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Abstract
In this work, we consider one critical type of ro-
bustness against spurious correlation, where dif-
ferent portions of the state do not have causality
but have correlations induced by unobserved con-
founders. These spurious correlations are ubiq-
uitous in real-world tasks, for instance, a self-
driving car usually observes heavy traffic in the
daytime and light traffic at night due to unobserv-
able human activity. A model that learns such
useless or even harmful correlation could catas-
trophically fail when the confounder in the test
case deviates from the training one. Although
motivated, enabling robustness against spurious
correlation poses significant challenges since the
uncertainty set, shaped by the unobserved con-
founder and sequential structure of RL, is difficult
to characterize and identify. To solve this issue,
we propose Robust State-Confounded Markov De-
cision Processes (RSC-MDPs) and theoretically
demonstrate its superiority in breaking spurious
correlations compared with other robust RL. We
also design an empirical algorithm to learn the ro-
bust optimal policy for RSC-MDPs, which outper-
forms all baselines in eight realistic self-driving
and manipulation tasks.

1. Introduction
Although standard RL has achieved remarkable success
in simulated environments, a growing trend in RL is to
address another critical concern – robustness – with the
hope that the learned policy still performs well when the
deployed (test) environment deviates from the nominal one
used for training (Ding et al., 2022). Robustness is highly
desirable since the performance of the learned policy could
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Figure 1. A model trained only with heavy traffic in the daytime
learns the spurious correlation between brightness and traffic den-
sity and could fail to drive in light traffic in the daytime.

significantly deteriorate due to the uncertainty and variations
of the test environment induced by random perturbation, rare
events, or even malicious attacks (Mahmood et al., 2018;
Zhang et al., 2021a).

Despite various types of uncertainty have been investigated
in RL, this work focuses on the uncertainty of environment
with semantic meanings resulting from some unobserved un-
derlying variables. Such environment uncertainty, denoted
as semantic uncertainty, is motivated by innumerable real-
world applications but still receives little attention in se-
quential decision-making tasks (De Haan et al., 2019). To
specify the phenomenon of semantic uncertainty, let us con-
sider a concrete example (illustrated in Figure 1) in a driving
scenario, where a shift between training and test environ-
ments caused by an unobserved confounder can potentially
lead to a severe safety issue. Specifically, the observations
brightness and traffic density do not have cause and effect
on each other but are controlled by a confounder (i.e. sun
and human activity) that is usually unobserved to the agent.
During training, the agent could memorize the spurious
correlation between brightness and traffic density, that is,
traffic is heavy during the daytime but light at night. How-
ever, such correlation could be problematic during testing
when the value of the confounder deviates from the training
one, e.g., the traffic becomes heavy at night due to special
events (human activity changes), as shown in Figure 1. Con-
sequently, the policy dominated by the spurious correlation
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in training fails on out-of-distribution samples (observations
of heavy traffic at night) in the test scenarios.

The failure of the driving example in Figure 1 is attributed
to the widespread and harmful spurious correlation, namely,
the learned policy is not robust to the semantic uncertainty
of the test environment. However, ensuring robustness to
semantic uncertainty is challenging since the targeted uncer-
tain region – the semantic uncertainty set of the environment
– is carved by the unknown causal effect of the unobserved
confounder, and thus hard to characterize. In contrast, prior
works concerning robustness in RL (Moos et al., 2022)
usually consider a homogeneous and structure-agnostic un-
certainty set around the state (Zhang et al., 2020b; 2021a;
Han et al., 2022), action (Tessler et al., 2019; Tan et al.,
2020), or the training environment (Iyengar, 2005; Yang
et al., 2022; Shi & Chi, 2022) measured by some heuristic
functions (Zhang et al., 2020b; Shi & Chi, 2022; Moos et al.,
2022) to account for unstructured random noise or small
perturbations. Consequently, these prior works could not
cope with the semantic uncertainty since their uncertainty
set is different from and cannot tightly cover the desired
semantic uncertainty set, which could be heterogeneous and
allows for potentially large deviations between the training
and test environments.

In this work, to address the semantic uncertainty, we first
propose a general RL formulation called State-confounded
Markov decision processes (SC-MDPs), which model the
possible causal effect of the unobserved confounder in an
RL task from a causal perspective. SC-MDPs better ex-
plain the reason for semantic shifts in the state space than
traditional MDPs. Then, we formulate the problem of seek-
ing robustness to semantic uncertainty as solving Robust
SC-MDPs (RSC-MDPs), which optimizes the worst perfor-
mance when the distribution of the unobserved confounder
lies in some uncertainty set. The key contributions of this
work are summarized as follows.

• We propose a new type of robustness with respect to
semantic uncertainty to address spurious correlation in RL
and provide a formal formulation called RSC-MDPs, which
are well-motivated by ubiquitous real-world applications.

• We theoretically justify the advantage of the proposed
RSC-MDP framework against semantic uncertainty over the
prior robust RL without semantic information.

•We implement an empirical algorithm to solve RSC-MDPs
and show that it outperforms the baselines on eight real-
world tasks in manipulation and self-driving.

2. Preliminaries and Limitations of Robust RL
Standard Markov decision processes (MDPs). A dis-
counted infinite-horizon standard MDP is represented by

M =
{
S,A, T, r, P

}
, where S ⊆ Rn and A ⊆ RdA are

the state and action spaces, respectively, with n/dA being
the dimension of state/action. T is the length of the horizon;
P = {Pt}1≤t≤T , where Pt : S × A → ∆(S) denotes the
probability transition kernel at time step t, for all 1 ≤ t ≤ T ;
and r = {rt}1≤t≤T denotes the reward function, where
rt : S ×A → [0, 1] represents the deterministic immediate
reward function. A policy (action selection rule) is denoted
by π = {πt}1≤t≤T , namely, the policy at time step t is
πt : S → ∆(A) based on the current state st as πt(· | st).

Lack of semantic information in the robustness of RL.
In spite of the rich literature on robustness in RL, prior
works usually hedge against the uncertainty induced by
unstructured random noise or small perturbations, specified
as a small and homogeneous uncertainty set around the
nominal one. However, the unknown uncertainty in the real
world could have a complicated and semantic structure that
cannot be well-covered by a homogeneous ball regardless
of the choice of the uncertainty level, leading to either over
conservative policy (when the uncertainty level is large) or
insufficient robustness (when the uncertainty level is small).
Altogether, we obtain the natural motivation of this work:
How to formulate such semantic uncertainty and ensure
robustness against it?

3. Robust RL against Semantic Uncertainty
from a Causal Perspective

To describe semantic uncertainty, we choose to study MDPs
from a causal perspective with a basic concept called the
structural causal model (SCM), shall be specified in Ap-
pendix. Armed with the concept, we formulate State-
confounded MDPs – a broader set of MDPs in the face
of the unobserved confounder in the state space.

Structural causal model. We denote a structural causal
model (SCM) (Pearl, 2009) by a tuple {X,Y, F, P x}, where
X is the set of exogenous (unobserved) variables, Y is
the set of endogenous (observed) variables, and P x is the
distribution of all the exogenous variables. Here, F is the set
of structural functions capturing the causal relations between
X and Y such that for each variable yi ∈ Y , fi ∈ F
is defined as yi ← fi

(
PA(yi), xi

)
, where xi ⊆ X and

PA(yi) ⊆ Y \ yi denotes the parents of the node yi.

3.1. State-confounded MDPs (SC-MDPs)

We now present state-confounded MDPs (SC-MDPs),
whose probabilistic graph is illustrated in Figure 2(a) with a
comparison to standard MDPs in Figure 2(b). Besides the
components in standard MDPsM, we introduce a set of
unobserved confounder Cs = {ct}1≤t≤T , where ct ∈ C de-
notes the confounder that is generated from some unknown
but fixed distribution P c

t at time step t, i.e., ct ∼ P c
t ∈ ∆(C).
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Figure 2. The probabilistic graphs of our formulation (SC-MDP)
and standard MDP. s1t means the first dimension of st. st′ is
a shorthand for st+1. In SC-MDP, the orange line denotes the
backdoor path from s1t′ to at′ opened by the confounder ct.

Figure 3. (a) RMDPs add homogeneous noise to states, while (b)
RSC-MDPs perturb the confounder to influence states, resulting in
a subset of the valid space.

To characterize the causal effect of the confounder Cs on
the state dynamic, we resort to an SCM, where Cs is the
set of exogenous (unobserved) confounder and endogenous
variables include all dimensions of states {sit}1≤i≤n,1≤t≤T ,
and actions {at}1≤t≤T . Specifically, the structural func-
tion F is considered as {Pi

t}1≤i≤n,1≤t≤T – the transition
from the current state st, action at and the confounder ct to
each dimension of the next state sit+1 for all time steps, i.e.,
sit+1 ∼ Pi

t(· | st, at, ct). Notably, the specified SCM does
not confound the reward, i.e., rt(st, at) does not depend on
the confounder ct.

Armed with the above SCM, denoting P c := {P c
t }, we can

introduce state-confounded MDPs (SC-MDPs) represented
byMsc =

{
S,A, T, r, C, {Pi

t}, P c
}

(Figure 2(a)). A pol-
icy is denoted as π = {πt}, where each πt results in an
intervention (possibly stochastic) that set at ∼ πt(· | st) at
time step t regardless of the value of confounder.

