
Under review as a conference paper at ICLR 2023

OSCILLATION NEURAL ORDINARY DIFFERENTIAL
EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural ordinary differential equations (NODEs) have received a lot of attention
in recent years due to their memory efficiency. Different from traditional deep
learning, it defines a continuous deep learning architecture based on the theory of
ordinary differential equations (ODEs), which also improves the interpretability
of deep learning. However, it has several obvious limitations, such as a NODE
is not a universal approximator, it requires a large number of function evaluations
(NFEs), and it has a slow convergence rate. We address these drawbacks by mod-
eling and adding an oscillator to the framework of the NODEs. The oscillator
enables the trajectories of our model to cross each other. We prove that our model
is a universal approximator, even in the original input space. Due to the presence
of oscillators, the flows learned by the model will be simpler, thus our model needs
fewer NFEs and has a faster convergence speed. We apply our model to various
tasks including classification and time series extrapolation, then compare several
metrics including accuracy, NFEs, and convergence speed. The experiments show
that our model can achieve better results compared to the existing baselines.

1 INTRODUCTION

Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018) are the latest continuous deep
learning architectures that were first developed in the context of continuous recurrent networks (Co-
hen & Grossberg, 1983). This continuous deep learning architecture provides a new perspective
that theoretically bridges the gap between deep learning and dynamic systems. This deep learning
architecture can be efficiently trained with backpropagation and has shown great promise on several
tasks including modeling continuous time data, classification, and building normalizing flows.

The core idea of a NODE is to use a neural network to parameterize the vector field (Chen et al.,
2018; Kidger, 2022). Typically, a simple neural network is enough to represent the vector field,
which will be optimized during the training process. Based on the well-learned vector field, trajec-
tories will be obtained as the estimate functions. However, this architecture has several limitations.
First, NODEs cannot learn any crossover-mapping functions (Dupont et al., 2019), which results in
them not being universal approximators. Second, to optimize the vector field, it will need many func-
tion evaluations during both forward evaluation and backpropagation processes of training. Third,
the time and convergence rate of the training process is relatively slow.

The first limitation is caused by the continuity of vector-field-based trajectories because the trajec-
tories in NODEs cannot cross each other at the same time (Massaroli et al., 2020; Norcliffe et al.,
2020). This property causes NODEs to be powerless against some special topologies, such as the
cases of concentric circles and intersecting lines mentioned by Dupont et al. (2019). We conjecture
the reason for the second limitation is caused by the straightforward optimization approach of the
vector field. There is no guarantee that learning the vector field is a better choice than learning
the estimated functions directly. Sometimes it will need many function evaluations to optimize the
vector field, so the difficulties go beyond learning the estimated functions themselves. The third
limitation is caused by the trade-off between accuracy and speed for the ordinary differential equa-
tion solver (ODE solver). NODEs perform forward evaluation and backpropagation calculations via
ODE solvers, which can be treated as black boxes. If we need to ensure the accuracy of an ODE
solver, then we must sacrifice the speed.

1

Under review as a conference paper at ICLR 2023

To address the first problem, we intend to add some discrete elements during the process of learning
the trajectories. A discrete element can be realized by a “jump” in the trajectory. This jump allows
the trajectories of the NODEs to cross at the same time. It solves the above-mentioned cases. We
also give proof in Section 4.1 that our approach is a universal approximator. To solve the second
and third problems, we propose to join a function g that directly optimizes the trajectories while
optimizing the vector field at the same time. It shifts part of the burden from optimizing the vector
field to optimizing the original estimated function. The addition of g will make the final optimized
vector fields less complicated, thus a “simple” vector field can be utilized to estimate the function
well. This will result in fewer NFEs, less training time, and faster convergence.

Based on the above two points, we design an oscillator to enhance neural ordinary differential equa-
tions, namely Oscillation Neural Ordinary Differential Equations (ONODE). The architecture is
shown in Figure 1. This oscillator is designed to achieve both “jumping” of trajectories and opti-
mizing the estimation function while simultaneously optimizing the vector field. This design solves
the three problems mentioned above to some extent. Our proposed method is not only a universal
approximator, but it also reduces the NFEs as well as improves the training convergence speed.

