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Abstract
The message-passing mechanism of graph con-
volutional networks (i.e., GCNs) enables label
information to reach more unlabeled neighbors,
thereby increasing the utilization of labels. How-
ever, the additional label information does not al-
ways contribute positively to the GCN. To address
this issue, we propose a new two-step framework
called ELU-GCN. In the first stage, ELU-GCN
conducts graph learning to learn a new graph
structure (i.e., ELU-graph), which allows the ad-
ditional label information to positively influence
the predictions of GCN. In the second stage, we
design a new graph contrastive learning on the
GCN framework for representation learning by
exploring the consistency and mutually exclusive
information between the learned ELU graph and
the original graph. Moreover, we theoretically
demonstrate that the proposed method can ensure
the generalization ability of GCNs. Extensive ex-
periments validate the superiority of our method.

1. Introduction
Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017; Gasteiger et al., 2018; Huang et al., 2023a; Xu et al.,
2018; Hamilton et al., 2017) have demonstrated remarkable
capabilities, primarily due to their ability to propagate label
information. This capability has driven their widespread
applications in semi-supervised learning. To do this, GCN
propagates the representations of unlabeled neighbors to
labeled nodes by the message passing mechanism, thereby
enabling label information to supervise not only the labeled
nodes but also their unlabeled neighbors (Ji et al., 2023;
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Dong et al., 2021). Consequently, the framework of opti-
mizing label utilization in GCNs (LU-GCN) has become an
increasingly prominent research topic (Wang et al., 2021;
Yue et al., 2022; Huang et al., 2024; Yu et al., 2022).

Previous LU-GCN can be partitioned into three categories,
i.e., self-training methods, combination methods, and graph
learning methods. self-training methods (Dong et al., 2021;
Li et al., 2018; Sun et al., 2020; Ji et al., 2023) select un-
labeled nodes with the highest classification probability by
GCN as training data with pseudo-labels, thus adding the
number of labels to improve the GCN. Combination meth-
ods (Wang et al., 2021; Yue et al., 2022; Shi et al., 2021)
regard the labels as the augmented features so that labels can
be used for both representation learning and classification
tasks. The feature propagation mechanism allows GCNs to
use labels to supervise the representation of both the node
itself (i.e., traditional label utilization) and its unlabeled
neighbors (i.e., neighboring label utilization). However, the
two LU-GCN methods mentioned above primarily focus
on optimizing traditional label utilization, neglecting the
critical importance of neighboring label utilization in semi-
supervised scenarios. Yet, due to noise in the original graph
structure, GCNs often struggle to utilize the neighboring
labels effectively. To address this issue, recent graph learn-
ing methods (Zheng et al., 2020; Luo et al., 2021; Liu et al.,
2022) are designed to improve the relationship of every node
and its neighbors by updating the graph structure, and thus
may potentially improve the neighboring label utilization.
For example, Bi et al. (2022) adopt the own and neighbors’
label similarity to rewire the graph, which can make features
propagate on the same category nodes as possible.

Although existing graph learning methods have achieved
promising performance, there are still some limitations that
need to be addressed. First, previous methods have used
heuristic approaches to learn the graph structure, they have
not explored what kind of graph structures can make GCNs
effectively propagate the labeled nodes’ information to un-
labeled nodes. As a result, on the learned graph structure,
the label information propagated via message passing may
not always contribute positively to the predictions of GCNs.
Second, existing graph learning methods fail to explore both
the consistency information and the mutually exclusive in-
formation between the new graph and the original graph,
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where they have consistent information (i.e., consistency
(Xu et al., 2024)), which helps recognize the node effec-
tively, and every graph contains unique and useful informa-
tion different from another graph, i.e., mutually exclusive
information (Wang et al., 2017).

Based on the above observations, a possible solution to
improving the effectiveness of GCNs is to define a graph
structure that can maximize label utilization during the
message-passing process and efficiently combine the orig-
inal graph. To achieve this, two crucial challenges must
be solved, i.e., (i) it is difficult to evaluate whether a graph
structure enables GCN to use labels effectively. (ii) it is
necessary to mine the consistency and mutually exclusive
information between the original graph and the new graph.

In this paper, to address the above issues, different from pre-
vious structure improvement methods, we investigate a new
framework, i.e., Effectively Label-Utilizing GCN (ELU-
GCN for brevity), to conduct effective GCN. To achieve
this, we first analyze the influence of each class provided by
labeled nodes on every unlabeled node. We then optimize
the graph structure (i.e., the ELU-graph) by encouraging the
label information propagated through the graph to have a
positive impact on GCN’s prediction results. This ensures
that the GCN with the ELU-graph can effectively utilize the
label information, thereby addressing challenge (i). More-
over, we address challenge (ii) by designing contrasting
constraints to bring the consistent information between two
graph views (i.e., the original graph and the ELU-graph)
closer and push the mutually exclusive information further
apart. Finally, we theoretically analyze that the proposed
ELU-graph can ensure GCN effectively utilizes labels and
improve the generalization ability of the model. Compared
with previous methods, our main contributions can be sum-
marized as follows:

• To the best of our knowledge, this is the first work
to investigate the limitation of GCNs in effectively
utilizing label information under the graph-based learn-
ing paradigm. Moreover, we introduce a quantitative
framework to analyze which unlabeled nodes struggle
to benefit from label supervision by neighborhood.

• We propose an adaptive and parameter-free construc-
tion of the ELU-graph to enhance GCNs’ ability to uti-
lize label information, particularly for unlabeled nodes.
Furthermore, we design a contrastive loss to exploit
both the consistency and complementary differences
between the ELU-graph and the original graph.

• We theoretically prove that the ELU-graph construc-
tion provides generalization guarantees for GCNs. Em-
pirical results on diverse benchmark datasets further
validate the superior performance of our method over
competitive baselines.

2. Related Works
This section briefly reviews the topics related to this work,
including GCNs and LPA as well as graph structure learning.

2.1. GCNs and LPA

GCNs are the most popular and commonly used model in
the field of graph deep learning. Early work attempted to
apply the successful convolutional neural network (CNN)
to graph structures. For example, CheybNet (Defferrard
et al., 2016) first proposes to transform the graph signal
from the spatial domain to the spectral domain through the
discrete Fourier transform, and then use polynomials to
fit the filter shape (i.e., convolution). CheybNet laid the
foundation for the development of spectral-domain graph
neural networks. The popular GCN was proposed by Kipf
et al. (Kipf & Welling, 2017), which is a simplified version
of ChebyNet and has demonstrated strong efficiency and
effectiveness, thereby promoting the development of the
graph deep learning field.

Recently, some works have focused on the combination of
LPA and GCN. This is because LPA can characterize the
distribution of labels spread on the graph, which can help
GCN obtain more category information. Existing combined
LPA and GCN methods can be classified into two cate-
gories, i.e., pseudo label methods and masked label meth-
ods. Pseudo-label methods let the output of LPA serve as
the pseudo-labels to guide the representation learning. For
example, PTA (Dong et al., 2021) first propagates the known
labels along the graph to generate pseudo-labels for the un-
labeled nodes, and second, trains normal neural network
classifiers on the augmented pseudo-labeled data. GPL (Wu
et al., 2024) uses the output of LPA to preserve the edges
between nodes of the same class, thereby reducing the intra-
class distance. The masked label methods employ LPA as
regularization to assist the GCN update parameters or struc-
tures. For example, UniMP (Shi et al., 2021) makes some
percentage of input label information masked at random,
and then predicts it for updating parameters. GCN-LPA
(Wang & Leskovec, 2021) also randomly masked a part of
the labels and utilized the remaining label nodes to predict
them in learning proper edge weights within labeled nodes.
Although the above methods achieve excellent results on
various tasks, they all overlook whether the additional label
information propagated through message passing is effec-
tively utilized by GCNs to improve unlabeled nodes.