State-confounded value function and optimal policy.
Given st, the causal effect of at on the next state st+1
plays an important role in characterizing value function/Q-
function. To ensure the identifiability of the causal effect,
the confounder ct are assumed to obey the backdoor cri-
terion (Pearl, 2009; Peters et al., 2017), leading to the fol-
lowing state-confounded value function (SC-value function)
(Wang et al., 2021) (state-confounded Q-function (SC-Q
function) can be specified similarly):

Ṽ π,Pc

t (s) = Eπ,Pc

[ T∑
k=t

rk(sk, ak) | st = s;

ck ∼ P c
k , s

i
k+1 ∼ Pi

k(· | sk, ak, ck)
]
. (1)

Remark 1. Note that the proposed SC-MDPs serve as a
general formulation for a broad family of RL problems that
include standard MDPs as a special case. Specifically, any
standard MDPM =

{
S,A, P, T, r

}
can be equivalently

represented by at least one SC-MDPMsc =
{
S,A, T, r,

C, {Pi
t}, P c

}
as long as Ect∼P c

t

[
Pi
t(· | st, at, ct)

]
=[

P (· | st, at)
]
i

for all 1 ≤ i ≤ n, 1 ≤ t ≤ T .

3.2. Robust state-confounded MDPs (RSC-MDPs)

In this work, we consider robust state-confounded MDPs
(RSC-MDPs) – a variant of SC-MDPs promoting the
robustness to the uncertainty of the unobserved con-
founder distribution P c, denoted byMsc-rob =

{
S,A, T, r,

C, {Pi
t},Uσ(P c)

}
. Here, the perturbed distribution of

the unobserved confounder is assumed in an uncertainty
set Uσ(P c) centered around the nominal distribution P c

with radius σ measured by some ‘distance’ function ρ :
∆(C)×∆(C)→ R+, i.e.,

Uσ(P c) := ⊗ Uσ(P c
t ),

Uσ(P c
t ) := {P ∈ ∆(C) : ρ (P, P c

t ) ≤ σ} . (2)

Consequently, the corresponding robust SC-value function
is defined as

Ṽ π,σ
t (s) := inf

P∈Uσ(Pc)
Ṽ π,P
t (s), (3)

representing the worst-case cumulative rewards when the
confounder distribution lies in the uncertainty set Uσ(P c).

RSC-MDPs possess benign properties similar to the stan-
dard MDPs: there exists at least one optimal policy that
maximizes the robust SC-value function Ṽ π,σ

t for any RSC-
MDP which shall be verified in Theorem 2 in Appendix D.3.

Goal. Based on all the definitions and analysis above, this
work aims to find an optimal policy for RSC-MDPs that
maximizes the robust SC-value function in (3), yielding
optimal performance in the worst case when the unobserved
confounder distribution falls into an uncertainty set Uσ(P c).

3.3. Advantages of RSC-MDPs over traditional robust
works in RL

The most relevant robust RL formulation to ours is RMDPs
(with the details in Appendix A). Here, we provide a compar-
ison between RMDPs and our RSC-MDPs by an illustration
and also theoretical justifications and leave the comparisons
and connections to other related formulations in Figure 4
and Appendix B.1 due to space limits.

As an illustration, imagining the true uncertainty set encoun-
tered in the real world is illustrated as the blue region in
Figure 3, which could have a complicated structure. Since
the uncertainty set in RMDPs is homogeneous (illustrated
by the green circles), one often faces the dilemma of being
either too conservative (when σ is large) or too reckless
(when σ is small). In contrast, the proposed RSC-MDPs –
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Table 1. Testing reward on shifted environments. Bold font means the best reward.
Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 0.56±0.13 0.13±0.03 0.81±0.13 0.63±0.14 0.58±0.13 0.26±0.12 0.16±0.20 0.08±0.07
RMDP-G 0.55±0.15 0.16±0.04 0.47±0.13 0.53±0.16 0.31±0.08 0.33±0.15 0.06±0.17 0.07±0.03
RMDP-U 0.54±0.19 0.13±0.05 0.60±0.15 0.39±0.13 0.51±0.17 0.23±0.11 0.06±0.17 0.10±0.13
MoCoDA 0.50±0.14 0.16±0.05 0.22±0.14 0.23±0.12 0.46±0.14 0.29±0.11 0.01±0.24 0.09±0.14
ATLA 0.48±0.11 0.14±0.03 0.61±0.14 0.52±0.14 0.61±0.18 0.21±0.12 0.29±0.18 0.28±0.19
DBC 0.52±0.18 0.16±0.03 0.68±0.12 0.45±0.10 0.12±0.02 0.03±0.02 0.19±0.35 0.01±0.01

RSC-SAC 0.99±0.11 1.02±0.09 1.04±0.02 1.03±0.02 0.98±0.04 0.77±0.20 0.85±0.12 0.61±0.17

shown in Figure 3(b) – take advantage of the semantic uncer-
tainty set (illustrated by the orange region) enabled by the
underlying SCM, which can potentially lead to much better
estimation of the true uncertainty set. Specifically, the vary-
ing unobserved confounder induces diverse perturbation to
different portions of the state through the structural causal
function, enabling heterogeneous and structural uncertainty
sets over the state space.

To theoretically understand the advantages of the proposed
robust formulation RSC-MDPs with comparison to RMDPs,
Theorem 1 verifies that RSC-MDPs enable additional ro-
bustness to fierce semantic attack besides small model per-
turbation or noise considered in RMDPs, which is specified
with proof in Appendix D.2.

4. Empirically Solve RSC-MDPs: RSC-SAC
Solving RSC-MDPs could be challenging as the semantic
uncertainty set is induced by the causal effect of perturbing
the confounder. The precise characterization of this seman-
tic uncertainty set is difficult since neither the unobserved
confounder nor the true causal graph of the observable vari-
ables is accessible, both of which are necessary for interven-
tion or counterfactual reasoning. Therefore, we choose to
approximate the causal effect of perturbing the confounder
by learning from the data collected during training.

In this section, we propose an intuitive yet effective em-
pirical approach named RSC-SAC for solving RSC-MDPs,
which is outlined in Algorithm 1. The detailed algorithm
can be found in Appendix C. We first estimate the effect of
perturbing the distribution P c of the confounder to gener-
ate new states (Section C.1). Then, we learn the structural
causal model Pi

t to predict rewards and the next states given
the perturbed states (Section C.2). By combining these two
components, we construct a data generator capable of simu-
lating novel transitions (st, at, rt, st+1) from the semantic
uncertainty set. To learn the optimal policy, we construct
the data buffer with a mixture of the original data and the
generated data and then use the Soft Actor-Critic (SAC)
algorithm (Haarnoja et al., 2018) to optimize the policy.

5. Experiments and Evaluation
5.1. Environments with spurious correlation
To the best of our knowledge, no existing benchmark ad-
dresses the issues of spurious correlation in the state space

of RL. To bridge the gap, we design a benchmark consist-
ing of eight novel tasks in self-driving and manipulation
domains using the Carla (Dosovitskiy et al., 2017) and Ro-
bosuite (Zhu et al., 2020) platforms. Tasks are designed to
include spurious correlations in terms of human common
sense, which is ubiquitous in decision-making applications
and could cause safety issues. We leave the full descriptions
of the tasks in Appendix F.3 and the description of baselines
in Appendix F.1.

5.2. Results Analysis
To comprehensively evaluate the performance of the pro-
posed method RSC-SAC, we conduct experiments to answer
the following question: Q1. Can RSC-SAC eliminate the
harmful effect of spurious correlation in learned policy? R1.
RSC-SAC is robust against spurious correlation. The
testing results of our proposed method with comparisons to
the baselines are presented in Table 1, where the rewards are
normalized by the episode reward of SAC in the nominal
environment. The results reveal that RSC-SAC significantly
outperforms other baselines in shifted test environments. An
interesting and even surprising finding, as shown in Table 1,
is that although RMDP-G, RMDP-U, and ATLA are trained
desired to be robust against small perturbations, their perfor-
mance drops more than non-robust SAC in some tasks. This
indicates that using the samples generated from the tradi-
tional robust algorithms could harm the policy performance
when the test environment is outside of the prescribed un-
certainty set considered in the robust algorithms.

6. Conclusion
This work focuses on robust reinforcement learning against
spurious correlation in state space, which broadly exists in
(sequential) decision-making tasks. We propose robust SC-
MDPs as a general framework to break spurious correlations
by perturbing the value of unobserved confounders. We not
only theoretically show the advantages of the framework
compared to existing robust works in RL, but also design an
empirical algorithm to solve robust SC-MDPs by approx-
imating the causal effect of the confounder perturbation.
The experimental results demonstrate that our algorithm is
robust to spurious correlation – outperforms the baselines
when the value of the confounder in the test environment
derivates from the training one.
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A. Additional Preliminaries
Value function and Q-function of standard MDPs. To represent the long-term cumulative reward, the value function
V π,P
t : S → R and Q-value function Qπ,P

t : S × A → R associated with policy π at step t are defined as V π,P
t (s) =

Eπ,P

[∑T
k=t rk(sk, ak) | sk = s

]
and Qπ,P

t (s, a) = Eπ,P

[∑T
k=t rk(sk, ak) | st = s, at = a

]
, where the expectation is

taken over the sample trajectory {(st, at)}1≤t≤T generated following at ∼ πt(· | st) and st+1 ∼ Pt(· | st, at).

