
PROGPROMPT: Generating Situated Robot Task Plans
using Large Language Models

Ishika Singh1 Valts Blukis2 Arsalan Mousavian2 Ankit Goyal2 Danfei Xu2

Jonathan Tremblay2 Dieter Fox2 Jesse Thomason1

Animesh Garg2

1University of Southern California, 2NVIDIA

Abstract

Task planning can require defining myriad domain knowledge about the world
in which a robot needs to act. To ameliorate that effort, large language models
(LLMs) can be used to score potential next actions during task planning, and
even generate action sequences directly, given an instruction in natural language
with no additional domain information. However, such methods either require
enumerating all possible next steps for scoring, or generate free-form text that may
contain actions not possible on a given robot in its current context. We present a
programmatic LLM prompt structure that enables plan generation functional across
situated environments, robot capabilities, and tasks. Our key insight is to prompt
the LLM with program-like specifications of the available actions and objects in
an environment, as well as with executable example programs. We make con-
crete recommendations about prompt structure and generation constraints through
ablation experiments, demonstrate state of the art success rates in VirtualHome
household tasks, and deploy our method on a physical robot arm for tabletop tasks.

1 Introduction

Everyday household tasks require both commonsense understanding of the world and situated
knowledge about the current environment. To create a task plan for “Make dinner,” an agent needs
common sense: object affordances, such as that the stove and microwave can be used for heating;
logical sequences of actions, such as an oven must be preheated before food is added; and task
relevance of objects and actions, such as heating and food are actions related to “dinner” in the first
place. However, this reasoning is infeasible without state feedback. The agent needs to know what
food is available in the current environment, such as whether the freezer contains fish or the fridge
contains chicken.

Autoregressive large language models (LLMs) trained on large corpora to generate text sequences
conditioned on input prompts have remarkable multi-task generalization. This ability has recently
been leveraged to generate plausible action plans in context of robotic task planning Huang et al.
[2022b,a], Zeng et al. [2022], Ahn et al. [2022] by either scoring next steps or generating new steps
directly. In scoring mode, the LLM evaluates an enumeration of actions and their arguments from the
space of what’s possible. For instance, given a goal to “Make dinner” with first action being “open
the fridge”, the LLM could score a list of possible actions: “pick up the chicken”, “pick up the soda”,
“close the fridge”, . . . , “turn on the lightswitch.” In text-generation mode, the LLM can produce the
next few words, which then need to be mapped to actions and world objects available to the agent.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

For example, if the LLM produced “reach in and pick up the jar of pickles,” that string would have
to neatly map to an executable action like “pick up jar.” A key component missing in LLM-based
task planning is state feedback from the environment. The fridge in the house might not contain
chicken, soda, or pickles, but a high-level instruction “Make dinner” doesn’t give us that world state
information. Our work introduces situated-awareness in LLM-based robot task planning.

We introduce PROGPROMPT, a prompting scheme that goes beyond conditioning LLMs in natural
language. PROGPROMPT utilizes programming language structures, leveraging the fact that LLMs
are trained on vast web corpora that includes many programming tutorials and code documentation.
PROGPROMPT provides an LLM a Pythonic program header that imports available actions and
their expected parameters, shows a list of environment objects, and then defines functions like
make_dinner whose bodies are sequences of actions operating on objects. We incorporate situated
state feedback from the environment by asserting preconditions of our plan, such as being close
to the fridge before attempting to open it, and responding to failed assertions with recovery actions.
What’s more, we show that including natural language comments in PROGPROMPT programs to
explain the goal of the upcoming action improves task success of generated plan programs.ProgPrompt: VirtualHome Demo

def microwave_salmon():
 # 0: walk to kitchen
 walk('kitchen')
 # 1: find microwave
 find('microwave')
 # 2: open microwave
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'closed')
 else: close('microwave')
 open('microwave')
 ...
 # 5: put salmon in microwave
 assert('salmon' in 'hands')
 else: find('salmon')
 else: grab('salmon')
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...
 close('microwave')
 ...
 switchon('microwave')
 # 8: wait for salmon to be done

 cooking 1-2 minutes
 # 9: turn off microwave
 ...
 switchoff('microwave')
 ...
 open('microwave')
 ...
 grab('salmon')
 # 12: put salmon on plate
 assert('salmon' in 'hands')
 ...
 assert('close' to 'plate')
 else: find('plate')
 putin('salmon', 'plate')
 ...
 close('microwave')
 # 14: Done

Full Execution

Generated Plan

Comment -
Action(s)
Mapping

from actions import walk <obj>,
grab <obj>, switchon <obj>,
open <obj>, standup, find
<obj>, putin <obj> <obj>, ...

def microwave_salmon():
 ...
 # 5: put salmon in microwave
 ...
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')
 ...

