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Abstract

Medical Multimodal Large Language Mod-
els (Med-MLLMs) have shown great promise
in medical visual question answering (Med-
VQA). However, in low-resource scenarios
where zero-shot and few-shot labeled examples
are unavailable, existing Med-MLLMs com-
monly fail due to their medical reasoning ca-
pability bottlenecks: (i) the intrinsic reasoning
bottleneck that ignores the details from the med-
ical image; (ii) the extrinsic reasoning bottle-
neck that fails to incorporate specialized med-
ical knowledge. To address those limitations,
we propose AMANDA, a training-free agentic
framework that performs medical knowledge
augmentation via LLM agents. Specifically,
our intrinsic medical knowledge augmentation
focuses on coarse-to-fine question decomposi-
tion for comprehensive diagnosis, while extrin-
sic medical knowledge augmentation grounds
the reasoning process via biomedical knowl-
edge graph retrieval. Extensive experiments
across eight Med-VQA benchmarks demon-
strate substantial improvements in both zero-
shot and few-shot Med-VQA settings.

1 Introduction

Medical Visual Question Answering (Med-VQA)
aims to automatically answer natural language
questions about medical images, serving as an Al-
powered assistant to enhance healthcare profession-
als’ diagnostic efficiency and accuracy (Ionescu
et al., 2018; Kovaleva et al., 2020; Hartsock and
Rasool, 2024; Lin et al., 2023b). Unlike general-
domain VQA which focuses on everyday scenes
and objects, Med-VQA requires fine-grained anal-
ysis of subtle pathological features, understanding
of professional medical terminology, and integra-
tion of domain-specific medical knowledge (Lin
et al., 2023b). These unique characteristics make
Med-VQA particularly challenging yet crucial for
empowering precise medical diagnosis.

Recent advances in Medical Multimodal Large Lan-
guage Models (Med-MLLMs) have demonstrated
promising results in Med-VQA through extensive
pre-training and task-specific fine-tuning (Li et al.,
2024b; Eslami et al., 2023; Zhang et al., 2023a;
Jiang et al., 2024c). However, obtaining a large-
scale medical dataset for Med-MLLM pre-training
or fine-tuning requires labor-intensive expert an-
notations, making it impractical in data-efficient
scenarios. When deployed in low-resource settings
where abundant training or fine-tuning data are
unavailable (i.e., zero-shot or few-shot settings),
existing Med-MLLMs commonly fail due to two
bottlenecks of their medical reasoning capability:

* From the intrinsic perspective, current Med-
MLLMSs usually focus on understanding the im-
age from a general view, while ignoring the fine-
grained examination of subtle pathological fea-
tures that are critical for accurate diagnosis (Lin
etal., 2023b). In clinical practice, medical profes-
sionals achieve comprehensive analysis through
an iterative process of questioning and exami-
nation, progressively uncovering crucial details.
However, the single-step inference adopted by
existing Med-MLLMs fails to capture this itera-
tive nature of the medical diagnosis, leading to
superficial analyses without critical diagnostic
details (Wang et al., 2023; Jiang et al., 2024a,b).

* From the extrinsic perspective, while Med-
MLLMs possess basic medical knowledge
through pre-training, these models are typically
static and lack mechanisms to access or incorpo-
rate new medical knowledge continually. In Med-
VQA tasks, such specialized medical knowledge
from up-to-date knowledge bases is particularly
crucial. Correspondingly, existing methods of-
ten struggle to provide comprehensive and con-
textually grounded answers, with a concerning
tendency to generate hallucinations (Xia et al.,
2024b; Yan et al., 2024) — plausible but factually



incorrect responses that pose significant risks for
real-world medical diagnosis.

To address the aforementioned challenges, we
present a training-free MLLM agentic frame-
work — AMANDA (Agentic MedicAl KNowleDge
Augmentation) for data-efficient medical visual
question answering. In essence, our framework en-
hances Med-MLLMs’ reasoning capability through
Medical Knowledge Augmentation (Med-KA) from
both intrinsic and extrinsic reasoning perspectives.
On the one hand, to enhance the medical reason-
ing depth, we propose Intrinsic Med-KA, which
leverages a coarse-to-fine question decomposition
strategy to fully utilize the intrinsic visual un-
derstanding capabilities within Med-MLLMs, en-
abling comprehensive diagnosis through progres-
sive examination. On the other hand, to bridge the
gap between models’ pre-trained knowledge and
reliable medical expertise, we develop Extrinsic
Med-KA, which retrieves relevant medical knowl-
edge from biomedical knowledge graphs to ground
the reasoning process. These complementary ap-
proaches are orchestrated by multiple LLM agents
that can adaptively control the depth of knowledge
integration to maintain both effectiveness and ef-
ficiency. In addition, AMANDA can incorporate
in-context learning examples, enabling further per-
formance gains in few-shot settings. Overall, our
contributions can be summarized as follows:

* Problem. We target the challenging problem of
data-efficient Med-VQA and propose a training-
free agentic framework that addresses the intrin-
sic and extrinsic bottlenecks of Med-MLLMs’
reasoning capability via Med-KA.

* Method. We develop a Med-KA approach from
two complementary perspectives: intrinsic Med-
KA through coarse-to-fine question decomposi-
tion and extrinsic Med-KA via medical knowl-
edge graph retrieval, unified under an adaptive
refinement mechanism.