Robust Markov decision processes (RMDPs). As a robust variant of standard MDPs motivated by distributionally robust
optimization, RMDP is a natural formulation to promote robustness to the uncertainty of the transition probability kernel
(Iyengar, 2005; Shi & Chi, 2022), represented asMrob =

{
S,A, T, r,Uσ(P 0)

}
. Here, we reuse the definitions of S,A, T, r

in standard MDPs, and denote Uσ(P 0) as an uncertainty set of probability transition kernels centered around a nominal
transition kernel P 0 = {P 0

t }1≤t≤T measured by some ‘distance’ function ρ with radius σ. In particular, the uncertainty set
obeying the (s, a)-rectangularity (Wiesemann et al., 2013) can be defined over all (s, a) state-action pairs at each time step t
as

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=
{
Pt,s,a ∈ ∆(S) : ρ

(
Pt,s,a, P

0
t,s,a

)
≤ σ

}
, (4)

where ⊗ denotes the Cartesian product. Here, Pt,s,a := Pt(· | s, a) ∈ ∆(S) and P 0
t,s,a := P 0

t (· | s, a) ∈ ∆(S) denote
the transition kernel Pt or P 0

t at each state-action pair (s, a) respectively. Consequently, the next state st+1 follows
st+1 ∼ Pt(· | st, at) for any Pt ∈ Uσ(P 0

t,st,at
), namely, st+1 can be generated from any transition kernel belonging to the

uncertainty set Uσ(P 0
t,st,at

) rather than a fixed one in standard MDPs. As a result, for any policy π, the corresponding
robust value function and robust Q function are defined as

V π,σ
t (s) := inf

P∈Uσ(P 0)
V π,P
t (s), Qπ,σ

t (s, a) := inf
P∈Uσ(P 0)

Qπ,P
t (s, a), (5)

which characterize the cumulative reward in the worst case when the transition kernel is within the uncertainty set Uσ(P 0).
Using samples generated from the nominal transition kernel P 0, the goal of RMDPs is to find an optimal robust policy that
maximizes V π,σ

1 when t = 1, i.e., perform optimally in the worst case when the transition kernel of the test environment lies
in a prescribed uncertainty set Uσ(P 0).

B. Additional Related Works
In this section, besides the most related formulation, robust RL introduced in Sec 3.3, we also introduce some other related
RL problem formulations partially shown in Figure 3. Then, we limit our discussion to mainly two lines of work that are
related to ours: (1) promoting robustness in RL; (2) concerning the spurious correlation issues in RL.
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B.1. Related RL formulations

Robustness to noisy state: POMDPs and SA-MDPs. State-noisy MDPs refer to the RL problem that the agent can only
access and choose the action based on a noisy observation rather than the true state at each step, including two existing types
of problems: Partially observable MDPs (POMDPs) and state-adversarial MDPs (SA-MDPs), shown in Figure 3(b). In
particular, at each step t, in POMDPs, the observation ot is generated by a fixed probability transition O(· | st) (we refer to
the case that ot only depends on the state st but not action); for state-adversarial MDPs, the observation is an adversary ν(st)
against and thus determined by the conducted policy, leading to the worst performance by perturbing the state in a small set
around itself. To against the state perturbation, both POMDPs, and SA-MDPs are indeed robust to the noisy observation,
or called agent-observed state, but not the real state that transitions to the environment and next steps. In contrast, our
RSC-MDPs propose the robustness to the real state shift that will directly transition to the next state in the environment,
involving additional challenges induced by the appearance of out-of-distribution states.

Robustness to unobserved confounder: MDPUC and confounded MDPs. To address the misleading spurious correlations
hidden in components of RL, people formulate RL problems as MDPs with some additional components – unobserved
confounders. In particular, the Markov decision process with unobserved confounders (MDPUC) (Wu et al., 2023) serves
as a general framework to concern all types of possible spurious correlations in RL problems – at each step, the state,
action, and reward are all possibly influenced by some unobserved confounder, shown in Figure 2(d); confounded MDPs
(Wang et al., 2021) mainly concerns the misleading correlation between the current action and the next state, illustrated in
Figure 3(e). The proposed state-confounded MDPs (SC-MDPs) can be seen as a specified type of MDPUC that focus on
breaking the spurious correlation between different parts of the state space itself (different from confounded MDPs which
consider the correlation between action and next state), motivated by various real-world applications in self-driving and
control tasks. In addition, the proposed formulation is more flexible and can work in both online and offline RL settings.

Contexual MDPs (CDMPs). A contextual MDP (CMDP) (Hallak et al., 2015) is basically a set of standard MDPs sharing
the same state and action space but specified by different contexts within a context space. In particular, the transition
kernel, reward, and action of a CMDP are all determined by a (possibly unknown) fixed context. The proposed robust
state-confounded MDPs (RSC-MDPs) are similar to CMDPs if we cast the unobserved confounder as the context in CMDPs,
while different in two aspects: (1) In a CMDP, the context is fixed throughout an episode, while the unobserved confounder
in RSC-MDPs can vary as {ct}1≤t≤T ; (2) In the online setting, the goal of CMDP is to beat the optimal policy depending
on the context, while RSC-MDPs seek to learn the optimal policy that does not depend on the confounder {ct}1≤t≤T .

B.2. Related literature of robustness in RL

Robust RL (robust MDPs). Concerning the robust issues in RL, a large portion of works focus on robust RL with explicit
uncertainty of the transition kernel, which is well-posed and a natural way to consider the uncertainty of the environment
(Iyengar, 2005; Xu & Mannor, 2010; Wolff et al., 2012; Kaufman & Schaefer, 2013; Ho et al., 2018; Smirnova et al., 2019;
Ho et al., 2021; Goyal & Grand-Clement, 2022; Derman & Mannor, 2020; Tamar et al., 2014; Badrinath & Kalathil, 2021).
However, to define the uncertainty set for the environment, most existing works use task structure-agnostic and heuristic
’distance’ such as KL divergence and total variation (Yang et al., 2022; Panaganti & Kalathil, 2022; Zhou et al., 2021; Shi
& Chi, 2022; Xu et al., 2023b; Wang et al., 2023; Clavier et al., 2023; Wang & Zou, 2021) to measure the shift between
the training and test transition kernel, leading to a homogeneous (almost structure-free) uncertainty set around the state
space. In contrast, we consider a more general uncertainty set that enables the robustness to a task-dependent heterogeneous
uncertainty set shaped by unobserved confounder and causal structure, in order to break the spurious correlation hidden in
different parts of the state space.

Robustness in RL Despite the remarkable success that standard RL has achieved, current RL algorithms are still limited
since the agent is vulnerable if the deployed environment is subject to uncertainty and even structural changes. To address
these challenges, a recent line of RL works begins to concern robustness to the uncertainty or changes over different
components of MDPs – state, action, reward, and transition kernel, where a review (Moos et al., 2022) can be referred
to. Besides robust RL framework concerning the shift of the transition kernel and reward, to promote robustness in RL,
there exist various works (Tessler et al., 2019; Tan et al., 2020) that consider the robustness to action uncertainty, i.e., the
deployed action in the environment is distorted by an adversarial agent smoothly or circumstantially; some works (Zhang
et al., 2020b; 2021a; Han et al., 2022; Qiaoben et al., 2021; Sun et al., 2021; Xiong et al., 2022) investigate the robustness to
the state uncertainty including but not limited to the introduced POMDPs and SA-MDPs in Appendix B.1, where the agent
chooses the action based on observation – the perturbed state determined by some restricted noise or adversarial attack. The
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Figure 4. The probabilistic graphs of our formulation (SC-MDP) and other related formulations.

proposed RSC-MDPs can be regarded as addressing the state uncertainty since the shift of the unobserved confounder leads
to state perturbation. In contrast, RSC-MDPs consider the out-of-distribution of the real state that will directly influence the
subsequent transition in the environment, but not the observation in POMDPs and SA-MDPs that will not directly influence
the environment.

B.3. Related literature of spurious correlation in RL

Confounder in RL. These works mainly focus on the confounder between action (treatment) and state (effect), which is a
long-standing problem that exists in the causal inference area. However, we find that the confounder may cause problems
from another perspective, where the confounder is built upon different dimensions of the state variable. Some people focus
on the confounder between action and state, which is common in offline settings since the dataset is fixed and intervention is
not allowed. But in the online setting, actions are controlled by an agent and intervention is available to eliminate spurious
correlation. (Deng et al., 2021) reduces the spurious correlation between action and state in the offline setting. (Bai et al.,
2021) deal with environment-irrelevant white noise; possible shift + causal (Tennenholtz et al., 2021). The confounder
problem is usually easy to solve since agents can interact with the environment to do interventions. However, different from
most existing settings, we find that even with the capability of intervention, the confounding between dimensions in states
cannot be fully eliminated. Then the learned policy is heavily influenced if these confounder change during testing.

Invariant Feature learning. The problem of spurious correlation has attracted attention in the supervised learning
area for a long time and many solutions are proposed to learn invariant features to eliminate spurious correlations. A
general framework to remedy the ignorance of spurious correlation in empirical risk minimization (ERM) is invariant risk
minimization (IRM) (Arjovsky et al., 2019). Other works tackle this problem with group distributional robustness (Sagawa
et al., 2019), adversarial robustness (Zhang et al., 2021b), and contrastive learning (Zhang et al., 2022). These methods
are also adapted to sequential settings. The idea of increasing the robustness of RL agents by training agents on multiple
environments has been shown in previous works (Xie et al., 2022; Zhang et al., 2020a;a). However, a shared assumption
among these methods is that multiple environments with different values of confounder are accessible, which is not always
true in the real world.

Counterfactual Data Augmentation in RL. One way to simulate multiple environments is data augmentation. However,
most data augmentation works (Laskin et al., 2020; Wang et al., 2020; Yarats et al., 2021; Kostrikov et al., 2020; Hansen
et al., 2021; Raileanu et al., 2021; Hansen & Wang, 2021) apply image transformation to raw inputs, which requires strong
domain knowledge for image manipulation and cannot be applied to other types of inputs. In RL, the dynamic model
and reward model follow certain causal structures, which allow counterfactual generation of new transitions based on the
collected samples. This line of work, named counterfactual data augmentation, is very close to this work. Deep generative
models (Lu et al., 2020) and adversarial examples (Agarwal & Chinchali, 2023) are considered for the generation to improve
sample efficiency in model-based RL. CoDA (Pitis et al., 2020) and MocoDA (Pitis et al., 2022) leverage the concept of
locally factored dynamics to randomly stitch components from different trajectories. However, the assumption of local
causality may be limited.

