a lower-dimensional subspace. Instead of updating
the full model weights, LoRA freezes the pre-trained parameters and introduces low-rank matrices
that are added to the weight updates during training. Specifically, LoRA decomposes the weight
update matrices into two smaller matrices, effectively reducing the number of parameters that need
to be trained and stored.

Mathematically, a weight matrix W ∈ Rd×k, where d is the input dimension and k is the output
dimension, is modified by adding a low-rank matrix update as follows:

W ′ = W + α ·∆W = W + α ·A ·B (2)

where A ∈ Rd×r and B ∈ Rr×k, where r is the rank, typically chosen such that r ≪ d, k, resulting
in a significant reduction in the number of parameters that need to be optimized. This low-rank
adaptation allows for efficient fine-tuning while maintaining most of the representational power of
the original model. The α represents the LoRA scaling parameter that controls the impact of LoRA
fine-tuning weights, mainly during inference.
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Classifier-Free Guidance Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) is a technique
used in diffusion models to steer the generative process more effectively without relying on external
classifiers. It has proven highly effective in improving the quality of generated samples in various
tasks such as image and text generation.

Before the introduction of Classifier-Free Guidance, diffusion models often employed classifier-
based guidance (Dhariwal & Nichol, 2021). In this setup, an external classifier cϕ(y|xt), trained to
predict the conditioning label y from intermediate noisy samples xt, was used to steer the reverse
process. This guidance was achieved by modifying the reverse sampling step as:

ϵ̂θ(xt) = ϵθ(xt)−
√
1− ᾱt w∇xt log cϕ(y|xt) (3)

where w is a scaling factor that adjusts the strength of the classifier’s influence, and ᾱt =∏t
i=1 1−βi. While effective, classifier-based guidance introduces several downsides, such as added

complexity and potential inaccuracies due to classifier errors.

Classifier-Free Guidance offers a simpler and more robust alternative by eliminating the need for
an external classifier. Instead, the diffusion model itself is trained in two modes – conditional and
unconditional:

• conditional mode - the model is trained to predict the denoised data x0 given noisy data xt

and conditioning information y, learning the conditional distribution pθ(xt−1|xt, y);
• unconditional mode - the same model is also trained without any conditioning, learning the

unconditional distribution pθ(xt−1|xt).

During inference, CFG uses a combination of the conditional and unconditional predictions to guide
the generation (see Algorithm 1). Specifically, for a given noisy sample xt, the guidance is achieved
by interpolating between the conditional and unconditional predictions as follows:

ϵ̂wθ (xt, y) = ϵθ(xt, ø) + w (ϵθ(xt, y)− ϵθ(xt, ø)) , (4)

where ϵθ(xt, ø) is the model’s prediction of the noise in xt when no conditioning is provided (un-
conditional), ϵθ(xt, y) is the prediction of the noise in xt when conditioned on y, and w is the
guidance scale, which controls how strongly the conditional information influences the generation.

By adjusting w, one can control the balance between sample diversity and adherence to the condi-
tioning y. When w = 1, the process is equivalent to standard conditional generation. When w > 1,
the conditional prediction is amplified, guiding the model to produce samples that more closely
match the conditioning information, potentially at the cost of diversity.

4 AUTOLORA

Karras et al. (2024) introduced a novel technique called AutoGuidance to enhance the image gen-
eration capabilities of a diffusion model by guiding it with a bad version of itself – a smaller and
less-trained variant. This method leads to more refined results while maintaining diversity in the
outputs. The AutoGuidance approach is not only effective for both conditional and unconditional
models but also achieves superior results without additional external models or resources for guid-
ance. It is defined by modifying CFG in Equation 4:

ϵ̂θ(xt, y) = ϵbad(xt, y) + w (ϵθ(xt, y)− ϵbad(xt, y)) , (5)

where ϵbad is an undertrained version of the base model ϵθ.