* Experiments. Through comprehensive exper-
iments on eight Med-VQA benchmarks, we
demonstrate substantial improvements in both
zero-shot and few-shot settings, with strong gen-
eralization across different types of MLLMs.

2 Related Work

Medical Visual Question Answering. Cur-
rent Med-VQA approaches primarily follow two

paradigms: discriminative methods that select from
predefined options (He et al., 2020; Li et al., 2022;
Zhang et al., 2023a; Eslami et al., 2023), and
generative methods that enable open-ended re-
sponses (Bazi et al., 2023; Liu et al., 2023; van
Sonsbeek et al., 2023). While discriminative meth-
ods achieve high performance in controlled set-
tings, their predefined answer space limits applica-
bility in real-world medical scenarios. Recent Med-
MLLMs (Li et al., 2024b; Jiang et al., 2024¢) have
shown promising results with flexible response
generation. However, they require extensive la-
beled data for training and fine-tuning. To address
this limitation, our AMANDA introduces a novel
MLLM agentic framework for data-efficient sce-
narios without task-specific fine-tuning.

Large Multimodal Agent. Recent research has
demonstrated the effectiveness of combining
LLMs’ reasoning capabilities (OpenAl, 2022,
2023) with MLLMs for visual tasks. Early
works like PNP-VQA (Tiong et al., 2022) and
Img2L. LM (Guo et al., 2023) demonstrated the ef-
fectiveness of integrating visual understanding with
LLMs’ reasoning capabilities. This integration
has evolved into sophisticated large multimodal
agent systems (You et al., 2023; Suris et al., 2023;
Wu et al., 2023c; Xie et al., 2024), where multiple
LLM-powered agents collaborate. However, in the
medical domain, most existing agent systems (Tang
et al., 2023; Fan et al., 2024; Schmidgall et al.,
2024; Wei et al., 2024; Li et al., 2024c; Kim
et al., 2024) primarily focus on text-based scenar-
i0s, lacking crucial multimodal capabilities. While
recent work like MMedAgent (Li et al., 2024a) ex-
plores multimodal agents for medical applications,
it requires extensive task-specific training, limit-
ing its applicability in data-efficient settings. Our
AMANDA addresses these limitations by introduc-
ing a training-free MLLM agentic framework for
data-efficient medical visual reasoning.

Medical Knowledge Augmentation. Integrating
medical knowledge has proven essential for en-
hancing medical Al systems (Fang et al., 2019;
Gonzalez-Diaz, 2018; Wang et al., 2020; Chen
et al., 2022; Tan et al., 2019; Chen et al., 2020;
Soman et al., 2023; Wu et al., 2023a). Representa-
tive works include Med-VLP (Chen et al., 2022),
which employs UMLS Knowledge Graph (Bo-
denreider, 2004) for cross-modal alignment, and
KG-RAG (Soman et al., 2023), which leverages
biomedical knowledge graphs with LLMs. Build-
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Figure 1: Overview of our AMANDA framework. The framework comprises five specialized agents (Perceiver,
Reasoner, Evaluator, Explorer, and Retriever) working collaboratively to enable comprehensive and reliable
medical reasoning. Specifically, the Explorer incorporates intrinsic medical knowledge through coarse-to-fine
question decomposition to enhance reasoning depth, and the Retriever integrates extrinsic medical knowledge
from biomedical knowledge graphs to enable reliable medical reasoning. The Evaluator adaptively controls the
depth of Med-KA to enable efficient and accurate medical diagnosis.

ing upon these advances, our AMANDA introduces
a holistic knowledge augmentation approach to en-
able comprehensive and reliable medical reasoning.

3 Proposed Approach - AMANDA

In this section, we first formalize the Med-VQA
problem and present our AMANDA framework
(Sec. 3.1 and 3.2). We then detail our Med-KA
approaches (Sec. 3.3) and present two extensions:
the adaptive reasoning refinement mechanism and
the few-shot enhancement strategies (Sec. 3.4).

3.1 Problem Formulation

We target Med-VQA in data-efficient scenarios,
particularly zero-shot and few-shot settings, where
task-specific training data is limited or unavailable.
Traditional Med-VQA approaches (Li et al., 2024b;
Eslami et al., 2023; Zhang et al., 2023a) typically
employ a single Med-MLLM for direct inference.
Following previous works (Zhang et al., 2023b),
this process can be formulated as:

Q>

= Dpeavoa (Z,q)

where Z € R*WxC represents the input medi-
cal image with height H, width W, and channel
number C, ¢ denotes the question, and ® is the
Med-MLLM model.

However, this single-step approach, directly
adapted from the general domain (Liu et al., 2024),
faces two critical limitations in medical image anal-
ysis. First, it fails to systematically examine multi-
ple aspects of medical images, often missing sub-
tle details that are crucial for differentiating simi-
lar conditions. Second, in data-efficient scenarios
where models encounter novel cases, the lack of

comprehensive medical knowledge leads to unreli-
able analysis or hallucinations (Xia et al., 2024b;
Yan et al., 2024). To address these limitations, we
reformulate Med-VQA as an iterative reasoning
process that leverages multiple specialized agents:

dt = (I)iterative(Ia q, Ht—l U U h%)
€A

where a; represents the refined answer at iteration
t, Diterative denotes our proposed iterative reasoning
framework, H;_1 is the accumulated reasoning his-
tory up to iteration ¢t — 1, A represents our agent
set and h! denotes each agent’s output at iteration
t. This formulation transforms the single-step ap-
proach into an iterative reasoning process where
specialized agents collaboratively refine the answer
through progressive analysis.

