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Abstract

The Retrieval Augmented Generation (RAG)001
framework utilizes a combination of parametric002
knowledge and external knowledge to demon-003
strate state-of-the-art performance on open-004
domain question answering tasks. However,005
the RAG framework suffers from performance006
degradation when the query is accompanied by007
irrelevant contexts. In this work, we propose008
the RE-RAG framework, which introduces a009
relevance estimator (RE) that not only provides010
relative relevance between contexts as previ-011
ous rerankers did, but also provides confidence,012
which can be used to classify whether given013
context is useful for answering the given ques-014
tion. We propose a weakly supervised method015
for training the RE simply utilizing question-016
answer data without any labels for correct con-017
texts. We show that RE trained with a small018
generator (sLM) can not only improve the sLM019
fine-tuned together with RE but also improve020
previously unreferenced large language mod-021
els (LLMs). Furthermore, we investigate new022
decoding strategies that utilize the proposed023
confidence measured by RE such as choosing024
to let the user know that it is “unanswerable”025
to answer the question given the retrieved con-026
texts or choosing to rely on LLM’s parametric027
knowledge rather than unrelated contexts.028

1 Introduction029

In recent years, the retrieval augmented generation030

framework has shown promising progress in natu-031

ral language generation, specifically on knowledge-032

intensive tasks. This approach has been studied in033

many forms, from traditional RAG (Lewis et al.,034

2020b), which aggregates answers from multi-035

ple contexts using document relevance scores as036

weights, to approaches like RALM (Ram et al.,037

2023), which simply utilizes concatenated con-038

text as an in-context learning approach for large-039

language models (LLMs). Retrieval augmented040

generation enhances the model’s faithfulness and041

reliability by leveraging nonparametric knowledge 042

on top of parametric knowledge (Luo et al., 2023). 043

In particular, the RAG framework has the advan- 044

tage of being easily adaptable to modern LLMs 045

(Brown et al., 2020; Touvron et al., 2023). These 046

advantages have sparked a significant amount of 047

new research (Asai et al., 2023; Lin et al., 2023; 048

Shi et al., 2023) focused on the RAG framework. 049

Despite the great potential of the retrieval aug- 050

mented generation framework, if the language 051

model is provided with contexts that are not rel- 052

evant to the query, it will be distracted by these 053

inappropriate contexts, negatively affecting the ac- 054

curacy of the answers (Yoran et al., 2023). While 055

retrievers or re-rankers in existing research have 056

been effective at measuring the relative ranking 057

across contexts to a query, these modules often fail 058

to determine whether top-ranked contexts are actu- 059

ally relevant to the query or not. Furthermore, if a 060

precise relevance score is not used in the traditional 061

RAG framework, it can cause problems such as 062

directing attention to documents that are less likely 063

to answer the query. 064

In this work, we propose the RE-RAG framework, 065

which extends traditional RAG by incorporating a 066

relevance estimator (RE) to simultaneously measure 067

the precise relative relevance between retrieved con- 068

texts and evaluate their confidence, which can be 069

used to classify whether given context is useful 070

for answering the given question. By more accu- 071

rately measuring the relative relevance between 072

contexts, RE computes precise relevance scores 073

suitable for weighted aggregated answers in the 074

traditional RAG framework and also acts as an ef- 075

ficient reranker. RE trained on a small generator 076

(sLM) not only benefits sLM fine-tuned together 077

with RE but can also be separated and applied to 078

LLMs as well, benefiting both. 079

By explicitly classifying whether the context is 080

useful for answering the query, the confidence of 081

context measured by RE provides various decod- 082
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ing strategies. If the retrieved context set is ir-083

relevant, we can choose to classify the query as084

“unanswerable”, while maintaining most of the ac-085

curacy for the answerable set. Additionally, if a086

low-confidence context set is retrieved, which will087

likely result in wrong answers by parroting the con-088

text as is (Jia and Liang, 2017), we can instead089

selectively leverage the LLM’s parametric knowl-090

edge to improve answer accuracy in most cases.091

The main contributions of our work are:092

1. We propose a new framework called RE-RAG093

by adding an external Relevance Estimator094

(RE) module. We further suggest a weak super-095

vision training method that can train RE with-096

out explicit labeled data on question-context097

compatibility. (§2.2)098

2. We demonstrate that RE-RAG, enhanced with099

RE, significantly improves upon the existing100

RAG. Addtionally, we show that RE trained101

on a small language model can improve the102

answer performance of LLMs. (§4.1)103

3. We propose to use the confidence level of the104

context set measured by RE to answer “unan-105

swerable” for unanswerable context sets with106

minimal negative effects, or to complement107

LLM’s parametric knowledge. (§5.1)108

2 Method109

In this section, after reviewing the traditional RAG110

framework, we present the RE-RAG model com-111

bined with our relevance estimator.112

2.1 Traditional RAG overview113

Retriever Retriever searches for information in114

an external knowledge base and returns a related115

context set Ci. In general, RAG systems use a116

bi-encoder type retriever such as DPR (Karpukhin117

et al., 2020), which is effective and fast in retriev-118

ing information. A question qi ∈Q and a context119

cj ∈ Ci are input to the encoder independently to120

obtain an embedding of Embq = Encoder(qi),121

Embc = Encoder(cj). The similarity score122

Si,j = Embq · Embc is calculated from the ob-123

tained embedding and then used to perform top-k124

context retrieval.125

Generator Generators that utilize the sequence-126

to-sequence model typically take a question and127

context as input and produce an answer yi,j with128

probability PG(yi,j |qi, cj).129

Figure 1: Overview of our proposed RE-RAG frame-
work. The black lines represent the flow of information
and the red lines represent the flow of gradients.