Figure 1: The diagram on the left shows the structure of our proposed model, and the right shows
how the oscillator helps our model learn the cross-trajectory by example.

Specifically, the vector field is parameterized by a simple neural network, the same as the NODEs
proposed by Chen et al. (2018). The vector field can be optimized by ODE solvers which can be
used such as Runge (1895), Kutta (1901), and Hairer et al. (1993). The oscillator we designed is
parameterized by a shallow neural network structure and it has only one hidden layer. The oscillator
can be located before vector field modeling, or after the ODE solver.

The oscillator modeling structure may vary slightly in different tasks. For example, in the usual
classification tasks and extrapolating time series tasks, these structures will have the perception of
one hidden layer. In the image classification task, the structure will have two convolutional layers
with an activation function. It is worth noting that since our oscillator is parameterized by a shallow
neural network that does not take much space, we can still consider the model to be memory efficient.
We will illustrate this in Section 5. Besides, our oscillator simplifies the learning complexity of the
vector field, which leads to a reduction in NFEs and convergence speed. A simple example is shown
in Figure 1 right, the final trained vector field will be a very simple one.

2 RELATED WORK

The basic ideas of neural ordinary differential equations were originally considered in Rico-Martinez
et al. (1992), Rico-Martinez & Kevrekidis (1993), and Rico-Martinez et al. (1994). For example,
Rico-Martinez et al. (1992) proposed a vector field that can be trained using a Multilayer Perceptron
(MLP). Rico-Martinez & Kevrekidis (1993) used an implicit integrator and recurrent networks for
continuous-time modeling of nonlinear systems. Chen et al. (2018) specified the architecture of
NODEs and applied it to several tasks and achieved good results, including image classification,
continuous normalizing flows, and latent ODEs, leading to an explosion of interest in NODEs.

2

Under review as a conference paper at ICLR 2023

NODEs are a new class of model that transform data continuously through infinite depth architec-
tures (Norcliffe et al., 2020). In particular, NODEs can be seen as a continual version of Residual
Networks (He et al., 2016) by taking the discretization step to infinitely small. This continuous in-
finite depth architecture will bring several benefits, one of the most important is memory efficiency.
According to Chen et al. (2018), the scalar-valued loss with respect to all inputs of any ODE solver
can be computed directly without backpropagating through the operations of the solver. The inter-
mediate quantities of the forward pass will not need to be stored. It causes the NODEs so they can
be trained with a constant memory cost.

However, this continuous infinite depth architecture will bring several drawbacks. Dupont et al.
(2019) showed that NODEs learn representations that preserve the topology of the input space and
prove that the existence of functions in NODEs cannot be represented. To address these limitations,
Dupont et al. (2019) introduced Augmented NODEs (ANODEs) which add extra dimensions for the
vector field learning. This approach increases the degrees of freedom of the trajectory by elevating
the dimensionality, thus circumventing the problem that trajectories cannot be crossed. However,
it does not inherently overcome the problem that trajectories cannot be traversed and increases the
original parameter space. Other limitations of NODEs include the NFEs which can often become
prohibitively large (Dupont et al., 2019) and the speed is slow as long as it is needed to obtain good
precision (Chen et al., 2018). These limitations are usually caused by the need for the NODE to
learn a complex vector field.

Due to the generality of the NODEs’ framework, there is already a lot of related work based on
NODEs. Some work focuses on modeling for the time series data. For example, Norcliffe et al.
(2020) focused on the learning dynamics system and proposed the Second Order Neural Ordinary
Differential Equations (SONODEs). It can be seen as a system of coupled first-order NODEs. Jia
& Benson (2019) introduced Neural Jump Stochastic Differential Equations that provided a data-
driven approach to learn continuous and discrete dynamic behavior. Kidger et al. (2020) proposed
Neural Controlled Differential Equations to model the irregular time series. Morrill et al. (2021)
used Neural Rough Differential Equations for modeling long time series. Other works focused on
physical modeling. For example, Greydanus et al. (2019) introduced Hamiltonian Neural Networks
for learning certain physical laws that follow conservation laws. Cranmer et al. (2020) proposed
Lagrangian neural networks to learn certain physical laws without requiring canonical coordinates.