The core intuition behind AutoGuidance is that the ”bad” version of a diffusion model can effec-
tively explore additional directions of the trajectories in the reverse process leading to more diverse
samples. Meanwhile, the base model drives the inference towards the most probable paths and is
responsible for quality of the outcomes and class-matching in case of additional conditioning. The
parameter w controls the exploration-exploitation trade-off of the process.

In this work, we present AutoLoRA, the method that increases the diversity and quality of generated
samples of the models fine-tuned with the LoRA-based method. The core idea of this approach is
to provide a sampling procedure with the trade-off between exploring the directions with the base
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Figure 1: Comparison of the influence of different LoRA scales. Columns correspond to the scales:
0.4, 0.7, 1.0 and 1.3. All samples are generated from the same initial noise.

conditional diffusion model and being consistent with the path determined by the fine-tuned version.
This type of guidance can be seen as a sort of regularisation to prevent collapsed samples generated
from the model prone to overfitting during the fine-tuning stage. Moreover, to increase the quality of
generated samples and diversity of the image regions not specified in the prompt separate classifier-
free guidances are used for base and fine-tuned models, respectively.

Let’s denote the base conditional model by ϵ(xt, y) and the same model finetuned with additional
LoRA parameters as ϵLoRA(xt, y). We define the AutoLoRA guidance as:

ϵγAutoLoRA(xt, y) = ϵ(xt, y) + γ · (ϵLoRA(xt, y)− ϵ(xt, y)), (6)

where γ controls the balance between the diversity of generated samples and LoRA adaptation
strength.

Sampling only using the context may lead to poor quality of the generated images. Practically,
we postulate to use separate, classifier-free guidances for the base and fine-tuned variants of the
diffusion model:

ϵ̂γ,w1,w2

AutoLoRA(xt, y) = ϵ̂w1(xt, y) + γ · (ϵ̂w2

LoRA(xt, y)− ϵ̂w1(xt, y)), (7)

where ϵ̂w1(xt, y) and ϵ̂w2

LoRA(xt, y) are results of classifier-free guidance given by Equation 4 with
balancing parameters w1 and w2 respectively.

The process of reverse sampling is described by Algorithm 2. First, the classifier-free guidance is
applied both for base ϵ(xt, y) and fine-tuned ϵLoRA(xt, y) model variants in order to get the guided
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Table 1: Comparison of diversity (from 0 to 1), VLM based Character Presence Score (CPS) (from
0 to 5) and their product Div-CPS over 512 images generated using ”Anna” prompt and SDXL
”Disney princesses” LoRA.

Without CFG With CFG
LoRA AutoLoRA LoRA+CFG AutoLoRA+CFG

LoRA Scale Diversity CPS Div-CPS Diversity CPS Div-CPS Diversity CPS Div-CPS Diversity CPS Div-CPS
0.2 0.378 0.010 0.004 0.369 0.014 0.005 0.262 0.742 0.195 0.254 1.072 0.273
0.3 0.360 0.016 0.006 0.346 0.029 0.010 0.236 1.863 0.439 0.226 2.906 0.656
0.4 0.346 0.037 0.013 0.333 0.059 0.020 0.218 3.326 0.726 0.209 3.994 0.837
0.5 0.340 0.100 0.034 0.324 0.314 0.102 0.209 4.217 0.880 0.203 4.430 0.898
0.6 0.337 0.152 0.051 0.326 0.771 0.251 0.208 4.467 0.931 0.207 4.723 0.978
0.7 0.337 0.389 0.131 0.329 1.260 0.414 0.214 4.666 1.001 0.214 4.793 1.028
0.8 0.341 0.496 0.169 0.334 1.850 0.618 0.221 4.729 1.047 0.226 4.711 1.064
0.9 0.347 0.543 0.188 0.338 2.115 0.714 0.231 4.674 1.081 0.235 4.703 1.104
1.0 0.357 0.693 0.247 0.345 1.998 0.689 0.243 4.543 1.103 0.248 4.631 1.148
1.1 0.369 0.650 0.240 0.355 1.803 0.641 0.255 4.535 1.155 0.256 4.529 1.159
1.2 0.383 0.582 0.223 0.367 1.492 0.548 0.265 4.311 1.143 0.265 4.283 1.134
1.3 0.401 0.463 0.185 0.381 1.115 0.425 0.283 3.975 1.124 0.282 3.914 1.102

versions ϵ̂w1(xt, y) and ϵ̂w2

LoRA(xt, y). Next, they are used to create the final model combination
with Equation 7. The final model ϵ̂γ,w1,w2

AutoLoRA(xt, y) is further used to generate sample xt−1 in the
same manner as in classifier-free guidance. The procedure is repeated, starting from Gaussian noise
sample xT in t = T that is iteratively transformed to the sample x0 from data distribution.