Domain Randomization. If we are allowed to control the data generation process, e.g., the underlying mechanism of
the simulator, we can apply the golden rule in causality – Randomized Controlled Trial (RCT). The well-known technic,
domain randomization (Tobin et al., 2017), exactly follows the idea of RCT, which randomly perturb the internal state
of the experiment in simulators. Later literature follows this direction and develops variants including randomization
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Algorithm 1 RSC-SAC Training
1: Input: policy π, data buffer D, transition model Pθ, ratio of modified data β
2: for t ∈ [1, T ] do
3: Sample action at ∼ π(·|st)
4: (st+1, rt)← Env(st, at)
5: Add buffer D = D ∪ {st, at, st+1, rt}
6: for sample batch B ∈ D do
7: Randomly select β% data in B
8: Modify st in selected data with (6)
9: (ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ)

10: Replace data with (st, at, ŝt+1, r̂t)
11: L = ∥st+1 − ŝt+1∥22 + ∥rt − r̂t∥22
12: Update θ and ϕ with L+ λ∥G∥p
13: Update π with SAC algorithm
14: end for
15: end for

guided by downstream tasks in the target domain (Ruiz et al., 2018; Mehta et al., 2020), randomization to match real-world
distributions (James et al., 2019; Chebotar et al., 2019), and randomization to minimize data divergence (Zakharov et al.,
2019). However, it is usually impossible to randomly manipulate internal states in most situations in the real world. In
addition, determining which variables to randomize is even harder given so many factors in complex systems.

Discovering Spurious Correlations Detecting spurious correlations helps models remove features that are harmful to
generalization. Usually, domain knowledge is required to find such correlations (Clark et al., 2019; Kaushik et al., 2019;
Nauta et al., 2021). However, when prior knowledge is accessible, technics such as clustering can also be used to reveal
spurious attributes (Wu et al., 2023; Sohoni et al., 2020; Seo et al., 2022). When human inspection is available, recent
works (Plumb et al., 2021; Hagos et al., 2022; Abid et al., 2022) also use explainability techniques to find spurious
correlations. Another area for discovery is concept-level and interactive debugging (Bontempelli et al., 2022; Bahadori &
Heckerman, 2020), which leverage concepts or human feedback to perform debugging.

C. Details about RSC-SAC Algorithm

C.1. Distribution of confounder

As we have no prior knowledge about the confounder, we choose to approximate the effect of perturbing them without
explicitly estimating the distribution P c. We first randomly select a dimension i from the state st to apply perturbation
and then assign the dimension i of st with a heuristic rule. We select the value from another sample sk that has the most
different value from st in dimension i and the most similar value to st in the remaining dimensions. Formally, this process
solves the following optimization problem to select sample k from a batch of K samples:

sit ← sik, k = argmax
∥sit − sik∥22∑

¬i ∥s¬i
t − s¬i

k ∥22
, k ∈ {1, ...,K} (6)

where sit and s¬i
t means dimension i of st and other dimensions of st except for i, respectively. Intuitively, permuting

the dimension of two samples breaks the spurious correlation and remains the most semantic meaning of the state space.
However, this permutation sometimes also breaks the true cause and effect between dimensions, leading to a performance
drop. The trade-off between robustness and performance (Xu et al., 2023a) is a long-standing dilemma in the robust
optimization framework, which we will leave to future work.

C.2. Learning of structural causal model
With the perturbed state st, we then learn an SCM to predict the next state and reward considering the effect of the
action on the previous state. This model contains a causal graph to achieve better generalization to unseen state-action
pairs. Specifically, we simultaneously learn the model parameter and discover the underlying causal graph in a fully
differentiable way with (ŝt+1, r̂t) ∼ Pθ(st, at,Gϕ), where θ is the parameter of the neural network of the dynamic model
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and ϕ ∈ R(n+dA)×(n+1) is the parameter to represent causal graph G between {st, at} and {st+1, rt}. This graph is
represented by a binary adjacency matrix G, where 1/0 means the existence/absence of an edge. Pθ has an encoder-decoder
structure with matrix G as an intermediate linear transformation. The encoder takes state and action in and outputs features
fe ∈ R(n+dA)×df for each dimension, where df is the dimension of the feature. Then, the causal graph is multiplied to
generate the feature for the decoder fd = fT

e G ∈ Rdf×(n+1). The decoder takes in fd and outputs the next state and reward.
The detailed architecture of this causal transition model can be found in Appendix F.2.

The objective for training this model consists of two parts, one is the supervision signal from collected data ∥st+1− ŝt+1∥22+
∥rt − r̂t∥22, and the other is a penalty term λ∥G∥p with weight λ to encourage the sparsity of the matrix G. The penalty is
important to break the spurious correlation between dimensions of state since it forces the model to eliminate unnecessary
inputs for prediction.

D. Theoretical Analyses
D.1. Theoretical guarantees of RSC-MDPs: advantages of semantic uncertainty

To theoretically understand the advantages of the proposed robust formulation RSC-MDPs with comparison to prior works,
especially RMDPs, the following theorem verifies that RSC-MDPs enable additional robustness to fierce semantic attack
besides small model perturbation or noise considered in RMDPs. The proof is postponed to Appendix D.2.
Theorem 1. Consider some standard MDPsM =

{
S,A, P 0, T, r

}
, equivalently represented as an SC-MDPMsc ={

S,A, T, r, C, {Pi
t}, P c} with C := [0, 1], and the widely-used total deviation as the ‘distance’ function ρ to measure

the uncertainty set (namely, the admissible uncertainty level obeys σ ∈ [0, 1]). For the corresponding RMDPMrob with
the uncertainty set Uσ1(P 0), and the proposed RSC-MDPMsc-rob =

{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

, the optimal robust
policy π⋆,σ1

RMDP associated withMrob and π⋆,σ2

RSC associated withMsc-rob obey: given σ2 ∈
(
3
4 , 1

]
, there exist RSC-MDPs

with some initial distribution ϕ such that

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 (ϕ) ≥ T

4
, ∀σ1 ∈ [0, 1]. (7)

In words, Theorem 1 reveals a fact about the proposed RSC-MDPs: RSC-MDPs could succeed in intense semantic attacks
while RMDPs fail. As shown by (7), when fierce semantic shifts appear between the training and test scenarios – perturbing
the unobserved confounder in a large uncertainty set Uσ2(P c), solving RSC-MDPs with π⋆,σ2

RSC succeed in testing while
π⋆,σ1

RMDP trained by solving RMDPs can fail catastrophically. The proof is achieved by constructing hard constants of
RSC-MDPs that RMDPs could not cope with due to inherent limitations. Moreover, this advantage of RSC-MDPs is
consistent with and verified by the empirical performance evaluation in Section 5.2 R1.

D.2. Proof of Theorem 1

Constructing a hard instance of the standard MDP. In this section, we consider the following standard MDP instance
M =

{
S,A, P 0, T, r

}
, where S = {[0, 0], [0, 1], [1, 0], [1, 1]} is the state space consisting of four elements in dimension

n = 2, and A = {0, 1} is the action space with only two options. The transition kernel P 0 = {P 0
t }1≤t≤T at different time

steps 1 ≤ t ≤ T is defined as

P 0
1 (s

′ | s, a) =
{

1(s′ = [0, 0])1(a = 0) + 1(s′ = [0, 1])1(a = 1) if(s, a) = ([0, 0], a)
1(s′ = s) otherwise , (8)

and

P 0
t (s

′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (9)

Note that this transition kernel P 0 ensures the next state transitioned from the state [0, 0] is either [0, 0] or [0, 1]. The reward
function is specified as follows: for all time steps 1 ≤ t ≤ T ,

rt(s, a) =

{
1 if s = [0, 0] or s = [1, 1]
0 otherwise . (10)

The equivalence to one SC-MDP. Then, we shall show that the constructed standard MDP M can be equivalently
represented by one SC-MDPMsc =

{
S,A, T, r, C, {Pi

t}, P c} with C := [0, 1], which yields the sequential observations
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{st, at, rt}1≤t≤T induced by any policy and any initial state distribution in two processes are identical. To specify, S,A, T, r
are kept the same asM. Here, {Pi

t} shall be specified in a while, which determines the transition to each dimension of the
next state conditioned on the current state, action, and confounder for all time steps, i.e., sit+1 ∼ Ect∼P c

t

[
Pi
t(· | st, at, ct)

]
for

any i-th dimension of the state (i ∈ {1, 2} and all timestep 1 ≤ t ≤ T . For convenience, we denote Pt := [P1
t ,P2

t ] ∈ ∆(S)
as the transition kernel towards the next state, namely, st+1 ∼ Ect∼P c

t
[Pt(· | st, at, ct)].

To ensure the marginalized transition probability from any state-action pair (st, at) to the next state st+1 inMsc aligns with
the one in the MDPM, we set

P c
t (c) = 1(c = 0), ∀1 ≤ t ≤ T. (11)

In addition, before introducing the transition kernel {Pi
t} of the SC-MDPMsc, we introduce an auxiliary transition kernel

P sc = {P sc
t } as follows:

P sc
1 (s′ | s, a) =

{
1(s′ = [1, 0])1(a = 0) + 1(s′ = [1, 1])1(a = 1) if(s, a) = ([0, 0], 0)
1(s′ = s) otherwise , (12)

and

P sc
t (s′ | s, a) = 1(s′ = s), ∀(t, s, a) ∈ {2, 3, · · · , T} × S ×A. (13)

It can be observed that P sc is similar to P 0 except for the transition in the state [0, 0].