3 PRELIMINARY

NODEs are a family of deep neural network models that can be interpreted as a continuous version
of Residual Networks (He et al., 2016). Recall the formulation of a residual network:

ht+1 − ht = f(ht, θf), (1)

where the f is the residual block and the θf represents the parameters of f . The left side of Equation
1 can be seen as the denominator is 1, so it can be represented by ht+1−ht

1 = f(ht, θf). When the
number of layers becomes infinitely large, and the step becomes infinitely small, Equation 1 will
become an ordinary differential equation format, as shown in Equation 2.

lim
dt→0

ht+dt − ht

dt
=

dh(t)

dt
= f(h(t), t, θf). (2)

Thus, the NODE will have the same format as an ODE:

h′(t) = f(h(t), t, θf), h(0) = x0, (3)

where x0 is the input data. Typically, f will be some standard simple neural architecture, such as a
MLP. The θf represents trainable parameters in f .

To obtain any final state of h(t) when t = T , all that is needed is to solve an ordinary differential
equation with initial values, which is called an initial value problem (IVP):

h(T) = h(0) +

∫ T

0

f(h(t), t, θf)dt. (4)

Thus, a NODE can transform from h(0) to h(T) through the solutions to the initial value problem
(IVP) of the ODE. This framework indirectly realizes a functional relationship x → F (x) like a
general neural network.

3

Under review as a conference paper at ICLR 2023

By the properties of ODEs, NODEs are always invertible; we can reverse the limits of integration,
or alternatively, integrate −f . The Adjoint Sensitivity Method (Pontryagin et al., 1961) based on
reverse-time integration of an expanded ODE, allows for finding gradients of the initial value prob-
lem solutions h(T) with respect to parameters θf and the initial values h(0). This allows the training
NODE to use gradient descent, which allows them to combine with other neural network blocks.

4 THE PROPOSED METHODS

4.1 OSCILLATION NODE: A UNIVERSAL APPROXIMATOR

As we mentioned, since the trajectories in NODEs cannot cross each other at the same time, a NODE
on its own does not have universal approximation capability. An example from Dupont et al. (2019)
considers a continuous, differentiable, invertible function f(x) = −x on X = R. There is no
ODE defined on R that would result in xT = ϕT (x0) = −x0. In ODEs, paths (xt, t) between the
initial value (x0, 0) and final value (xT , T) have to be continuous and cannot intersect in X for two
different initial values, and the paths corresponding to x → −x and 0 → 0 would need to intersect.

Figure 2: The top two plots show the flow
trajectories. The middle layer shows the fea-
ture evolution, whereas the first plot in the
middle layer represents the toy dataset. The
bottom two plots show the mapping to the in-
put space. The left side is our method, and
the right side is NODE.

Generally, there is a class of functions that a NODE
cannot model (Zhang et al., 2020). Let X = Rp and
Z ⊂ X be a set that partitions X into two or more
disjointed, connected subsets Ci, for i = [m]; that
is, X = Z ∪ (

⋃
i Ci). Then, no NODEs can model

a mapping h : X → X that satisfy both (1) h is an
identity transformation on Z , i.e., ∀z ∈ Z , h(z) = z
and (2) h maps some x ∈ Ci, for i ̸= j.

Reasoning that the trajectories cannot cross at the
same moment, we intend to add the factor of dis-
cretization before the continuous trajectory. This
discretization makes the trajectory no longer subject
to the effect of not being able to cross over. If the tra-
jectory does cross at some point, then the crossover
will be achieved by the oscillator. Based on this idea,
we introduce the Oscillation NODEs (ONODEs). It
solves the problem that NODEs’ trajectories cannot
be crossed, thus it is a universal approximator and
we provide proof in Theorem 4.1. In addition, it has
fewer NFEs and faster convergence speed, which we
will discuss in Section 4.2.