Answer marginalization RAG (Lewis et al., 130

2020b) introduced the answer generation models of 131

RAG-sequence and RAG-token. We focus on the 132

RAG-sequence model which marginalizes proba- 133

bility of yl ∈ Yi where Yi is an aggregated set of 134

yi,j . which achieves higher performance than the 135

RAG-token model and ensures the interpretability 136

of the answer generation process. Individually gen- 137

erated answers yi,j per cj are marginalized as yl 138

using the similarity score Si,j as shown in eq.(2). 139

PR(Si,j) =
eSi,j∑
k e

Si,k
(1) 140

Pa(yl|qi,Ci) =
∑
j

PR(Si,j) ·PG(yl|qi, cj) (2) 141

142

2.2 RE-RAG framework 143

The retriever similarity score Si,j is trained to 144

achieve high recall when retrieving multiple con- 145

texts, however, it was not initially designed to pro- 146

vide fine-grained relevancy score PR(Si,j) for aid- 147

ing RAG generation steps in eq.(2). To address this 148

issue, we propose a relevance estimator (RE) that 149

re-ranks contexts and provides precise relevance 150

scores to the generator. 151

Relevance Estimator Relevance estimator (RE) 152

measures the relevance between a question and con- 153

text. We utilize a similar architecture to Nogueira 154

et al. (2020) which utilizes a sequence-to-sequence 155

model as a passage reranker. 156

Our RE receives the same input of question and 157

context as the generator, but is trained to generate 158

a classification token ("true" or "false") based on 159

the relevance of the context to the input question. 160

We normalize the probability of generating "true" 161

and "false" tokens to get the final probability of 162

generating the classification token. The obtained 163

probability of a "true" token can independently be 164
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an indicator of the relevance of a single context165

to a given question. When comparing between166

multiple contexts, the "true" token probability can167

be converted to logit and used as the relevance168

score of the retrieved context.169

REi,j =
P(“true”|qi, cj)

P(“true”|qi, cj) +P(“false”|qi, cj)
(3)170

Reranking of contexts by relevance With the171

trained relevance estimator RE, we can rerank con-172

texts in the initial retrieved set Ci by their relevance173

and only take top-k contexts to redefine Ci before174

the answer-generation step. With a precise rele-175

vance score from RE, we can expect the RE-RAG to176

be more efficient, i.e. stronger performance with177

lower computation (see §4.2).178

Answer marginalization with context RE The179

question and context are concatenated and input180

to the generator model, and the generator gener-181

ates PG(yi,j |qi, cj) per question. We replace the182

probability distribution PR(Si,j) in eq.(2) with the183

relevance scores from context RE to form eq.(6) as184

following:185

σ(REi,j) = log

(
REi,j

1−REi,j

)
(4)186

PRE(qi, cj) =
eσ(REi,j)∑
k e

σ(REi,k)
(5)187

Pa(Yi|qi,Ci) =
∑
j

PRE(qi, cj) ·PG(yi,j |qi, cj).

(6)