Armed with this transition kernel P sc, the {Pi
t} of the SC-MDPMsc is set to obey

P1(s
′ | s, a, c) =

{
(1− c)P 0

1 (s
′ | s, a) + cP sc

1 (s′ | s, a) if(s, a) = ([0, 0], a)
1(s′ = s) otherwise , (14)

and

Pt(s
′ | s, a, c) = 1(s′ = s), ∀(t, s, a, c) ∈ {2, 3, · · · , T} × S ×A× C. (15)

With the above preparation, we are ready to verify that the marginalized transition from the current state and action to the
next state in the SC-MDPMsc is identical to the one in MDPM: for all (t, st, at, st+1) ∈ {1, 2, · · · , T} × S ×A× S:

P(st+1 | st, at) = Ect∼P c
t
[Pt(st+1 | st, at, ct)] = Pt(st+1 | st, at, 0) = P 0(st+1 | st, at) (16)

where the second equality holds by the definition of P c in equation 11, and the last equality holds by the definitions of P 0

(see equation 8 and equation 9) and P (see equation 14 and equation 15).

In summary, we verified that the standard MDPM =
{
S,A, P 0, T, r

}
is equal to the above specified SC-MDPMsc.

Defining the corresponding RMDP and RSC-MDP. Equipped with the equivalent MDPM and SC-MDPMsc, people
could consider the robust variants of them respectively — a RMDPMrob =

{
S,A,Uσ1(P 0), T, r

}
with the uncertainty

level σ1, and the proposed RSC-MDPMsc-rob =
{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

with the uncertainty level σ2.

In this section, without loss of generality, we consider total deviation as the ‘distance’ function ρ for the uncertainty
sets of both RMDP Mrob and RSC-MDP Msc-rob, i.e., for any probability vectors P ′, P ∈ ∆(C) (or P ′, P ∈ ∆(S)),
ρ (P ′, P ) := 1

2 ∥P
′ − P∥1. Consequently, for any uncertainty set σ ∈ [0, 1], the uncertainty set Uσ1(P 0) of the RMDP (see

equation 4) and Uσ2(P c) of the RSC-MDPMsc-rob (see equation 2) are defined as follows:

Uσ(P 0) := ⊗ Uσ(P 0
t,s,a), Uσ(P 0

t,s,a) :=

{
Pt,s,a ∈ ∆(S) : 1

2

∥∥Pt,s,a − P 0
t,s,a

∥∥
1
≤ σ

}
,

Uσ(P c) := ⊗ Uσ(P c
t ), Uσ(P c

t ) :=

{
P ∈ ∆(C) : 1

2
∥P − P c

t ∥1 ≤ σ

}
. (17)

To continue, the proof is established by specifying the robust optimal policy π⋆,σ1

RMDP associated with Mrob and π⋆,σ2

RSC

associated withMsc-rob and then compare their performance on RSC-MDP with some initial state distribution.

The performance comparisons between π⋆,σ1

RMDP of RMDPMrob and π⋆,σ2

RSC of RSC-MDPMsc-rob.

To begin, we introduce the following lemma which specifies the robust optimal policy π⋆,σ1

RMDP associated with the RMDP
Mrob.
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Lemma 1. For any σ1 ∈ (0, 1], the robust optimal policy and its corresponding robust SC-value functions satisfy

π⋆,σ1

RMDP(0 | s) = 1, for s ∈ S. (18a)

In addition, we characterize the robust SC-value functions of the RSC-MDPMsc-rob associated with any policy, combined
with the robust optimal policy π⋆,σ2

RSC ofMsc-rob — the optimal robust SC-value functions, shown in the following lemma.

Lemma 2. Consider any σ2 ∈ ( 34 , 1] and the RSC-MDPMsc-rob =
{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

. For any policy π, the
corresponding robust SC-value functions satisfy

Ṽ π,σ2

1 ([0, 0]) = 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]
. (19a)

In addition, the optimal robust SC-value function and the robust optimal policy π⋆,σ2

RSC of the RMDPMsc-rob obeys:

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2

1 ([0, 0]) = 1 +
T − 1

2
. (20)

Applying Lemma 2 with policy π = π⋆,σ1

RMDP in Lemma 1, one has

Ṽ
π
⋆,σ1
RMDP,σ2

1 ([0, 0]) = 1 + (T − 1) inf
P∈Uσ

2 (P c
1 )
Ec1∼P

[
1− c1

]
≤ 1 +

T − 1

4
, (21)

where the last inequality holds by the probability distribution P obeying P1(0) =
1
4 and P1(1) =

3
4 is inside the uncertainty

set Uσ
2 (P

c
1 ).

Finally, putting equation 21 and equation 20 together, we complete the proof by showing that with the initial state distribution
ϕ define as ρ(s1 = [0, 0]) = 1, we arrive at

Ṽ
π
⋆,σ2
RSC ,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 (ϕ) = Ṽ ⋆,σ2

1 (ϕ)− Ṽ
π
⋆,σ1
RMDP,σ2

1 (ϕ) ≥ T − 1

4
≈ T

4
. (22)

D.2.1. PROOF OF LEMMA 1

Specifying the minimum of the robust value functions in different states. For any uncertainty set σ1 ∈ (0, 1], we first
characterize the robust value function of any policy π over different states. To start, we denote the minimum of the robust
value function over states at each time step t as below:

V π,σ1

min,t := min
s∈S

V π,σ1

t (s) ≥ 0, (23)

where the last inequality holds by that the reward function defined in equation 10 is always non-negative. Obviously, there
exists at least one state sπmin,t that satisfies V π,σ1

t (sπmin,t) = V π,σ1

min,t.

With this in mind, we shall verify that for any policy π,

∀1 ≤ t ≤ T : V π,σ1

t ([0, 1]) = V π,σ1

t ([1, 0]) = 0. (24)

To achieve this, we will use a recursive argument. First, the base case can be verified since when t+ 1 = T + 1, the value
functions are all zeros at T + 1 step, i.e., V π,σ1

t+1 (s) = V π,σ1

T+1 (s) = 0 for all s ∈ S. Then, the goal is to verify the following
fact

V π,σ1

t ([0, 1]) = V π,σ1

t ([1, 0]) = 0 (25)

with the assumption that V π,σ1

t+1 (s) = 0 for any state s = {[0, 1], [1, 0]}. It is easily observed that for any policy π, the robust
value function when state s = {[0, 1], [1, 0]} at any time step t obeys

0 ≤ V π,σ1

t (s) = Ea∼πt(· | s)

[
rt(s, a) + inf

P∈Uσ1 (P 0
t,s,a)

PV π,σ1

t+1

]
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(i)
= 0 + (1− σ1)V

π,σ1

t+1 (s) + σ1V
π,σ1

min,t+1

(ii)
= 0 + σ1V

π,σ1

min,t+1

≤ 0 + σ1V
π,σ1

t+1 (s) = 0 (26)

where (i) holds by rt(s, a) = 0 for all s = {[0, 1], [1, 0]}, the fact P 0
t (s | s, a) = 1 (see equation 8 and equation 9), and the

definition of the uncertainty set Uσ1(P 0) in equation 17, (ii) follows from the recursive assumption V π,σ1

t+1 (s) = 0 for any
state s = {[0, 1], [1, 0]}, and the last equality holds by V π,σ1

min,t+1 ≤ V π,σ1

t+1 (s) (see equation 23). Until now, we complete the
proof for equation 25 and then verify equation 24.

Note that equation 24 direcly leads to

∀1 ≤ t ≤ T : V π,σ1

min,t = 0. (27)

Considering the robust value function at state [0, 0]. Armed with above facts, we are now ready to derive the robust value
function for the state [0, 0].

When 2 ≤ t ≤ T , one has

V π,σ1

t ([0, 0]) = Ea∼πt(· | [0,0])

[
rt([0, 0], a) + inf

P∈Uσ1 (Pt,[0,0],a)
PV π,σ1

t+1

]
(i)
= 1 +

[
(1− σ1)V

π,σ1

t+1 ([0, 0]) + σ1V
π,σ1

min,t+1

]
= 1 + (1− σ1)V

π,σ1

t+1 ([0, 0]) (28)

where (i) holds by rt([0, 0], a) = 1 for all a ∈ {0, 1} and the definition of P 0 (see equation 8 and equation 9), and the last
equality arises from equation 27 .

Applying equation 28 recursively for t, t+ 1, · · · , T yields that

V π,σ1

t ([0, 0]) =

T∑
k=t

(1− σ1)
k−t ≥ 1. (29)

At the first step, the robust value function obeys:

V π,σ1

1 ([0, 0]) = Ea∼π1(· | [0,0])

[
rt([0, 0], a) + inf

P∈Uσ1 (P1,[0,0],a)
PV π,σ1

2

]
(i)
= 1 + π1(0 | [0, 0]) inf

P∈Uσ1 (P1,[0,0],0)
PV π,σ1

2 + π1(1 | [0, 0]) inf
P∈Uσ1 (P1,[0,0],1)

PV π,σ1

2

(ii)
= 1 + π1(0 | [0, 0])

[
(1− σ1)V

π,σ1

2 ([0, 0]) + σ1V
π,σ1

min,2

]
+ π1(1 | [0, 0])

[
(1− σ1)V

π,σ1

2 ([0, 1]) + σ1V
π,σ1

min,2

]
= 1 + π1(0 | [0, 0])(1− σ1)V

π,σ1

2 ([0, 0]) (30)

where (i) holds by rt([0, 0], a) = 1 for all a ∈ {0, 1}, (ii) follows from the definition of P 0 (see equation 8 and equation 9),
and the last equality arises from equation 24 and equation 27.