3.2 Architecture Overview

To enable such iterative medical reasoning, we de-
sign an agentic framework — AMANDA. Our frame-
work comprises three functional modules, where
specialized agents work collaboratively:

* Perception Module. The Perceiver agent, im-
plemented using a Med-MLLM (i.e., LLaVA-
Med v1.5 (Li et al., 2024b)), establishes the foun-
dation for visual analysis. Unlike single-step ap-
proaches (Li et al., 2024b) that directly generate
answers, our Perceiver provides two outputs: a
detailed medical caption ¢ and an initial answer
ag to the main question. The medical caption ¢
is generated through carefully designed prompts
(see Appendix H) to systematically describe key
anatomical structures and notable abnormalities.
The initial answer d¢, while potentially imper-
fect, provides a basic foundation that will be



progressively refined. Together, these outputs
enable more accurate and comprehensive analy-
sis in subsequent modules.

* Planning Module. Building upon the Perception
Module’s outputs, the Planning Module coordi-
nates the overall reasoning process through two
LLM-based agents. The Reasoner analyzes the
available information (medical caption, initial an-
swer, and any augmented knowledge) to generate
a refined answer through systematic medical rea-
soning. The Evaluator then assesses the reason-
ing quality through a confidence score, determin-
ing whether additional knowledge augmentation
is needed (detailed in Sec. 3.4 and Appendix E).

* Action Module. Triggered by the Planning Mod-
ule, the Action Module addresses both reasoning
bottlenecks through two complementary knowl-
edge augmentation agents. From the intrinsic
perspective, the Explorer, powered by LLM,
enhances the visual reasoning depth by decom-
posing the original question ¢ into sub-questions
qsub, Which are then answered by the same Med-
MLLM used in the Perceiver. From the ex-
trinsic perspective, the Retriever, also imple-
mented using LLLM, grounds the analysis by re-
trieving and integrating relevant medical knowl-
edge from biomedical knowledge graphs. Both
agents’ outputs are fed back to the Planning Mod-
ule for further answer refinement.

Collaborative Medical Reasoning Workflow.
Our AMANDA framework orchestrates the three
modules in a collaborative workflow to achieve
comprehensive medical reasoning. As shown in
Figure 1: @ The Perceiver performs visual anal-
ysis to generate a general medical caption and an
initial answer. @ The Reasoner synthesizes all
the available information to produce a refined an-
swer. @ The Evaluator assesses the confidence
of current answer. @ When additional knowledge
is needed, the Explorer performs intrinsic Med-
KA through question decomposition for deeper vi-
sual understanding. @ The Retriever conducts
extrinsic Med-KA by integrating relevant knowl-
edge from biomedical knowledge graphs. This
augmented knowledge is then fed back to the
Reasoner for further refinement. This iterative pro-
cess, controlled by our adaptive refinement mecha-
nism (detailed in Sec.3.4), continues until sufficient
confidence is achieved, balancing comprehensive
analysis with computational efficiency. The de-

tailed pseudo-code of the workflow is provided in
Appendix F.

3.3 Medical Knowledge Augmentation with
LLM Agents

Building upon our agentic framework, we now de-
tail our medical knowledge augmentation strategies
that enhance Med-MLLMs’ reasoning capability in
data-efficient scenarios. While our framework de-
sign enables iterative reasoning through specialized
agents, the key to improving medical reasoning ca-
pability lies in how we augment medical knowledge
from both intrinsic and extrinsic perspectives:

Intrinsic Medical Knowledge Augmentation. In
data-efficient scenarios where abundant training
data is unavailable, Med-MLLMs often struggle
with comprehensive visual analysis due to their
single-step inference approach. For instance, when
asked "Does the chest X-ray look healthy?", mod-
els typically provide general responses like "no
obvious abnormalities” without examining key di-
agnostic features. This limitation stems from the
lack of progressive questioning in single-step in-
ference, where models fail to focus on specific yet
crucial details, resulting in superficial responses
that overlook critical diagnostic features.

To address this intrinsic bottleneck, we draw inspi-
ration from the question decomposition strategy,
where complex problems are broken down into fo-
cused sub-questions for comprehensive analysis.
Recent studies have demonstrated that LLMs pos-
sess strong capabilities in reasoning enhancement
through question decomposition (Wu et al., 2023c;
Suris et al., 2023; Zhu et al., 2023; You et al., 2023).
These methods leverage LLMs to decompose com-
plex tasks into manageable sub-questions, enabling
progressive understanding through structured ques-
tioning. Motivated by these advances, we adapt
this approach to medical visual analysis to enable
deeper and more thorough reasoning.

Specifically, we propose a coarse-to-fine intrin-
sic Med-KA strategy through our Explorer agent.
The strategy is triggered when the Evaluator de-
tects insufficient reasoning depth in the Reasoner’s
analysis. Our Explorer agent consists of two key
components: (1) an LLM-powered questioning
component that analyzes the main question, medi-
cal caption, and current reasoning history to gener-
ate targeted follow-up questions, and (2) an answer-
ing component that utilizes the same Med-MLLM



as in the Perceiver to provide detailed analysis
for each question. These follow-up questions are
generated following a hierarchical strategy:

* General Observation. First focuses on overall
appearance and key findings (e.g., “What is the
overall appearance of the image?"), establishing
a foundation for subsequent analysis.