188

We can expect higher performance with the189

marginalized answer yl if RE can provide an accu-190

rate relevance distribution PRE (see §5.2).191

2.3 Joint training of RE-RAG192

We propose to utilize three different types of losses193

to train RE-RAG with our proposed relevance esti-194

mator. First, to train the generator model, we use195

a loss that combines the commonly used negative196

likelihood loss for ground truth ai with a probabil-197

ity that represents the relevance of the question and198

context.199

Lgen = −
∑
i,j

log (PRE(qi, cj) ·PG(ai|qi, cj)) (7)200

Lgen simultaneously adjusts the probability of201

generating the classification token for the relevance202

estimator while training the generator.203

Second, to obtain a learning signal for train- 204

ing the relevance estimator, we calculate the log- 205

likelihood loss of the generator per retrieved con- 206

text and compute its distribution across contexts as 207

follows: 208

Fi,j = log(PG(ai|qi, cj)) (8) 209

QG(qi, cj) =
eFi,j∑
k e

Fi,k
. (9) 210

The log-likelihood loss varies depending on 211

whether an answer can be inferred from the input 212

context. Therefore, applying the softmax function 213

to the log-likelihood loss values yields a probability 214

distribution that represents the relevance between 215

the given set of contexts and the question. We do 216

not leverage any labeled data that entails the rele- 217

vance of questions and contexts. 218

QG(qi, cj) represents relative relevance be- 219

tween qi and cj 220

We calculate the KL-divergence loss between 221

the probability distributions of the generator and 222

the RE, and use this loss to train the model. 223

Lre = DKL(PRE(qi, cj)||QG(qi, cj)) (10) 224

Lastly, in addition to applying a training loss on 225

the probability of generating the classification to- 226

ken, we need to set an additional loss to prevent the 227

RE from generating tokens other than the classifica- 228

tion token. To do this, we utilize the additional loss 229

as the sum of the probability of RE of generating 230

all tokens other than classification token. 231

Ltok =
∑

t∈T\{"true","false"}

P(t|qi, ck) (11) 232

To train an effective system, the two models are 233

trained jointly utilizing all three losses as follows: 234

Ltot = Lgen + α1Lre + α2Ltok (12) 235

where α1 and α2 are hyperparameters that act as 236

scaling factors to balance the impact of each loss. 237

3 Experimental Setup 238

We evaluated the performance of our model on 239

an open-domain QA dataset. In this section, we 240

describe the dataset we used in our experiments 241

and the details of our experiments. 242

3



Model Extra Generator NQ TQA # Contexts

Small language models (≤ 2B)

RAG (Lewis et al., 2020b) - 445M 44.5 56.8 50
FiDbase (Izacard and Grave, 2021b) - 220M 48.2 65.0 100
FiDlarge (Izacard and Grave, 2021b) - 770M 51.4 67.6 100
FiD-KDbase (Izacard and Grave, 2021a) - 220M 50.1 69.3 100
FiD-KDlarge (Izacard and Grave, 2021a) - 770M 54.4 72.5 100
ReAtt (Jiang et al., 2022) - 770M 54.7 - 100
FiD-KDbase (Izacard and Grave, 2021a) - 220M 48.6 67.4 25
FiD-KDlarge (Izacard and Grave, 2021a) - 770M 53.9 71.2 25
R2-D2 (Fajcik et al., 2021) 125M 1.04B 55.9 69.9 25
RE-RAGbase 220M 220M 49.9 68.2 25
RE-RAGmixed 770M 220M 51.4 69.5 25
RE-RAGlarge 770M 770M 54.0 70.2 25

Large language models (≥ 7B)

Self-RAG7B (Asai et al., 2023) - 7B - 66.4 5
Self-RAG13B (Asai et al., 2023) - 13B - 69.3 5
Llama27b + RE 770M 7B 45.7 67.1 5
Llama213b + RE 770M 13B 46.6 70.8 5

RA-DIT (Lin et al., 2023) - 65B 43.9 75.1 10
Llama270b + FiD-KDret - 70B 38.1(40.7) 63.5(66.3) 10
Llama370b + FiD-KDret - 70B 39.5(46.8) 68.1(72.1) 10
ChatGPT + FiD-KDret - 175B 42.9(45.9) 69.0(70.7) 10
Codex + REPLUG LSR (Shi et al., 2023) - 175B 45.5 77.3 10
Llama38b + RE 770M 8B 49.6 73.0 10
Llama270b + RE 770M 70B 48.0 72.4 10
Llama370b + RE 770M 70B 50.8 75.5 10
ChatGPT + RE 770M 175B 49.3 72.6 10

Table 1: EM scores on Natural Questions and TriviaQA datasets. The parameters of the generator and the extra
module that evaluates a given context are listed separately. # Contexts refer to the number of contexts utilized for
inference. For an effective comparison, we divided the groups based on the size of the generator model and the
number of contexts utilized for inference. Our experiment results on all LLMs (≥ 7B) follow traditional RAG
method, which aggregates answers by context. In the case of applying the FiD-KD retriever to LLMs, the numbers
in the (right) represent the RALM method, which concatenates contexts to generate answers. We provide this extra
result to fairly compare with FiD-KD retriever as it did not provide a suitable relevance score for the traditional
RAG method to perform well. The bold is the best score in each group, and the underline is the second best.

3.1 Dataset243

We evaluate our performance on two open-domain244

QA datasets:Natural Questions (Kwiatkowski et al.,245

2019), TriviaQA (Joshi et al., 2017). To train and246

evaluate our model, we utilize the context datasets247

retrieved for each question from NQ and TQA, as248

used in FiD-KD (Izacard and Grave, 2021a) and249

Akari (Asai et al., 2022). The dataset includes the250

top-20 training contexts, while the dev and test251

sets contain the top-100 contexts retrieved by the252

retriever. We used 20 contexts for training and253

the top-25 contexts extracted by the RE from the254

top-100 retrieved contexts for inference.255

Natural Questions Natural Questions256

(Kwiatkowski et al., 2019) is a dataset of257

real questions asked by users on the web. The258

dataset consists of questions collected from the259

web, a long answer that can be viewed as gold260

context for the question, and a short answer with a261

short span. The open-domain QA version dataset262

of Natural Questions is a dataset that collects 263

only questions where the answer span of the short 264

answer is 5 tokens or less in length. We use the 265

NQ-open dataset. 266

TriviaQA TriviaQA (Joshi et al., 2017) is a dataset 267

of question-answer pairs collected from trivia en- 268

thusiasts. Each question and answer in the dataset 269

has been reviewed by human annotators. We want 270

to use the unfiltered version of TriviaQA dataset. 271

3.2 Evaluation Metric 272

The predicted answers are evaluated using EM 273

score, a commonly used metric as in Izacard and 274

Grave (2021b), Rajpurkar et al. (2016). The gener- 275

ated answers are normalized (e.g., lowercase, punc- 276

tuation, article stripping) and compared to the cor- 277

rect answers in the dataset. We consider a gener- 278

ated answer to be correct if it exactly matches one 279

of the correct answers in the given dataset after 280

normalization. 281
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3.3 Baseline282