2.2. Graph Structure Learning

Graph structure learning is an important technology in the
graph field. It can improve the graph structure and infer
new relationships between samples, thereby promoting the
development of graph representation learning or other fields.
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Existing Graph structure learning methods can be classified
into three categories, i.e., traditional unsupervised graph
structure learning methods, supervised graph structure learn-
ing methods, and graph rewiring methods.

Traditional unsupervised graph structure learning meth-
ods aim to directly learn a graph structure from a
set of data points in an unsupervised manner. Early
works (Wang & Zhang, 2006; Daitch et al., 2009) ex-
ploit the neighborhood information of each data point
for graph construction by assuming that each data
point can be optimally reconstructed using a linear
combination of its neighbors (i.e., minA ∥AX−X∥2F ).
Similarly, (Daitch et al., 2009) introduce the weight

(i.e., min
∑

i

∥∥∥Di,iXi −
∑

j Ai,jXj

∥∥∥2). Smoothness
(Jiang et al., 2019) is another widely adopted as-
sumption on natural graph signals; the smoothness
of the graph signals is usually measured by the
Dirichlet energy (i.e., minA

1
2

∑
i,j Ai,j ∥Xi −Xj∥2 and

minL tr
(
X⊤LX

)
). The above objective has inspired many

advanced graph structure learning methods.

Supervised graph structure learning methods aim to use
the downstream task to supervise the structure learning,
which can learn a suitable structure for the downstream
task. For example, NeuralSparse (Zheng et al., 2020) and
PTDNet (Luo et al., 2021) directly use the adjacency matrix
of the graph as a parameter and update the adjacency ma-
trix through the downstream task. SA-SGC (Huang et al.,
2023b) learns a binary classifier by distinguishing the edges
connecting nodes with the same label and the edges connect-
ing nodes with different labels in the training set, thereby
deleting the edges between nodes belonging to different
categories in the test set. BAGCN (Zhang et al., 2024) uses
metric learning to obtain new graph structures and learns
suitable metric spaces through downstream tasks.

The goal of graph rewiring methods is to prevent the over-
squashing (Alon & Yahav, 2021) problem. For example, FA
(Alon & Yahav, 2021) proposed to use a fully connected
graph as the last layer of GCN to overcome over-squashing.
SDRF (Topping et al., 2022), SJLR (Giraldo et al., 2023),
and BORF (Nguyen et al., 2023) aim to enhance the cur-
vature of the neighborhood by rewiring connecting edges
with small curvature. They increase local connectivity in the
graph topology, indirectly expanding the influence range of
labels. Despite their success, existing graph structure learn-
ing methods fail to guarantee that the learned structures
enable GNNs to propagate label information to unlabeled
nodes effectively.

3. Method
Notations. Given a graph G = (V,E,X,Y), where V is
the node set and E is the edge set. Original node represen-

tation is denoted by the feature matrix X ∈ Rn×d where n
is the number of nodes and d is the number of features for
each node. The label matrix is denoted by Y ∈ Rn×c with a
total of c classes. The first m points xi(i ≤ m) are labeled
as Yl, and the remaining u points xi (m+ 1 ≤ i ≤ n) are
unlabeled. The sparse matrix A ∈ Rn×n is the adjacency
matrix of G. Let D = diag(d1, d2, · · · , dn) be the degree
matrix, where di =

∑
j∈Ni

aij is the degree of node i, the
symmetric normalized adjacency matrix is represented as
Â = D̃− 1

2 ÃD̃− 1
2 where Ã = A + I, I is the identity

matrix and D̃ is the degree matrix of Ã.

3.1. Motivation
Given a classification function f : X → Rn×c, the cross
entropy losses of Deep Neural Network (DNN) and GCN
are formulated by:

LDNN = CE(fθ(X),Y) = −
∑

i∈Vl,k∈C

yik(log fik)

LGCN = CE(Âfθ(X),Y) = −
∑

i∈Vl,k∈C

yik(log
∑

j∈Ni

âijfjk),
(1)

where θ is the parameters of the function f . In Eq. (1), the
cross entropy loss of DNN is a one-to-one mapping between
the feature space and the label space because every label yi
(l = 1, ..., n) is only used to supervise the representation
learning of one node vi. The mapping f efficiently captures
the pattern and distribution of labeled nodes, but it overlooks
unlabeled nodes so that the generalization ability of unla-
beled nodes is limited. In contrast, the cross entropy loss
of the GCN is a one-to-many mapping because its message-
passing mechanism can propagate the information from
labeled nodes to their neighbors including labeled nodes
and unlabeled nodes. As a result, every label yi is used to
supervise the representation learning of both labeled nodes
and unlabeled nodes, as shown in the second row of Eq.
(1). Hence, unlabeled nodes in the GCN are able to use the
label information of labeled nodes to improve the learning
of their representations. Obviously, it is critical to ensure
that the label information propagated to unlabeled nodes
makes a positive contribution to GCN. However, to the best
of our knowledge, this issue has not yet received sufficient
attention. A related work, GCN-LPA (Wang & Leskovec,
2021), investigates the influence of labeled nodes; however,
it primarily focuses on reinforcing mutual influence among
labeled nodes, while overlooking their impact on unlabeled
nodes. To address this issue, we first quantify how much
influence each class, through its labeled nodes, has on the
unlabeled nodes.

The recent study in (Xu et al., 2018) reveals that nodes
follow the way of random walks to affect other nodes on
the graph. Therefore, in this paper, we extend it to obtain
the influence of every class of labeled nodes on the unla-
beled node by Proposition 3.1, whose proof is provided in
Appendix B.1.
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Figure 1. An illustration of effective label utilization. Sub-figure (a) wants to assign the label information to node a (gray node) by one
unlabeled node (gray node) and two labeled nodes with different classes, i.e., one blue node and one orange node. Moreover, the LPA
algorithm is employed to obtain the probability of each labeled node to the node a, where the blue node has more influence (or higher
probability) than the orange node based on the histogram in the upper right of the sub-figure (a). If the GCN predicts the node a as the
orange color (as shown in sub-figure (b)), which is inconsistent with the class with most label information (i.e., blue). It indicates that
the label information provided by the message passing of the GCN does not help classify the node a, and may even hinder its correct
classification. On the contrary, if GCN predicts the node a as the blue color, i.e., sub-figure (c), it implies that the label information
provided by the message passing of the GCN helps to classify the node a.

Proposition 3.1. Given an unlabeled node vi (i = 1, ..., n),
for an arbitrary category Cl (l = 1, ..., c), the influence of
labeled nodes belong to Cl on the i-th node vi is propor-
tional to the probability that node vi is classified as Cl by
the Label Propagation Algorithm (LPA) in (Zhu, 2005), in
the GCN framework.

Based on Proposition 3.1, LPA can be used to estimate
the class-wise probability for unlabeled nodes in the GCN
framework. The class with the highest probability is re-
garded as the most influential, as it contributes the most
label information to the node. If this most influential class
matches the GCN prediction, it indicates that the label infor-
mation provided through message passing positively influ-
ences the GCN’s classification for that node. In this way, the
GCN is regarded as having effectively utilized the label in-
formation on this node. We provide a case study to illustrate
this in Figure 1 and give a formal definition as follows.

Definition 3.2. (Effective label-utilization) The GCN ef-
fectively utilizes label information if the prediction of the
GCN is consistent with the output of LPA. This condition is
defined at the node level:

VELU = {V |LPA(G) = GCN(G)}, (2)

where VELU and VNELU (i.e., VNELU = {V |LPA(G) ̸=
GCN(G)}), respectively, represent the sets of nodes on
which the GCN effectively and ineffectively utilizes label
information, respectively.

In real applications, not all unlabeled nodes in GCN frame-
works may effectively utilize the label information due to
all kinds of reasons, including noise and the distribution of

labeled nodes in the graph. Figure 2 shows that not all un-
labeled nodes effectively use label information in the GCN
framework (i.e., Figure 2 (a)) and the classification accuracy
of VNELU is lower than that of VELU in the same datasets
(i.e., Figure 2 (b)). Obviously, NELU nodes influence the
effectiveness of the GCN. To address this issue, first, it
is crucial to make unlabeled nodes effectively utilize label
information. Since label information is propagated through
the graph structure. As a result, the graph structure will be
updated. Second, the original graph structures often contain
noise to influence the message-passing mechanism. Hence,
graph learning is obviously a feasible solution.