* Anatomical Analysis. Then examines specific
anatomical regions or structures, considering
their characteristics (size, shape, alignment) and
spatial relationships (e.g., “What is the appear-
ance and position of the cardiac silhouette?").

* Detailed Findings. Finally investigates potential
pathological features in regions of interest (e.g.,
"Are there any infiltrates or masses in the lower
right lung field, and what are their specific char-
acteristics?""), enabling the detection of subtle
abnormalities through focused analysis.

This coarse-to-fine approach enhances the intrin-
sic medical reasoning capability of Med-MLLMs
in two ways: (1) breaking down complex analy-
ses into focused steps through hierarchical ques-
tioning, enabling thorough examination of diag-
nostic features; and (2) building a clear reasoning
chain that progressively refines visual understand-
ing. Through this progressive analysis, we effec-
tively guide Med-MLLMs to uncover their intrinsic
medical knowledge and generate more accurate and
detailed diagnostic insights.

To address the intrinsic medical reasoning bottleneck of
Med-MLLMs, we develop a coarse-to-fine question decom-
position strategy, enhancing reasoning depth and ensuring
comprehensive diagnoses.

Extrinsic Medical Knowledge Augmentation.
While our intrinsic Med-KA enhances the depth of
medical visual reasoning, Med-MLLMEs still face
the extrinsic medical reasoning bottleneck due to
their static pre-trained knowledge. This issue is par-
ticularly critical in data-efficient scenarios where
models encounter novel cases that require special-
ized medical expertise. Without comprehensive
domain knowledge, models often generate plau-
sible but incorrect responses, leading to potential
hallucinations (Xia et al., 2024b; Yan et al., 2024).

To address this remaining challenge, we introduce
an extrinsic Med-KA strategy accomplished by our
Retriever agent. Inspired by recent advances in
Retrieval Augmented Generation (Soman et al.,

2024; Xiong et al., 2024), our approach consists of
two steps. First, the Retriever agent uses an LLM
to analyze the accumulated context (including med-
ical captions, questions, and reasoning history) to
extract key medical concepts such as "pulmonary
nodule". These concepts then serve as queries to
SPOKE (Morris et al., 2023), a comprehensive
biomedical knowledge graph containing 42 million
nodes and 160 million edges assembled from 41
different biomedical databases. Through SPOKE
queries, the Retriever agent obtains relevant sub-
graphs containing structured medical knowledge,
including disease-symptom associations, anatomi-
cal relationships, and medical presentations. These
medical facts are then transformed into natural lan-
guage descriptions for integration into the reason-
ing process to ground the medical diagnosis.

This extrinsic Med-KA mechanism strengthens
Med-MLLMs’ reasoning reliability in two ways.
First, by retrieving relevant medical knowledge
from an external medical knowledge graph, we
provide models with specialized expertise needed
for novel cases in data-efficient scenarios. Second,
the retrieved structured medical facts serve as re-
liable domain expertise to ground the reasoning
process, effectively reducing hallucinations. To-
gether with intrinsic Med-KA, this approach en-
ables Med-MLLMs to perform more reliable med-
ical reasoning through both deeper visual analy-
sis and grounded domain knowledge, especially in
data-efficient scenarios.

To address the extrinsic medical reasoning bottleneck of
Med-MLLMs, we retrieve external medical knowledge from
biomedical knowledge graphs to ground the medical rea-
soning process and reduce hallucination risks.

3.4 Implementation Extensions

Building upon our Med-KA mechanisms, we intro-
duce two extensions to further enhance our frame-
work’s effectiveness and efficiency: an adaptive
reasoning refinement mechanism, and a few-shot
enhancement strategy.

Adaptive Reasoning Refinement. While our two
Med-KA mechanisms enhance medical reason-
ing capabilities, they often require multiple iter-
ations of analysis to achieve comprehensive un-
derstanding. However, we observe that excessive
refinement can be counterproductive (shown in
Appendix E): continuous accumulation of infor-



mation beyond what’s necessary may introduce
noise and inconsistencies, potentially overturning
initially correct judgments. Moreover, unnecessary
iterations increase computational overhead without
proportional gains in accuracy. To balance reason-
ing thoroughness with computational efficiency, we
introduce an adaptive reasoning refinement mecha-
nism. This mechanism is implemented through our
Evaluator agent, which dynamically controls the
knowledge augmentation process. The Evaluator
analyzes the consistency between current answers
and accumulated reasoning history, computing a
confidence score based on multiple criteria (de-
tailed in Appendix H). When this score exceeds a
predefined threshold, indicating sufficient reason-
ing depth and reliability, the system concludes the
analysis and outputs the final answer. This adap-
tive control prevents excessive refinement while
ensuring comprehensive medical reasoning.

Few-Shot Enhancement. To further demonstrate
our framework’s effectiveness in data-efficient set-
tings, we extend it to few-shot scenarios via in-
context learning. The key challenge lies in se-
lecting the most relevant examples that can ef-
fectively guide the reasoning process. To address
this, we propose a dual-similarity selection strat-
egy. As illustrated in Figure 2, we utilize PubMed-
CLIP (Zhang et al., 2023a) to compute similarities
in both textual and visual domains. Formally, given
a test sample with question embedding 7 and im-
age embedding Z, we select the top K examples
from a candidate sample set M through:

1

where ICLg = {(cx, qx, dk)}szl represents the se-
lected examples containing caption, question, and
answer triplets. The caption ¢y, is generated by the
Perceiver agent from the corresponding medical
image. These carefully chosen examples are inte-
grated into our framework, enabling the Reasoner
to leverage similar cases for more accurate diagno-
sis. This extension demonstrates our framework’s
adaptability across both zero-shot and few-shot set-
tings, highlighting its effectiveness in data-efficient
medical visual reasoning.