We investigate whether the performance of RE-RAG283

is competitive with that of the FiD (Izacard and284

Grave, 2021b)-based system. FiD has achieved285

excellent performance on the Question-Answering286

task, and the FiD-based application system also287

outperforms the RAG (Lewis et al., 2020b)-based288

system on the QA task.289

We consider an additional baseline to compare290

the performance of RE when applied to LLMs. We291

compare the performance of RE and FiD-KD re-292

triever when applied to LLMs. When applying293

the FiD-KD retriever to LLMs, we compared two294

methods: traditional RAG, which uses the retriever295

similarity score to perform answer marginalization,296

and RALM, which concatenates all context. Fur-297

thermore, we compare our performance with other298

studies (Asai et al., 2023; Lin et al., 2023; Shi et al.,299

2023) that have implemented RAG in LLMs.300

3.4 Model301

The two components of our framework, RE and302

the generator, utilize the T5 model (Raffel et al.,303

2020). We utilize the T5-base, T5-large models,304

and explore three different model sizes depending305

on the combination of the two models.306

Additionally, we utilize Llama2 (7B, 13B, 70B),307

Llama3 1 (8B, 70B), and ChatGPT (“gpt-3.5-turbo-308

0125” version) as generators to assess if RE brings309

performance improvements when applied to LLMs.310

In our experiments, the LLMs used as generators311

are not fine-tuned for the downstream task.312

4 Experiment Results313

We investigate the QA performance of the RAG314

system with our newly proposed relevance estima-315

tor (RE). In addition to the QA performance of the316

whole system, we also examine the performance of317

the RE independently.318

4.1 Main Results319

The overall accuracy of our system on the two320

datasets (NQ and TQA) is shown in Table 1. Com-321

pared to the traditional RAG, our system, RE-RAG,322

performs better despite having the same total num-323

ber of parameters. Our proposed RE improves the324

reliability of the RAG system by more accurately325

measuring the relevance between question and con-326

text. Our model performed competitively with327

1https://github.com/meta-llama/llama3

Dataset Model Recall@k
R@1 R@5 R@10 R@20

NQ

FiD-KD 49.4 73.8 79.6 84.3
MonoT5large 46.2 72.4 80.1 84.7
RE-RAGbase 59.5 77.8 82.7 85.5
RE-RAGlarge 61.9 79.4 83.6 86.4

TQA

FiD-KD 60.1 77.0 80.9 83.6
MonoT5large 64.7 79.7 82.9 84.8
RE-RAGbase 67.0 81.5 83.6 85.4
RE-RAGlarge 70.4 82.2 84.4 86.1

Table 2: Performance of RE as a re-ranker. The re-
ranking performance for the top-100 contexts retrieved
by the FiD-KD retriever is denoted by recall@k.

Dataset Model Recall Precision F1

NQ

FiD-KD 73.2 21.9 33.7
MonoT5large 10.3 31.0 15.5
RE-RAGbase 51.3 33.9 40.9
RE-RAGlarge 45.9 38.3 41.7

TQA

FiD-KD 64.3 24.5 35.5
MonoT5large 27.2 34.2 30.3
RE-RAGbase 38.9 46.7 42.5
RE-RAGlarge 39.0 43.2 41.0

Table 3: Classification results for context sets that do
not contain an answer within the top-25 context set. We
used cosine similarity for FiD-KD’s retriever and “true”
token probability for our method and MonoT5.

models based on FiD structures(Izacard and Grave, 328

2021a; Jiang et al., 2022; Fajcik et al., 2021). 329

The accuracy of the RE module when applied to 330

Large Language Models (LLMs) is shown at the 331

bottom of Table 1. We only included the RAG- 332

based model in our comparison because the FiD- 333

based model is not applicable to LLMs due to struc- 334

tural differences. The RE module outperforms the 335

FiD-KD retriever when applied to LLMs. When 336

the RE module is applied to Llama2, it surpasses 337

the Self-RAG, where the LMs themselves inspect 338

the retrieved context and generated answers. In 339

TQA, REPLUG with Codex scores slightly higher. 340

The performance of TQA seems to depend more 341

on the generator model than NQ (see Figure 2 for 342

a related discussion), and we believe that this is the 343

reason for the performance difference with Codex. 344

Our model performs better on NQ, which is a more 345

knowledge intensive task. 346

4.2 Performance of RE as a reranker and 347

unanswerable set classifier 348

Table 2 shows the performance of our proposed 349

RE-RAG’s RE as a reranker. For the Recall@k met- 350

ric, we use the retrieval accuracy used by DPR 351

(Karpukhin et al., 2020), FiD-KD (Izacard and 352

5
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Dataset Model Score Answerable context set
O X

