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Abstract. Reinforcement learning (RL) based on classical neural net-
works (NN) has demonstrated remarkable advancements across diverse
domains. Despite this progress, classical RL encounters training difficul-
ties in systems characterized by high-dimensional action spaces, such as
coordinated mobility and satellite systems. In these complex settings,
the rapid growth in computational resources required due to increased
model parameters substantially limits scalability and convergence speed.
Quantum reinforcement learning (QRL), which utilizes quantum neu-
ral networks (QNN), offers a promising solution by leveraging quantum
mechanical properties, such as superposition and entanglement. QNN
particularly enables compact representation of multiple states simulta-
neously using fewer quantum bits (qubits), drastically reducing compu-
tational demands. Owing to its distinct features of rapid convergence and
enhanced scalability, QRL emerges as a suitable alternative to classical
RL approaches for coordinated mobility and satellite applications. Fur-
thermore, the proposed QRL framework effectively alleviates the curse
of dimensionality through efficient utilization of qubits.

Keywords: Quantum Reinforcement Learning (QRL) · Quantum Neu-
ral Network (QNN) · Mobility · Satellite Systems.

1 Introduction

Reinforcement learning (RL) utilizing conventional neural networks (NN) has
progressed significantly across various application domains. However, it faces
several inherent structural limitations, particularly in handling high-dimensional
data and complex decision-making tasks. In high-dimensional environments such
as coordinated mobility/satellite systems, higher-dimensional state spaces (in-
puts of NN) and action spaces (outputs of NN) pose significant challenges to
the training performance of conventional RL. In conventional RL, as the dimen-
sions of the state and action spaces increase, the number of parameters that
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the model needs to train grows exponentially. This, in turn, leads to a substan-
tial rise in computational costs. Furthermore, data sparsity in high-dimensional
spaces necessitates more training samples to develop optimal policies effectively.
Consequently, as the action dimension of the agent increases, RL based on con-
ventional artificial NNs suffers from the so-called curse of dimensionality, which
hampers both training convergence and scalability [1, 2].

Quantum reinforcement learning (QRL) [3] and quantum multi-agent rein-
forcement learning (QMARL) [4] are emerging as promising approaches to ad-
dressing the challenges associated with conventional RL. Developments in quan-
tum computing are opening up innovative possibilities in artificial intelligence
(AI), particularly in RL [5, 6]. Quantum AI using quantum neural networks
(QNN) leverages fundamental principles of quantum mechanics [7, 8]—such as
superposition and entanglement to overcome the inherent structural limitations
of conventional NN [9–11]. Quantum AI can effectively tackle the challenges
mentioned above by utilizing these quantum characteristics. QNN can exploit
the superposition of quantum bits (qubits) to represent multiple possible states
at once. This capability allows a single qubit to simultaneously encode multiple
states, enabling the efficient representation of high-dimensional data using fewer
qubits. Consequently, the resources required to solve high-dimensional problems
are greatly minimized, resulting in faster and more efficient training processes.
These QNNs have the advantage of allowing QRL and QMARL to be utilized for
coordinated mobility/satellite systems. As the number of agents and coordinated
mobilities/satellites increases, the agents’ action dimensions increase, making it
difficult for them to train. However, QRL and QMARL can take advantage of
superposition and entanglement phenomena to address this problem through
the advantages of i) fast convergence and ii) high scalability. In particular, the
agent’s output dimension is extended with only a few qubits by utilizing basis
measurement during the measurement phase. This paper introduces the basic
concept and structure of QNN and how it can be applied to coordinated mo-
bility/satellite systems in terms of QRL and QMARL. In addition, this paper
discusses the areas where QRL and QMARL can be applied.

The main contributions of the proposed QRL framework in this article are
as follows. Firstly, this paper utilizes basis measurements to free agents from the
curse of dimensionality in high-dimensional environments such as coordinated
mobility/satellite systems. It boasts high scalability in response to the agent’s
high action dimensions with only a few qubits. Secondly, this paper describes the
advantages of QRL using QNN with superposition and entanglement, as well as
the fundamentals and structures of QNN.

2 Related Work

QMARL is suitable for mobility systems as it requires fast convergence, high
scalability, and fewer training parameters than conventional RL [4, 12]. Fewer
training parameters can exert great power on reusable space rockets, where
lightweight and computational simplification are essential, such as Falcon 9 on
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Space X [13]. QMARL can be leveraged in rockets and aerial mobility systems
such as UAVs, improving training speed and wireless service quality [14, 15].
In smart factory management, QMARL is also used to coordinate Internet-
connected multi-robot [16].