You see: "fridge is CLOSED,
lightswitch is ON, cereal,
bookshelf, box INSIDE bookshelf,
cereal ON wallshelf, paper
INSIDE bookshelf..."
You have: "book"

assert('close' to 'mug')
False
assert('book' in 'hands')
True
assert('cereal' on 'bookshelf')
False
...

def microwave_salmon():

Env [VH]

True False
Correct Prediction

Comment:
Summary

Else:
Recovery
Actions

Assertions:
State
Feedback

Action API
+ object(s):
Plan Step

objects=[clothesshirt’ sink,
pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,
bookshelf, salmon, stove, plate,
coffeepot, kitchentable,
wineglass, paper, microwave,
toothbrush, toothpaste,
bathroomcabinet, kitchen, lime,
painkillers, barsoap, ...]

LLM [GPT-3]

Optional
Steps

PROMPT for Planning PROMPT for State Feedback

LLM [GPT-3]

Import action primitives

Available objects list

Next task prompt

Example assertion check(s)

Current Semantic State
Salmon

Microwave

def throw_away_lime():
 # 0: find lime
 find('lime')
 ...
 # 5: close garbagecan
 assert('close' to 'garbagecan')
 else: find('garbagecan')
 assert('garbagecan' is 'opened')
 else: open('garbagecan')
 close('garbagecan')
 ...
 # 6: Done

Example task(s) You see: "microwave is OPEN and
OFF, microwave ON
kitchencounter."
You have: "salmon."

assert(‘microwave' is 'opened')

grab(salmon) open
(microwave)

putin(salmon,
microwave)

close
(microwave)

walk(kitchen) find(salmon) find
(microwave)

switchon
(microwave)

switchoff
(microwave)

open
(microwave)

close
(microwave)

grab(salmon)

Figure 1: Our PROGPROMPTs include import statement, object list, and example tasks (PROMPT for
Planning). The Generated Plan is for microwave salmon. We highlight prompt comments, actions as
imported function calls with objects as arguments, and assertions with recovery steps. PROMPT for State
Feedback represents example assertion checks. We further show execution of the program. We illustrate a
scenario where an assertion succeeds or fails, and how the generated plan corrects the error before executing the
next step. Full Execution of the program is shown in bottom-right.

2 Our Method: PROGPROMPT

We represent robot plans as pythonic programs. Following the paradigm of LLM prompting, we
create a prompt structured as pythonic code and use an LLM to complete the code (Fig. 1). We use
features available in Python to construct prompts that elicit an LLM to generate situated robot task
plans, conditioned on a natural language instruction.

def open_microwave():
 # 1: open microwave
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'closed')
 else: close('microwave')
 open('microwave')
 # 2: find salmon

 # 3: Done

def get_salmon():
 # 1: grab salmon
 assert('close' to 'salmon')
 else: find('salmon')
 grab('salmon')

def put_salmon_in_microwave():
 # 1: grab salmon
 assert('close' to 'salmon')
 else: find('salmon')
 grab('salmon')
 # 2: put salmon in microwave
 assert('salmon' in 'hands')
 else: find('salmon')
 else: grab('salmon')
 assert('close' to 'microwave')
 else: find('microwave')
 assert('microwave' is 'opened')
 else: open('microwave')
 putin('salmon', 'microwave')

Figure 2: Pythonic PROG-
PROMPT plan for “put
salmon in the microwave.”

Representing Robot Plans as Pythonic Functions Plan functions
consist of API calls to action primitives, comments to summarize actions,
and assertions for tracking execution (Fig. 2). Primitive actions use
objects as arguments. For example, the “put salmon in the microwave”
task includes API calls like find(salmon).

We utilize comments in the code to provide natural language summaries
for subsequent sequences of actions. Comments help break down the
high-level task into logical sub-tasks (Fig. 2). This partitioning could
help the LLM to express its knowledge about tasks and sub-tasks in
natural language and aid planning. Comments also inform the LLM about
immediate goals, reducing the possibility of incoherent, divergent, or repetitive outputs. Prior work
Wei et al. [2022] has also shown the efficacy of similar intermediate summaries called ‘chain of
thought’ for improving performance of LLMs on a range of arithmetic, commonsense, and symbolic

2

reasoning tasks. We empirically verify the utility of comments (Tab. 1; column COMMENTS).
Assertions provide an environment feedback mechanism to make sure that the preconditions hold,
and enable error recovery when they do not. For example, in Fig. 2, before the grab(salmon) action,
the plan asserts the agent is close to salmon. If not, the agent first executes find(salmon). In
Tab. 1, we show that such assert statements (column FEEDBACK) benefit plan generation.