4 [Experiments

4.1 Experimental Details

Experimental Setup. We evaluate AMANDA on
eight Med-VQA benchmarks that cover diverse
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Figure 2: In-Context Examples Selection. The system
ranks candidate examples using a dual-similarity metric
combining visual and textual features, selecting top-K
examples as in-context examples.

medical domains and imaging modalities (detailed
in Appendix B). For evaluation models, we primar-
ily use LLaVA-Med-v1.5 (Li et al., 2024b). We
also develop variants of Med-InstructBLIP (Dai
et al., 2023) and Med-BLIVA (Hu et al., 2024a)
following LLaVA-Med’s training methodology (de-
tailed in Appendix A). Following prior work (Li
et al., 2024b), we use accuracy for closed-ended
questions and recall for open-ended questions. Ad-
ditional experiments with general-purpose MLLMs
are provided in Appendix D.

Baselines. We compare AMANDA with three types
of approaches: (1) Single-step inference by Med-
MLLMs serving as our zero-shot baseline; (2) Two-
stage methods such as Img2LLLM (Guo et al., 2023),
which generate image captions via MLLMs before
LLM reasoning; and (3) Agent-based approaches
like IdealGPT (You et al., 2023) that utilize multi-
ple LLMs for collaborative reasoning.

Implementation Details. Our framework uses
GPT-40 as the core reasoning engine for all agents.
For adaptive reasoning refinement, we set a maxi-
mum of 3 iterations and a confidence threshold of
3/5. For few-shot experiments, we use 4 in-context
examples as the default setting.

4.2 Effectiveness of AMANDA

Zero-shot Med-VQA. As shown in Table 1 demon-
strates the substantial improvements achieved
by our framework across different Med-MLLMs
and evaluation benchmarks. With LLaVA-Med-
v1.5 (Li et al., 2024b), AMANDA achieves an av-
erage improvement of 19.36% over the direct in-



Method VQA-RAD SLAKE IU-Xray OL3I OmniMedVQA FairVL-Med PMC-OA Average
Open Closed Open Closed ‘ Closed ‘ Closed ‘ Closed ‘ Open Open
Med-MLLMs (with Medical Pre-training)
LLaVA-Med-v1.5 30.50 52.94 41.74 44.95 34.50 22.80 40.30 54.58 56.46 42.09
+ Img2LLM 37.81 (+7.31) 4743 (-5.51) | 50.89 (+9.15) 59.86 (+14.91)|70.60 (+36.10) [ 49.80 (+27.00) | 54.40 (+14.10) | 61.74 (+7.16) | 63.03 (+6.57) |55.06 (+12.97)
+ Ideal GPT 41.56 (+11.06) 61.40 (+8.46) | 50.96 (+9.22) 69.95 (+25.00) [ 67.80 (+33.30) [ 65.40 (+42.60) | 53.90 (+13.60) | 63.13 (+8.55) | 68.02 (+11.56) [60.23 (+18.14)
+ AMANDA 42.19 (+11.69) 61.03 (+8.09) |54.39 (+12.65) 70.43 (+25.48) | 70.30 (+35.80) | 65.40 (+42.60) | 57.20 (+16.90) | 66.60 (+12.02) | 65.51 (+9.05) |61.45 (+19.36)

+ AMANDA w/ FS 41.73 (+11.23) 63.97 (+11.03) | 54.41 (+12.67) 73.56 (+28.61) | 70.80 (+36.30) | 67.00 (+44.20)| 62.20 (+21.90) |66.85 (+12.27)| 65.76 (+9.30) |62.92 (+20.83)

Med-InstructBLIP 32.41 61.76 42.82 59.38
+ Img2LLM 37.61 (+5.20)  57.72 (-4.04)
+ Ideal GPT
+ AMANDA 41.02 (+8.61)  68.75 (+6.99)

68.60 34.40 29.50 52.18 57.85 48.77
47.33 (+4.51)  69.23 (+9.85) | 73.10 (+4.50) |46.00 (+11.60) | 59.60 (+30.10)

59.75 (+7.57) | 56.39 (-1.46) | 56.30 (+7.53)

40.22 (+7.81)  65.07 (+3.31) | 48.85 (+6.03)  65.14 (+5.76) | 80.70 (+12.10) | 67.40 (+33.00)| 56.30 (+26.80) [64.12 (+11.94)| 60.10 (+2.25) | 60.88 (+12.11)
51.13 (+8.31) 69.47 (+10.09) | 79.50 (+10.90) | 67.60 (+33.20) | 62.70 (+33.20) | 66.61 (+14.43) | 63.97 (+6.12) | 63.42 (+14.65)

+ AMANDA w/ FS 46.75 (+14.34) 74.26 (+12.50) | 52.03 (+9.21) 72.84 (+13.46) | 84.90 (+16.30) | 67.00 (+32.60) | 71.20 (+41.70) |67.10 (+12.98)| 65.74 (+7.89) | 66.87 (+18.10)