3 Advantages of Quantum Reinforcement Learning

3.1 Fast Convergence

QRL, using QNN, employs the parameter shift rule (PSR) for training. QRL us-
ing PSR-based QNN have better generalization capabilities [17]. Consequently,
QRL training can be executed much more rapidly than conventional RL train-
ing [18]. This acceleration is particularly advantageous for real-time schedul-
ing/training within network services and coordinated mobility/satellite systems,
where timely updates are critical. Thus, the ability to train each QNN quickly
is not just beneficial but essential for effective real-time operations.

3.2 High Scalability

QNN can significantly enhance their output dimension, i.e., action dimension of
the agent, by incorporating basis measurements, thereby overcoming the qubit
limitations typical of the noisy intermediate-scale quantum (NISQ) era [19]. In
multi-agent reinforcement learning (MARL), the potential number of actions of
the agent can significantly increase, necessitating a corresponding rise in the
number of qubits required. This increase in action dimension degrades the effi-
ciency of MARL training methods in a finite qubit number environment in the
NISQ era. To tackle this challenge, a novel QMARL-based scheduler has been
designed using basis measurements to achieve a logarithmic reduction in qubit
requirements relative to the number of possible actions [20]. This design is cru-
cial for efficiently managing large-scale systems with extensive mobility/satellite
bases, minimizing qubit use while maintaining high scalability. Such an approach
is particularly beneficial in expansive multi-agent environments with large-scale
action dimensions like those involving mobility/satellite, where managing large
numbers of agents and action dimensions is critical [21].

4 Quantum Neural Networks

4.1 Basic Description of Quantum Computing

In QNN, unlike conventional NN, training utilizes units known as qubits instead
of bits. Qubits, the fundamental units of information in quantum computing,
differ from classical bits in that a register of C classical bits can represent any
one of 2C possible states at a time, with each state represented as a vector where
only one element is ‘1’ and all others are ‘0’. Conversely, in quantum mechanics,
a quantum state comprising P qubits is depicted as a complex vector of 2P
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(a) |0⟩ basis in Bloch sphere. (b) |1⟩ basis in Bloch sphere.

Fig. 1: Quantum states in Bloch sphere.

dimensions. This allows for a quantum state as a superposition of multiple states
simultaneously, a phenomenon known as quantum superposition. In this paper,
qubits are conventionally represented in two fundamental states using the bra-ket

notation: |0⟩ :=
[
1
0

]
, |1⟩ :=

[
0
1

]
, Moreover, a single qubit state can be expressed

as a normalized two-dimensional complex vector: |ψ⟩ = E |0⟩ + R |1⟩ =

[
α
β

]
,

where E and R are complex probability amplitudes corresponding to the states
|0⟩ and |1⟩, respectively, and must satisfy the normalization condition |A|2 +

|E|2 = 1. Quantum states are graphically represented within the Bloch sphere in
the 3D quantum state space, or Hilbert space, as: |ψ⟩ = cos θ

2 |0⟩+ eiϕ sin θ
2 |1⟩ ,

where ϕ and θ are parameters that define the probabilities of measuring states
|0⟩ and |1⟩, constrained by 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. Here, the basis of the
quantum state, |0⟩ and |1⟩, are geometrically represented in the Bloch sphere
by Fig. 1(a) and Fig. 1(b), respectively. For a system with P qubits, quantum
states in the Hilbert space are denoted as, |ψ⟩ =

∑2P−1
ζ=0 νζ |ζ⟩ , where νζ denotes

the probability amplitude for each ζ-th basis state, satisfying
∑2P−1

l=0 |νζ |2 = 1.

4.2 Structure of Quantum Neural Networks

As illustrated in Fig. 2, QNN is structured into three distinct phases, i.e., i) state
encoding, ii) parametric quantum circuit (PQC), and iii) measurement [22].

State Encoding. In QRL, the process known as state encoding involves trans-
lating the states of the environment, typically represented as vectors in con-
ventional RL, into quantum states suitable for quantum computation. In other
words, it means encoding existing classical state information into a quantum
state. This initial step is crucial for leveraging the potential quantum advantage,
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Fig. 2: The structure of QNN

as it significantly influences the quantum system’s capacity to depict and manip-
ulate complex environments. Effective state encoding allows quantum comput-
ers to process environmental states more quickly and accurately. Additionally, it
leverages quantum mechanical advantages like entanglement and superposition
to address more complex problems than conventional RL algorithms can man-
age. In angle encoding, data is encoded into the angles used in quantum gate
rotations [23]. This method adjusts the quantum states of qubits using unitary
and rotational gates, e.g., RX , RY , RZ , and is suitable for continuous values,
offering a way to represent complex patterns or continuous spaces.