Specifically, an oscillator O : Rd → Rd approxi-
mates function g : X → X ′. The oscillator O is
parameterized by a perceptron with a single hidden
layer and acts on the input data x0. The output g(x0)
and input x0 of the oscillator will have the same di-
mension Rd. A formal description is as follows:

h(t) = g(xt, θg), h′(t) = f(h ◦ g(xt, θg), t, θf), h(0) = g(x0, θg), (5)

where the x0 is the input data, h(t) is the function we want to estimate. The function f is the first
order derivative equation of h with respect to time t, and θf represents the parameters in f . The θg
represents the parameters in g. Figure 2 shows visually how our model works through a toy example.
We show the proof of our method (Equation 5) is a universal approximator in Theorem 4.1, which
is motivated by Kidger (2022). Before the proof, we give two definitions to represent the space of
continuous functions and nonlinear functions, respectively.

Definition 4.1 Let cont(X → Y) be the space of continuous functions X → Y (with respect to
some topologies on X and Y).

Definition 4.2 Let nonl(X → Y) be the space of nonlinear functions X → Y .

4

Under review as a conference paper at ICLR 2023

Theorem 4.1 (ONODEs are universal approximators) Let d ∈ N. For g ∈ nonl(Rd → Rd), and
f ∈ cont(R× Rd → Rd) which has a unique solution, let ϕg,f : Rd → Rd denote the map X → X ′

with h(t), h′(t) and h(0) = g(x0, θg), for t ∈ [0, 1]. Take C(Rd) to be the family of real functions
that one wishes to approximate in Rd and span{ϕg,f}, then span{ϕg,f} is dense in C(Rd).

The proof of theorem 4.1 is shown in APPENDIX A.1.

4.2 ONODES HAVE A HIGHER COMPUTATIONAL EFFICIENCY

Besides our proposed ONODEs, there exists another augmented method that makes a NODE a
universal approximator, i.e., ANODEs (Dupont et al., 2019). The ANODEs add extra dimensions

to the NODEs for the input, thus changing the input from h(0) ∈ Rd to
[
h(0)

0

]
∈ Rd+a. It

bypasses the trajectory crossing problem by adding extra dimensions of Ra. However, this does
not essentially change the problem that node trajectories cannot cross. Even in a high-dimensional
space, trajectories still cannot cross at the same time. The high-dimensional space, however, causes
a rise in degrees of freedom from d to d + a, leading to an increase in the parameter space and
theoretical time complexity of estimating the vector field.

Our approach, on the other hand, allows the trajectory to “jump” between adjacent time points by
adding the oscillator g. The degree of its oscillation is controlled by the parameters θg in g. Thus,
when given an input and an output, we do not have to optimize the vector field in the original space
X ∈ Rd, because the vector field V in X can be extremely complex. We can optimize the vector
field in another space of the same dimension, i.e., X ′ ∈ Rd, in which the vector field V ′ may be
simple and easy to be optimized. The trajectories based on this vector field V ′ will also become
simple.

To further illustrate the time efficiency of our method, we consider its training process. For a NODE,
its forward evaluation and backpropagation can be calculated by using a black-box differential equa-
tion solver, called ODE solvers (Kutta, 1901; Hairer, 1987; Runge, 1895). The Adjoint Sensitivity
Method (Pontryagin et al., 1961) is used for the calculation of backpropagation. It computes gra-
dients by solving a second, augmented ODE backward in time, and it can be applied to all ODE
solvers (Chen et al., 2018).

For any ODE solvers, both fixed step size and adaptive step size solvers are often reasonable choices
for NODEs. Given a final time T , a fixed step size solver will choose the time ti from [0, T] where
∆t = ti+1 − ti. ∆t is fixed in advance and independent of i. An adaptive step solver, such as
Runge-Kutta Method (Runge, 1895) is a relatively modern solver, which can vary the size of the
next step so that the error made during the solver is approximately equal to some tolerance.

Typically in practice, a commonly used ODE solver is an adaptive step solver. Although it is not
possible to estimate the absolute time theoretically for an adaptive-step-solver-based NODE, we can
estimate the computational efficiency by the time complexity as well as the NFEs. Thus, we present
proposition 4.1:

Proposition 4.1 With the same vector field modeling structure, ONODE has a higher computational
efficiency than ANODE.

