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ABSTRACT

The Shapley value has been widely used as the measures of feature importance
of a predictive model, by treating a model as a cooperative game (N, v). There
have been many discussions on what the correct characteristic function v should
be, but almost all literature will take the player set N as the set of features. While
in classical cooperative game scenarios, players are obvious and well defined, it is
not clear whether we should treat each feature individually as a player in machine
learning. In fact, adding or deleting a feature, even a redundant one, will change
every feature’s Shapley value and its rank among all features in a non-intuitive
way. To address this problem, we introduce a new axiom called “Consistency”,
which characterizes the “robustness” of computed Shapley-like values against dif-
ferent player set identifications, and is specific to machine learning setup. We
show that while one can achieve Efficiency and Consistency in special cases, such
as inessential games and 2-player games, they are contradictory to each other in
general. This impossibility theorem signifies a conundrum of applying Shapley
values in the feature selection process: The Shapley value is only axiomatically
desirable if the players(features) are correctly identified, however, this prerequi-
site is exactly the purpose of the feature selection task. We then introduce the
GroupShapley value to help address this dilemma, and as an additional bonus,
GroupShapley valuess have a computational advantage over the classical Shapley
values.

1 INTRODUCTION AND BACKGROUND

1.1 COALITION GAME AND MACHINE LEARNING

There have been many efforts to utilize concepts from cooperative game theory to machine learning
to quantify the feature importance, many are focused on Shapley values(see, for example, Lundberg
& Lee (2017); Lundberg et al. (2018); Sundararajan & Najmi (2020); Merrick & Taly (2020); Frye
et al. (2020b)). More precisely, consider a machine learning model f : Rp → R, that is used
to predict a target Y using the p-dimensional feature X = [X1, X2, . . . Xp], we can associate a
cooperative game (N, v) to it. In almost all the aforementioned literature, the player set is chosen to
be the set of features N = [p] = {1, 2, . . . p}, i.e. i ∈ N is thought of as the feature Xi. Then, we
can compute Shapley valuess Shv : [p] → R of the game ([p], v), and use Shv(i) as the measure of
the importance of the feature Xi.

Depending on the choice of v, Shv can be interpreted as global feature importance or local feature
importance. Most of our paper’s discussion doesn’t depend on the choice of v, and applies to both,
thus, we don’t distinguish them. In the case of local feature importance, the choice of v has been
discussed by many(see, for example, Sundararajan & Najmi (2020); Janzing et al. (2020); Frye et al.
(2020a), but fewer on how to “correctly” choose the player set N . In fact, Kumar et al. (2020) points
out that N = [p] is problematic, and along with other oppositions, they argue that “Shapley-value-
based explanations for feature importance fail to serve their desired purpose in general”. In this
paper, we try to address the problem of correctly identifying the set of players. We will also discuss
the oppositions to Linearity in Remark 2.

1.2 MOTIVATION

To motivate the importance of “correctly” identifying the player set in a machine learning model,
let’s start with an example of business.
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Example 1 (Vanishing Effect in Game Theory). In a game ({o, w1}, v), where an owner o provides
the capital, and a worker w1 provides the labor, and v(S) = max(|S| − 1, 0). Each player has
a Shapley value of 1

2 , same as the intuition. Now, as the global economy gradually falls into a
recession, there are more workers on the labor market, and subsequently joining the team, and we
end up with the player set {o, w1, w2, . . . , wm}. However, it turns out that our business has such
a small capacity, that the increase of labor doesn’t improve its profits: v(S) = 1 if and only if
|S| > 1, o ∈ S, and v(S) = 0 otherwise. The owner will have Shapley value Sh(o) = 1 − 1

m+1 ,
and each of the worker Sh(wi) =

1
m(m+1) .