3.2. ELU Graph

Previous graph learning methods generally use either heuris-
tic methods or downstream tasks to conduct graph learning,
i.e., updating the graph structure. For example, Pro-GNN
(Jin et al., 2020) updates the graph structure through a heuris-
tic approach to constrain the sparsity and smoothness of
the graph. PTD-Net (Luo et al., 2021) updates the graph
structure by the downstream task, such as the node classifi-
cation task. However, heuristic methods rely on predefined
rules, making it difficult for unlabeled nodes to fully access
label-related global information. Downstream task methods
focus too much on the performance of labeled nodes, ne-
glecting the role of unlabeled nodes in the graph structure.
Therefore, these methods fail to guarantee that the GCN
effectively leverages label information for unlabeled nodes.
To solve this issue, based on Definition 3.2, we investigate
new graph learning methods that ensure unlabeled nodes
effectively utilize label information.

4



Enhancing the Influence of Labels on Unlabeled Nodes in Graph Convolutional Networks

ELU 60.4%

NELU39.6%

Cora

ELU 51.5% NELU48.5%

Citeseer

ELU
70.3%

NELU
29.7%

Pubmed

(a) Proportion

Cora Citeseer Pubmed0

20

40

60

80

Ac
cu

ra
cy

ELU
NELU

(b) Accuracy

Figure 2. Visualization of both ELU nodes and NELU nodes in
three real datasets, i.e., Cora, Citerseer, and Pubmed. (a) every
dataset contains NELU nodes and (b) the classification comparison
between ELU nodes and NELU nodes, where ELU nodes have
higher classification ability than NELU nodes.

Specifically, denoting the adjacency matrix S as the ELU
graph can ensure the GCN effectively uses the label infor-
mation. We use Proposition 3.1 to measure the influence of
each class on every unlabeled node by the LPA:

Q = SY, (3)

where the i-th row of Q ∈ Rn×c (i.e., Qi,:) represents the
influence of each class on node i. It is noteworthy that S in
Eq. (3) can be the k-order of the graph structure. After that,
the prediction of GCN with ELU graph can be written as
follows (Yang et al., 2023):

Ŷ = SH, s.t. H = MLP(X), (4)

where MLP(·) denotes a Multi-Layer Perceptron. Note that
the MLP is pre-trained. Therefore, based on Definition 3.2,
the ELU graph (i.e., S) can be obtained by minimizing the
following objective function:

min
∥∥∥Q− Ŷ

∥∥∥2
F
= min

S
∥SY − SH∥2F . (5)

In Eq. (5), the prediction of GCN and the influence of each
class are encouraged to be consistent for every node. This
item can make all nodes satisfy LPA(G) = GCN(G) in
Eq. (2), i.e., this objective function can ensure all nodes
can effectively utilize label information by GCN. Therefore,

we can obtain the S through the optimization algorithm by
minimizing the Eq. (5). However, there are some problems
with the above objective function. First, it is impractical to
solve the above problem directly, as it has a trivial solution:
si,j = 0,∀i,∀j. Second, LPA generates the prediction for
every labeled node to possibly revise the original labels,
i.e., the ground truth, adding noisy labels for representation
learning. To overcome the above issues, We propose to
iteratively update in two steps, i.e., update labels by LPA
and update the graph structure S.

In the first step, we calculate the result of LPA Q(i),
i.e., Q(i) = S(i−1)Q(i−1), (i = 1, . . . , k), where Q(0) =
Y. As a result, Eq.(5) is changed as follows:

min
S

∥∥∥Q(i) − SH
∥∥∥2
F
+ β

∑
i,j=1

s2i,j , s.t. Q
(i)
l = Yl, (6)

where β is a non-negative parameter to trade off two terms,
the second term can make the subsequent matrix inversion
more stable. Eq. (6) holds the closed-form solution to
address the first issue. The constraint term “s.t. Q

(i)
l = Yl”

term solves the second issue.

In the second step, we can obtain its closed-form solution
as follows:

L =
∥∥∥Q(i) − SH

∥∥∥2
F
+ β

∑
i,j=1

s2i,j

= Tr((Q(i) − SH)T (Q(i) − SH)) + 2βS

(7)

where Tr(·) indicates the trace of matrix. Then we have

∂L
∂S

= −2Q(i)HT + 2SHHT + 2βS (8)

Let Eq. (8) equal to 0, we can obtain the closed-form solu-
tion S(i) i.e.,

S(i) = Q(i)HT
(
HHT + βIN

)−1
. (9)

where IN ∈ Rn×n is the identity matrix.

Finally, we iteratively optimize Eq. (9) and Q(i) =
S(i−1)Q(i−1) to obtain the ELU graph S∗.

However, the calculation of S(i) in Eq. (9) is with the time
complexity of O(n3). In this paper, we use the Woodbury
identity (Woodbury, 1950) to avoid calculating S(i) during
the iteration process by Q(i) = S(i−1)Q(i−1), i.e.,

Q(i) =

Q(i−1)HT

(
1

β
IN −

1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
Q(i−1),

s.t. Q
(i)
l = Yl,

(10)
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where Ic ∈ Rc×c is the identity matrix and the specific
derivation process is listed in the Appendix B.3. Based on
the literature (Woodbury, 1950), we can obtain the time
complexity of Eq. (10) is O(nc2 + c3), where c3 ≪ n. The
details are provided in Appendix A.1.

Based on Eq. (10), we obtain Q(i) (i = 1, . . . , k) from
Q(i−1). After obtaining Q(k), we obtain the ELU graph
S∗ by calculating Eq. (9) only one time. To achieve effi-
ciency, we employ the Woodbury identity to reduce the time
complexity of calculating from cubic to quadratic, i.e.,

S∗ = Q(k)(
1

β
HT − 1

β2
HTH

(
Ic +

1

β
HTH

)−1

HT ).

(11)
The details of Eq. (11) are listed in Section A.2. The
pseudocode of calculating Eq. (10) and S∗ is presented in
Algorithm 1. In the implementation, we make S∗ sparse
by assigning its element less than a threshold as zero, for
achieving efficiency. We also use the pseudo labels of ELU
nodes to expand the initial Y, for avoiding the issue of
limited labels in semi-supervised learning.

Algorithm 1 Pseudo code of calculating S∗.
Input: Feature matrix X, label matrix Y, normalized adja-

cency matrix Â, and index of ELU nodes VELU;
Output: ELU graph S∗;

1: H = MLP (X);
2: Expand initial labels by pseudo labels of ELU nodes;
3: for i← 1, 2, · · · , k do
4: Calculate Q(i) by Eq. (10);
5: Q

(i)
l = Yl in Eq. (10);

6: end for
7: Calculate S∗ Eq. (11);
8: Return S∗.

3.3. Contrastive Constraint

Given the ELU graph S∗ and the original graph Â, previous
graph learning methods often conduct a weighted fusion.
For instance, SimP-GCN (Jin et al., 2021) employs a hy-
perparameter as a weight to fuse the node representation
from the original graph with those from the feature simi-
larity graph. However, only performing the weighted sum
method may result in incorporating undesirable information
from the original graph into the ELU graph. For example,
the representation of a NELU node from the original graph
might interfere with the learned representation of the corre-
sponding node in the ELU graph. To solve this issue, in this
paper, we propose a new contrastive learning paradigm to
capture the consistency and mutually exclusive information
between these two graphs.

In the ELU graph S∗, all nodes are theoretically ELU nodes.
However, the original graph Â includes ELU nodes and

NELU nodes. Obviously, in representation learning, the
representations of ELU nodes in both S∗ and Â should be
consistent for keeping common information related to the
class, the representations of NELU nodes in Â should be
different from their representation in S∗.