Med-BLIVA 29.19 61.76 43.51 56.01 69.80 38.20 31.90 49.33 54.41 48.24
+ Img2LLM 3276 (+3.57)  59.93 (-1.83) | 44.95 (+1.44) 62.74 (+6.73) | 70.10 (+0.30) | 46.20 (+8.00) | 57.80 (+25.90) [62.43 (+13.10)| 55.69 (+1.28) | 55.27 (+7.03)
+ Ideal GPT 40.84 (+11.65) 53.31 (-8.45) | 50.08 (+6.57) 64.66 (+8.65) | 71.40 (+1.60) | 47.20 (+9.00) | 57.80 (+25.90) |64.94 (+15.61)| 61.30 (+6.89) | 56.84 (+8.60)
+ AMANDA 41.40 (+12.21) 61.76 (+0.00) | 50.95 (+7.44) 68.75 (+12.74) | 76.70 (+6.90) |67.00 (+28.80) [ 63.20 (+31.30) | 66.61 (+17.28)| 63.97 (+9.56) | 62.26 (+14.02)
17

+ AMANDA w/ FS 45.16 (+15.97) 67.65 (+5.89)

50.49 (+6.98) 69.23 (+13.22) | 84.60 (+14.80) | 65.80 (+27.60) | 65.90 (+34.00) |67.10 (+17.77) | 65.74 (+11.33) | 64.63 (+16.39)

Table 1: Zero-shot and Few-shot Performance Comparison. Our framework consistently improves the perfor-
mance of different Med-MLLMs across various benchmarks. FS denotes experiments with 4 in-context examples.

ference baseline. Using Med-BLIVA (Hu et al.,
2024a), our method outperforms existing LLM-
empowered approaches like Img2L.I.M (Guo et al.,
2023) and Ideal GPT (You et al., 2023) by 6.36 %
and 5.42% respectively. These significant im-
provements stem from our medical-specific design
choices. While Img2LLLM (Guo et al., 2023) only
relies on caption generation and Ideal GPT (You
et al., 2023) uses general-purpose agent collabora-
tion, our framework enhances medical reasoning
through both intrinsic and extrinsic Med-KA along
with adaptive reasoning refinement.

Few-shot Med-VQA. We further enhance our
framework’s effectiveness through few-shot learn-
ing, enabling performance gains without model
fine-tuning. As shown in Table 1, this few-shot en-
hancement leads to consistent improvements across
all benchmarks, with Med-InstrcuctBLIP achiev-
ing a further 3.45% gain over its zero-shot per-
formance. These improvements demonstrate the
effectiveness of our dual-similarity selection strat-
egy, which provides the Reasoner with highly rel-
evant in-context examples to strengthen its med-
ical reasoning capability. These results highlight
AMANDA’s strong adaptability in data-efficient sce-
narios, from zero-shot to few-shot settings.

Medical Hallucination Reduction. Beyond im-
proving overall performance, a critical measure
of our framework’s effectiveness lies in reducing
medical hallucinations — plausible but incorrect
responses that pose significant risks in medical
applications. We evaluate this capability using
ProbMed (Yan et al., 2024), a specialized bench-
mark for assessing models’ medical reasoning relia-

Hallucination Question Type

Model Average

Organ Condition Abnormality

LLaVA-Med-v1.5 39.60 30.30 21.96 30.62
+ AMANDA 88.00 (+48.40) 91.80 (+61.50) 54.00 (+32.04)(77.93 (+47.31)
+ AMANDA w/ FS 92.40 (+52.80) 94.80 (+64.50) 54.40 (+32.44)[80.53 (+49.91)

Med-InstructBLIP 37.20 16.60 60.60 38.13
+ AMANDA 89.80 (+52.60) 94.00 (+77.40) 64.40 (+3.80) [82.73 (+44.60)
+ AMANDA w/ FS 92.00 (+54.80) 93.00 (+76.40) 65.60 (+5.00) |83.53 (+45.40)

Med-BLIVA 65.80 53.60 61.80 60.40
+ AMANDA 83.80 (+18.00) 87.80 (+34.20) 61.20 (-0.60) |77.60 (+17.20)
+ AMANDA W/ FS 90.60 (+24.80) 92.80 (+39.20) 64.20 (+2.40) [82.53 (+22.13)

Table 2: Effectiveness in reducing hallucination.

bility. As shown in Table 2, AMANDA achieves sub-
stantial reductions in hallucination rates across all
tested models, with Med-InstructBLIP (Dai et al.,
2023) achieving a 47.37% reduction. These re-
sults demonstrate that our intrinsic and extrinsic
Med-KA effectively grounds the medical reasoning
process with reliable domain knowledge, address-
ing a crucial challenge in real-world applications.

4.3 Further Analysis

Number of In-Context Examples. Figure 3(a)
illustrates how the number of in-context examples
affects model performance. While increasing exam-
ples initially improves results, the benefits plateau
beyond an optimal point. This finding suggests that
carefully selected examples are more crucial than
quantity for enhancing medical reasoning.

Choice of Reasoning Engine. As shown in Fig-
ure 3(b), the selection of the reasoning engine for
agents significantly influences performance. Our
experiments with different GPT models reveal that
GPT-40 consistently outperforms GPT-40-mini and
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Figure 3: Analysis of framework components.

GPT-3.5, indicating that more powerful reasoning
engines better facilitate complex medical analysis.