Parameterized Quantum Circuits. PQC forms the core structure of QNN in
QRL, similar to how neurons and synapses function in conventional NN [7, 24].
PQC comprises quantum gates with adjustable parameters that are fine-tuned
during training. In QRL, these circuits transform an encoded quantum state into
a new state that represents the policy or value functions relevant to RL tasks
[25–27]. The parameters within PQC are analogous to conventional NN weights
and optimized using environmental feedback to enhance policy decision-making.
PQC incorporates both rotation gates, e.g., RX , RY , RZ , and entanglement
gates, e.g., controlled-X (CNOT gate), which manipulate the quantum state.
The selection and configuration of gates play a crucial role in determining the
QRL’s training effectiveness [17].

Measurement. In QRL, measurement is the process that converts the quan-
tum states manipulated and evolved by PQC back into classical information.
In other words, it means decoding an existing quantum state into classical ac-
tion distribution. This information is then used to determine the actions to be
executed in the environment. Measurement is essential for translating the out-
comes of quantum computations into a form that can be practically utilized for
decision-making. When measurement occurs, the quantum state collapses into
one of the possible basis states, with the specific outcome determined by the
probabilities defined by the preceding quantum computations. The result of this
measurement is interpreted as an action or a set of actions within the RL.
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5 Quantum Reinforcement Learning for Coordinated
Mobility/Satellite Systems

5.1 Parameter Shift Rule for Fast Convergence

The networks considered in coordinated mobility/satellite systems are formu-
lated as multi-agent systems primarily due to their reality. The control tower,
e.g., ground station (GS), base station (BS), and leader mobility, corresponds to
the i-th agent with its own QNN-based RL policy, i.e., π(A(t)|Si(t);θi), where
θi denotes the parameter of NN. During training, a single centralized critic, with
parameters denoted as ϕ, assesses the value of the policies of multiple actors by
approximating the state-value function, i.e., Vϕ(S(t)). Here, S(t) refers to the
ground truth state, encompassing all available environmental information [28].
In contrast, each actor independently makes decisions based on its own partial
observation of the state, indicated as Si(t). This training process enables all ac-
tors to develop policies for cooperative decision-making, even when each actor
can only access partial information from the environment. Additionally, during
the inference phase, this cooperative approach’s distributed nature facilitates
effective scalability and efficient use of computing resources. Using the temporal
difference (TD) error, multi-agent policy gradient methods are applied to train
the quantum multiple-actor centralized-critic networks. The objective function
for the i-th actor, denoted as J (θi), can be as,

∇θi
J (θi)= ES

[ T∑
t=1

N∑
i=1

δϕ(t) · ∇θi
log π(A(t)|Si(t);θi)

]
, (1)

where δϕ(t) denotes the TD error. This approach ensures that each actor’s policy
is optimized based on the observed TD error, thereby enhancing the cooperative
multi-agent system’s overall performance. The loss function for the critic, de-
noted as L(ϕ), can be expressed as, ∇ϕL(ϕ) =

∑T
t=1 ∇ϕ ∥δϕ(t)∥2 , where δϕ(t)

can be expressed as, δϕ(t) = Vϕ(S(t)) − V̂ (t), where Vϕ(S(t)) is the estimated
state-value function by the critic with parameter ϕ, and V̂ (t) is the target value,
typically computed using the TD target. This loss function aims to minimize the
difference between the estimated and actual values, thereby refining the critic’s
ability to evaluate the state accurately. To maximize the objective function for
multiple actors and minimize the loss function for the centralized critic, the
derivatives concerning the k-th parameters of actors and critic are expressed as,

∂J (θi)

∂θk
=

∂J (θi)

∂πθi

· ∂πθi

∂⟨Ok,θi
⟩︸ ︷︷ ︸

(Classical Backpropagation)

· ∂⟨Ok,θi
⟩

∂θk︸ ︷︷ ︸
(PSR)

, (2)

∂L(ϕ)
∂ϕk

=
∂L(ϕ)
∂Vϕ

· ∂Vϕ
∂⟨Ok,ϕ⟩︸ ︷︷ ︸

(Classical Backpropagation)