Constructing Programming Language Prompts We provide information about the environment
and primitive actions to the LLM through prompt construction. As done in few-shot LLM prompting,
we also provide the LLM with examples of sample tasks and plans. Fig. 1 illustrates our prompt
function fprompt (appendix Sec. 5.1) which takes in all the information (observations, action primitives,
examples) and produces a Pythonic prompt for the LLM to complete. The LLM then predicts the
<next_task>(.) as an executable function (microwave_salmon in Fig. 1).

In the task microwave_salmon, a reasonable first step that an LLM could generate is
take_out(salmon, grocery bag). However, the agent responsible for the executing the plan might
not have a primitive action to take_out. To inform the LLM about the agent’s action primitives,
we provide them as Pythonic import statements. These encourage the LLM to restrict its output to
only functions that are available in the current context. To change agents, PROGPROMPT just needs a
new list of imported functions representing agent actions. A grocery bag object might also not exist
in the environment. We provide the available objects in the environment as a list of strings. Since
our prompting scheme explicitly lists out the set of actions and objects available to the model, the
generated plans typically contain actions an agent can take and objects available in the environment.

PROGPROMPT also includes a few example tasks—fully executable program plans. Each example
task demonstrates how to complete a given task using available actions and objects in the given
environment. These examples demonstrate the relationship between task name, given as the function
handle, and actions to take, as well as the restrictions on actions and objects to involve.

Task Plan Generation and Execution The given task is fully inferred by the LLM based on the
PROGPROMPT prompt. Generated plans are executed on a virtual agent or a physical robot system
using an interpreter that executes each action command against the environment. Assertion checking
is done in a closed-loop manner during execution, providing current environment state feedback.

Table 1: Evaluation of generated programs on Virtual Home. PROGPROMPT uses 3 fixed example programs,
except the DAVINCI backbone which can fit only 2 in the available API. Huang et al. [2022a] use 1 dynamically
selected example, as described in their paper. LANGPROMPT uses 3 natural language text examples. Best
performing model with a GPT3 backbone is shown in blue (used for our ablation studies); best performing
model overall shown in bold. PROGPROMPT significantly outperforms the baseline Huang et al. [2022a] and
LANGPROMPT. We also showcase how each PROGPROMPT feature adds to the performance of the method.

— Prompt Format and Parameters —
Format COMMENTS FEEDBACK LLM Backbone SR Exec GCR

1 PROGPROMPT ✓ ✓ CODEX 0.400.400.40±0.11 0.900.900.90±0.05 0.720.720.72±0.09
2 PROGPROMPT ✓ ✓ DAVINCI 0.22±0.04 0.60±0.04 0.46±0.04
3 PROGPROMPT ✓ ✓ GPT3 0.34±0.08 0.84±0.01 0.65±0.05
4 PROGPROMPT ✓ ✗ GPT3 0.28±0.04 0.82±0.01 0.56±0.02
5 PROGPROMPT ✗ ✓ GPT3 0.30±0.00 0.65±0.01 0.58±0.02
6 PROGPROMPT ✗ ✗ GPT3 0.18±0.04 0.68±0.01 0.42±0.02
7 LANGPROMPT - - GPT3 0.00±0.00 0.36±0.00 0.42±0.02
8 Baseline from HUANG ET AL. Huang et al. [2022a] GPT3 0.00±0.00 0.45±0.03 0.21±0.03

3 Results

3.1 Virtual Experiment Results

Tab. 1 summarizes the performance of our task plan generation and execution system in the seen
environment of VirtualHome. We utilize a GPT3 as a language model backbone to receive PROG-
PROMPT prompts and generate plans. Each result is averaged over 5 runs in a single VH environment
across 10 tasks. We report plan executability (Exec), goal conditions success rate (GCR), and overall
task success rate (SR). See experiment and evaluation metrics details in appendix Sec. 5.2.

We can draw several conclusions from Tab. 1. First, PROGPROMPT (rows 3-6) outperforms prior
work Huang et al. [2022a] (row 8) by a substantial margin on all metrics using the same large language

3

model backbone. Second, we observe that the CODEX Chen et al. [2021] and DAVINCI models Brown
et al. [2020]—themselves GPT3 variants—show mixed success at the task. In particular, DAVINCI
does not match base GPT3 performance (row 2 versus row 3), possibly because its prompt length
constraints limit it to 2 task examples versus the 3 available to other rows. Additionally, CODEX
exceeds GPT3 performance on every metric (row 1 versus row 3), likely because CODEX is explicitly
trained on programming language data. However, CODEX has limited access in terms of number
of queries per minute, so we continue to use GPT3 as our main LLM backbone in the following
ablation experiments. Our recommendation to the community is to utilize a program-like prompt
for LLM-based task planning and execution, for which base GPT3 works well, and we note that an
LLM fine-tuned further on programming language data, such as CODEX, can do even better.