Impact of MLLM Backbones. Table 3 presents a
comprehensive analysis of MLLMs with varying
backbones and training configurations. Our evalua-
tion reveals three key findings: @) larger language
backbones generally achieve better performance,
particularly on closed-ended questions where pre-
cise reasoning is crucial; @ increasing the pre-
training dataset size from 60K (Li et al., 2024b)
to 150K (Cui et al., 2024) samples leads to signifi-
cant improvements across all metrics; and € mod-
els with medical domain pre-training like PMC-
LLaMA (Wu et al., 2023b) demonstrate strong
performance, highlighting the value of domain-
specific knowledge in medical reasoning.

4.4 Ablation Study.

We conduct systematic ablation experiments to
evaluate each component’s contribution to our
framework. @ Removing intrinsic Med-KA sig-
nificantly degrades performance, as the Reasoner
loses its ability to progressively uncover key di-
agnostic features through structured visual anal-
ysis — crucial for enhancing the depth of medi-
cal reasoning. @ Without extrinsic Med-KA, the
model exhibits reduced reliability due to the lack
of grounded domain expertise, leading to increased
hallucinations when encountering novel medical
cases. @ Our analysis of adaptive reasoning re-
finement demonstrates its crucial role: while open-

Table 3: Analysis of language backbones in Med-
BLIVA. Each column’s highest score is in bold, while
the second highest score is underlined.

VQA-RAD SLAKE

Method

Open Closed ‘ Open Closed

AMANDA 42.19 61.03 54.39 70.43

- Intrinsic Med-KA 38.82 (-3.37) 56.62 (-4.41)|50.28 (-4.11) 64.66 (-5.77)
- Extrinsic Med-KA 41.11 (-1.08) 60.29 (-0.74)| 52.90 (-1.49) 69.47 (-0.96)
- ARR 43.56 (+1.37) 57.35 (-3.68) | 54.72 (+0.33) 69.23 (-1.20)

Table 4: Ablation study. Analysis of different compo-
nents by removing each from the full model. Med-KA
represents Medical Knowledge Augmentation and ARR
denotes Adaptive Reasoning Refinement.

ended questions benefit from extended reasoning
cycles, closed-ended questions suffer from unnec-
essary refinements that may introduce noise and
contradictions. Notably, our adaptive approach
reduces the average number of iterations from 3
to 0.61 while maintaining performance (detailed
in Appendix E). These results validate both the
effectiveness of our Med-KA strategy and the im-
portance of the adaptive refinement mechanism in
achieving efficient and accurate medical reasoning.

5 Conclusion

In this work, we address the intrinsic and extrin-
sic bottlenecks of Med-MLLMs in data-efficient
scenarios by introducing AMANDA, a training-free
agentic framework for medical knowledge augmen-
tation. Our framework enhances the depth of medi-
cal visual reasoning through coarse-to-fine question
decomposition, while grounding the reasoning pro-
cess with reliable domain expertise from biomedi-
cal knowledge graphs. The effectiveness of our ap-
proach is validated through extensive experiments
across eight Med-VQA benchmarks, demonstrat-
ing substantial improvements in both zero-shot and
few-shot settings, with significant reductions in hal-
lucination rates. Through the adaptive reasoning
refinement mechanism, our framework achieves
these improvements while maintaining computa-
tional efficiency. We believe AMANDA opens new
possibilities for reliable Al-assisted medical diag-
nosis in resource-constrained environments.



6 Limitations

While our work demonstrates promising results,
several limitations remain for future exploration.
First, although we evaluate on eight diverse Med-
VQA benchmarks, testing on more specialized
medical datasets across different modalities (e.g.,
MRI, CT) could further validate our framework’s
generalizability. Second, our experiments primar-
ily focus on publicly available Med-MLLMs with
language models up to 13B parameters; investi-
gating the impact of larger language models (e.g.,
70B) could potentially reveal additional perfor-
mance gains. Third, while our current framework
shows strong performance with GPT-40, exploring
other advanced reasoning engines could provide
insights into the framework’s adaptability. Fourth,
incorporating more diverse external medical knowl-
edge resources (e.g., medical textbooks, clinical
guidelines, and medical reports) could potentially
enhance our framework’s capability in handling
various types of medical queries. Fifth, enabling
our agents to utilize existing medical tools and col-
laborate with hospitals for diagnosis would be a
promising direction for real-world deployment. Fi-
nally, while we focus on a training-free approach,
exploring lightweight fine-tuning strategies could
potentially achieve better performance improve-
ments while maintaining reasonable computational
requirements in resource-constrained scenarios.
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A Details of Evaluated MLLMs

We evaluate our framework across both medical
domain-specific and general-domain MLLMs to
demonstrate its versatility and effectiveness.

A.1 Medical Domain-Specific MLLMs

* LLaVA-Med-v1.5(Li et al., 2024b): Built on
Mistral-7B(Jiang et al., 2023), this is our primary
evaluation model. It extends LLaVA (Liu et al.,
2024) for medical domain understanding through
specialized training on medical image-text pairs
and conversational data.

* Med-InstructBLIP: Our medical adaptation of
InstructBLIP (Dai et al., 2023) using LLaMa-
7B (Touvron et al., 2023). Following LLaVA-
Med’s training methodology (Li et al., 2024b),
we adapt the model for medical visual under-
standing while maintaining its instruction-tuning
capabilities.