NQ

RE-RAGbase FiD-KD 58.3 → 32.7 73.4
RE-RAGbase RE 58.3 → 54.9 51.3
RE-RAGlarge FiD-KD 61.5 → 34.9 71.3
RE-RAGlarge RE 61.5 → 57.9 45.9

TQA

RE-RAGbase FiD-KD 78.7 → 51.2 63.5
RE-RAGbase RE 78.7 → 77.0 38.9
RE-RAGlarge FiD-KD 80.4 → 51.6 62.7
RE-RAGlarge RE 80.4 → 77.9 39.0

Table 4: We examine whether RE can successfully iden-
tify unanswerable scenarios where retrieved contexts do
not hold true answers. O refers to the retrieval context
set that contains true answers and X refers to the set
without which we dim as unanswerable. Under the X,
we denote the classification accuracy for the unanswer-
able set. Under the O, we denote the accuracy change as
the RE thresholding will inevitably classify the context
sets with answers as unanswerable. Left of the arrow
denotes original accuracy on O and the right denotes
accuracy after RE score thresholding.

Grave, 2021a), and ColbertQA (Khattab et al.,353

2021). Although the comparison retriever has been354

enhanced through knowledge distillation methods355

using FiD attention scores, our proposed RE still356

demonstrated superior performance. In particu-357

lar, RE performs better as the number of contexts358

decreases, which means that RE is more efficient359

when there are fewer contexts to utilize.360

Table 3 shows the performance of the context361

relevance estimator (RE) as a “unanswerable” set362

classifier. “unanswerable” set means that the con-363

text set of the top-25 contexts does not contain a364

gold answer in any context. For classification, we365

used the cosine similarity score of the hidden rep-366

resentation of the question and context for retriever367

and the probability of generating a “true” token by368

the model for RE and MonoT5 (Nogueira et al.,369

2020). For the optimal threshold, we searched for370

the value that maximizes F1 score in steps of 0.1371

from 0.5 to 0.9 at dev set.372

Our RE showed better “unanswerable” set clas-373

sification performance than FiD-KD retriever or374

MonoT5 based on F1 score. Looking at the detailed375

performance, we found that the retriever performed376

better for recall, but the RE performed better for377

precision. This is because the retriever classified378

a large number of context sets as all “unanswer-379

able” sets, while our proposed RE showed a good380

balance between precision and recall.381

5 Analysis 382

5.1 Exploring decoding strategies in low 383

confidence context sets 384

In this section, we review two strategies that can be 385

used when a context set with a low confidence score 386

is retrieved. The confidence score for a context 387

set is determined using the maximum value of the 388

“true” token probability computed by RE for the 389

contexts within the set. We examine the strategy of 390

answering “unanswerable” when a low confidence 391

context set is returned in a small Language Model 392

(sLM), where parametric knowledge is scarce. Ad- 393

ditionally, we examine the strategy of directly uti- 394

lizing parametric knowledge in Large Language 395

Models (LLMs), where parametric knowledge is 396

abundant. 397

Classify as “unanswerable” Table 4 shows the 398

change in accuracy after letting the model respond 399

with “unanswerable” when the retrieved context set 400

has low confidence. For the confidence threshold 401

value that determines whether the model should 402

respond with “unanswerable”, we chose the value 403

that optimizes the classification performance as 404

determined in Table 3. We evaluate the accuracy 405

by dividing the entire test set into answerable sets, 406

which contain at least one gold answer in the con- 407

text set, and unanswerable sets, which contain 408

none. 409

Our RE model shows relatively minor accuracy 410

loss on the answerable set when responding with 411

“unanswerable” for context sets measured with low 412

confidence, but gains significant ability on the unan- 413

swerable set. In contrast, the FiD-KD retriever 414

loses a substantial amount of accuracy on the an- 415

swerable set when it responds with “unanswerable” 416

for low-confidence context sets, resulting in a larger 417

negative effect compared to our model. If we want 418

to preserve the answerable set accuracy of the FiD- 419

KD retriever, its ability to classify “unanswerable” 420

is significantly reduced compared to RE (see Ap- 421

pendix E). 422

Selectively using parametric knowledge We 423

further explore how we can effectively utilize the 424

rich parametric knowledge of LLMs. When the 425

confidence of the retrieved context is low, we ex- 426

amine a mixed strategy that optionally bypasses the 427

context and relies solely on the parametric knowl- 428

edge of the largest model to generate the correct 429

answer. For the confidence threshold value that 430

determines whether the model should answer us- 431

ing only parametric knowledge, we selected the 432
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P-Generator R-Generator NQ TQA

Llama270b
(NQ: 31.1/TQA: 64.3)