To do this, we first propose to learn a projection head pθ to
map both the ELU graph representations and the original
graph representations into the same latent space, i.e., P =
pθ(H) and P̃ = pθ(H̃), where H is the representation
of the output layer of the GCN dominated by the original
graph, and H̃ is the representation of the output layer of the
GCN dominated by the ELU graph, the output of the model
is Ŷ = Softmax((1 − η)H + ηH̃), where η is a hyper-
parameter. We then design a contrastive loss as follows:

Lcon = − log
Pos

Pos + Neg
− 1

n

n∑
i=1

c∑
j=1

ŷi,j log ŷi,j

s.t.

{
Pos = 1

|VELU|
∑VELU

i=0 exp(d(Pi, P̃i)/τ)

Neg = 1
|VNELU|

∑VNELU

j=0 exp(d(Pj , P̃j)/τ)

(12)
where d(·) is the distance function, τ denotes the tempera-
ture parameter, and ŷi,j is the element in row i and column
j in Ŷ.

In Eq. (12), the first term encourages minimizing the dis-
tance between every ELU node in the ELU graph and its
corresponding node in the original graph, while maximiz-
ing the distance between every NELU node in the original
graph and its corresponding node in the ELU graph. The
second term encourages the decision boundary to be po-
sitioned in low-density regions, enhancing the distinction
between nodes and ensuring the underlying assumption of
semi-supervised learning (Berthelot et al., 2019). As a re-
sult, Eq. (12) is available to extract the consistency and
mutually exclusive information between the representations
dominated by the ELU graph and the original graph.

Finally, the final objective function of our proposed method
is obtained by integrating the contrastive loss with the su-
pervised loss (i.e., cross entropy) as follows:

L = CE(Ŷ,Y) + λLcon (13)

where λ ∈ [0, 1] is a hyperparameter to fuse the predicted
results of two views and two objective functions.

3.4. Theoretical Analysis

The ELU graph has been shown to enable the GCN to effec-
tively utilize label information, as demonstrated in Section
3.1. In this section, we theoretically analyze that the gener-
alization ability of the GCN is related to the graph structure
and the training labels by Theorem 3.3 (The proof can be
found in Appendix B.4):
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Theorem 3.3. Given a graph G with its adjacency matrix A,
the label matrix in the training set Y and the label matrix of
the ground truth Ytrue, for any unlabeled nodes, if a graph
structure makes the labels in training set be consistent to
the ground truth, i.e., Ytrue = AY, then the upper bound
of the generalization ability of the GCN is optimal.

Based on Theorem 3.3, the graph structure A maximizes
the generalization ability of the GCN if the following equa-
tion holds, i.e., minA ∥AY − Ytrue∥2F . Therefore, the
graph structure can be used to measure if it is suitable for
GCN. However, the true labels Ytrue are fixed and unknown.
Moreover, the original graph is also fixed so that it is diffi-
cult to achieve minA ∥AY −Ytrue∥2F . Hence, the original
graph should be updated. We then present the following
theorem. The proof is listed in Appendix B.5.

Theorem 3.4. The optimization Eq. (5) is equivalent to an
approximate optimization of minA ∥AY −Ytrue∥2F .

Theorem 3.4 indicates that the ELU graph can ensure the
generalization ability of the GCN.

4. Experiments
In this section, we conduct experiments on eleven public
datasets to evaluate the proposed method (including cita-
tion networks, Amazon networks, social networks, and web
page networks), compared to structure improvement meth-
ods1. Detailed settings are shown in Appendix E. Additional
experimental results are shown in Appendix F.

4.1. Experimental Setup

4.1.1. DATASETS

The used datasets include three benchmark citation datasets
(Sen et al., 2008) (i.e., Cora, Citeseer, and Pubmed), two
co-purchase networks (Shchur et al., 2018) (i.e., Comput-
ers and Photo), two web page networks (Pei et al., 2020)
(i.e., Chameleon and Squirrel), which are heterophilic graph
data), and four social network datasets (Traud et al., 2012)
(i.e., Caltech, UF, Hamilton, and Tulane).

4.1.2. COMPARISON METHODS

The comparison methods include three traditional GNN
methods, two advanced GNN methods, and seven structure
improvement-based GCN methods. Traditional GNN meth-
ods include GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018), and APPNP (Gasteiger et al., 2018). The ad-
vanced GNN methods include GPRGNN (Chien et al., 2021)
and PCNet (Li et al., 2024). The structure improvement-
based GCN methods include GCN-LPA (Wang & Leskovec,

1The code is released at https://github.com/
huangJC0429/label-utilize-GCN

2021), NeuralSparse-GCN (Zheng et al., 2020), PTDNet-
GCN (Luo et al., 2021), CoGSL (Liu et al., 2022), Node-
Former (Wu et al., 2022), GSR (Zhao et al., 2023) and
BAGCN (Zhang et al., 2024).

4.1.3. EVALUATION PROTOCOL

To evaluate the effectiveness of the proposed method, we fol-
low the commonly used setting. Specifically, for the citation
network (i.e., Cora, Citeseer, and Pubmed), we use the pub-
lic split recommended by (Kipf & Welling, 2017) with fixed
20 nodes per class for training, 500 nodes for validation, and
1000 nodes for testing. For Social networks (i.e., Caltech,
UF, Hamilton, and Tulane), we randomly generate differ-
ent data splits with an average train/val/test split ratio of
60%/20%/20%. For the Webpage network (i.e., Chameleon,
Squirrel) and co-purchase networks (i.e., Computers, Photo),
we use the public splits recommended in the original papers.

4.2. Effectiveness Analysis

We first evaluate the effectiveness of the proposed method
by reporting the results of node classification in Table 1
and Appendix F, respectively. Obviously, the proposed
method obtains better performance on seven datasets than
comparison methods.

First, compared with traditional GNN methods and ad-
vanced GNN methods. the proposed ELU-GCN outper-
forms them by large margins on most datasets. For example,
the proposed ELU-GCN on average improves by 4.05 %,
compared to GCN, and improves by 3.26 % compared to the
best advanced GCN method (i.e., PCNet), on all datasets.
This demonstrates the superiority of graph structure learn-
ing methods, as the label information cannot be effectively
utilized for many nodes in the original graph.

Second, compared to the improvement methods, the pro-
posed ELU-GCN achieves the best results, followed by
GSR, GCN-LPA, CoGSL, PTDNet-GCN, NeuralSparse-
GCN, and NodeFormer. For example, our method on aver-
age improves by 2.21% compared to the best comparison
method GSR on all seven datasets. This can be attributed
to the fact that the proposed ELU-GCN, which can obtain a
graph structure (i.e., the ELU graph) that is more suitable
for the GCN model to effectively utilize the label infor-
mation and efficiently mine the consistency and mutually
exclusive information between the original graph and the
newly obtained graph. In addition, the Webpage networks
(i.e., Chameleon and Squirrel) are heterophilic graphs. As
mentioned in the theoretical analysis section, the original
graph is difficult to guarantee the generalization ability of
GCN, especially for heterophilic graphs. Experimental re-
sults show that the proposed ELU-GCN outperforms the
GCN using the original heterophilic graph by an average
of 9.5%, confirming the results of our theoretical analysis.
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Table 1. Performance on node classification task. The highest results are highlighted in bold. ”OOM” denotes out of memory.