Before the proof of the proposition 4.1, first we present lemma 4.1 and its proof.

lemma 4.1 With the same vector field modeling structure, ONODE has less time complexity as long
as N ′

h < A×Nh

Ni
+ Ni+A

2 , where N ′
h is the number of neurons in the hidden layer of g, Nh is the

number of neurons in the hidden layer of f , A is the augmented dimensions, and Ni is the input
dimensions.

The proof of lemma 4.1 is shown in APPENDIX A.2.

Since the adaptive step solvers such as Runge-Kutta are used in both ANODEs and ONODEs, we
cannot obtain Proposition 4.1 immediately from lemma 4.1. However, since the NFEs are equal to
the number of iterations of f in one training iteration and we experimentally show that an ONODE
requires much fewer NFEs than an ANODE, thus we can obtain Proposition 4.1.

5

Under review as a conference paper at ICLR 2023

It is worth noting that our method can still be augmented by adding additional dimensions. But the
nature of our method differs from ANODE in that the trajectories of our method are crossable in the
original input space X ∈ Rd. However, in the extra space Ra, its trajectories remain uncrossable,
which is inherited from an ANODE. Formally, an ONODE with the extra dimensions will be:

h(t) =

[
g(xt, θg)

a(t)

]
, h′(t) = f(

[
h(xt, θg)

a(t)

]
, t, θf), h(0) =

[
g(x0, θg)

0

]
, (6)

where a(t) represents the extra dimensions for the original input. The function g represents the
oscillator with parameters θg . The augmented dimension can be seen as an extra hyperparameter
to tune. When the extra dimension is set to 0, it becomes the ONODEs in Equation 5. For a more
intuitive view, we show how our method works with a toy example and compares it with the NODE
and the ANODE in Figure 3.

Figure 3: From left to right: A toy dataset, the NODE, our method, the ANODE with one extra
dimension, our method with one extra dimension.

We show that the ONODE with extra dimensions is also a universal approximator in Theorem 4.2.

Theorem 4.2 (ONODEs with extra dimensions are universal approximators) Let d, a ∈ N. For
g ∈ nonl(Rd → Rd), l ∈ nonl(Rd → Rd+a), and f ∈ cout(R× Rd+a → Rd+a) which has a

unique solution, let ϕg,l,f : Rd → Rd+a denote the map X → X ′ with h(t) =

[
g(xt, θg)

a(t)

]
,

h′(t) = f(

[
h(xt, θg)

a(t)

]
, t, θf), h(0) =

[
g(x0, θg)

0

]
, for t ∈ [0, 1]. Take C(Rd+a) to be the family

of real functions that one wishes to approximate in Rd+a and set
∑

d = span{ϕg,l,f}, then
∑

d is
dense in C(Rd+a).

The proof of theorem 4.2 is shown in APPENDIX ??.

It is important to note that the extra dimensions change the input space which, depending on the
application, may not be desirable. We experimentally demonstrate that with or without adding extra
dimensions, our model is always better than the original NODEs and ANODEs. In many cases, our
model without extra dimensions is better than the ANODEs which have extra dimensions.

5 EXPERIMENTS

We will demonstrate the superiority of our model in terms of accuracy, the number of function eval-
uations (NFEs), and convergence speed. In Section 5.1, we introduce the datasets and environment
settings. In Section 5.2 we show on two toy datasets and three real-life image datasets that our model
has better prediction accuracy, fewer NFEs, and faster convergence speed compared to baselines. In
Section 5.3 we apply our model to the extrapolating time series tasks. We also illustrate that the
model has less prediction error and a higher computational efficiency compared to baselines.

5.1 ENVIRONMENT SETUP

Datasets. We evaluated our model with two toy datasets and three image datasets in the classification
task. We evaluated our model using five mathematical functions in the extrapolating time series

6

Under review as a conference paper at ICLR 2023

task. Demonstrations of the toy datasets are shown in Figure 2 and Figure 3, respectively. The first
toy dataset consists of four concentric circles, each consisting of 1, 000 randomly generated data
points. The second toy dataset consists of nine equally spaced data stacks, each consisting of 1, 000
randomly generated points based on a Gaussian distribution. For the image classification task, we
evaluate our model on the MNIST (Deng, 2012), CIFAR-10, and CIFAR-100 datasets (Krizhevsky
et al., 2009). MNIST is a handwritten digit database with a training set of 60, 000 examples. The
CIFAR-10 training dataset consists of 60, 000 32× 32 color images in ten classes, and CIFAR-100
has 100 classes containing 600 images each.