Llama27b 46.2 → 45.9(-0.3) 68.0 → 69.3(+1.3)
Llama213b 47.3 → 46.5(-0.8) 71.5 → 72.1(+0.6)
Llama270b 48.0 → 46.9(-1.1) 72.4 → 72.9(+0.5)

Llama370b
(NQ: 41.3/TQA: 75.1)

Llama38b 49.6 → 49.8(+0.2) 73.0 → 75.4(+2.4)
Llama370b 50.8 → 50.8(-) 75.5 → 76.7(+1.2)

ChatGPT
(NQ: 37.7/TQA: 72.0)

ChatGPT 49.3 → 49.3(-) 72.6 → 73.6(+1.0)

Table 5: Change in EM scores when utilizing the LLM’s
parametric knowledge for low-confidence context sets.
P-Generator model, which relies solely on its paramet-
ric knowledge, has EM scores shown below its name.
R-Generator refers to a model that utilizes RAG. For
both datasets, the confidence score threshold for model
selection is set to 0.7. See appendix D for results on
FiD-KD retriever.
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Figure 2: The relationship between confidence score
and accuracy by model size. RAG means that the model
utilizes contextual knowledge and Parametric means
that the model utilizes only parametric knowledge with-
out external knowledge.

value that optimizes classification performance as433

determined in Table 3. For each type of model, we434

utilize the one with the largest number of parame-435

ters as the parametric knowledge base.436

Table 5 shows the change in accuracy when de-437

coding the answer using the mixed strategy. In438

most cases, our strategy achieves accuracy gains439

in TQA without significant losses in NQ, except440

in cases where parametric knowledge is particu-441

larly scarce, such as in NQ on Llama2. NQ is a442

more knowledge-intensive task compared to TQA,443

Model NQ TQA
Baseline 39.5 54.9
Baseline w/ RE score 43.1 60.1
Baseline w/ RE rerank 46.8 63.9
Baseline w/ RE rerank, score 49.6 67.8
RE-RAGbase 49.9 68.2

Table 6: An ablation study to decompose the effect
of RE in RE-RAG. We compared the traditional RAG
model without RE, with reranking of RE (RE rerank),
with RE score in answer generation (RE score), and
with both (RE rerank, score).

where there is less benefit from utilizing parametric 444

knowledge. 445

When parametric knowledge can be used effec- 446

tively, the mixed strategy achieves larger gains in 447

smaller models, and the performance gap narrows 448

compared to larger models. Figure 2 illustrates 449

the relationship between confidence score and ac- 450

curacy by model size. At high confidence scores 451

on the TQA dataset, small size models achieve 452

similar accuracy to large size models. At low con- 453

fidence scores, the difference in performance be- 454

tween small and large models becomes more pro- 455

nounced. When using small size models, higher 456

efficiency can be achieved by utilizing retrieval aug- 457

mented generation only when a high confidence 458

context set is retrieved, and selectively leverag- 459

ing the parametric knowledge of large size models 460

when a low confidence context set is retrieved. 461

5.2 Ablation Study 462

Effectiveness of RE We perform an ablation study 463

to investigate the effectiveness of the added RE in 464

RE-RAG. The effect of our proposed RE is twofold. 465

First, it performs better re-ranking than the re- 466

triever, selecting more accurate context and passing 467

it to the generator. Second, it calculates a more ac- 468

curate relevance score than retriever’s similarity 469

score and uses it in the answer marginalization pro- 470

cess. In Table 6, the performance of methods with 471

each component of the RE added is presented, us- 472

ing a model that was trained with only the T5-base 473

generator, after removing the RE, as the baseline. 474

We construct the following experiment to isolate 475

the two effects. First, we apply the top 25 contexts 476

from retriever and their similarity scores to the 477

baseline model. Next, there are the top-25 contexts 478

from the retriever with the RE’s score applied (RE 479

score) and the top-25 contexts from the RE with 480

the retriever’s similarity score applied (RE rerank). 481

Finally, we compare the performance of applying 482

7



Model NQ TQA
Baseline 0.435 0.561
- normalization 0.0005 0.0002

Table 7: Average value of the probability that RE gener-
ates the "true" token for answerable contexts when the
normalization process is removed.