We explore several ablations of PROGPROMPT. First, we find that FEEDBACK mechanisms in the
example programs, namely the assertions and recovery actions, improve performance (rows 3
versus 4 and 5 versus 6) across metrics, the sole exception being that Exec improves a bit without
FEEDBACK when there are no COMMENTS in the prompt example code. Second, we observe that
removing COMMENTS from the prompt code substantially reduces performance on all metrics (rows
3 versus 5 and 4 versus 6), highlighting the usefulness of the natural language guidance within the
programming language structure.

We also evaluate LANGPROMPT, an alternative to PROGPROMPT that builds prompts from natural
language text description of objects available and example task plans (row 7). LANGPROMPT is
similar to the prompts built by Huang et al. [2022a]. The outputs of LANGPROMPT are generated
action sequences, rather than our proposed, program-like structures. Thus, we finetune GPT2 to learn
a policy P (at|st,GPT3 step,a1:t−1) to map those generated sequences to executable actions in the
simulation environment. We find that while this method achieves reasonable partial success through
GCR, it does not match Huang et al. [2022a] for program executability Exec and does not generate
any fully successful task executions. See additional analysis in appendix Sec. 5.3 and 5.4.

3.2 Physical Robot Results Table 2: Results on the physical robot by
task type.

Task Description Distractors SR Plan SR GCR

put the banana in the bowl
0 1 1 1/1
4 1 1 1/1

put the pear on the plate
0 1 1 1/1
4 1 1 1/1

put the banana on the plate 0 1 1 2/2
and the pear in the bowl 3 1 1 2/2

sort the fruits on the plate 0 0 1 2/3
and the bottles in the box 1 1 1 3/3

2 0 0 2/3

The physical robot results are shown in Tab. 2. We evaluate
on 4 tasks of increasing difficulty listed in Tab. 2. For each
task, we perform two experiments: one in a scene that
only contains the necessary objects, and with one to three
distractor objects added. See Fig. 3, and 4 in appendix for
visual setup and rollout example.

All results shown use PROGPROMPT with comments, but
not feedback. Our physical robot setup did not allow
reliably tracking system state and checking assertions,
and is prone to random failures due to things like grasps slipping. The real world introduces
randomness that complicates a quantitative comparison between systems. Therefore, we intend the
physical results to serve as a qualitative demonstration of the ease with which our prompting approach
allows constraining and grounding LLM-generated plans to a physical robot system. We report an
additional metric Plan SR, which refers to whether the plan would have likely succeeded, provided
successful pick-and-place execution without gripper failures.

Across tasks, with and without distractor objects, the system almost always succeeds, failing only
on the sort task. The run without distractors failed due to a random gripper failure. The run with 2
distractors failed because the model mistakenly considered a soup can to be a bottle. The executability
for the generated plans was always Exec=1.

4 Conclusions

We present an LLM prompting scheme for robot task planning that brings together the two strengths
of LLMs: commonsense reasoning and code understanding. We construct prompts that include
situated understanding of the world and robot capabilities, enabling LLMs to directly generate
executable plans as programs. Our experiments show that PROGPROMPT programming language
features improve task performance across a range of metrics. Our method is intuitive and flexible,
and generalizes widely to new scenes, agents and tasks, including a real-robot deployment.

4

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea

Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth,
Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine,
Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev,
Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan Yan. Do as i can, not
as i say: Grounding language in robotic affordances, 2022.

Ahmed Akakzia, Cédric Colas, Pierre-Yves Oudeyer, Mohamed CHETOUANI, and Olivier Sigaud.
Grounding language to autonomously-acquired skills via goal generation. In International Confer-
ence on Learning Representations, 2021.

Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuristic search approach to planning
with temporally extended preferences. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, page 1808–1815, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Daniel Bryce and Subbarao Kambhampati. A tutorial on planning graph based reachability heuristics.
AI Magazine, 28(1):47, Mar. 2007.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox. Object rearrangement
using learned implicit collision functions. IEEE International Conference on Robotics and
Automation (ICRA), 2021.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving to
problem solving. In Proceedings of the 2nd International Joint Conference on Artificial Intelligence,
IJCAI’71, page 608–620, San Francisco, CA, USA, 1971. Morgan Kaufmann Publishers Inc.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. Proceedings of the
International Conference on Automated Planning and Scheduling, 30(1):440–448, Jun. 2020.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. In International Conference on Learning Representations,
2022.