5 EXPERIMENTS

To present the capabilities and effectiveness of AutoLoRA in guiding large diffusion models towards
the direction of a subspace of desired images, we perform a wide set of experiments comparing our
methods against standard approaches. In subsequent sections, we initially discuss the metrics used
to measure quality and diversity, incorporating established and new metrics. Next, we outline the
general configuration of all conducted experiments. Finally, we delve into the experimental details
and the results obtained.

5.1 EVALUATION METRICS

To quantitatively evaluate the diversity and consistency of our methods we postulate to utilize the
cosine similarity-based metric. We quantify diversity as follows:

Diversity(X) = 1− 2

N(N − 1)

N∑
i=1

N∑
j=i+1

cosine similarity(fθ(xi), fθ(xj)), (8)

where X is a set of N samples generated using the same prompt and fθ is an image feature extractor.
As you can notice the diversity metric reaches maximum value if the samples are totally different.
However, in addition to the samples’ variety the correspondence to the prompt is also important so
we utilize the Visual Language Models to measure:

Character Presence Score (CPS) is a quantitative measure that evaluates the presence of a specific
character in an image with scores ranging from 0 (not present) to 5 (unmistakably present).

Prompt Correspondence (PC) measures how well an image captures the essence, objects, and
scenes described in the original prompt with scores ranging from 0 (not at all) to 5 (exactly).

Style Adherence (SA) assesses how well an image adheres to a specified style with scores ranging
from 0 (markedly deficient) to 5 (perfectly).

To further evaluate the generated images, we introduce novel metrics that combine the diversity
metric with the above measures, namely Div-CPS, Div-PC, and Div-SA, which are calculated by
multiplying the diversity metric with the CPS, PC, and SA, respectively.
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5.2 EXPERIMENTAL SETUP

In all experiments, we are using the current state-of-the-art large diffusion models - Stable Diffusion
XL (SDXL)(Podell et al., 2023) and Stable Diffusion 3 Medium (SD3) (Esser et al., 2024), which
are open-source and highly available, e.g., via HuggingFace1.

LoRA modules For the fair comparison of AutoLoRA and baseline methods, we selected a set of
a few diverse LoRA modules, which were highly rated on the known community site civitai2. In
specific, for the detailed diversity evaluation of different diffusion model parameters, we choose ”All
Disney Princess XL LoRA Model from Ralph Breaks the Internet”3 with SDXL backbone. Whereas,
for the less extensive evaluation, we compare SDXL with ”Pixel Art XL - v1.1”4 and SD3 with
”Pixel Art Medium 128 v0.1”5.

For all Visual Language Model-based evaluations we use llama-3.2-11B-Vision-Instruct
model (Dubey et al., 2024)6. By default, the scale parameter for Classifier-Free Guidance (CFG)
is set to 5.0 for SDXL, 7.0 for SD3, and scale factor for AutoLoRA is 1.5. Finally, for the feature
extraction in the diversity quantification, we utilize DINOv2 (Oquab et al., 2023)7 model.

5.3 DISNEY PRINCESS

In this subsection, we gradually show the combinations of AutoLoRA with different diffusion model
parameters over Disney Princess LoRA for SDXL. Firstly, we explore the influence of the LoRA
scale parameter. Secondly, we investigate the effects of different CFG scales and finally, we demon-
strate how AutoLoRA scale can improve the generated images.