the RE’s top-25 contexts and score to the baseline483

model (RE rerank, score).484

Both effects of the RE are found to be signifi-485

cant in improving the performance of the baseline486

model. This shows that not only the quality of the487

context input to the generator plays an important488

role, but also the score, which means the impor-489

tance of each context.490

Remove training components We investigate491

the impact of removing the regularization process492

in eq.(3) on the classification performance of RE493

while training on the RE-RAGbase model. Table 7494

shows how the “true” token probability level output495

by the RE changes when the normalization process496

is removed. It can be seen that when the normal-497

ization process is removed, RE can only perform498

the function of re-ranking but loses the function499

of measuring confidence. This is because the nor-500

malization process allows the model to adjust its501

output strictly between “true” and “false” tokens.502

Table 8 shows the difference in EM scores on503

the dev set when Lre is removed from the train-504

ing process. We observed that removing Lre from505

the training process decreases answer performance.506

We believe that Lre contributes to achieving more507

optimal performance by using loss information508

from generator to directly propagate the relative509

importance of contexts to the RE.510

6 Related Works511

Previous research has shown that the performance512

of Question Answering systems can be improved513

by utilizing external knowledge about questions514

(Chen et al., 2017). Methods for more accurate515

retrieval of external knowledge (Karpukhin et al.,516

2020; Khattab et al., 2021; Gao and Callan, 2022)517

have been studied to make these systems more ef-518

ficient. In open-domain QA, models that extract519

and use answers from retrieved documents have520

been studied (Karpukhin et al., 2020; Khattab et al.,521

2021; Cheng et al., 2021), but studies that utilize522

generative models such as T5 (Raffel et al., 2020)523

or BART (Lewis et al., 2020a) have become more524

common (Lewis et al., 2020b; Izacard and Grave,525

Model NQ TQA
Baseline 49.1 67.8
- Lre 48.0 66.7

Table 8: Difference in EM scores on the dev set when
Lre is removed from the training process.

2021b). RAG and FiD achieved powerful perfor- 526

mance in open-domain QA using different methods. 527

Subsequently, models (Izacard and Grave, 2021a; 528

Fajcik et al., 2021; Singh et al., 2021; Jiang et al., 529

2022) that leverage and improve upon the struc- 530

tural advantages of FiD have been proposed. For 531

Atlas (Izacard et al., 2022), state-of-the-art perfor- 532

mance was achieved through an improved retriever 533

(Izacard et al., 2021) and scaling up the model. In 534

the case of RAG, there is a study that improved 535

performance by introducing a BERT (Devlin et al., 536

2019)-based reranker (Glass et al., 2022), but it 537

utilized additional data and high-quality label data 538

when training the reranker. 539

Recently, large language models (LLMs) such 540

as GPT (Brown et al., 2020) and Llama (Touvron 541

et al., 2023), which have been developed in re- 542

cent years, face limitations with FiD methods that 543

require encoded data. Consequently, research on 544

RAG models, which can directly input context, has 545

received renewed attention. (Asai et al., 2023; Lin 546

et al., 2023; Shi et al., 2023) These approaches have 547

achieved performance improvements by training a 548

retriever, which can also be applied to LLMs, or 549

by performing the review of questions and context 550

within the model itself. 551

7 Conclusion 552

We propose the RE-RAG framework, which extends 553

traditional RAG by incorporating RE that can mea- 554

sure the relative relevance and confidence of con- 555

texts. We demonstrate that the RE-RAG framework 556

can enhance the performance of traditional RAG. 557

We show that the RE module, as a detachable 558

component, can be combined with modern large 559

language models (LLMs) to improve their perfor- 560

mance. Furthermore, we exploree some decod- 561

ing strategies that leverage the confidence informa- 562

tion measured by the RE module to either answer 563

“unanswerable” or selectively utilize the parametric 564

knowledge of the LLMs when a low confidence 565

context set is retrieved. We hope that our research 566

will inspire the exploration of various additional 567

modules for retrieval-augmented generation. 568
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8 Limitation569

Our research has primarily focused on improving570

answer performance in single-hop QA tasks. We571

have not sufficiently verified the effectiveness of572

our proposed framework in multi-hop QA tasks.573

We believe that in the future, we can explore574

whether the RE-RAG framework can be extended575

to multi-hop QA.576

In our work, we explored a decoding strategy577

that measures with confidence whether a context578

is truly useful for a query and classifies low confi-579

dence contexts as unanswerable. However, a truly580

unanswerable query is one where the query cannot581

be adequately answered even when utilizing the582

model’s parametric knowledge. We believe that583

future research needs to be conducted to detect584

whether the parametric knowledge has knowledge585

that can adequately answer the query in order to586

finally classify the unanswerable problem.587
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Question Context Gold Answer "True" prob

who played mark on the show
the rifleman

...Mark McCain is the son of fictitious rancher Lucas
McCain in the ABC Western television series "The Rifle-
man," starring Chuck Connors, which ran from 1958 to 1963.
Singer/actor and former Mouseketeer Johnny Crawford was
cast in the role and...

John Ernest Crawford 0.987

when does the cannes film fes-
tival take place

...2017 Cannes Film Festival The 70th Cannes Film Festi-
val took place from 17 to 28 May 2017, in Cannes, France
...

Cannes, France, usually in May 0.994

how many strong verbs are
there in german

...Germanic strong verbs are commonly divided into 7
classes, based on the type of vowel alternation. This is in turn
based mostly...

more than 200, more than 200 strong 0.949

how many episodes of corrie
has there been

...The show airs six times a week: Monday, Wednesday and
Friday 7:30-8 pm and 8:30-9 pm. Since 2017, ten sequential
classic episodes of the series from 1986...

9,436 0.147

Table 10: The relevance measure of the question and context output by the RE. The first two show relevant contexts
that contain the correct answer even if the context does not include exactly the same surface form compared to the
true answer. The last two examples show irrelevant contexts that actually have high overlap with question tokens,
however, without pertaining the correct answer.