Method Cora Citeseer pubmed Computers Photo Chameleon squirrel

GCN 81.61±0.42 70.35±0.45 79.01±0.62 81.62±2.43 90.44±1.23 60.82±2.24 43.43±2.18

GAT 83.03±0.71 71.54±1.12 79.17±0.38 78.01±19.1 85.71±20.3 40.72±1.55 30.26±2.50

APPNP 83.33±0.62 71.80±0.84 80.10±0.21 82.12±3.13 88.63±3.73 56.36±1.53 46.53±2.18

GPRGNN 80.55±1.05 68.57±1.22 77.02±2.59 81.71±2.84 91.23±2.59 46.85±1.71 31.61±1.24

PCNet 82.81±0.50 69.92±0.70 80.01±0.88 81.82±2.31 89.63±2.41 59.74±1.43 48.53±1.12

GCN-LPA 83.13±0.51 72.60±0.80 78.64±1.32 83.54±1.41 90.13±1.53 50.26±1.38 42.78±2.36

N.S.-GCN 82.12±0.14 71.55±0.14 79.14±0.12 81.16±1.53 89.86±1.86 55.37±1.64 46.86±2.02

PTDNet-GCN 82.81±0.23 72.73±0.18 78.81±0.24 82.21±2.13 90.23±2.84 53.26±1.44 41.96±2.16

CoGSL 81.76±0.24 72.79±0.42 OOM OOM 89.63±2.24 52.23±2.03 39.96±3.31

NodeFormer 80.28±0.82 71.31±0.98 78.21±1.43 80.35±2.75 89.37±2.03 34.71±4.12 38.54±1.51

GSR 83.08±0.48 72.10±0.25 78.09±0.53 81.63±1.35 90.02±1.32 62.28±1.63 50.53±1.93

BAGCN 83.70±0.21 72.96±0.75 78.54±0.72 79.63±2.52 91.25±0.96 52.63±1.78 42.36±1.53

ELU-GCN 84.29±0.39 74.23±0.62 80.51±0.21 83.73±2.31 90.81±1.33 70.90±1.76 56.91±1.81

Consequently, the effectiveness of the proposed method is
verified in node classification tasks.

We further evaluate the effectiveness of the proposed method
on social network datasets and report the results of node
classification in Appendix F.1. We can observe that the
proposed method also achieves competitive results on the
social network datasets compared to other baselines. For
example, the proposed method outperforms the best baseline
(i.e., GSR), on almost all datasets.

4.3. Ablation Study

The proposed ELU-GCN framework investigates the ELU
graph to enable the GCN to utilize label information effec-
tively. Additionally, a contrastive loss function (i.e., , Lcon)
is introduced to efficiently minimize consistency and mutu-
ally exclusive information between the original graph and
the ELU graph. To verify the effectiveness of each compo-
nent of the proposed method and the results are reported in
Table 2.

According to Table 2, we can draw the following conclu-
sions. First, our proposed method achieves the best per-
formance when each component is present, indicating that
each is essential. This demonstrates the importance of both
learning the ELU graph and extracting information from the
original graph, as they not only enable GCN to effectively
utilize labels but also retain important information in the
original graph.

Second, the ELU graph component provided the biggest
improvement. For example, the ELU graph improves perfor-
mance by an average of 2.9% compared to not considering
it, and the Lcon term improves performance by an average
of 1.3% compared to not considering it. This illustrates the

importance of unlabeled nodes being affected by effectively
labeled information in message passing.

4.4. Visualization

To provide an intuitive and clear understanding of the effec-
tiveness of the learned ELU graph, we visualize the adja-
cency matrix of the ELU graph in the heatmap on the Cora,
Computers, Photo, and Chameleon datasets and report the
results in Figure 3.

Specifically, the rows and columns of heatmaps are re-
ordered by node labels. In the heatmaps, the lighter a pixel,
the larger the value of the ELU graph matrix weight. From
Figure 3, we observe that the heatmaps exhibit a clear block
diagonal structure, with each block corresponding to a cate-
gory. This indicates that the obtained ELU graph tends to
increase the weight of connections between nodes of the
same category and avoid noisy connections from different
classes. As a result, under the GCN framework, the training
nodes are likely to propagate the label information to unla-
beled nodes of the same category with a high probability,
thereby reducing intra-class variance and increasing inter-
class distance. Especially on the Chameleon dataset, where
the original graph tends to connect nodes with different la-
bels with a high probability (i.e., heterophily). Fortunately,
our method can still obtain a graph structure where nodes
are connected with the same category, as shown by the ex-
perimental results, demonstrating the universality of the
proposed method.

4.5. Analyze the Trade-off Between Running Time and
Accuracy

The biggest limitation of graph structure learning methods
is the need to query in O(n2) space when learning the adja-
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Table 2. Classification performance of each component in the proposed method on all datasets.

Method Cora Citeseer pubmed Computers Photo Chameleon squirrel

GCN 81.61±0.42 70.35±0.45 79.01±0.62 81.62±2.43 90.44±1.23 60.82±2.24 43.43±2.18

+ELU graph 83.49±0.55 72.02±0.36 80.25±0.79 82.56±1.23 90.52±1.33 65.12±1.43 54.12±1.32

+Lcon 84.29±0.39 74.23±0.62 80.51±0.21 83.73±2.31 90.81±1.33 70.90±1.76 56.91±1.81
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Figure 3. Visualization of the adjacency matrix of the ELU graph on Cora, Computers, Photo, and Chameleon datasets. The rows and
columns are nodes that are reordered based on node labels, the lighter a pixel, the larger the value of the ELU graph matrix weight.

cency matrix of graph structures. In our proposed method,
we cleverly leverage the inverse matrix transformation trick
to avoid the computational complexity of O(n2) or even
higher. Although we have previously analyzed that the com-
plexity of the proposed algorithm in graph construction is
O(nc3) (c3 ≪ n), plus the final graph structure is O(n2)
(only one calculation is required), we further test the overall
actual running time and accuracy of the proposed ELU-GCN
and compared with the commonly used baseline (i.e., GCN
and GAT). The results are in Figure 4.
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Figure 4. Scatter plot showing the relationship between model run-
time and accuracy, where the x-axis represents the runtime of
different models on different datasets and the y-axis represents
their corresponding accuracy (%).

From Figure 4, we have the observations as follows. First,
the overall running time of the proposed method is slightly
inferior to GCN, but significantly ahead of GAT. This indi-
cates that the proposed ELU graph learning method does not
incur too much time overhead and is comparable to the basic
GNN model. Second, the proposed method achieves the
best classification performance. Combining the above two
points, the proposed method achieves the optimal trade-off
between running time and model performance.

5. Conclusion
In this paper, we study the label utilization of GCN and re-
veal that a considerable number of unlabeled nodes cannot
effectively utilize label information in the GCN framework.
Furthermore, we propose a standard for determining which
unlabeled nodes can effectively utilize label information in
the GCN framework. To enable more unlabeled nodes to
utilize label information effectively. We propose an effec-
tive label-utilizing graph convolutional network framework.
To do this, we optimize the graph structure following the
above standard, enabling every unlabeled node to effectively
leverage label information. Moreover, we design a novel
contrastive loss to capture consistency or mutually exclu-
sive information between the original graph and the ELU
graph. Our theoretical analysis demonstrates that ELU-GCN
provides superior generalization capabilities compared to
conventional GCNs. Extensive experimental results further
validate that our method consistently outperforms state-of-
the-art methods.
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A. Complexity
A.1. Complexity of Eq. 10

As mentioned above, by changing the order of matrix multiplication, the time complexity can be reduced, the Eq. 10 is as
follows:

Q(i) = Q(i−1)HT

(
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H

(
Ic +

1

β
HTH

)−1
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We first let B = 1
β2H

(
Ic +

1
βH

TH
)−1

HTQ(i−1) and compute it from right to left. Specifically, the matrix inversion

operation on a c× c matrix is O(c3). Therefore, the overall time complexity of S ∈ Rn×c is O(nc2 + c3), where c≪ n.
Then we can compute Q(i−1)HTB, likewise, we calculate it from right to left, this can reduce the time complexity from
O(n2c) to O(nc2). Therefore the overall time complexity of calculating Eq. 10 is O(nc2 + c3). This significantly improves
the model efficiency.