Figure 2: Comparison of the impact of differ-
ent Classifier-Free Guidance scales for the vanilla
LoRA model with CFG and AutoLoRA.

For the detailed analysis of AutoLoRA’s per-
formance in combination with different diffu-
sion model parameters such as LoRA scale,
and Classifier-Free Guidance (CFG) scale, we
chose Disney Princess LoRA for SDXL and
generated images using the prompt ”Anna” that
corresponds to the character of Princess Anna
from the movie Frozen. This prompt is generic
enough that the base SDXL model does not pro-
duce the desired character and allows the LoRA
model to generate ”Anna” in different settings
so that we can observe the variety of outputs.

In Table 1, we present the effect of the LoRA
scale in 4 scenarios: vanilla LoRA. LoRA
guided by AutoLoRA without CFG, LoRA
model with CFG, and AutoLoRA combined
with CFG. As you can notice, without CFG
the model with tuned LoRA weights generates
highly diverse outputs; however, they often do
not include the desired character as also shown in Figure 1. For the CFG case, the increase in
the LoRA scale makes the model leverage the Disney style more and produce a more recognizable
Anna. Additionally, samples generated by AutoLoRA guidance demonstrate much more details and
beat the basic CFG results.

For further comparison between CFG and AutoLoRA techniques, we investigated the influence of
the CFG scale change. As depicted in Figure 2, AutoLoRA consistently overperforms the vanilla
CFG approach. The qualitative comparison is presented in Figure 3.

1https://huggingface.co
2https://civitai.com
3https://civitai.com/models/212532/all-disney-princess-xl-lora-model-from-ralph-breaks-the-internet
4https://civitai.com/models/120096/pixel-art-xl?modelVersionId=135931
5https://huggingface.co/nerijs/pixel-art-medium-128-v0.1
6https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct
7https://huggingface.co/facebook/dinov2-giant
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CFG=3.5 CFG=4.0 CFG=4.5 CFG=5.0 CFG=5.5 CFG=6.0 CFG=6.5

Figure 3: Comparison of the influence of different Classifier-Free Guidance scales for the vanilla
LoRA model with CFG (top) and AutoLoRA (bottom). Below the samples, we presented the corre-
sponding value of a CFG scale parameter. All samples are generated from the same initial noise.

CFG AutoLoRA scale=1.5 AutoLoRA scale=1.75 AutoLoRA scale=2.0

Figure 4: Comparison of different scale factors (i.e., 1.5, 1.75, 2.0) in AutoLoRA. Samples in each
row are generated from the same noise initial noise using Stable Diffusion XL and Disney Princess
LoRA. CFG samples are presented on the left column as a reference.

Figure 4 shows the dependence between AutoLoRA scale and the diversity of the generated samples.
The higher the used scale, the more details appear on the images.

5.4 PIXEL-ART

In this subsection, we present the quantitative and qualitative comparison of the vanilla LoRA model
with CFG and AutoLoRA using SDXL with Pixel Art XL v1.1 LoRA and SD3 with Pixel Art
Medium 128 v0.1 LoRA.
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Stable Diffusion XL Stable Diffusion 3 Medium
CFG AutoLoRA CFG AutoLoRA

Figure 5: Samples from the same noise using CFG and AutoLoRA for Pixel Art LoRA module and
two models – Stable Diffusion XL (left columns) and Stable Comparison 3 (right columns).

Table 2: Comparison of diversity (from 0 to 1), VLM-based Prompt Correspondence (PC) and Style
Adherence (SA) metrics, and their corresponding products Div-PC and Div-SA over 480 images (30
different prompts and 16 images per prompt)

Method Diversity Prompt Correspondence Style Adherence Div-PC Div-SA
SD3 CFG 0.136 3.985 4.177 0.540 0.566
SD3 AutoLoRA 0.197 3.725 4.019 0.734 0.792
SDXL CFG 0.159 3.846 4.144 0.611 0.658
SDXL AutoLoRA 0.170 3.756 4.150 0.637 0.704

We used a set of 30 diverse prompts and generated 16 images per prompt. We leverage the same
set of random seeds for all 4 evaluated configurations: SDXL CFG, SDXL AutoLoRA, SD3 CFG,
and SD3 AutoLoRA. As indicated in Table 2, AutoLoRA beats the CFG in terms of diversity and
normalized diversity metrics as Div-PC and Div-SA. In Figure 5, we demonstrate how AutoLoRA
produces more details in comparison to the CFG technique.