Example 1 makes perfect economical sense, as the owner is the veto player, and all the workers are
replaceable, hence the share of the worker drops significantly as more of its peer joining the team.
However, we will see it is not desirable in machine learning, especially when we use Shaply values
to conduct feature selection.
Example 2 (Vanishing Effect in Machine Learning). To demonstrate that the same Vanishing Effect
in machine learning is not desirable, here we offer an example on synthetic data (X, y) , where the
ground truth is known, and each component of X falls into 3 categories: strong predictor (S), weak
predictor (W), and non predictor(N):

pS(x) =
N [0, 1](x) +N [0, 3](x)

2
, pW (x) =

N [0, 1](x) +N [0, 2](x)

2
, pN (x) = N [0, 1](x),

see Figure 1a for a graphical representation of their distributions. More precisely, we generate
10000 data points, each consisting of 20 real-valued features, and we split the data into 50% class
1, and 50% class 0. We consider two cases, in the first case, class 0 follows a 20-dim standard
normal distribution p0(x0, . . . x19) =

∏19
i=0

(
N [0, 1](xi)

)
, and class 1 follows p1(x0, . . . x19) =(

N [0, 3](x0)
)(
N [0, 2](x1)

)∏19
i=2

(
N [0, 1](xi)

)
, that is , X0 is a S predictor, X1 is a W predictor,

and the rest are N predictors, and there is no redundancy in the first case. In the second case, we
introduce redundancy to S predictors by replacing three N predictors {Xi}i≥17 with copies of the
S predictor X0. In both cases, we fit a RandomForestClassifier, and compute Shapley values for
all features using TreeShap as in Lundberg et al. (2018). In Figure 1b, we see that S predictor gets
more than twice as much attribution as that of the W predictor in the first case. But all copies of S
predictor X0 receive less attributions than the W predictor in the second case, as shown in Figure
1c. In Proposition 1, we show that this kind of vanishing effect holds for any games.

(a) Distribution of features by class (b) First case: one strong feature,
one weak feature

(c) Second case: four redundant
strong features, one weak feature

Figure 1: Vanishing Effect of adding redundancy to the strong features as in Example 2.

As surveyed in Fryer et al. (2021), many Shapley-value based feature selection framework follows a
variation of Algorithm 1. Implicitly in this framework is the identification of the player set with the
feature set (which we write out explicitly), and the Vanishing Effect as in Example 2 will lead this
framework to the suboptimal selection of features. Besides the Vanishing Effect, adding features
(and treating them as individual players) not only will change Shapley values of features redundant
to them, but also change Shapley values of all other features, in a non-intuitive way, see an example
of a 3-player game in Kumar et al. (2020).

We want to stress that an appropriate preprocess needs to be done, before interpreting the absolute
Shapley-like values of features as a measure of importance. Because we see a recent paper Masoomi
et al. (2021) uses the absolute value of a Shapley-like quantity to measure the redundancy between
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features. More precisely, Masoomi et al. (2021) introduces Bivariate Shapley value E(v)ij , and
defines directional redundancy of i with respect to j as E(v)ij = 0, but suggests one can use
E(v)ij < γ for some threhsold γ in practice. E(v)ij is a Shapley-like quantity, one can think of it
as the Shaply value of i under the presence of j, and it also suffers from the same Vanishing Effect,
that is , under the presence of many features redundant to i, we would get E(v)ij < γ regardless
of whether i is truly directional redundant with respect to j. It doesn’t mean that the Shapley-
value-based feature selection framework or the Bivariate Shapley value E(v)ij is useless, rather, it
emphasizes the necessity of carefully identifying the player set before utilizing these techniques,
especially when facing a large pool of features. For example, it has been known that practitioners
in financial machine learning would generate thousands of features (“alphas”) automatically Zhang
et al. (2020), many of which doesn’t make sense to humans, even if they do, the sheer number
of features will be overwhelming for people to study them individually. Moreover, there could be
strong correlations among certain features, such as past returns over various window lengths, as
well as those build on them. In such circumstances, it is imperative to make appropriate player
identifications before diving into the Shapley-values-based explanation methodologies.

Algorithm 1 Shapley-value-based Feature Selection Algorithm

Input: Training Data (X, y), X = [X1, . . . Xp] ∈ Rn×p, y ∈ Rn, and a learning algorithm A.
Output: A selected subset of k features {Xij}j=1,...k.

1: Set the player set P = {1, 2, . . . p} to be the set of features.
2: Choose the characteristic function v : 2P → R.
3: Compute the classical Shapley values (Shi)i=1,2...p for the game (P, v).
4: Select feature i, if Shi is among the highest k Shapley values in {Shi}i=1,2,...p.