5

Malte Helmert. The fast downward planning system. J. Artif. Int. Res., 26(1):191–246, jul 2006.
ISSN 1076-9757.

Joerg Hoffmann. Ff: The fast-forward planning system. AI Magazine, 22(3):57, Sep. 2001.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207,
2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In arXiv preprint arXiv:2207.05608, 2022b.

Peter Jansen. Visually-grounded planning without vision: Language models infer detailed plans from
high-level instructions. In Findings of the Association for Computational Linguistics: EMNLP
2020, pages 4412–4417, Online, November 2020. Association for Computational Linguistics.

YiDing Jiang, Shixiang (Shane) Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstraction
for hierarchical deep reinforcement learning. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Yuqian Jiang, Shiqi Zhang, Piyush Khandelwal, and Peter Stone. Task planning in robotics: an
empirical comparison of pddl-based and asp-based systems, 2018.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning plannable
representations with causal infogan. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, Jacob Andreas, Igor Mordatch, Antonio Torralba, and Yuke
Zhu. Pre-trained language models for interactive decision-making, 2022.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing, 2021.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421, Lisbon, Portugal, September 2015. Association
for Computational Linguistics.

Suvir Mirchandani, Siddharth Karamcheti, and Dorsa Sadigh. Ella: Exploration through learned
language abstraction. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 29529–
29540. Curran Associates, Inc., 2021.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. In International Conference on Learning Representations, 2020.

Roma Patel and Ellie Pavlick. Mapping language models to grounded conceptual spaces. In
International Conference on Learning Representations, 2022.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8494–8502, 2018.

Dhruv Shah, Alexander T Toshev, Sergey Levine, and brian ichter. Value function spaces: Skill-
centric state abstractions for long-horizon reasoning. In International Conference on Learning
Representations, 2022.

6

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent
language. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1713–1726, Dublin, Ireland, May 2022. Association
for Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions
for Everyday Tasks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2020.

Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomas Lozano-Perez, Leslie Pack
Kaelbling, and Joshua Tenenbaum. Inventing relational state and action abstractions for effective
and efficient bilevel planning. In The Multi-disciplinary Conference on Reinforcement Learning
and Decision Making (RLDM), 2022.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks: Learning generalizable representations for visuomotor control. In Jennifer Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 4732–4741. PMLR, 10–15 Jul
2018.

Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox. Contact-graspnet:
Efficient 6-dof grasp generation in cluttered scenes. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 13438–13444, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models, 2022.

Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural
task programming: Learning to generalize across hierarchical tasks. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 3795–3802, 2018.

Danfei Xu, Roberto Martín-Martín, De-An Huang, Yuke Zhu, Silvio Savarese, and Li F Fei-Fei.
Regression planning networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker, Fed-
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke,
and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning with language.
arXiv, 2022.

Yifeng Zhu, Jonathan Tremblay, Stan Birchfield, and Yuke Zhu. Hierarchical planning for long-
horizon manipulation with geometric and symbolic scene graphs, 2020.

5 Appendix

5.1 Background and Related Work

Task Planning. For high-level planning, most works in robotics use search in a pre-defined do-
main Fikes and Nilsson [1971], Garrett et al. [2020], Jiang et al. [2018]. Unconditional search can be
hard to scale in environments with many feasible actions and objects Puig et al. [2018], Shridhar et al.
[2020] due to large branching factors. Heuristics are often used to guide the search Baier et al. [2007],
Hoffmann [2001], Helmert [2006], Bryce and Kambhampati [2007]. Recent works have explored
learning-based task & motion planning, using methods such as representation learning, hierarchical
learning, language as planning space, learning compositional skills and more Eysenbach et al. [2019],
Xu et al. [2018, 2019], Silver et al. [2022], Shah et al. [2022], Srinivas et al. [2018], Kurutach et al.

7

[2018], Akakzia et al. [2021], Nair and Finn [2020], Jiang et al. [2019], Mirchandani et al. [2021],
Sharma et al. [2022], Zhu et al. [2020]. Our method sidesteps search to directly generate a plan that
includes conditional reasoning and error-correction.

We formulate task planning as the tuple ⟨O,P,A, T , I,G, t⟩. O is a set of all the objects available
in the environment, P is a set of properties of the objects which also informs object affordances, A is
a set of executable actions that changes depending on the current environment state defined as s ∈ S .
A state s is a specific assignment of all object properties, and S is a set of all possible assignments.
T represents the transition model T : S × A → S, I and G are the initial and goal states. The
agent does not have access to the goal state g ∈ G, but only a high-level task description t.