6 CONCLUSION

This paper presents AutoLoRA, an innovative guidance method for diffusion models tailored with
the LoRA approach. Drawing inspiration from other guidance techniques, AutoLoRA aims to bal-
ance consistency within the domain highlighted by LoRA weights and the variety of samples from
the primary conditional diffusion model. Additionally, we demonstrate that using distinct classifier-
free guidances for the LoRA fine-tuned and base models enhances the diversity and quality of gen-
erated samples. Experimental results in various fine-tuned LoRA domains indicate that our method
outperforms current guidance techniques across selected metrics.

Limitation and Future Work The naive implementation AutoLoRA used in the paper increases
the inference time ×2 because for each diffusion step, we run LoRA tuned and base models. How-
ever, this issue could be solved using model distillation techniques. In future works, we also plan to
extend our approach with the idea of applying AutoLoRA in a limited interval.

Reproducibility Statement We will release the code in a camera-ready version. All images were
generated using the fixed set of seeds. For the VLM-based evaluations, you can find the exact
prompts in the Appendix section A. All prompts used for the pixel art style images are included in
Appendix section B.
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In this appendix, we start by providing the Visual Language Model prompts used in the experiments
in Section A. Then, we include all prompts used for the pixel art style image generation in Section B.
Next, we demonstrate additional qualitative results to show the superiority of AutoLoRA approach
in Section C.

A VISUAL LANGUAGE MODEL EVALUATION PROMPTS

A.1 ANNA PRESENCE SCORE

<IMAGE DATA> Evaluate the presence of Princess Anna from Disney’s Frozen movie in the
image. Output a score between 0 and 5, where:
* 0: Princess Anna is not present in the image.
* 1: The image contains a character with a vague resemblance to Princess Anna, but it’s not clear if
it’s her. (e.g., a character with a similar hairstyle or dress color)
* 2: The image contains a character that shares some similarities with Princess Anna, but it’s not a
clear match. (e.g., a character with a similar face shape or clothing style)
* 3: The image contains a character that is similar to Princess Anna, but with some noticeable
differences. (e.g., a character with a similar dress and hairstyle, but different facial features)
* 4: The image contains a character that is very likely to be Princess Anna, but with some minor
differences. (e.g., a character with a similar face, dress, and hairstyle, but with a slightly different
expression or pose)
* 5: The image contains a character that is unmistakably Princess Anna from Frozen.

Output the score in following JSON format:
{
”score”: [score between 0 and 5],
”reason”: [use keywords to describe the reason of the score, e.g., [”dress”, ”hairstyle”, ”no Anna
character”] ]
}
Reply only with a JSON with no extra text