A.2. Complexity of Eq. 11

Calculating S∗ by eq.(9) will result in O(n3) computational cost, which leads to significant memory overhead on large
datasets. Thus, we first use the Woodbury identity matrix transformation by Appendix B.3, then the Eq. 9 can be transformed
as:

S∗ = Q(i−1)HT
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HHT + βIN

)−1
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HT

)
. (15)

Then, we can transform the calculation order to reduce memory and time overhead as follows:

S∗ = Q(i−1)HT

(
1

β
I− 1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)

= Q(i−1)(
1

β
HT − 1

β2
HTH

(
Ic +

1

β
HTH

)−1

HT )

(16)

We first let P = 1
β2HHT

(
Ic +

1
βH

TH
)−1

HT and calculate HTH, wich time complexity is O(nc2), then we can get a

c× c matrix HTH, the time complexity of
(
Ic +

1
βH

TH
)−1

is O(c3), thus the overall complexity of P is O(nc2 + c3).

Finally, the complexity of Q(i−1)P is O(n2c), since c is the number of classes, it have c≪ n. Therefore, the complexity
grows quadratically with the number of samples i.e., O(n2).

B. Theoretical Proof
B.1. Proof for Proposition 3.1

Proof. We follow the proof idea of (Wang & Leskovec, 2021), we first introduce a lemma to describe the influence of a
node on the other node:

Lemma B.1. (Xu et al., 2018) Assume that the activation function of GCN is ReLU. Let P a→b
k be a path

[v(k), v(k−1), · · · , v(0)] of length k from node va to node vb, where v(k) = va, v
(0) = vb, and v(i−1) ∈ Nv(i) for

i = k, · · · , 1. Then we have the influence of node va on vb is:

I (vb, va; k) =
∑
P b→a

k

1∏
i=k

ãv(i−1),v(i) , (17)
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where ãv(i−1),v(i) is the weight of the edge (v(i), v(i−1)).

The total influence is to sum over all lengths of the path. From Lemma B.1, we can easily obtain the influence of all labeled
nodes with label y1 on va is

I ({vb : yv = y1}, va) =
∑

vb:yb=y1

k∑
j=1

∑
P b→a

j

1∏
i=j

ãv(i−1),v(i) . (18)

For LPA, is a random walk algorithm starting from the label node, we denote the classified probability of node va in the y1
dimension (i.e., y1 category) as ya[y1]. It is clear that

ya [y1] =
ya [y1]

′∑
yi∈y ya [yi]

s.t., ya [y1]
′
=

∑
vb:yb=y1

k∑
j=1

∑
P b→a

j

1∏
i=j

ãv(i−1),v(i) . (19)

Thus, we can get ya [y1] ∝ I ({vb : yv = y1}, va).

B.2. Closed-Form Solution

Given the objective function in Eq. 6, we let

L =
∥∥∥Q(i) − SH

∥∥∥2
F
+ β

∑
i,j=1

s2i,j

= Tr((Q(i) − SH)T (Q(i) − SH)) + 2βS

(20)

where Tr(·) indicates the trace of matrix. Then we have

∂L
∂S

= −2Q(i)HT + 2SHHT + 2βS (21)

Let Eq. 21 equal to 0, we can obtain the closed-form solution S(i) i.e.,

S(i) = Q(i)HT
(
HHT + βIN

)−1
. (22)

B.3. The Woodbury identity

Given four matrices i.e., A ∈ Rn×n, U ∈ Rn×k, B ∈ Rk×k, V ∈ Rk×n. We adopt a variation commonly used by the
Woodbury identity (Woodbury, 1950) is as follows:

(A+UBV)−1 = A−1 −A−1U
(
B−1 +VA−1U

)−1
VA−1 (23)

Without loss of generality, the matrix A and B can be replaced with the identity matrix, therefore, we further have

(I+UV)−1 = I−U(I+VU)−1V (24)

We can replace the matrices U,V with the matrix H in Eq. 24, thus, we have:(
HHT + βIN

)−1
=

1

β
I− 1

β2
H

(
Ic +

1

β
HTH

)−1

HT . (25)

Therefore, based on Eq. 25, we can transform Q(i) = S(i−1)Q(i−1) as:

Q(i) = S(i−1)Q(i−1)

= Q(i−1)HT

(
1

β
IN −

1

β2
H

(
Ic +

1

β
HTH

)−1

HT

)
Q(i−1).

(26)
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B.4. Proof for Theorem 3.3

Theorem B.2. Given a graph G with adjacency matrix A, training set node label Y and ground truth label Ytrue. For any
unknown-label nodes, if Ytrue = LPA(A,Y), then the upper bound of the GCN’s generalization ability reaches optimal
on graph G.

Proof. To prove the Theorem 3.3, We first introduce the Complexity Measure to help us understand the generalization ability
of GCN. It is the current mainstream method to measure the generalization ability of the model (Neyshabur et al., 2017),
which describes the a lower complexity measure means a better generalization ability. We follow (Natekar & Sharma,
2020) to adopt Consistency of Representations as our Complexity Measure, which is designed based on the Davies-Bouldin
Index (Davies & Bouldin, 1979). Formally, for a given dataset and a given layer of a model, the Davies-Bouldin Index can
be written as follows:

Sa =

(
1

na

na∑
τ

∣∣∣O(i)
a − µOa

∣∣∣p)1/p

for a = 1 · · · k (27)

Ma,b = ∥µOa − µOb
∥p for a, b = 1 · · · k, (28)

where a, b are two different classes, O(i)
a is the GCN smoothed feature of node i belonging to class a, µOa is the cluster

centroid of the representations of class a, here we set p = 2, thus Sa measures the intra-class distance of class a and
Ma,b is a measure of inter-class distance between class a and b. Then, we can define complexity measure based on the
Davies-Bouldin Index as follows:

C =
1

k

k−1∑
i=0

max
a̸=b

Sa + Sb

Ma,b
. (29)

We define P0 as the probability that a node’s neighbor belongs to the ’0-th’ class, and I0 as the probability that the node
itself belongs to the ’0-th’ class. Thus, we can calculate the cluster centroid after GCN smoothed features:

µO0
= E[Oi

0] = E[W
∑
j∈Ni

1

di
Xj ]

= W(I0P0µX0 + I0(1− P0)µX1),

(30)

where Xj is the ’j-th’ node feature and µXi
is the cluster centroid of the node features of class i. Likewise, we have:

µO1
= W(I1P1µX1

+ I1(1− P1)µX0
). (31)

Then, the M0,1 can be computed by:

M0,1 = ∥µOa − µOb
∥

= ∥W(I0P0µX0 + I0(1− P0)µX1 − (I1P1µX1 + I1(1− P1)µX0))∥
= ∥W(I0P0µX0 + I0µX1 − I0P0µX1 − I1P1µX1 − I1µX0 + I1P1µX0)∥
= (I0P0 + I1P1) ∥W(µX0 − µX1)∥+ ∥I0µX1 − I1µX0∥
≤ (I0P0 + I1P1) ∥W(µX0 − µX1)∥+ ∥µX1∥+ ∥µX0∥ .

(32)

Then S2
0 is calculated by:

S2
0 = E

[∥∥∥O(i)
0 − µO0

∥∥∥2] = E
[
< O

(i)
0 − µO0

, O
(i)
0 − µO0

>
]

= E[(I0P0)(I0P0(X0 − µX0
)TWTW(X0 − µX0

))]

+ E[I0(1− P0)I0(1− P0)(X1 − µX1)
TWTW(X1 − µX1))]

= I20P
2
0E[∥W(X0 − µX0

)∥] + I20 (1− P0)
2E[∥W(X1 − µX1

)∥].