The optimal policy π⋆,σ1

RMDP. Observing that the positive value of V π,σ1

2 ([0, 0]) verified in equation 29, as V π,σ1

1 ([0, 0]) is
increasing monotically as π1(0 | [0, 0]) is larger, we directly have that π⋆,σ1

RMDP(0 | [0, 0]) = 1.

Considering that the action does not influence the state transition for all other states s ̸= [0, 0], without loss of generality, we
choose the robust optimal policy to obey

∀s ∈ S : π⋆,σ1

RMDP(0 | s) = 1. (31)

D.2.2. PROOF OF LEMMA 2

To begin with, for any uncertainty level σ2 ∈ ( 12 , 1] and any policy π = {πt}, we consider the robust SC-value function
Ṽ π,σ2

1 of the RSC-MDPMsc-rob.
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Deriving Ṽ π,σ2

t for 2 ≤ t ≤ T . Towards this, for any 2 ≤ t ≤ T and s ∈ S, one has

Ṽ π,σ2

t (s)
(i)
= inf

P∈Uσ(P c)
Ṽ π,P
t (s) = inf

P∈Uσ(P c
t )
Ea∼πt(s)

[
Q̃π,P

t (s, a)
]

(ii)
= inf

P∈Uσ(P c
t )
Ea∼πt(s)

[
rt(s, a) + Ect∼P

[
Pt,s,a,ct Ṽ

π,σ
t+1

]]
(iii)
= rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

π,σ
t+1

]
= rt(s, a) + Ṽ π,σ

t+1 (s), (32)

where (i) holds by the definition in equation 3, (ii) follows from the state-confounded Bellman consistency equation in
equation 47, (iii) follows from that the reward function r and Pt are all independent from the action (see equation 10,
equation 11 and equation 15), and the last inequality holds by Pt(s

′ | s, a, c) = 1(s′ = s) is independent from ct (see
equation 15).

Applying the above fact recursively for t, t+ 1, · · · , T leads to that for any s ∈ S,

Ṽ π,σ2

t (s) = rt(s, at) + Ṽ π,σ
t+1 (s) = rt(s, a) + rt+1(s, at+1) + Ṽ π,σ

t+2 (s)

= · · · = rt(s, at) +

T∑
k=t+1

rk(sk, ak), (33)

which directly yields

Ṽ π,σ2

2 ([0, 0]) = Ṽ π,σ2

2 ([1, 1]) = T − 1 and Ṽ π,σ2

2 ([0, 1]) = Ṽ π,σ2

2 ([1, 0]) = 0. (34)

Characterizing Ṽ π,σ2

1 ([0, 0]) for any policy π. In this section, we are especially interested in the value of Ṽ π,σ2

1 on the
state [0, 0]. To proceed, one has

Ṽ π,σ2

1 ([0, 0])
(i)
= inf

P∈Uσ(P c)
Ṽ π,P
1 ([0, 0]) = inf

P∈Uσ(P c
1 )
Ea∼π1([0,0])

[
Q̃π,P

1 ([0, 0], a)
]

(ii)
= inf

P∈Uσ(P c
1 )
Ea∼πt([0,0])

[
r1([0, 0], a) + Ect∼P

[
P1,[0,0],a,ct Ṽ

π,σ
2

]]
(iii)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[(
π1(0 | [0, 0])P1,[0,0],0,c1 + πt(1 | [0, 0])P1,[0,0],1,c1

)
Ṽ π,σ
2

]
(iv)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)P

0
1,[0,0],0 + c1P

sc
1,[0,0],0

)
Ṽ π,σ
2

+ π1(1 | [0, 0])
(
(1− c1)P

0
1,[0,0],1 + c1P

sc
1,[0,0],1

)
Ṽ π,σ
2

]
(v)
= 1 + inf

P∈Uσ(P c
1 )
Ec1∼P

[
π1(0 | [0, 0])

(
(1− c1)Ṽ

π,σ
2 ([0, 0]) + c1Ṽ

π,σ
2 ([1, 0])

)
+ π1(1 | [0, 0])

(
(1− c1)Ṽ

π,σ
2 ([0, 1]) + c1Ṽ

π,σ
2 ([1, 1])

)]

= 1 + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
π1(0 | [0, 0])(1− c1) + π1(1 | [0, 0])c1

]

= 1 + (T − 1)π1(0 | [0, 0]) + (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
, (35)

where (i) holds by the definition in equation 3, (ii) follows from the state-confounded Bellman consistency equation in
equation 47, (iii) follows from r1([0, 0], a) = 1 for all a ∈ {0, 1} which is independent from ct. (iv) arises from the
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definition of P in equation 14, (v) can be verified by plugging in the definitions from equation 8 and equation 12, and the
penultimate equality holds by equation 34.

Characterizing the optimal robust SC-value functions.

To further consider equation 35, we recall the fact that Uσ(P c
1 ) =

{
P ∈ ∆(C) : 1

2 ∥P − P c
1∥1 ≤ σ2

}
.

Observing from equation 35 that for any fixed π1(0 | [0, 0]), c1
(
1− 2π1(0 | [0, 0])

)
is monotonously increasing with c1 when

1− 2π1(0 | [0, 0]) >= 0 and decreasing with c1 otherwise, it is easily verified that the solution of

f(π1(0 | [0, 0])) := (T − 1) inf
P∈Uσ(P c

1 )
Ec1∼P

[
c1
(
1− 2π1(0 | [0, 0])

)]
(36)

satisfies

f(π1(0 | [0, 0])) =

{
0 if π1(0 | [0, 0]) ≥ 1

2

(T − 1)σ2

(
1− 2π1(0 | [0, 0])

)
otherwise

. (37)

And note that the value of Ṽ π,σ2

1 ([0, 0]) only depends on π1(· | [0, 0]) which can be represent by π1(0 | [0, 0]). Plugging in
equation 37 into equation 35, we have that when π1(0 | [0, 0]) ≥ 1

2 ,

max
π

Ṽ π,σ2

1 ([0, 0]) = max
π1(0 | [0,0])≥ 1

2

1 + (T − 1)π1(0 | [0, 0]) + (T − 1)σ2

(
1− 2π1(0 | [0, 0])

)
= 1 + (T − 1)σ2 + (T − 1) max

π1(0 | [0,0])≥ 1
2

(1− 2σ2)π1(0 | [0, 0])

= 1 +
T − 1

2
, (38)

where the last equality holds by σ2 > 1
2 and letting π1(0 | [0, 0]) = 1

2 . Similarly, when π1(0 | [0, 0]) < 1
2 ,

max
π

Ṽ π,σ2

1 ([0, 0]) = max
π1(0 | [0,0])< 1

2

1 + (T − 1)π1(0 | [0, 0]) < 1 +
T − 1

2
. (39)

Consequently, we complete the proof by concluding that

Ṽ
π
⋆,σ2
RSC ,σ2

1 ([0, 0]) = Ṽ ⋆,σ2

1 ([0, 0]) = max
π

Ṽ π,σ2

1 ([0, 0]) = 1 +
T − 1

2
. (40)

D.3. Theorem 2

A natural question is: does there exist an optimal policy that maximizes the robust SC-value function Ṽ π,σ
t for any RSC-MDP

so that we can target to learn? To answer this, we introduce the following theorem that ensures the existence of the optimal
policy for all RSC-MDPs.

Theorem 2. Let Π be the set of all non-stationary and stochastic policies. Consider any RSC-MDP, there exists at least one
optimal policy πsc,⋆ = {πsc,⋆

t }1≤t≤T such that for all s ∈ S and 1 ≤ t ≤ T , one has

Ṽ πsc,⋆,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s) and Q̃πsc,⋆,σ

t (s, a) = Q̃⋆,σ
t (s, a) := sup

π∈Π
Q̃π,σ

t (s, a).

Proof. The proof follows the pipeline of proving the existence of the optimal policy for standard MDPs but tailored for
RSC-MDPs since the additional components confounder Cs and the infimum operator. To begin with, recall that the goal is
to find a policy π̃ = {π̃t}1≤t≤T such that:

Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) := sup
π∈Π

Ṽ π,σ
t (s) and Q̃π̃,σ

t (s, a) = Q̃⋆,σ
t (s, a) := sup

π∈Π
Q̃π,σ

t (s, a). (41)

Towards this, we start from the first claim in equation 41. Before proceeding, we let {St, At, Rt, Ct} denote the random
variables at time step t for all 1 ≤ t ≤ T . Then due to the Markov properties, we know that conditioned on current state
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st, the future state, action, and reward are all independent from the previous s1, a1, r1, c1, · · · , st−1, at−1, rt−1, ct−1. For
convenience, we introduce the following notation:

∀1 ≤ t ≤ T : P+t := {Pk}t≤k≤T and Uσ(P c
+t) := {Uσ(P c

k )}t≤k≤T (42)

to represent the collection of variables from time step t to the end of the episode, and choose π̃ to obey

∀1 ≤ t ≤ T : πt(s) := argmaxa∈AE

[
rt(s, a) + inf

Pt∈Uσ(P c
t,s,a)

Ect∼Pt

[
Ṽ ⋆,σ
t+1(st+1)

]]
(43)

With the above preparation in mind, for any (t, s) ∈ {1, 2, · · · , T} × S , one has

Ṽ ⋆,σ
t (s)

(i)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Ṽ π,P
t (s)

(ii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπ,P+t

[
T∑

k=t

rk(sk, ak)

]
(iii)
= sup

π∈Π
inf

P+t∈Uσ(P c
+t)

Eπt

[
rt(s, at)

+ Ect∼PtE

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]

= sup
π∈Π

Eπt

[
inf

P+t∈Uσ(P c
+t)

rt(s, at) + inf
P+t∈Uσ(P c

+t)
Ect∼Pt

E

[
T∑

k=t+1

rk(sk, ak) |π, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]

where (i) and (ii) holds by the definitions in equation 3 and equation 1 respectively, and (iii) follows from expressing the
term of interest by moving one step ahead and Eπt

is taken with respect to at ∼ πt(· |S1 = s1, A1 = a1, · · · , St = s), and
the last equality arises from we can exchange the operators Eπt

and infP∈Uσ(P c) since they are independent.