Our first attempt to address this problem is to introduce a Shapley-like value, that is more robust
against different identifications of players, an axiom we call “Consistency” (made precise in Section
2.3). Unfortunately, while we can achieve both Efficiency and Consistency in some special cases,
such as inessential games and 2-player games, Theorem 1 shows we cannot have both in general.
Hence, Theorem 1 signifies the contradiction between Efficiency and Consistency: One cannot get
Efficiency among players, without giving up the flexibility of determining who are the actual players.
However, without either one, the other would also be rendered useless, for example, Shapley-value is
Efficient, but can be misleading due to Vanishing Effect, which results from its lack of Consistency.
We want to note that Consistency has never been brought up in the classical game theory, because,
as Example 1 shows, the Vanishing Effect, due to lack of Consistency, is entirely natural. However,
in the application of Shapley values in machine learning, both are important, and Consistency is an
axiom specific to the machine learning setup. As Efficiency is highly desirable, we need to give up
Consistency, as the prevalent studies have been doing. But we will do so with a twist, that is we
need to carefully choose the player set first, and that’s our second attempt: GroupShapley values. To
motivate Consistency and GroupShapley values, let’s again start with a real-world problem.

Example 3 (Confusing Cost-Sharing/Profit-Attribution). Suppose at the end of the year, a fund
made 10M dollars in net profits, utilizing a production model f , a real-valued function, that takes in
a vector of alphas (features) X = [X1, X2, . . . Xn], which are contributed by different researchers,
i.e., each researcher contribute a subset of {Xi}i=1,2,...n to the production model. The fund owner,
with a heart of gold, would like to distribute the profits fairly. This cost-sharing scenario is a perfect
problem for Shapley values, as all of the axioms, even Linearity, is non-controversial. However,
the problem remains, on what set of players should we apply Shapley values? It could be the set
of features (alphas); or the set of individual researchers, which corresponds to a group of alphas it
contributed, since none of these alphas would exist without the presence of the researcher; or the set
of teams consisting of researchers, that would correspond to a even coarser group of alphas.

Due to the lack of Consistency, these Shapley-value-based attributions would look different (for
example, a researcher’s Shapley value may not be the sum of its alphas’ Shapley values). However,
this does motivate us to consider a group of features as a player, and compute the GroupShapley
value as the contribution of the group of features. While we don’t have domain knowledge as in
Example 3, we can determine groups using statistical methods, such as clustering. As an additional
bonus, by grouping features as players, we also decrease the number of players in the coalition game,
which will help to accelerate the computations for Shapley values, another well-known challenge.
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1.3 RELATED LITERATURE

1.3.1 PROBLEMS WITH SHAPLEY VALUES

Kumar et al. (2020) has brought up many oppositions to the Shapley values as measures of feature
importance, among which they mentioned the difficulties of identifying player set from the feature
set, but they don’t formalize this difficulty, nor gave any solutions to address this difficulty. In
fact, they argue that Shapley values are not appropriate for feature explanations, we will discuss
some of their other oppositions in Remark 2 as well. Fryer et al. (2021) discusses some danger of
the Shapley-value-based feature selection framework 1, but they don’t inspect this framework from
the point of view of player set identification, nor do they provide the solutions. Sundararajan &
Najmi (2020); Slack et al. (2020); Frye et al. (2020a) all raise concerns about certain out-of-data
characterization function v when associating a model to a coalition game (N, v). None of them
mentioned the first component of the game (N, v), i.e., the player set N , as they all identify the
player set as the set of the features. Kumar et al. (2021) proposes Shapley Residuals to measure
the limits of Shapley values for explanations, our Theorem 1 has an implication that overlaps with
Shapley Residual’s non-warning on the inessential games, but they do differ in other cases, see
Remark 1 for more discussions.

1.3.2 MEASURING THE IMPORTANCE OF A SUBSET OF FEATURES

Sundararajan et al. (2020) and Harris et al. (2021) both extend Shapley values to a subset of fea-
tures, where they each propose Shapley-like values, unique to a set of axioms, that are originated
from intuitions on classical game theory. In fact, they are special cases of a long line of work on
the axiomatic approach on interaction indices in classical game theory, such as Grabisch & Roubens
(1999); Owen (1972). Our Consistency axiom differs from axioms in all of these work, in that Con-
sistency is specific to machine learning setup, i.e., it only makes intuitive sense when the game theory
is applied to machine learning, especially in the feature selection stage (see the differences between
Example 1 and Example 2, and the discussion in between). Jullum et al. (2021) studies GroupShap-
ley values, however, their motivation is to address the inefficiency when computing Shapley values
of a model with many features, without studying the conceptual motivation of GroupShapley val-
ues. While our work demonstrates, both in theories and examples, that certain preprocess, such as
grouping(clustering) is not only a compromise, but also a necessity.