Consider the task t = “microwave salmon”. Task relevant objects microwave, salmon ∈ O will have
properties modified during action execution. For example, action a = open(microwave) will change
the state from closed(microwave) ∈ s to ¬closed(microwave) ∈ s′ if a is admissible, i.e.,
∃(a, s, s′) s.t. a ∈ A∧s, s′ ∈ S ∧T (s,a) = s′. In this example a goal state g ∈ G could contain the
conditions heated(salmon) ∈ g, ¬closed(microwave) ∈ g and ¬switchedOn(microwave) ∈
g.

Planning with LLMs. A Large Language Model (LLM) is a neural network with many parameters—
currently hundreds of billions Brown et al. [2020], Chen et al. [2021]—trained on unsupervised
learning objectives such as next-token prediction or masked-language modelling. An autoregressive
LLM is trained with a maximum likelihood loss to model the probability of a sequence of tokens y
conditioned on an input sequence x, i.e. θ = argmaxθ P (y|x; θ), where θ are model parameters.
The trained LLM is then used for prediction ŷ = argmaxy∈S P (y|x; θ), where S is the set of
all text sequences. Since search space S is huge, approximate decoding strategies are used for
tractability Luong et al. [2015], Wiseman et al. [2017], Holtzman et al. [2020].

LLMs are trained on large text corpora, and exhibit multi-task generalization when provided with
a relevant prompt input x. Prompting LLMs to generate text useful for robot task planning is a
nascent topic Jansen [2020], Li et al. [2022], Patel and Pavlick [2022], Huang et al. [2022a], Ahn
et al. [2022], Huang et al. [2022b]. Prompt design is challenging given the lack of paired natural
language instruction text with executable plans or robot action sequences Liu et al. [2021]. Devising
a prompt for task plan prediction can be broken down into a prompting function and an answer search
strategy Liu et al. [2021]. A prompting function, fprompt(.) transforms the input state observation s
into a textual prompt. Answer search is the generation step, in which the LLM outputs from the entire
LLM vocabulary or scores a predefined set of options.

Closest to our work, Huang et al. [2022a] generates open-domain plans using LLMs. In that work,
planning proceeds by: 1) selecting a similar task in the prompt example (fprompt); 2) open-ended task
plan generation (answer search); and 3) 1:1 prediction to action matching. The entire plan is generated
open-loop without any environment interaction, and later tested for executability of matched actions.
However, action matching based on generated text doesn’t ensure the action is admissible in the
current situation. INNERMONOLOGUE Huang et al. [2022b] introduces environment feedback and
state monitoring, but still found that LLM planners proposed actions involving objects not present in
the scene. Our work shows that a programming language-inspired prompt generator can inform the
LLM of both situated environment state and available robot actions, ensuring output compatibility to
robot actions.

The related SAYCAN Ahn et al. [2022] uses natural language prompting with LLMs to generate a
set of feasible planning steps, re-scoring matched admissible actions using a learned value function.
SayCan constructs a set of all admissible actions expressed in natural language and scores them using
an LLM. This is challenging to do in environments with combinatorial action spaces. Concurrent with
our work are Socratic models Zeng et al. [2022], which also use code-completion to generate robot
plans. We go beyond Zeng et al. [2022] by leveraging additional, familiar features of programming
languages in our prompts. We define an fprompt that includes import statements to model robot
capabilities, natural language comments to elicit common sense reasoning, and assertions to track
execution state. Our answer search is performed by allowing the LLM to generate an entire, executable
plan program directly.

8

5.2 Experiment Details

We evaluate our method with experiments in a virtual household environment and on a physical robot
manipulator.

5.2.1 Simulation Experiments

We evaluate our method in the Virtual Home (VH) Environment Puig et al. [2018], a deterministic
simulation platform for typical household activities. A VH state s is a set of objects O and properties
P . P encodes information like in(salmon, microwave) and agent_close_to(salmon). The
action space is A = {grab, putin, putback, walk, find, open, close, switchon,
switchoff, sit, standup}.

We experiment with 3 VH environments. Each environment contains 115 unique object instances
(Fig. 1), including class-level duplicates. Each object has properties corresponding to its action
affordances. Some objects also have a semantic state like heated, washed, or used. For
example, an object in the Food category can become heated whenever in(object,microwave) ∧
switched_on(microwave).

We create a dataset of 70 household tasks. Tasks are posed with high-level instructions like “mi-
crowave salmon”. We collect a ground-truth sequence of actions that completes the task from an
initial state, and record the final state g that defines a set of symbolic goal conditions, g ∈ P .

When executing generated programs, we incorporate environment state feedback in response to
asserts. VH provides observations in the form of state graph with object properties and relations.
To check assertions in this environment, we extract information about the relevant object from the
state graph and prompt the LLM to return whether the assertion holds or not given the state graph
and assertion as a text prompt (Fig. 1 Prompt for State Feedback).