A.2 PIXEL-ART PROMPT CORRESPONDENCE AND STYLE ADHERENCE

<IMAGE DATA> Evaluate the given image for the prompt <PROMPT USED FOR THE IMAGE
GENERATION> and the pixel art style
Access the following metrics:
Prompt correspondence: How well does the image capture the essence, objects, and scenes described
in the prompt? Scale: 0-5, where:
0: Not at all (the image does not relate to the prompt in any way)
1: Very poorly (the image vaguely relates to the prompt, but most key elements are missing or in-
correct)
2: Somewhat (the image captures some key elements of the prompt, but others are missing or incor-
rect)
3: Fairly well (the image captures most key elements of the prompt, but some details may be off)
4: Very well (the image accurately captures the essence and most key elements of the prompt)
5: Exactly (the image perfectly captures the essence, objects, and scenes described in the prompt)
Style adherence: How well does the image adhere to the specified style? If the style is pixel art, does
the image truly resemble pixel art, or is it just a low-quality image? Scale: 0-5, where:
1: Very poorly (the image attempts to mimic pixel art, but lacks clear pixelation, has excessive alias-
ing, or uses too many colors)
2: Somewhat (the image shows some pixel art characteristics, such as pixelation, but lacks consis-
tency in pixel size, color palette, or has noticeable artifacts)
3: Fairly well (the image generally adheres to pixel art principles, with clear pixelation, a limited
color palette, and minimal aliasing, but may have some minor flaws)
4: Very well (the image strongly adheres to pixel art principles, with crisp pixelation, a well-chosen
color palette, and minimal to no aliasing or artifacts)
5: Perfectly (the image perfectly captures the pixel art style, with precise pixelation, a masterfully
chosen color palette, and no noticeable flaws or artifacts)
Provide the evaluation scores in the following JSON format:
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{
”prompt correspondence”: [the prompt correspondence score from 0 to 5],
”style adherence”: [the style adherence score from 0 to 5],
}
Reply only with a JSON with no extra text

B PIXEL ART PROMPTS

a dragon riding a unicorn through a rainbow-colored sky, pixel art style
a mermaid sitting on a throne made of coral and seashells, pixel art style
a phoenix rising from a pile of ashes, surrounded by flames, pixel art style
a centaur archer aiming at a target in a mystical forest, pixel art style
a gryphon guarding a treasure chest filled with glittering jewels, pixel art style
a futuristic city on a distant planet, with towering skyscrapers and flying cars, pixel art style
a robot astronaut exploring a desolate, alien landscape, pixel art style
a spaceship battling a giant, tentacled space monster, pixel art style
a cyborg warrior standing on a barren, post-apocalyptic wasteland, pixel art style
a group of aliens enjoying a picnic on a sunny, grassy hill, pixel art style
a giant, juicy burger with all the toppings, surrounded by condiments and fries, pixel art style
a steaming hot cup of coffee, with a dash of cream and a sprinkle of cinnamon, pixel art style
a colorful, layered cake with candles and festive decorations, pixel art style
a plate of sushi, with a variety of rolls and sashimi, pixel art style
a glass of sparkling champagne, with a champagne flute and strawberries, pixel art style
a proud lion standing on a rocky outcropping, with a savannah landscape behind, pixel art style
a school of rainbow-colored fish swimming together in unison, pixel art style
a majestic, snow-white owl perched on a branch, surrounded by moonlight, pixel art style
a happy, playful kitten chasing a ball of yarn, pixel art style
a serene, peaceful landscape with a waterfall and lush greenery, pixel art style
a classic, old-fashioned video game arcade, with pixel art cabinets and joysticks, pixel art style
a vintage, convertible car driving down a sunny, palm-lined road, pixel art style
a retro-style, neon-lit diner, with a jukebox and milkshakes, pixel art style
a cassette tape player, with a mix tape and a pair of headphones, pixel art style
a payphone, with a rotary dial and a busy city street behind, pixel art style
a swirling, psychedelic vortex, with colors and patterns blending together, pixel art style
a dreamlike, surreal landscape, with melting clocks and distorted objects, pixel art style
a geometric, fractal pattern, with repeating shapes and colors, pixel art style
a kaleidoscope of colors, with shifting, mirrored reflections, pixel art style
a stylized, abstract representation of a musical waveform, with vibrant colors and shapes, pixel art
style
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C ADDITIONAL QUALITATIVE RESULTS
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Figure 6: Comparison of the influence of different LoRA scales. Columns correspond to the scales:
0.4, 0.7, 1.0 and 1.3. All samples are generated from the same initial noise.
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Figure 7: Comparison of the influence of different LoRA scales. Columns correspond to the scales:
0.4, 0.7, 1.0 and 1.3. All samples are generated from the same initial noise.

Stable Diffusion XL Stable Diffusion 3 Medium
CFG AutoLoRA CFG AutoLoRA

Figure 8: Samples from the same noise using CFG and AutoLoRA for Pixel Art LoRA module and
two models – Stable Diffusion XL (left columns) and Stable Comparison 3 (right columns)
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