1.4 OUR CONTRIBUTIONS

In summary, our contributions are:

1. We demonstrate the Vanishing Effect of Shapley values both in theories and examples,
stressing the problem of identifying the “correct” player set.

2. We introduce the Consistency axiom, an axiom specific to machine learning, that character-
izes the robustness against different identifications of the player set. We also characterize
the unique family of Shapley-like values that satisfies Efficiency or Consistency respec-
tively, and shows while we can achieve both Efficiency and Consistency in certain special
cases, they are contradictory to each other in general.

3. In the general case, we propose the Group-Shapley-value framework as a prerequisite to
the Shapley value computations, due to the lack of Consistency. As an additional bonus,
GroupShapley values have a computational efficiency over the classical Shapley values.

The rest of the paper is structured as follows. We formalize and prove the Vanishing Effect in Section
2.2 after reviewing game-theoretical Shapley values. In Section 2.3, we extend the Shapley values,
as well as its characterizing axioms to all subsets of features, and introduce the novel Consistency
axiom. We also give unique characterizations of G-Efficiency and G-Consisntecy in 2.3. Finally, we
propose GroupShapley values in Section 3, and present the results on the Boston housing dataset.
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2 SHAPLEY VALUES AND CONSISNTECY AXIOM

2.1 NOTATIONS

A coalition game consists of a set N = {1, 2, . . . n} of n players, and a characteristic function
v : 2N → R. A player i ∈ N is a null player if v(S ∪ {i}) = v(S),∀i /∈ S ⊂ N , and two players
i, j are symmetric, if v(S ∪ {i}) = v(S ∪ {j}),∀S ⊂ N\{i, j}. We write j ∼ i if j is a redundant
player of i, that is, i, j are symmetric, and v(S∪{i, j}) = v(S∪{j}) = v(S∪{i}),∀S ⊂ N\{i, j}.
When N is clear from the context, we write S̄ = N\S.

The reduced game with respect to T ⊂ N of G = (N, v) is defined as G[T ] = (N\T ∪ [T ], v[T ]),
where v[T ](S) = v(S), and v[T ](S ∪ [T ]) = v(S ∪ T ),∀S ∪ T = ∅, i.e., we group the subset of
players T as a single player [T ]. The reduced game with respect to a partition Π :

⊔k
i=1 Si = N

is defined as GΠ = ({[Si]}ki=1, vΠ), where v({[Si1 ], . . . [Sil ]}) = v(∪l
j=1Sij ). For any bijection

π between N and N ′, we define the induced game on N ′ as Gπ = (N ′, vπ), where vπ(π(S)) =
v(S) for all S ⊂ N . For two games (N, v) and (N,w), we define their linear combination as
a(N, v) + b(N,w) = (N, av + bw),∀a, b ∈ R. It is well known that {(N, v)}v:2N→R is a linear
space with a basis consisting of simple games {GN,T = (N, vN,T )}T⊂N , where vN,T (S) = 1 if
T ⊂ S, and vN,T (S) = 0 otherwise. We denote Shapley values of a game G = (N, v) as ShG or
Shv when N is clear from the context.

For any finite N , we define GN to be the set of all games whose player set is N , hence we can
identify GN with the set of characterization functions v : 2N → R. For n ∈ N, we define Gn as
the set of all games whose player set |N | = n, and G =

⊔
i∈N Gi. A game (N, v) is inessential if

v(S∪i) = v(S)+v(i) for all i /∈ S ⊂ N . Inessentiality is like the game-theoretical “independence”
among the players, there is no synergy created by any coalition of players. We denote Gin to be
the set of all inessential games. We say a subset H ⊂ G is closed (under reductions and linear
combinations), if GΠ ∈ H for all partitions Π of N , whenever G = (N, v) ∈ H, and aG1+bG2 ∈ H
for all a, b ∈ R, whenever G1, G2 ∈ H∩GN , for some N . Examples of closed subsets of G include⊔n

i=1 Gi and Gin. For any game G = (N, v), we define the closure of G as Ḡ =
⋂

G∈H⊂G
H closed

H. The

closedness is needed in defining the Consistency axiom.