(33)
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Similarly, we have:

S2
1 = E

[∥∥∥O(i)
1 − µO1

∥∥∥2] = E
[
< O

(i)
1 − µO1

, O
(i)
1 − µO1

>
]

= E[(I1P1)(I1P1(X1 − µX1
)TWTW(X1 − µX1

))]

+ E[I1(1− P1)I1(1− P1)(X0 − µX0)
TWTW(X0 − µX0))]

= I21P
2
1E[∥W(X1 − µX1

)∥] + I21 (1− P1)
2E[∥W(X0 − µX0

)∥],

(34)

where < ·, · > is inner production. For simplicity, let σ2
0 = E[∥W(X0 − µX0

)∥] and σ2
1 = E[∥W(X1 − µX1

)∥], then the
above equation can then be simplified to:

S2
0 = (I0P0)

2σ2
0 + (I0(1− P0))

2σ2
1 ≥ I20

σ2
0σ

2
1

σ2
0 + σ2

1

. (35)

Similarly, we have:

S2
1 = (I1P1)

2σ2
1 + (I1(1− P1))

2σ2
1 ≥ I21

σ2
0σ

2
1

σ2
0 + σ2

1

. (36)

Then the complexity measure can be represented as:

C =

√
S2
0 + S2

1 + 2S0 · S1

M0,1
≥ 2σ0σ1(I0 + I1)

2√
σ2
0 + σ2

1 · ((I0P0 + I1P1) ∥W(µX0
− µX1

)∥+ ∥µX1
∥+ ∥µX0

∥)
. (37)

Thus, we obtain a lower bound of complexity measure. Also this is the upper bound of the generalization ability. Notice that
σ0 and σ1 could not be zero, otherwise, the classification problem is meaningless. We observe the above equation for nodes
with unknown labels and analysis the relationship between the distribution of label I0, I1 and the lower bound of complexity
measure, we find that the probability of their own label (i.e., I0 or I1) and the probability of their neighbors’ labels (i.e., P0

or P1) affect the upper bound on their generalization ability. Since I0 + I1 = 1, we analyze term (I0P0 + I1P1),

(I0P0 + I1P1) =
1

n

n∑
i

I0,iP0,i + I1,iP1,i (38)

where I0,i ∈ {0, 1} is the binary probability that the ’i-th’ node label belongs to class 0 where I1,i = 1− I0,i and P0,i is
the probability that the ’i-th’ node whose neighbor belongs to class 0. In order to minimize the lower bound of complexity
measure, i.e., to maximize the upper bound of generalization ability, it is necessary to maximize (I0P0 + I1P1) here.
Obviously, the maximum (I0P0 + I1P1) is obtained at I0,i = argmax(P1,iP0,i).

Let’s look at the Label Propagation Algorithm(LPA). For nodes with unknown labels,

ŷi =
1

di

∑
j∈Ni

yj . (39)

Then the probability that the LPA predicts that the ’i-th’ node belongs to class 0 can be obtained:

Î0,i = argmax(
1

di

∑
j∈Ni

yi == 1,
1

di

∑
j∈Ni

yi == 0) = argmax(P1,iP0,i). (40)

Similarly, the probability of predicting the ’i-th’ node to belong to class 1 is:

Î1,i = argmax(
1

di

∑
j∈Ni

yi == 0,
1

di

∑
j∈Ni

yi == 1) = argmax(P0,iP1,i). (41)

Thus, the upper bound on the generalization ability is maximized when the labels of the unknown label set are distributed as
LPA-generated labels.
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B.5. Proof for Theorem 3.4

Theorem B.3. The ELU graph can ensure the generalization ability of the GCN, potentially bringing it closer to optimal
performance.

Proof. Recall our objective function (i.e., Eq. (5)) minS ∥SY − SH∥2F , and we first pre-training a GCN (i.e., SH, where
H = MLP (X) is trained in advance) to predict labels for all nodes (i.e., Ŷ), thus our objective function can be rewritten

as minS

∥∥∥SY − Ŷ
∥∥∥2
F

, which align with the form of minA ∥AY −Ytrue∥2F and Ŷ is often used to estimate Ytrue (Yang
et al., 2024; Gong et al., 2023). Therefore, the ELU graph (i.e., S) can ensure the GCN’s generalization ability to a certain
extent. Moreover, a better adjacency matrix S can further improve the GCN’s predictions (i.e., Ŷ), making Ŷ increasingly
closer to ground truth (i.e., Ytrue). Ultimately, we can obtain a graph structure to ensure the GCN’s generalization ability is
closer to optimal performance.

C. Related Works
This section briefly reviews the topics related to this work, including graph convolutional networks, label propagation
algorithms, and graph structure learning.

C.1. GCNs and LPA

Graph convolutional networks (GCNs) are the most popular and commonly used model in the field of graph deep learning.
Early work attempted to apply the successful convolutional neural network (CNN) to graph structures. For example,
CheybNet (Defferrard et al., 2016) first proposes to transform the graph signal from the spatial domain to the spectral domain
through the discrete Fourier transform, and then use polynomials to fit the filter shape (i.e., convolution). CheybNet laid the
foundation for the development of spectral-domain graph neural networks. The popular GCN was proposed by Kipf et al.
(Kipf & Welling, 2017), which is a simplified version of ChebyNet and has demonstrated strong efficiency and effectiveness,
thereby promoting the development of the graph deep learning field.

Recently, some works have focused on the combination of LPA and GCN. This is because LPA can characterize the
distribution of labels spread on the graph, which can help GCN obtain more category information. Existing combined LPA
and GCN methods can be classified into two categories, i.e., pseudo label methods and masked label methods. Pseudo-label
methods let the output of LPA serve as the pseudo-labels to guide the representation learning. For example, PTA (Dong
et al., 2021) first propagates the known labels along the graph to generate pseudo-labels for the unlabeled nodes, and second,
trains normal neural network classifiers on the augmented pseudo-labeled data. GPL (Wu et al., 2024) uses the output of
LPA to preserve the edges between nodes of the same class, thereby reducing the intra-class distance. The masked label
methods employ LPA as regularization to assist the GCN update parameters or structures. For example, UniMP (Shi et al.,
2021) makes some percentage of input label information masked at random, and then predicts it for updating parameters.
GCN-LPA (Wang & Leskovec, 2021) also randomly masked a part of the labels and utilized the remaining label nodes to
predict them in learning proper edge weights within labeled nodes. Although the above methods achieve excellent results on
various tasks, they fail to explore under what conditions the labels propagated by LPA can best enhance the representation
learning of GCNs on unlabeled nodes.

C.2. Graph Structure Learning

Prior to the recent surge in Graph Neural Networks, the study of graph structure learning had already been extensively
explored from multiple perspectives within traditional machine learning.

Graph structure learning is an important technology in the graph field. It can improve the graph structure and infer new
relationships between samples, thereby promoting the development of graph representation learning or other fields. Existing
Graph structure learning methods can be classified into three categories, i.e., traditional unsupervised graph structure
learning methods, supervised graph structure learning methods, and graph rewiring methods. Traditional unsupervised
graph structure learning methods aim to directly learn a graph structure from a set of data points in an unsupervised manner.
Early works (Wang & Zhang, 2006; Daitch et al., 2009) exploit the neighborhood information of each data point for graph
construction by assuming that each data point can be optimally reconstructed using a linear combination of its neighbors

(i.e., minA ∥AX−X∥2F ). Similarly, (Daitch et al., 2009) introduce the weight (i.e., min
∑

i

∥∥∥Di,iXi −
∑

j Ai,jXj

∥∥∥2).
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Smoothness (Jiang et al., 2019) is another widely adopted assumption on natural graph signals; the smoothness of the graph
signals is usually measured by the Dirichlet energy (i.e., minA

1
2

∑
i,j Ai,j ∥Xi −Xj∥2 = minL tr

(
X⊤LX

)
). Until now,

there have been a lot of works based on the above objective function to learn graph structure. Supervised graph structure
learning methods aim to use the downstream task to supervise the structure learning, which can learn a suitable structure
for the downstream task. For example, NeuralSparse (Zheng et al., 2020) and PTDNet (Luo et al., 2021) directly use the
adjacency matrix of the graph as a parameter and update the adjacency matrix through the downstream task. SA-SGC
(Huang et al., 2023b) learns a binary classifier by distinguishing the edges connecting nodes with the same label and the
edges connecting nodes with different labels in the training set, thereby deleting the edges between nodes belonging to
different categories in the test set. BAGCN (Zhang et al., 2024) uses metric learning to obtain new graph structures and
learns suitable metric spaces through downstream tasks. The goal of graph rewiring methods is to prevent the over-squashing
(Alon & Yahav, 2021) problem. For example, FA (Alon & Yahav, 2021) proposed to use a fully connected graph as the last
layer of GCN to overcome over-squashing. SDRF (Topping et al., 2022), SJLR (Giraldo et al., 2023), and BORF (Nguyen
et al., 2023) aim to enhance the curvature of the neighborhood by rewiring connecting edges with small curvature. They
increase local connectivity in the graph topology, indirectly expanding the influence range of labels. Despite their success,
existing graph structure learning methods cannot ensure that the learned graph structure effectively enables GNN models to
leverage supervisory information for unlabeled nodes.