We include 3 Pythonic task plan examples per prompt after evaluating performance on VH for between
1 prompt and 7 prompts and finding that 2 or more prompts result in roughly equal performance for
GPT3. The plan examples are fixed to be: “put the wine glass in the kitchen cabinet”, “throw away
the lime”, and “wash mug”. For fintuning GPT2, we use the 35 tasks in the training set, and annotate
the text steps and the corresponding action sequence to get 400 data points for training and validation
of this policy.

5.2.2 Real-Robot Experiments

We use a Franka-Emika Panda robot with a parallel-jaw gripper. We assume access to a pick-and-
place policy. The policy takes as input two pointclouds of a target object and a target container,
and performs a pick-and-place operation to place the object on or inside the container. We use the
system of Danielczuk et al. [2021] to implement the policy, and use MPPI for motion generation,
SceneCollisionNet Danielczuk et al. [2021] to avoid collisions, and generate grasp poses with
Contact-GraspNet Sundermeyer et al. [2021].

We specify a single import statement for the action grab_and_putin(obj1, obj2) for
PROGPROMPT. We use ViLD Gu et al. [2022], an open-vocabulary object detection model, to identify
and segment objects in the scene and construct the available object list for the prompt. Unlike in the
virtual environment, where object list was a global variable in common for all tasks, here the object
list is a local variable for each plan function, which allows greater flexibility to adapt to new objects.
The LLM outputs a plan containing function calls of form grab_and_putin(obj1, obj2).
Here, objects obj1 and obj2 are text strings that we map to pointclouds using ViLD segmentation
masks and the depth image. Due to real world uncertainty, we do not implement assert-based
closed loop options on the tabletop plans.

5.2.3 Evaluation Metrics

We use three metrics to evaluate system performance: success rate (SR), goal conditions recall (GCR),
and executability (Exec). The task-relevant goal-conditions are the set of goal-conditions that changed
between the initial and final state in the demonstration. SR is the fraction of executions that achieved
all task-relevant goal-conditions. Exec is the fraction of actions in the plan that are executable in the
environment, even if they are not relevant for the task. GCR is measured using the set difference

9

between ground truth final state conditions g and the final state achieved g′ with the generated plan,
divided by the number of task-specific goal-conditions; SR= 1 only if GCR= 1.

5.3 Additional experiments

Table 3: PROGPROMPT performance on the VH test-time tasks and their ground truth actions sequence lengths
|A|.

Task Desc |A| SR Exec GCR
watch tv 3 0.20±0.40 0.42±0.13 0.63±0.28
turn off light 3 0.40±0.49 1.00±0.00 0.65±0.30
brush teeth 8 0.80±0.40 0.74±0.09 0.87±0.26
throw away apple 8 1.00±0.00 1.00±0.00 1.00±0.00
make toast 8 0.00±0.00 1.00±0.00 0.54±0.33
eat chips on the sofa 5 0.00±0.00 0.40±0.00 0.53±0.09
put salmon in the fridge 8 1.00±0.00 1.00±0.00 1.00±0.00
wash the plate 18 0.00±0.00 0.97±0.04 0.48±0.11
bring coffeepot and cupcake
to the coffee table

8 0.00±0.00 1.00±0.00 0.52±0.14

microwave salmon 11 0.00±0.00 0.76±0.13 0.24±0.09

Avg: 0 ≤ |A| ≤ 5 0.20±0.40 0.61±0.29 0.60±0.25
Avg: 6 ≤ |A| ≤ 10 0.60±0.50 0.95±0.11 0.79±0.29
Avg: 11 ≤ |A| ≤ 18 0.00±0.00 0.87±0.14 0.36±0.16

Task-by-Task Performance PROGPROMPT performance for each task in the test set is shown in
Table 3. We observe that tasks that are similar to prompt examples, such as throw away apple versus
wash the plate have higher GCR since the ground truth prompt examples hint about good stopping
points. Even with high Exec, some task GCR are low, because some tasks have multiple appropriate
goal states, but we only evaluate against a single “true” goal. For example, after microwaving and
plating salmon, the agent may put the salmon on a table or a countertop.

Table 4: PROGPROMPT results on Virtual Home in additional scenes. We evaluate on 10 tasks each in two
additional VH scenes beyond scene ENV-0 where other reported results take place.