For a machine learning model f : Rp → R, we denote Gf = (P, u) to be the game corresponding
to f , by choosing N = P , and some characterization function u. In this paper, we don’t care about
which u is chosen.

2.2 GAME-THEORETICAL SHAPLEY VALUES

Shapley values Shv : N → R of (N, v) is the unique “fair” allocation of the value v({1, 2, . . . N})
of the grand coalition. More precisely, {Shv : N → R}v∈GN

is the unique set of functions that
satisfies the following axioms:

1. Efficiency:
∑n

i=1 Shv(i) = v({1, 2, . . . n});
2. Anonymity For any permutation π of N , we have Shvπ (π(i)) = Shv(i).
3. Symmetry If i, j are symmetric, then Shv(i) = Shv(j). Notice that Symmetry is a conse-

quence of Anonymity by taking π = (i, j).
4. Null Player Shv(i) = 0, if i is a null player of v.
5. Linearity Shav+bw = aShv + bShw.

In fact, Shv(i) is computed as a weighted average of its marginal contributions ∆v(i, S) = v(S ∪
{i})− v(S) of player i with respect to all the subsets S ⊂ N\{i}:

Shv(i) =
∑
S⊂N

s!(n− s− 1)!

n!
∆v(i, S),

where s is the cardinality of S. One can think of Shv(i) as the expected marginal contribution of
player i if all players arrive randomly, where each order is equally likely.

The following Proposition makes the Vanishing Effect in Section 1 precise.
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Proposition 1 (Vanishing Effect). In a game (N, v), if player i’s marginal contribution is bounded
by γ, i.e., |∆v(i, S)| ≤ γ, for all i /∈ S ⊂ N , and there are k redundant features of i in the player
set N , denote Ri = {j|j ∈ N, j ∼ i, j ̸= i}. Then Shv(i) ≤ γ

k+1 .

Proof. By definition Shv(i) = 1
n!

∑
π ∆v(i, Sπ,i), where Sπ,i = {π(j) < π(i), j ∈ N}, and the

sum runs over all permutations π of N . By symmetry, i(or any player in Ri) is equally likely to be
the first one among Ri ∪ {i} in π, hence at most 1

k+1n! of ∆v(i, Sπ,i) are nonzero:

Shv(i) =
1

n!

∑
π

∆v(i, Sπ,i) =
1

n!

∑
π(i)<π(j),
∀j,j∈Ri

∆v(i, Sπ,i) ≤
1

n!

n!

k + 1
γ =

1

k + 1
γ.

Note that γ is finite in any finite game, Proposition 1 states that if we keep adding redundant features
of i in a finite game (N, v), then Shv(i) will tend to zero.

2.3 SHAPLEY VALUES IN MACHINE LEARNING AND CONSISTENCY

As discussed in Section 2.2, given a model f : Rp → R, to compute Shapley values of its corre-
sponding game, we need to first determine the player set N . As shown in Example 3, it is likely that
a player is a subset of features, and they collectively form a partition of the feature set P . Our first
attempt to solve the identification of the player set problem is still to identify N = P , but we want
to find Shapley-like values, that would be robust to the different identifications of player set. More
precisely, given a game G = (N, v), we want to extend the function Shv : N → R to a function
ϕG : 2N → R, and interpret ϕG(S) as the feature importance of the subset of features S ⊂ N ,
regardless of how the rest S̄ of features are clustered. We will extend the axioms in Section 2.2,
so that they are relevant to a collection of functions {ϕG : 2N → R}G∈H indexed by some closed
subset H ⊂ G, and formalize Consisntency axiom. When S = {i} is a singleton, we will write
ϕv(S) as ϕv(i) for simplicity.

1. G-Efficiency: ∀G ∈ H, and ∀Π : N =
⊔k

i=1 Si, we have
∑k

i=1 ϕG(Si) = v(N);
2. G-Anonymity: ∀G,Gπ ∈ H, for some bijection π : N → N ′, we have ϕG(S) =

ϕGπ (π(S)),∀S ⊂ N .
3. G-Null Player ϕG(i) = 0, if i is a null player in G.
4. G-Linearity ∀G1, G2 ∈ H ∩ GN for some N , we have ϕaG1+bG2 = aϕG1 + bϕG2 .
5. G-Consistency. ∀G = (N, v) ∈ H, T ⊂ N , we have ϕG[T ]

(S) = ϕG(S), and ϕG[T ]
(S ∪

[T ]) = ϕG(S ∪ [T ]), ∀S ⊂ T̄ .