Evaluation Metrics and Baselines. For the classification task, we compared our model with
NODEs and ANODEs in terms of accuracy, NFEs, and convergence speed. For the extrapolating
time series problem, our baselines include SONODE (Norcliffe et al., 2020) in addition to NODE
and the ANODE. We compare the training and testing mean squared error (MSE), the absolute
training time, and the number of parameters. We use the number in parentheses to denote the extra
dimension, e.g., ANODE (1) denotes ANODE with the extra dimension of one.

5.2 RESULTS ON CLASSIFICATION

Figure 4: From left to right are: two toy datasets, loss, NFEs, and NFEs vs loss over five runs.

Our model performs better than NODEs and ANODEs. We first evaluated our model on two
toy datasets. We model the vector field with a multilayer perceptron containing three hidden layers,
each containing 16 neurons, and the activation function is ReLU. For the oscillator, we model it
with a multilayer perceptron containing one hidden layer with 16 neurons. For our models, we
use ONODE with and without one extra dimension, respectively. Our models show completely
different flow trajectories and feature evolution with NODEs and ANODEs, see Figure 2 and Figure
3. Experiments show that our models have better accuracy and converge faster than NODEs and
ANODEs, regardless of whether they have extra dimensions. For NFEs, our models are also much
lower than NODEs and slightly lower than ANODEs. The results are shown in Figure 4. The
rightmost plot indicates the relationship between NFEs and loss.

Then, we evaluated our model on the image classification task. We refer to the NODEs’ modeling
method for vector fields, using three convolutional layers, with the number of filters set at 128.
The activation function is ReLU. Similarly, our oscillator modeling is also implemented by one
convolutional layer. We tested our model on three image datasets, each running for 20 epochs. We
recorded the validation error and average NFEs, and the results are shown in Table 1. The results
show that our model is the best in both validation error and average NFEs.

Our model has higher computational efficiency. Since our methods only need to learn simpler
vector fields and flow trajectories, they require fewer iterations to converge than NODEs and AN-
ODEs. To test this, we measure the NFEs in both the forward evaluation and backpropagation
process, then we obtain the total NFEs for each model. Take the CIFAR-10 for an example. As seen
in Figure 5, the NFEs required by our models increase slower during both the forward evaluation
and backpropagation process while it increases faster for ANODEs and NODEs. This phenomenon

7

Under review as a conference paper at ICLR 2023

Table 1: Validation errors for 20 epochs over three runs on various image datasets
Validation Error Average NFEs

NODE ANODE Ours NODE ANODE Ours

MNIST 0.049 ± 0.007 0.020 ± 0.001 0.019 ± 0.002 240.01 ± 43.46 166.97 ± 110.33 72.74 ± 0.71
CIFAR-10 0.456 ± 0.002 0.435 ± 0.008 0.410 ± 0.003 65.48 ± 1.92 62.46 ± 1.98 59.80 ± 1.93
CIFAR-100 0.641 ± 0.003 0.620 ± 0.002 0.618 ± 0.005 82.96 ± 2.13 75.37 ± 0.59 67.54 ± 3.34

is particularly evident for the backpropagation process, where our method requires roughly 2
3 of the

NFEs of ANODEs and roughly 1
2 of the NODEs. We obtain similar results for other image datasets

such as MNIST and CIFAR-100.

Figure 5: Based on the CIFAR-10, the three plots in the first row show the relationship between
NFEs and loss in the forward evaluation, backpropagation, and total training process, respectively.
The three plots in the second row show the trend of NFEs as epochs increase.

5.3 RESULTS ON EXTRAPOLATING TIME SERIES

Figure 6: Fitting and extrapolation results of different models for five time series functions.