VH Scene SR Exec GCR
ENV-0 0.34±0.08 0.84±0.01 0.65±0.05
ENV-1 0.56±0.08 0.85±0.02 0.81±0.07
ENV-2 0.56±0.05 0.85±0.03 0.72±0.09

Average 0.48±0.13 0.85±0.02 0.73±0.10

Other Environments We evaluate PROGPROMPT in two additional VH environments (Tab. 4). For
each, we append a new object list representing the new environment after the example tasks in the
prompt, followed by the task to be completed in the new scene. The action primitives and other
PROGPROMPT settings remain unchanged. We evaluate on 10 tasks with 5 runs each. For new tasks
like wash the cutlery in dishwasher, PROGPROMPT is able to infer that cutlery refers to spoons and
forks in the new scenes, despite that cutlery always refers to knives in example prompts.

5.4 Qualitative Analysis and Limitations

We manually inspect generated programs and their execution traces from PROGPROMPT and charac-
terize common failure modes. Many failures stem from the decision to make PROGPROMPT agnostic
to the deployed environment and its peculiarities, which may be resolved through explicitly com-
municating, for example, object affordances of the target environment as part of the PROGPROMPT
prompt.

10

• Environment artifacts: the VH agent cannot find or interact with objects nearby when sitting,
and some common sense actions for objects, such as opening a tvstand’s cabinets, are not
available in VH.

• Environment complexities: when an object is not accessible, the generated assertions might not
be enough. For example, if the agent finds an object in a cabinet, it may not plan to open the
cabinet to grab the object.

• Action success feedback is not provided to the agent, which may lead to failure of the subsequent
actions. Assertion recovery modules in the plan can help, but aren’t generated to cover all
possibilities.

• Incomplete generation: Some plans are cut short by LLM API caps. One possibility is to query
the LLM again with the prompt and partially generated plan.

In addition to these failure modes, our strict final state checking means if the agent completes the task
and some, we may infer failure, because the environment goal state will not match our precomputed
ground truth final goal state. For example, after making coffee, the agent may take the coffeepot
to another table. Similarly, some task descriptions are ambiguous and have multiple plausible
correct programs. For example, “make dinner” can have multiple possible solutions. PROGPROMPT
generates plans that cooks salmon using the fryingpan and stove, and sometimes the agent adds
bellpepper or lime, or sometimes with a side of fruit, or served in a plate with cutlery. When run
in a different VH environment, the agent cooks chicken instead. PROGPROMPT is able to generate
plans for such complex tasks as well while using the objects available in the scene and not explicitly
mentioned in the task. However, automated evaluation of such tasks requires enumerating all valid
and invalid possibilities or introducing human verification.

Strawberry

Plate

1: put banana on plate
grab_and_puton('banana', 'plate')
2: put strawberry on plate
grab_and_puton('strawberry', 'plate')

LLM [GPT-3]
Generated Plan

from actions import grab_and_putin <obj><obj>,
grab_and_puton <obj><obj>, switchon <obj>,
switchoff <obj>, open <obj>, ...

def throw_away_banana():
 objects = ['banana', 'garbage can',...]
 # 1: put banana in garbage can
 grab_and_putin('banana', 'garbagecan')
 # 2: Done

def put_fork_and_spoon_on_the_box():
 objects = ['fork', 'spoon', 'knife',]
 ...

def put_fork_on_plate_and_spoon_in_box():
 ...

def sort_fruits_on_plate_and_bottles_in_box():
 objects = ['banana', 'bottle', 'box',
 'plate', ‘table', 'drill', 'strawberry']

Prompt

3: put bottle in box
grab_and_putin('bottle', 'box')
4: Done

Figure 3: PROGPROMPT leverages LLMs’ strengths in both world knowledge and programming language
understanding to generate situated task plans that can be directly executed.

grab_and_puton('banana', 'plate') grab_and_puton('strawberry', 'plate') grab_and_putin('bottle', 'box')

Task: sort fruits on the plate and bottles in the box

Figure 4: Robot plan execution rollout example on the sorting task showing relevant objects banana, strawberry,
bottle, plate and box, and a distractor object drill. The LLM recognizes that banana and strawberry are fruits,
and generates plan steps to place them on the plate, while placing the bottle in the box. The LLM ignores the
distractor object drill. See Figure 3 for the prompt structure used.

5.5 Future Work

As a community, we are only scratching the surface of task planning as robot plan generation and
completion. We hope to study broader use of programming language features, including real-valued

11

numbers to represent measurements, nested dictionaries to represent scene graphs, and more complex
control flow. Several works from the NLP community show that LLMs can do arithmetic and
understand numbers, yet their capabilities for complex robot behavior generation are still relatively
under-explored.

12

	Introduction
	Our Method: ProgPrompt
	Results
	Virtual Experiment Results
	Physical Robot Results

	Conclusions
	Appendix
	Background and Related Work
	Experiment Details
	Simulation Experiments
	Real-Robot Experiments
	Evaluation Metrics

	Additional experiments
	Qualitative Analysis and Limitations
	Future Work