Consistency implies that it doesn’t matter how we identify the players(partitioning the features into
different groups, and treat each group as a player), we always get an attribution of each player from
a consistent principle ϕ. Unlike Example 2, there is no Vanishing Effect if ϕv is consistent. To see
that, let’s assume we already added a redundant feature i1 of i, and we end up with the game (N, v).
Suppose we add another feature i2 ∼ i, and get (N ∪{i2}, ṽ). We can group i1, i2 to get the reduced
game (N ∪ {[i1, i2]}\{i1}, ṽ[i1,i2]), this is the same as the game (N, v), where [i1, i2] plays the role
of i1 in (N, v). Hence, we have

ϕv(i) = ϕṽ[i1,i2]
(i) = ϕṽ(i), (1)

where the first equality is due to Anonymity, and the second due to Consisntecy. Equation 1 demon-
strates that keep adding redundant features of i won’t affect i’s attribution after the first addition.
Moreover, a similar argument would show that ϕv(j) is also unaffected by the addition of redundant
feature of i, if i ̸= j. It is clear that the original characteristic function v(S) is consistent, we will see
that there aren’t many others, and it turns out, in general, we can only have one of the G-Efficiency
and G-Consistency, but not both.
Theorem 1. Suppose H ⊂ G is closed, and GN ⊂ H if G = (N, v) ∈ H, and a collection of
functions {ϕG : 2N → R}G∈H is indexed by H ⊂ G, then:
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ϕG(S) =
∑

i∈S ShG(i) is the only {ϕG}G∈H that satisfies Axioms 1-4.

{{ϕG(S) = av(S) + bv̄(S)}G∈H|a, b ∈ R}, where a, b ∈ R, and v̄(S) = v(N) − v(S̄), is the
only family of {ϕG}G∈H that satisfies Axioms 2-5.

Proof. It is straightforward to check that ϕG(S) =
∑

i∈S ShG(i) satisfies Axioms 1-4, and
ϕG(S) = av(S) + bv̄(S) satisfies Axioms 2-5, hence, only the “uniqueness” part needs proof.
For the first part, suppose {ϕG : 2N → R}G∈H satisfies Axioms 1-4, then the restriction
{ϕG|N : N → R}G∈GN

would be the classical Shapley values, for Axioms 1-4 reduces to their
classical counterpart, hence ϕG(i) = ShG(i). Then for any S ⊂ N , we consider the partition
N = S

⊔
(
⊔

i∈S̄{i}), by G-Efficiency of ϕG, and Efficiency of ShG, we have:∑
i∈S̄

ϕG(i) + ϕG(S) = v(N) =
∑
i∈N

ShG(i) =
∑
i∈N

ϕG(i).

This completes the proof that ϕG(S) =
∑

i∈S ShG(i). To prove the second part, we follow the
common technique by noting that the simple games {GN,T = (N, vN,T )}T⊂N form a basis of GN .
Let’s start by showing the second part for the simple games G1 = GN,T = (N, v1). For any S ⊂ N ,
such that T ⊂ S, we can reduce G1 to a 2-player game G2 = ({[S], [S̄]}, v2). By G-Null Player,
we know that ϕG1(S̄) = ϕG2([S̄]) = 0, and there exists a ∈ R, such that ϕG1(S) = ϕG2([S]) = a.
Note that we cannot claim a = 1, due to the lack of G-Efficiency, but we do know the existence of
a, i.e., ϕG1

(S1) = ϕG1
(S2) = a for any S1, S2 ⊃ T , due to G-Anonymity. Similarly, there exists

b ∈ R, such that ϕG1
(S) = b for all S ⊂ N , such that S ∩ T /∈ {∅, T}, due to the Anonymity and

Symmetry. Hence, we have ϕG1
= (a − b)v1 + bv̄1. By reducing any simple game GN,T to the

2-player simple game as in the above proof, we can show ϕGN,T
= (a − b)vN,T + b ¯vN,T for all

GN,T by Consistency and Anonymity. This completes the proof.