· ∂⟨Ok,ϕ⟩
∂ϕk︸ ︷︷ ︸
(PSR)

. (3)



Quantum Reinforcement Learning for Coordinated Satellite Systems 7

In this context, the first and second derivatives on the right-hand side of (2)
and (3) can be computed using classical partial derivatives. However, the third
derivative cannot be calculated using classical methods because the quantum
state remains unknown until it collapses through measurement, which is the last
stage of the QNN. To address this, the PSR is employed for parameter opti-
mization during training [7, 29]. The PSR, when applied to the derivative of
the i-th actor’s k-th parameter with respect to the 0-th derivative, is given by,
∂⟨Ok,θi

⟩
∂θk

= ⟨Ok,θi+
π
2 ek

⟩−⟨Ok,θi−π
2 ek

⟩, where ek represents the k-th basis vector.
PSR allows the QNN to be operated under the umbrella of backpropagation or
differentiable programming. As a result, this approach allows for faster training
in QNN, as described in Sec. 3.

5.2 High Scalability for Large-Scale Coordinated Mobility/Satellite
Systems

The Pauli-Z measurement evaluates individual qubits in quantum states using

the Pauli-Z matrix, i.e.,
[
1 0
0 −1

]
, where each column corresponds to the compu-

tational basis states, specifically |0⟩ and |1⟩. However, in an environment with
P coordinated mobilities/satellites, 2P qubits are still necessary to match the
2P action dimensions required for making combinatorial scheduling decisions for
P coordinated mobilities/satellites. Consequently, the issue known as the ‘curse
of dimensionality’ remains, as this measurement approach does not mitigate the
exponential increase in complexity associated with a growing number of coordi-
nated mobilities/satellites [30]. However, with basis measurement, it is possible
to compute the probabilities for all 2P combinations using only P qubits. This
is accomplished by measuring the quantum state across all 2P basis, which is
expressed as, {|PrB(Ak)⟩}2

P

k=1 ≜
{⊗P

k=1
|℧i

j⟩
}
, where ℧i

j represents the selec-

tion vector of i-th control tower for j-th mobility/satellite, with ∀℧i
j ∈ {0, 1}

and ∀j ∈ [1,P]. To summarize, the probability of the i-th control tower selecting
the k-th action based on its policy among 2P possible combinations at time t
can be calculated as, π(Ak(t)|Si(t);θi)= ⟨ψ|ek⟩⟨ek|ψ⟩= |⟨ψ|ek⟩|2= |αk|2, where
|ek⟩⟨ek| is the projector corresponding to the k-th basis, and the set of projectors
for all bases is given by {|ek⟩⟨ek|}2

P

k=1. Because the probabilities for each action
correspond to individual outputs, and the sum of the probabilities of all actions
is 1, i.e.,

∑2P

k=1 π(Ak(t)|Si(t);θi) = 1.

6 Performance Evaluation

The experimental environment has a vast 216 action dimension of agents, with
16 mobilities/satellites that agents must coordinate and 4 control towers. In ad-
dition, the following hyper-parameters are used in the experiment, i.e., number
of qubits (16), training epochs (10k), actor and critic’s learning rate (5× 10−3,
2.5 × 10−4), initial/minimum/decay rate of exploration (0.4, 10−2, 5 × 10−5),
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Fig. 3: Normalized reward performance in a coordinated satellite system.

batch size (32), discount factor (0.98), activation function (ReLU), and optimizer
(Adam). Agents’ actions are to choose which mobility/satellites to receive com-
munication services, and the reward function is designed to maximize the QoS,
capacity, and remaining energy of mobilities/satellites. The considered bench-
marks are, i) MARL (conventional MARL), ii) Independent Q-Learning (IQL),
iii) Deep Q-Learning (DQN), and iv) Monte Carlo (MC). Fig. 3 shows the nor-
malized reward for each algorithm. Even in environments with vast action di-
mensions, such as 216, only the QMARL-based scheduler is free from the curse
of dimensionality with the highest reward.

7 Concluding Remarks

This paper demonstrates that QRL addresses the challenges of conventional RL
in environments with large action dimensions, such as coordinated satellite sys-
tems. QRL’s unique advantages, including fast convergence and high scalability,
highlight its potential for effective deployment in complex system operations. In
future work, the applications of QMARL for various mobility systems can be
considerable.
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