D. Model Detail
D.1. Pretaining MLP

As mentioned in the method section MLP has been trained in advance. Specifically, we employ the two-layer MLP and
crosse-entropy to pre-train the MLP:

Lmlp : min
Θ1,Θ2

CE(XΘ(1)Θ(2),Y) (42)

where Θ(1) and Θ(2) are learnable parameters. After the above objective function converges by the gradient descent
algorithm, we can get H as follows:

H = XΘ(1)Θ(2). (43)

D.2. Details of Sparse S∗ and Initialize Y

Sparse S∗. S∗ is a fully-connected adjacency matrix. It will bring computationally expensive overhead in message passing,
especially for large-scale graph datasets. To mitigate this, we set the elements with small absolute values to 0; Specifically,
∀i, j where |S∗

i,j | < η, we set |S∗
i,j | = 0, while elements with |S∗

i,j | > η remain unchanged, where η is a non-negative
parameter that we usually set to correspond to the top 10 percent of element values. The graph described by S∗ is referred to
as the effectively label-utilizing graph (ELU-graph) in this paper.

Initialize Y. Since the number of initial label information is very limited in a semi-supervised scenario, having too many
rows of all zeros in Y can cause the algorithm to be unstable. Thus, we propose a label initialization strategy to expand the
initial labels with high quality. Specifically, since ELU nodes can effectively utilize the label information and demonstrate
high accuracy as shown in Figure 2 (b), we use the pseudo labels of ELU nodes to expand the initial Y.

E. Experiments Details
E.1. Datasets

The used datasets include three benchmark citation datasets (Sen et al., 2008) (i.e., Cora, Citeseer, Pubmed), two co-purchase
networks (Shchur et al., 2018) (i.e., Computers, Photo), two web page networks (Pei et al., 2020) (i.e., Chameleon and
Squirrel, note that these two datasets are heterophilic graph data), and four social network datasets (Traud et al., 2012)
(i.e., Caltech, UF, Hamilton, and Tulane). Table 3 summarizes the data statistics. We list the details of the datasets as follows.

• Citation networks include Cora, Citeseer, and Pubmed. They are composed of papers as nodes and their relationships
such as citation relationships, and common authoring. Node feature is a one-hot vector that indicates whether a word is
present in that paper. Words with a frequency of less than 10 are removed.

• Co-purchase networks include Photo and Computers, containing 7,487 and 13,752 products, respectively. Edges in
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Table 3. The statistics of the datasets
Datasets Nodes Edges Train/Valid/Test Nodes Features Classes

Cora 2,708 5,429 140/500/1000 1,433 7
Citeseer 3,327 4,732 120/500/1,000 3,703 6
Pubmed 19,717 44,338 60/500/1,000 500 3

Amazon Computers 13,381 245,778 200/300/12,881 767 10
Amazon Photo 7,487 119,043 160/240/7,084 745 8

Chameleon 2,277 36,101 1,093/729/455 2,325 5
Squirrel 5,201 217,073 2,496/1,665/1,040 2,089 5
Caltech 13,882 763,868 8,240/2,776/2,776 6 6

UF 35,123 2,931,320 21,074/7,024/7,024 6 6
Hamilton 2,314 192,788 1,388/463/463 6 6

Tulane 7,752 567,836 4,652/1,550/1,550 6 6

each dataset indicate that two products are frequently bought together. The feature of each product is bag-of-words
encoded product reviews. Products are categorized into several classes by the product category.

• Webpage networks include Squirrel and Chameleon, which are two subgraphs of web pages in Wikipedia. Our task is
to classify nodes into five categories based on their average amounts of monthly traffic.

• Social networks include Caltech, UF, Hamilton, and Tulane, each graph describes the social relationship in a university.
Each graph has categorical node attributes with practical meaning (e.g., gender, major, class year.). Moreover, nodes in
each dataset belong to six different classes (a student/teacher status flag).

F. Additional Experiments
F.1. Node Classification on Social Networks

Model Caltech UF Hamilton Tulane

GCN 88.47±1.91 83.94±0.61 92.26±0.35 87.93±0.97

GAT 81.17±2.15 81.68±0.59 91.43±1.25 84.45±1.45

APPNP 90.76±2.38 83.07±0.54 93.29±0.47 88.52±0.44

GCN-LPA 89.12±2.11 83.78±0.69 92.56±0.87 88.32±1.02

GSR 90.23±2.41 84.01±0.63 92.45±0.84 88.75±1.01

Ours 91.93±0.69 85.62±0.53 93.65±0.78 89.30±0.77

We further evaluate the effectiveness of the proposed method on the social network datasets by reporting the results of node
classification. Obviously, our method achieves the best effectiveness on node classification tasks.

Specifically, the proposed method achieves competitive results on the social network datasets compared to other baselines.
For example, the proposed method on average improves by 1.27%, compared to the best baseline (i.e., GSR), on almost all
datasets. This demonstrates the universality of our method, which can achieve excellent results in most datasets.

F.2. Parameter Analysis

In the proposed method, we employ the non-negative parameters (i.e., λ, τ , and eta) to achieve a trade-off between the
supervised loss and the contrastive loss, the temperature control, and the fusion of the ELU graph and the original graph. To
investigate the impact of λ, τ , and η with different settings, we conduct the node classification on the Cora and Citeseer
datasets by varying the value of λ, τ , and η in the range of [0.1, 1.0]. Note that the smaller the τ , the closer the model brings
the positive samples and the further apart the negative samples. The results are reported in Figure 5 and 6, respectively.

From Figure 5, we have the following observations: First, the proposed method achieves significant performance when the
parameter τ is in the range of [0.1, 0.3] if τ values are too large (e.g., τ > 0.3), the performance degrades. For τ , setting it
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to 1 is equivalent to not using the temperature coefficient. The lower the temperature coefficient, the stronger the effect,
indicating that τ is essential for the proposed method. Note that τ cannot be set to 0 because it is the denominator. Second,
when λ is set in the range of [0.3, 0.6], the model can get a higher performance, if the value of λ is too high or too small
(e.g., =0, the results shown in the Table 2), the performance degrades. This indicates that the proposed contrastive loss is
necessary for the model.

From Figure 6, for the parameter η, the proposed method achieves the best results while the value of the parameter is set in
the range of [0.1,0.5]. This further confirms the importance of both the ELU graph and the original graph.
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Figure 5. The classification performance of the proposed method at different parameter settings (i.e., τ , λ) on the Cora and Citeseer
datasets.

F.3. Analysis the Improve on VNELU

To better examine the effectiveness of the proposed ELU-GCN on VNELU, we further evaluate the model’s improvement
over GCN on VNELU on Cora, Citeseer, and Pubmed datasets. The results are shown in Figure 7.

Specifically, the proposed ELU-GCN shows a particularly significant improvement on VNELU across the three datasets.
For example, our method on average improves by 3.7 % on VNELU and 2.1% on all test nodes compared to GCN on these
three datasets. This can be attributed to the fact that the proposed ELU-GCN provides the ELU graph that can make VNELU

utilize the label information more effectively under the GCN framework, and this also indicates that the main improvement
of the proposed ELU-GCN is on VNELU.
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Figure 6. The classification performance of the proposed method at different parameter settings (i.e., η) on the Cora and Citeseer datasets.
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Figure 7. The accuracy of ELU-GCN and GCN of VNELU on Cora, Citeseer, and Pubmed datasets.
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