In general,
∑

i∈S ShG(i) is not a linear combination of v and v̄, hence Theorem 1 demonstrates that
there is no {ϕG}G∈G that satisfies Axioms 1-5. But there are some special cases, that we can achieve
both.
Corollary 1. H ⊂ G is a closed subset, if there are a, b ∈ R, such that

∑
i∈S ShG(i) = av(S) +

bv̄(S) for all G = (N, v) ∈ H, S ⊂ N , then ϕv(S) = av(S) + bv̄(S) satisfies Axioms 1-5. This
Assumption holds when:

H = Gin, take a = 1, b = 0;

H = G1

⊔
G2, take a = b = 1

2 .

Note that Axioms 1-5 are not stated for all of the games in G, because, as shown in Corollary 1,
there are certain special H ⊂ G, where Axioms 1-5 can all be achieved. Similarly, we don’t state
the uniquess of Shapley values in Section 2.2 for G, but only to its “minimal domain” GN . We don’t
do this for the most generality, instead, we have a practical concern: When working with a machine
learning model f , we are mainly concerned about Gf , as well as its reductions in Ḡf . We don’t
care if Gf is consistent with some irrelevant classical game. But we care about its reduction Gf,Π,
because we may treat each subset in Π as a player. Hence, the interesting question is, can we find
{ϕH}H∈Ḡf

, that satisfies Axioms 1-5. Corollary 1 says yes if G is inessential or a 2-player game.
One difficulty to solve this question in general is that the mathematical convenience brought by G-
Linearity disappears, as the simple games may not lie in Ḡf . We will consider this as an interesting
future work:
Question 1. Given a game Gf = (P, v), can we find Shapley-like values {ϕH}H∈Ḡf

, that statisfies
Axioms 1-5?
Remark 1 (Shapley Residuals). There is an interesting overlap between the Corollary 1 and the
results of Kumar et al. (2021), where Shapley Residual, a characterization of inessential games, is
introduced as a “warning” to the interpretation of the Shapley values. When G is inessential, Corol-
lary 1 shows that a Shapley-value-based {ϕH}H∈Ḡ satisfies Axioms 1-5, while Shapley Residual
in Kumar et al. (2021) is zero, hence no warning is issued. However, Corollary 1 and Shapley
Residual do diverge, for example, in the case of a 2-player simple game G2,N = (N, v), where
v(S) = (N == S) ∗ 1, and Sh(1) = Sh(2) = 1

2 . Corollary 1 demonstrates that {ϕH}H∈ ¯G2,N
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satisfies Axioms 1-5. However, G2,N is not inessential, and hence Shapley Residual is nonzero. It is
hard to interpret what the warning is in this simple game where two symmetric players each get half
of the credit. Shapley values are consistent not only in Gin, but also in other cases, such as G1 ∪ G2.
We feel that the answer to Question 1 provides a measure of limit of Shapley values.
Remark 2 (Linearity Axiom). In Subsection 3.2 of Kumar et al. (2020), it argues that the Linearity
axiom in Shapley values is not as innocent as the other three axioms, and hence Shapley values are
not entirely model-agnostic due to the restrictions posed by Linearity. This opposition to Linearity is
also partly reflected in Question 1, where we don’t want to restrict ourselves by asking for linear con-
nections with possibly irrelevant simple games. However, the “unnatural example” in Subsection 3.2
of Kumar et al. (2020) is a consequence of Symmetry. To see that, the example is f(x) =

∏d
j=1 xd,

where the features are independent and centered at 0, but their magnitude(for example std) could
differ. Using the local characteristic function vf,x = E[f(XS , XS̄)|XS = xS ], it is straightforward
to see that the local explanation game (D, vf,x) is a simple game, and Sh(i) = 1

df(x) for all i ∈ D.
Since the game (N, vf,x) is a simple game, where all the features are symmetric, it doesn’t require
Linearity axiom or any other axioms other than Symmetry to deduce that all features have the same
Shapley values.
Remark 3 (Single Inclusion and Permutation Importance). In the Shapley-value-based feature se-
letion Algorithm 1, we choose the features with the highest Sh(i), assumping Sh(i) is the “correct”
measure of importance. By Theorem 1, we can interpret Sh(i) as choosing Efficiency over Consis-
tency, if we choose Consistency over Efficiency, Algorithm 1 would turn into two most basic feature
selection frameworks : Single Inclusion (v), and Permutation Importance (v̄).