B Training Details777

We used T5-base with a parameter size of 223M778

and T5-large model with a parameter size of 770M779

as modulators in all experiments. We trained780

the RE-RAGbase system on 4 A6000 GPUs, while781

RE-RAGmixed and RE-RAGlarge were trained on 2782

A100 and 4 A100 GPUs, respectively.783

We used a constant learning rate of 10−4 for all784

sizes of RE-RAG systems. We used AdamW as the785

optimizer and weight decay was 10−3. For batch786

size, we used gradient accumulation for all sizes of787

models, resulting in an effective batch size of 64.788

For the hyperparameters that balance the proposed789

losses, we utilized the default value of 1 for both α1790

and α2. We did not explore hyperparameters that791

achieve better performance due to time and limited792

computing resources.793

For model selection, we evaluated every 1 epoch794

and selected the case with the highest answer accu-795

racy of the dev set. The dev set answer accuracy796

was measured using the top-10 context of the RE.797

Since the answer accuracy of the top-10 context798

of the RE is similar to the answer accuracy of the799

top-25 context, this helped to save computational800

resources and time while still producing valid re-801

sults.802

C Effectiveness of the RE803

We perform a qualitative analysis to see if our pro-804

posed relevance estimator (RE) is effectively clas-805

sifying relevant contexts. Table 3 shows a few806

contexts in the NQ test set.807

Some of the contexts that the RE predicts are808

highly relevant to the question even when they do809

P-Generator R-Generator NQ TQA

Llama270b
(N31.1/T64.3)

Llama27b 36.1 → 35.8(-0.3) 58.4 → 62.8(+4.4)
Llama213b 38.8 → 36.9(-1.9) 64.9 → 65.4(+0.5)
Llama270b 40.7 → 37.4(-3.3) 66.3 → 66.2(-0.1)

Llama370b
(N41.3/T75.1)

Llama38b 38.2 → 42.1(+3.9) 57.6 → 66.9(+9.3)
Llama370b 46.8 → 45.6(-1.2) 72.1 → 74.0(+1.9)

ChatGPT
(N37.7/T72.0)

ChatGPT 45.9 → 43.2(-2.7) 70.7 → 72.1(+1.4)

Table 11: The change in EM score when using the co-
sine similarity score of the FiD-KD retriever for the con-
fidence score, when utilizing LLM’s parameter knowl-
edge for a set of low confidence contexts. The thresholds
were set to 0.7 for NQ and 0.6 for TQA, as specified in
Table 3.

not contain the exact ground truth answer. The 810

first few examples in Table 3 are examples that are 811

categorized as true context because they contain 812

phrases that are semantically equivalent to the cor- 813

rect answer albeit not having the exact same form 814

in the context. This shows that although the RE is 815

trained to measure the relevance of a question to 816

a context through a limited set of ground truth an- 817

swers, it is actually capable of measuring a broader 818

range of relevance. 819

In addition to the examples above, there are cases 820

where the RE misclassified contexts as containing 821

the correct answer. As shown in the example in 822

Table 10, the RE classified the context containing 823

“the number of classes of strong verbs in German” 824

as the correct context for the question about “the 825

number of strong verbs in German”, which means 826

that our RE is still limited in its ability to capture 827

the fine-grained meaning of the question in the 828

retrieved context. On the other hand, in the last 829

example, for the question about “the number of 830
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Dataset Type Threshold
0.5 0.6 0.7 0.8 0.9

NQ
Answerable 61.3 56.2 34.9 6.4 0.0
Unanswerable 2.3 27.8 71.3 97.2 99.8

TQA
Answerable 77.3 51.6 9.2 0.1 0.0
Unanswerable 14.3 62.7 94.7 100.0 100.0

Table 12: Performance variation of FiD-KD retriever on
answerable and unanswerable sets for different thresh-
olds.

episodes”, it succeeded in classifying the context831

containing “the number of classical episodes” as832

an incorrect context.833

D Selectively using parametric knowledge834

with FiD-KD835

Table 11 shows the change in EM score when ap-836

plying the mixed decoding strategy, using the co-837

sine similarity score of the FiD-KD retriever as the838

confidence score. For small parameter generators,839

the EM score is low when applying the FiD-KD840

retriever to LLMs, which results in a high gain841

when utilizing parametric knowledge of large pa-842

rameter models. However, since the classification843

performance of the FiD-KD retriever is lower than844

that of RE, even utilizing parametric knowledge845

does not significantly outperform the baseline per-846

formance of parametric knowledge. Especially for847

more knowledge-intensive tasks such as NQ, the848

performance loss is substantial.849

E FiD-KD retriever’s performance in850

“unanswerable” scenarios851

Table 12 shows the performance of the FiD-KD re-852

triever in unanswerable scenarios according to dif-853

ferent threshold values. For the FiD-KD retriever,854

it is observed that while trying to maintain per-855

formance on the answerable set, the classification856

ability on the unanswerable set significantly de-857

creases.858
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