To continue, we observe that the above equation can be rewritten and controlled as follows:

Ṽ ⋆,σ
t (s)

= sup
π∈Π

Eπt

[
inf

P+t∈Uσ(P c
+t)

rt(s, at) + inf
Pt∈Uσ(P c

t )
Ect∼Pt

inf
P+(t+1)∈Uσ(P c

+(t+1)
)

E

[
T∑

k=t+1

rk(sk, ak) |π′, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]

≤ sup
π∈Π

Eπt

[
inf

P+t∈Uσ(P c
+t)

rt(s, at) + inf
Pt∈Uσ(P c

t )
Ect∼Pt

sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)

E

[
T∑

k=t+1

rk(sk, ak) |π′, P+(t+1), (St, At, Rt, Ct, St+1) = (s, at, rt, ct, st+1)

]]

(i)
= sup

π∈Π
Eπt

[
rt(s, at) + inf

Pt∈Uσ(P c
t )
Ect∼Pt

[
sup
π′∈Π

inf
P+(t+1)∈Uσ(P c

+(t+1)
)
Eπ′,P+(t+1)

[
T∑

k=t+1

rk(sk, ak)

]]]

= sup
π∈Π

Eπt

[
rt(s, at) + inf

Pt∈Uσ(P c
t )
Ect∼Pt

[
Ṽ ⋆,σ
t+1(st+1)

] ]

= sup
at∈A

Eat

[
rt(s, at) + inf

Pt∈Uσ(P c
t )
Ect∼Pt

[
Ṽ ⋆,σ
t+1(st+1)

]]
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= inf
Pt∈Uσ(P c

t )
E
[
rt(s, at) + Ect∼Pt

[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]
, (44)

where (i) holds by the Markov decision such that the rewards {rk(sk, ak)}t+1≤k≤T conditioned on determined
(St, At, Rt, Ct, St+1) or St+1 are the same, and the last equality follows from the definition of π̃ in equation 43 and
the exchangeability of infPt∈Uσ(P c

t )
and Eat

[·].

Applying equation 44 recursively for t+ 1, · · ·T , we arrive at

Ṽ ⋆,σ
t (s) ≤ inf

Pt∈Uσ(P c
t )
E
[
rt(s, at) + Ect∼Pt

[
Ṽ ⋆,σ
t+1(st+1)

]
| at = π̃t(s)

]
≤ inf

Pt∈Uσ(P c
t )

inf
Pt+1∈Uσ(P c

t+1)
E

[
rt(s, at)+

Ect∼Pt

[
rt+1(st+1, at+1) + Ect+1∼Pt+1

[
Ṽ ⋆,σ
t+2(st+1)

]]
| (at, at+1) = (π̃t(s), π̃t+1(st+1))

]

≤ · · · ≤ inf
P+t∈Uσ(P c

+t)}
Eπ,P

[
T∑

k=t

rk(sk, ak)

]
= Ṽ π̃,σ

t (s). (45)

where (i) holds by the Markov properties of the rewards.

Observing from equation 45 that

∀s ∈ S : Ṽ ⋆,σ
t (s) ≤ Ṽ π̃,σ

t (s) ≤ sup
π∈Π

Ṽ π,σ
t (s) = Ṽ ⋆,σ

t (s), (46)

which directly verifies the first assertion in equation 41 Ṽ π̃,σ
t (s) = Ṽ ⋆,σ

t (s) for all s ∈ S . The second assertion in equation 41
can be achieved analogously. Until now, we verify that there exists at least a policy π̃ that obeys equation 41, which we refer
it as an optimal policy since its value is equal to or larger than any other non-stationary and stochastic policies over all states
s ∈ S.

■

D.4. Auxiliary results of SC-MDPs and RSC-MDPs

Facts about SC-MDPs. For any state-confounded MDPs (SC-MDPs)MSC =
{
S,A, T, r, C, {Pi

t}, P c
}

, denoting the
optimal policy as π⋆ and the corresponding optimal SC-value function as Ṽ , any policy π satisfies the corresponding
state-confounded Bellman consistency equation as below:

Q̃π,P c

t (s, a) = rt(s, a) + Ect∼P c
t

[
Pt,s,a,ct Ṽ

π,σ
t+1

]
, (47)

where Pt,s,a,ct ∈ R1×S such that Pt,s,a,ct(s
′) := Pt(s

′ | s, a, ct) for s′ ∈ S.

Facts about RSC-MDPs. It is easily verified that for any RSC-MDP Msc-rob =
{
S,A, T, r, C, {Pi

t},Uσ2(P c)
}

, any
policy π and the optimal policy π⋆ satisfy the corresponding robust state-confounded Bellman consistency equation and
Bellman optimality equation shown below, respectively:

Q̃π,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

π,σ
t+1

]
,

Q̃⋆,σ
t (s, a) = rt(s, a) + inf

P∈Uσ(P c
t )
Ect∼P

[
Pt,s,a,ct Ṽ

⋆,σ
t+1

]
, (48)

where Pt,s,a,ct ∈ R1×S such that Pt,s,a,ct(s
′) := Pt(s

′ | s, a, ct) for s′ ∈ S, and Ṽ ⋆,σ
t+1(s) = maxa Q̃

⋆,σ
t+1(s, a).

E. Additional Experiment Results
The training curves of four environments are displayed in Figure 5, showing that RSC-SAC achieves similar rewards
compared to non-robust SAC although converges slower than it.
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Table 2. Testing reward on nominal environments. Underline means the reward is over 0.9.
Method Brightness Behavior Crossing CarType Lift Stack Wipe Door

SAC 1.00±0.09 1.00±0.08 1.00±0.02 1.00±0.03 1.00±0.03 1.00±0.09 1.00±0.12 1.00±0.03
RMDP-G 1.04±0.09 1.00±0.11 0.78±0.05 0.79±0.05 0.92±0.07 0.86±0.14 0.99±0.13 0.99±0.06
RMDP-U 1.02±0.09 1.04±0.07 0.90±0.03 0.88±0.03 0.97±0.05 0.92±0.12 0.97±0.14 0.88±0.31
MoCoDA 0.65±0.17 0.78±0.15 0.57±0.07 0.55±0.13 0.79±0.11 0.72±0.08 0.69±0.13 0.41±0.22
ATLA 0.99±0.11 0.98±0.11 0.89±0.05 0.88±0.04 0.94±0.08 0.88±0.10 0.96±0.12 0.97±0.05
DBC 0.75±0.12 0.78±0.10 0.85±0.08 0.86±0.06 0.27±0.04 0.12±0.08 0.31±0.21 0.01±0.01

RSC-SAC 0.92±0.31 1.06±0.07 0.96±0.03 0.96±0.03 0.96±0.05 1.04±0.08 0.92±0.14 0.98±0.05

Table 3. Influence of modules
Method Lift Behavior Crossing

w/o Gϕ 0.79±0.15 0.51±0.24 0.87±0.10
w/o Pθ 0.75±0.13 0.41±0.28 0.89±0.08
w/o P c 0.90±0.09 0.66±0.21 0.96±0.04

Full model 0.98±0.04 1.02±0.09 1.04±0.02

RSC-SAC maintains great performance in the training environments. Previous literature (Xu et al., 2023a) finds out that
there usually exists a trade-off between the performance in the nominal environment and the robustness against uncertainty.
To evaluate the performance of RSC-SAC in the nominal environment, we conduct experiments and summarize results in
Table 2, which shows that RSC-SAC still performs well in the training environment.

Both the distribution of confounder and the structural causal model are critical. To assess the impact of each module
in our algorithm, we conduct three additional ablation studies (in Table 3), where we remove the causal graph Gϕ, the
transition model Pθ, and the distribution of the confounder P c respectively. The results demonstrate that the learnable
causal graph Gϕ is critical for the performance that enhances the prediction of the next state and reward, thereby facilitating
the generation of high-quality next states with current perturbed states. The transition model without Gϕ may still retain
numerous spurious correlations, resulting in a performance drop similar to the one without Pθ, which does not alter the next
state and reward. In the third row of Table 3, the performance drop indicates that the confounder P c also plays a crucial role
in preserving semantic meaning and avoiding policy training distractions.

RSC-SAC is also robust to random perturbation. The final investigation aims to assess the generalizability of our method
to cope with random perturbation that is widely considered in robust RL (RMDPs). Towards this, we evaluate the proposed
algorithm in the test environments added with random noise under the Gaussian distribution with two varying scales in the
Lift environment. In Table 4, Lift-0 indicates the nominal training environment, while Lift-0.01 and Lift-0.1 represent the
environments perturbed by the Gaussian noise with standard derivation 0.01 and 0.1, respectively. The results indicate that
our RSC-SAC achieves comparable robustness compared to RMDP-0.01 in both large and small perturbation settings and
outperforms RMDP methods in the nominal training environment.