3 GROUPSHAPLEY VALUES

GroupShapley values is not entirely new, Marichal et al. (2007) already defines the concept of gener-
alized Shapley values for a set of players, and Jullum et al. (2021) studies the GroupShapley values,
to address the computational inefficiencies. We hope our results in Section 2 has convinced the
readers that an appropriate identification of players, such as grouping(clustering) the features is not
only a compromise to the computation inefficiency, but also a conceptual prerequisite.

Due to Theorem 1, in general, we cannot avoid the task of determining the set of players before
applying Shapley-value techniques. How to determine the player set? This is where the domain
knowledge of the problem comes in, for example, if one has the access to the causal graph of the
underlying features, one can group all causal descendants to their ancestors. This is an approach
suggested in Frye et al. (2020b). However, in may realistic problems, such as researchers with au-
tomatically generated financial features, we don’t have informative prior knowledge about features.
We can only rely on the data themselves, statistical methods such as clustering , PCA, can all be
applied. One can also find the clustering of features by first computing Shapley values of Gf , as in
Aas et al. (2021). Although this paper focuses on the theory, we will follow the clustering method
suggested in Chapter 4 of de Prado (2020) to compute GroupShapley values for the Boston housing
dataset Harrison Jr & Rubinfeld (1978).

Algorithm 2 GroupShapley values computation

Input: Training Data (X, y), X = [X1, . . . Xp] ∈ Rn×p, y ∈ Rn, and a learning algorithm A.
Output: A partition Π of feature set P , and the Shapley values ShGΠ

computed for GΠ.
1: Compute the distance matrix of p features in X .
2: Choose the characteristic function v : 2P → R.
3: Run K-means clustering algorithm for k ∈ [minClusters,maxClusters], and use silhouette

coefficient to find the optimal k, and the partition Π of P .
4: Compute Shapley Values for Gf,Π.

3.1 EXPERIMENT ON BOSTON HOUSE

We split the data into 75% training data, and 25% test data. We follow Algorithm 2, in which
we choose RandomForestRegressor as our learning algorithm A, and we compute distance matrix
as

√
1− |Corr|, where we compute Corr in 2 different ways, either as the correlation matrix

8
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Corr1 of feature values in training data directly, or the correlation matrix Corr2 of local Shapley
explanations Shvx(i) on the training set, i.e., we first run TreeShap for Gf . Computing correlation
this way doesn’t have the bonus advantage on computational efficiency, but would be interesting to
compare these two methods. We choose the characteristic function as R2 on the test data, and set
minClusters = 3,maxClusters = 10 for the K-means algorithm. Here are the results:

To fit in the graph, we rename features to their initials (or the first two letters in case of collisions),
and a group of features is joined by a dot, for example, CR.R.T represents the group(subset) of
features {CRIM,RAD, TAX}. Denote Πi as the output partitions computed from Corri, for
i = 1, 2. We see that while Corr1 has clearer blocks than Corr2, they actually give very similar
partitions.

(a) Distance matrix of feature values (b) Distance matrix of the local Shapley explana-
tions on training data

(c) Shapley values for Gf,Π1 (d) Shapley values for Gf,Π2

Figure 2: Distance matrix and GroupShapley values for Boston housing data, computed in 2 ways.

4 CONCLUSION

We show the Vanishing Effect for Shapley values both in theories and examples, and demonstrate
that it is imperative to properly identify the set of players before computing Shapley values for a
machine learning model. To address this player set identification problem, we introduce a novel
Consistency axiom, that characterizes the robustness against different identifications of player set,
and is specific to the machine learning setup, especially the feature selection stage. We extend Shap-
ley values to all subsets of features, and characterizes the unique family that satisfy G-Efficiency
or G-Consistency respectively. Our results show that while G-Efficiency and G-Consistency can be
achieved in special cases, such as inessential games, and 2-player games, but they are contradictory
to each other in general, and an explicit identification of the player set is unavoidable. Finally, we
suggest GroupShapley values as a partial solution to the player identification problem, and it also
has a bonus advantage on the computational efficiency.
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