8

Under review as a conference paper at ICLR 2023

Figure 7: The training absolute
time for each model in 500 itera-
tions under the exact same setting.

We investigate the ability of our model to fit and extrapolate
time series. We used five functions, as shown in Figure 6. Each
function has 50 uniformly sampled points in 0 to 10 seconds as
the training set, followed by 10 points in 3 seconds as the pre-
dicted values. Our model is set to have one extra dimension.
The baselines were chosen as NODE, ANODE with one extra
dimension, ANODE with three extra dimensions, and SON-
ODE. Each model was trained for 500 iterations in the same
environment. First, we compared the absolute training time
(Figure 7) for each model. We found that our model has a
faster training speed with SONODE. Then, we compared the
training MSE, test MSE, and the number of parameters, as
shown in Figure 8. For visual comparison, we have ranked
the performance of the models according to MSE from small-
est to largest. Our model has the smallest value in most of the
training MSE and all the test MSE. We also found that as the
extra dimension increases, there is no guarantee that ANODE
becomes better. Our model has about the same number of pa-

rameters as ANODE, but has much smaller than the number of parameters of SONODE.

Figure 8: The middle two plots show the five models ranked in order of MSE from smallest to
largest. The rightmost plot shows the total number of parameters for each model.

6 CONCLUSION

We propose the ONODE, which is an oscillator-based continuous deep learning model. Due to
the presence of an oscillator, the trajectories of our model can “jump”, making it to be a universal
approximator. We also demonstrate that the ONODE is computationally efficient. We validate our
model through various experiments including classification tasks and extrapolation on time series.
Compared to the baselines, our model achieves the best results on a variety of metrics.

REFERENCES

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Michael A Cohen and Stephen Grossberg. Absolute stability of global pattern formation and par-
allel memory storage by competitive neural networks. IEEE transactions on systems, man, and
cybernetics, (5):815–826, 1983.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho.
Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in Neural
Information Processing Systems, 32, 2019.

9

Under review as a conference paper at ICLR 2023

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

E Hairer. Sp n0rsett and g. wanner. Solving ordinary differential equations I, 8, 1987.

Ernst Hairer, Syvert P Nørsett, and Gerhard Wanner. Solving ordinary differential equations. 1,
Nonstiff problems. Springer-Vlg, 1993.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. Advances in Neural
Information Processing Systems, 32, 2019.

Patrick Kidger. On neural differential equations. arXiv preprint arXiv:2202.02435, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Wilhelm Kutta. Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z. Math.
Phys., 46:435–453, 1901.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes. Advances in Neural Information Processing Systems, 33:3952–3963, 2020.

James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equa-
tions for long time series. In International Conference on Machine Learning, pp. 7829–7838.
PMLR, 2021.

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
order behaviour in augmented neural odes. Advances in Neural Information Processing Systems,
33:5911–5921, 2020.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–
195, 1999.

LS Pontryagin, VG Boltyanskii, RV Gamkrelidze, and EF Mishchenko. Mathematical theory of
optimal processes [in russian], 1961.

R Rico-Martinez, JS Anderson, and IG Kevrekidis. Continuous-time nonlinear signal processing: a
neural network based approach for gray box identification. In Proceedings of IEEE Workshop on
Neural Networks for Signal Processing, pp. 596–605. IEEE, 1994.

Ramiro Rico-Martinez and Ioannis G Kevrekidis. Continuous time modeling of nonlinear systems:
A neural network-based approach. In IEEE International Conference on Neural Networks, pp.
1522–1525. IEEE, 1993.

Ramiro Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson. Discrete-vs.
continuous-time nonlinear signal processing of cu electrodissolution data. Chemical Engineering
Communications, 118(1):25–48, 1992.

10

Under review as a conference paper at ICLR 2023

Carl Runge. Über die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46(2):167–178, 1895.