F. Experiment Details
F.1. Baselines

We use a non-robust RL and four representative algorithms of robust RL as baselines, all of which are implemented on top
of the SAC (Haarnoja et al., 2018) algorithm. Non-robust RL (SAC): This serves as a basic baseline without considering
any robustness during training; Solving robust MDP: We generate the samples to cover the uncertainty set over the state

Table 4. Random perturbation
Method Lift-0 Lift-0.01 Lift-0.1

SAC 1.00±0.03 0.77±0.13 0.46±0.23
RMDP-0.01 0.97±0.05 0.96±0.06 0.51±0.21
RMDP-0.1 0.85±0.12 0.82±0.09 0.39±0.15

RSC-SAC 0.96±0.05 0.94±0.06 0.44±0.18
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Figure 5. The first row shows the testing reward on the nominal environments, while the second row shows the testing reward on the
shifted environments.

space by adding perturbation around the nominal states that follows two distribution, i.e., uniform distribution (RMDP-U)
and Gaussian distribution (RMDP-G). Solving SA-MDP: We select ATLA (Zhang et al., 2021a), a strong algorithm
that generates adversarial states using an optimal adversary within the uncertainty set. Invariant feature learning: We
choose DBC (Zhang et al., 2020a), which learns invariant features using the bi-simulation metric (Larsen & Skou, 1989).
Counterfactual data augmentation: We select MoCoDA (Pitis et al., 2022), which identifies local causality to switch
components and generate counterfactual samples to cover the targeted uncertainty set. We adapt this algorithm using an
approximate causal graph rather than the true causal graph.

F.2. Architecture of the structural causal model

We plot the architecture of the structural causal model we used in our method in Figure 6. In normal neural networks, the
input is treated as a whole to pass through linear layers or convolution layers. However, this structure blends all information
in the input, making the causal graph useless to separate cause and effect. Thus, in our model, we design an encoder that is
shared across all dimensions of the input. Since different dimensions could have exactly the same values, we add a learnable
position embedding to the input of the encoder. In summary, the input dimension of the encoder is 1 + dpos, where dpos is
the dimension of the position embedding.

After the encoder, we obtain a set of independent features for each dimension of the input. We now multiply the features
with a learnable binary causal graph G. The element (i, j) of the graph is sampled from a Gumbel-Softmax distribution
with parameter ϕi,j to ensure the loss function is differentiable w.r.t ϕ.

The multiplication of the causal graph and the input feature creates a linear combination of the input feature with respect to
the causal graph. The obtained features are then passed through a decoder to predict the next state and reward. Again, the
decoder is shared across all dimensions to avoid information leaking between dimensions. Position embedding is included
in the input to the decoder and the output dimension of the decoder is 1.
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Figure 6. Model architecture of the structural causal model. Encoder, Decoder, position embedding, and Causal Graph are learnable
during the training stage.

F.3. Environments

We design four self-driving tasks in the Carla simulator (Dosovitskiy et al., 2017) and four manipulation tasks in the
Robosuite platform (Zhu et al., 2020). All of these realistic tasks contain strong spurious correlations that are explicit to
humans. We categorize the tasks into distraction correlation and composition correlation according to the type of spurious
correlation. We specify these two types of correlation below.

• Distraction correlation is between task-relevant and task-irrelevant portions of the state. The task-irrelevant part
could distract the policy model from learning important features and lead to a performance drop. A typical method to
avoid distraction is background augmentation (Laskin et al., 2020; Yarats et al., 2021). We design four tasks with this
category of correlation, i.e., Lift, Wipe, Brightness, and CarType.

• Composition correlation is between two task-relevant portions of the state. This correlation usually exists in
compositional generalization, where states are re-composed to form novel tasks during testing. Typical examples are
multi-task RL (Jiang et al., 2022; Lu et al., 2021) and hierarchical RL (Yoo et al., 2022; Le et al., 2018). We design
four tasks with this category of correlation, i.e., Stack, Door, Behavior, and Crossing.

Brightness. The nominal environments are shown in the 1th column of Figure 7, where the brightness and the traffic density
are correlated. When the ego vehicle drives in the daytime, there are many surrounding vehicles (first row). When the ego
vehicle drives in the evening, there is no surrounding vehicle (second row). The shifted environment swaps the brightness
and traffic density in the nominal environment, i.e., many surrounding vehicles in the evening and no surrounding vehicles
in the daytime.

Behavior. The nominal environments are shown in the 2nd column of Figure 7, where the other vehicle has aggressive
driving behavior. When the ego vehicle is in front of the other vehicle, the other vehicle always accelerates and overtakes
the ego vehicle in the left lane. When the ego vehicle is behind the other vehicle, the other vehicle will always accelerate. In
the shifted environment, the behavior of the other vehicle is conservative, i.e., the other vehicle always decelerates to block
the ego vehicle.

Crossing. The nominal environments are shown in the 3rd column of Figure 7, where the pedestrian follows the traffic rule
and only cross the road when the traffic light is green. In the shifted environment, the pedestrian disobeys the traffic rule and
crosses the road when the traffic light is red.

CarType. The nominal environments are shown in the 4th column of Figure 7, where the type of vehicle and the speed of
the vehicle are correlated. When the vehicle is a truck, the speed is low and when the vehicle is a motorcycle, the speed is
high. In the shifted environment, the truck drives very fast and the motorcycle drives very slow.

Lift. The nominal environments are shown in the 1th column of Figure 8, where the position of the cube and the color of the
cube are correlated. When the cube is in the left part of the table, the color of the cube is green, when the cube is in the



Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation

Figure 7. Illustration of tasks in the Carla simulator.

right part of the table, the color of the cube is red. The shifted environment swaps the color and position of the cube in the
nominal environment, i.e., the cube is green when it is in the right part and the cube is red when it is in the left part.

Stack. The nominal environments are shown in the 2nd column of Figure 8, where the position of the red cube and green
plate are correlated. When the cube is in the left part of the table, the plate is also in the left part; when the cube is in the
right part of the table, the plate is also in the right part. In the shifted environment, the relative position of the cube and the
plate changes, i.e., When the cube is in the left part of the table, the plate is in the right part; when the cube is in the right
part of the table, the plate is in the left part.

Wipe. The nominal environments are shown in the 3rd column of Figure 8, where the shape of the dirty region is correlated
to the position of the cube. When the dirty region is diagonal, the cube is on the right-hand side of the robot arm. When the
dirty region is anti-diagonal, the cube is on the left-hand side of the robot arm. In the shifted environment, the correlation
changes, i.e., when the dirty region is diagonal, the cube is on the left-hand side of the robot arm; when the dirty region is
anti-diagonal, the cube is on the right-hand side of the robot arm.

Door. The nominal environments are shown in the 4th column of Figure 8, where the height of the handle and the position of
the door is correlated. When the door is closed to the robot arm, the handle is in a low position. When the door is far from
the robot arm, the handle is in a high position. In the shifted environment, the correlation changes, i.e., when the door is
closed to the robot arm, the handle is in a high position; when the door is far from the robot arm, the handle is in a low
position.

F.4. Computation resources

Our algorithm is implemented on top of the Tianshou (Weng et al., 2022) package. All of our experiments are conducted
on a machine with an Intel i9-9900K CPU@3.60GHz (16 core) CPU, an NVIDIA GeForce GTX 1080Ti GPU, and 64GB
memory.
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Figure 8. Illustration of tasks in the Robosuite simulator.

F.5. Hyperparameters

We summarize all hyper-parameters used in the Carla experiments (Table 5) and Robosuite experiments (Table 6). The
source code of experiments will be released after the double-blind review.

F.6. Discovered Causal Graph in SCM

To show the performance of our learned SCM, we plot the estimated causal graphs of all experiments in Figure 9, Figure 10,
Figure 11, Figure 12, and Figure 13.
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Table 5. Hyper-parameters in Carla experiments

Parameters Notation
Environment

Brightness Behavior Crossing CarType

Horizon steps T 100 100 100 100
State dimension n 24 12 12 12

Action dimension dA 2 2 2 2

Max training steps 1×105 1×105 5×105 5×105

Weight of ∥G∥p λ 0.1 - - -
norm of ∥G∥p p 0.1 - - -

Actor learning rate 3× 10−4 - - -
Critic learning rate 1× 10−3 - - -

Batch size 256 - - -
Discount factor γ in SAC 0.99 - - -

Soft update weight τ in SAC 0.005 - - -
Weight of entropy α in SAC 0.1 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1× 105 - - -
Steps per update 10 - - -

Table 6. Hyper-parameters in Robosuite experiments

Parameters Notation
Environment

Lift Stack Door Wipe

Horizon steps T 300 300 300 500
Control frequency (Hz) 20 20 20 20

State dimension n 50 110 22 30
Action dimension dA 4 4 8 7

Controller type OSC position OSC position Joint velocity Joint velocity

Max training steps 1×106 5×106 1×106 1×106

Weight of ∥G∥p λ 0.01 - - -
norm of ∥G∥p p 0.1 - - -

Actor learning rate 3× 10−4 - - -
Critic learning rate 1× 10−3 - - -

Batch size 128 - - -
Discount factor γ in SAC 0.99 - - -

Soft update weight τ in SAC 0.005 - - -
alpha learning rate lrα in SAC 3× 10−4 - - -

Hidden layers [256, 256, 256] - - -
Returns estimation step 4 - - -

Buffer size 1× 106 - - -
Steps per update 10 - - -
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Figure 9. Estimated Causal Graphs of four tasks in Carla.
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Figure 10. Estimated Causal Graphs of the Lift task in Robosuite.



Seeing is not Believing: Robust Reinforcement Learning against Spurious Correlation

Figure 11. Estimated Causal Graphs of the Stack task in Robosuite.
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Figure 12. Estimated Causal Graphs of the Door task in Robosuite.
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Figure 13. Estimated Causal Graphs of the Wipe task in Robosuite.