Han Zhang, Xi Gao, Jacob Unterman, and Tom Arodz. Approximation capabilities of neural odes
and invertible residual networks. In International Conference on Machine Learning, pp. 11086–
11095. PMLR, 2020.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 THE PROOF OF THEOREM 4.1

Proof : Suppose the input x ∈ Rd, the system of ODEs will solve a series of equations y0, y1, ..., yM
as follows: (1) h0(0) = g(x) ∈ Rd and dh0

dt (t) = 0, (2) h1(0) = 0 ∈ Rd×d and dh1

dt = h0(t)⊗h0(t),
(3) h2(0) = 0 ∈ Rd3

and dh2

dt (t) = h1(t)⊗h0(t), (4) h3(0) = 0 ∈ Rd4

and dh3

dt (t) = h2(t)⊗h0(t),
... , (M+1) hM (0) = 0 ∈ RdM+1

and dhM

dt (t) = hM−1(t) ⊗ h0(t). The solution will be written
immediately: (1) h0(t) = g(x), (2) h1(t) =

∫ t

0
g(x)⊗g(x)ds = tg(x)⊗2, (3) h2(t) =

∫ t

0
g(x)⊗2t⊗

g(x)ds = 1
2 t

2g(x)⊗3, (4) h3(t) =
∫ t

0
g(x)⊗3t ⊗ g(x)ds = 1

6 t
3g(x)⊗4, ... , (M+1) hM (t) =∫ t

0
g(x)⊗(M+1)t ⊗ g(x)ds = 1

M ! t
Mg(x)⊗(M+1). Set t = 1 and we will obtain the collection

in g(x) ∈ Rd up to degree M + 1, i.e., {g(x), g(x)⊗2, 1
2g(x)

⊗3, 1
6g(x)

⊗4, ..., 1
M !g(x)

⊗(M+1)}.
The function g(x) is realized by a single hidden layer perception utilizing a Relu active function.
Assume µ is a non-negative finite measure on Rd with compact support, and continuous with respect
to the Lebesgue measure. Then

∑
d is dense in Lp(µ), 1 ≤ p < ∞, if and only if, the non-

linearity in g is not a polynomial, where Lp(µ) is the set of all measurable functions f such that
∥ f ∥Lp(µ)= (

∫
Rd |f(x)|pdµ(x))1/p < ∞ (Leshno et al., 1993; Hornik et al., 1989; Hornik, 1991;

Pinkus, 1999). Thus, span{ϕg,f} is dense in C(Rd) and it is a universal approximator.

A.2 THE PROOF OF LEMMA 4.1

Proof: For a fair comparison between ONODE and ANODE, we assume that the input and output
dimensions are the same, i.e., Ni = No, where the No represents the output dimensions. For the
vector field modeling structure, we assume there exist two hidden layers with each hidden layer
having Nh neurons. For convenience, we presume that there is only one sample. For forward evalu-
ation, an ANODE will have the time complexity of Of

Anode = O((Ni +1+A)Nh) +O(NhNh) +
O(Nh(Ni+A))+O((Ni+A)Ni) = O(2NiNh+2ANh+N2

h +Nh+N2
i +ANi). Our proposed

ONODE will have the time complexity of Of
Onode = O(NiN

′
h) +O(N ′

hNi) +O((Ni + 1)Nh) +
O(NhNh) + O(NhHi) = O(2NiNh + N2

h + Nh + 2NiN
′
h). Since the backpropagation has the

same complexity as the forward evaluation, the total time complexities in one iteration for ANODE
and ONODE are OAnode = 2Of

Anode and OOnode = 2Of
Onode, respectively. We can immediately

get the solution that OOnode < OAnode as long as N ′
h < A×Nh

Ni
+ Ni+A

2 .

A.3 THE PROOF OF LEMMA 4.2

Proof: The proof is similar to that of proof A.1. Since the extra dimensions Ra will be added into
the ONODE through a nonlinear function l, it will not change the result in proof A.1. Thus, we
obtain the result that span{ϕg,l,f} is dense in C(Rd+a).

12

	Introduction
	Related Work
	PRELIMINARY
	The Proposed Methods
	Oscillation NODE: a universal approximator
	ONODEs have a higher computational efficiency

	Experiments
	Environment setup
	Results on classification
	Results on extrapolating time series

	Conclusion
	Appendix
	The proof of theorem 4.1
	The proof of lemma 4.1
	The proof of lemma 4.2