Med-BLIVA: A medical version of BLIVA (Hu
etal., 2024a) based on LLaMa-7B (Touvron et al.,
2023). We adapt it using LLaVA-Med’s training
strategy (Li et al., 2024b) to combine BLIVA’s vi-
sual reasoning capabilities with medical domain
expertise.

A.2 Pre-training Details of Med-MLLMs

For Med-InstructBLIP and Med-BLIVA, we follow
LLaVA-Med’s (Li et al., 2024b) two-stage training
strategy:

» Stage 1: Feature Alignment. We first align the
visual features with medical concepts through
projection learning. Using 600K filtered image-
text pairs from PMC-15M, we train only the pro-
jection layer while keeping both the visual en-
coder and language model frozen. This stage
enables the models to understand biomedical vi-
sual concepts efficiently.

* Stage 2: Instruction Tuning. We then perform
end-to-end instruction tuning with the projection
layer and language model unfrozen. Using 60K
medical image-text instruction data, we train the
models to follow various medical instructions
and perform visual reasoning tasks. This stage
enhances the models’ capabilities in medical vi-
sual understanding and dialogue interaction.
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A.3 General-Domain MLLMs

* InstructBLIP (Dai et al.,, 2023): A strong
general-domain MLLM with instruction-tuning
capabilities. We evaluate it using its original
pre-trained weights to assess our framework’s
effectiveness on models without medical domain
adaptation.

xGen-MM (Xue et al., 2024): The latest BLIP
architecture variant with advanced visual reason-
ing capabilities. We use its original weights to
test our framework’s compatibility with state-of-
the-art general-purpose MLLMs.

Evaluating these general-domain models along-
side medical-specific ones demonstrates our frame-
work’s versatility across different architectures and
its ability to enhance medical reasoning capabilities
regardless of domain specialization.

B Details of Med-VQA Benchmarks

We utilize open-source Med-VQA benchmarks,
which cover a wide range of medical image modal-
ities and anatomical regions: VQA-RAD (Lau
et al., 2018), SLAKE (Liu et al., 2021), IU-
Xray (Demner-Fushman et al., 2016), Harvard-
FairVLMed (Luo et al., 2024), PMC-OA (Lin et al.,
2023a), OL3I (Zambrano Chaves et al., 2023), Om-
niMedVQA (Hu et al., 2024b), and ProbMed (Yan
et al., 2024). Table 5 provides comprehensive statis-
tics about these datasets. The details of each bench-
mark are as follows:

* VQA-RAD (Lau et al., 2018): A dedicated Med-
VQA dataset containing 315 medical images and
3,515 question-answer pairs. It covers various
medical imaging modalities including chest X-
rays and CT scans. The questions are carefully
designed to evaluate both visual understanding
and clinical reasoning capabilities, categorized
into different types including modality, plane,
organ system, and abnormality detection.

SLAKE (Liu et al., 2021): A comprehensive
Med-VQA dataset comprising 14,028 question-
answer pairs on 8,851 medical images across
multiple modalities (CT, MRI, X-Ray). The
questions assess different levels of understand-
ing, from basic pattern recognition to complex
clinical reasoning. The dataset contains 11,222
training samples and 1,061 testing samples.

* IU-Xray (Demner-Fushman et al., 2016): A spe-



Table 5: Comprehensive statistics of the Med-VQA Benchmarks.

Index | Data Source Modality Region ‘ # Images ‘ # QA Items | Answer Type | # Test
1 VQA-RAD (Lau et al., 2018) X-Ray, CT Chest, Abd 315 3,515 Mixed 451
2 SLAKE (Liu et al., 2021) CT, MRI, X-Ray Mixture 8,851 14,028 Open-ended | 1,061
3 IU-Xray (Demner-Fushman et al., 2016) X-Ray Chest 589 2,573 Yes/No 1,000
4 Harvard-FairVLMed (Luo et al., 2024) Fundus Eye 713 2,838 Open-ended | 1,000
5 OL3I (Zambrano Chaves et al., 2023) CT Heart 1,000 1,000 Yes/No 500
6 PMC-OA (Zhang et al., 2023b) Mixture Mixture 2,587 13,294 Open-ended | 1,000
7 OmniMedVQA (Hu et al., 2024b) Mixture* Mixture 10,995 12,227 Multi-choice | 1,000
8 ProbMed (Yan et al., 2024) Mixture* Mixture 6,303 57,132 Yes/No 1,500

cialized dataset focusing on chest X-ray images
and their corresponding diagnostic reports. Our
benchmark includes 589 frontal chest X-rays
from the test set, along with their detailed clinical
reports.

Harvard-FairVLMed (Luo et al., 2024): A mul-
timodal dataset of fundus images designed to
evaluate fairness in Al models. It contains image
and text data from diverse demographic groups,
specifically focusing on bias assessment in medi-
cal visual understanding.

PMC-OA (Lin et al., 2023a): A large-scale
collection of biomedical images extracted from
open-access publications. We incorporate 2,587
diverse image-text pairs randomly selected from
the test set into our benchmark.

OL3I (Zambrano Chaves et al., 2023): A pub-
licly available dataset focused on predicting
ischemic heart disease (IHD) using contrast-
enhanced abdominal-pelvic CT examinations. It
features a retrospective cohort with up to 5 years
of follow-up data.

OmniMedVQA (Hu et al., 2024b): A compre-
hensive Med-VQA benchmark collected from 73
different medical datasets. It encompasses 12 dif-
ferent imaging modalities and covers more than
20 distinct anatomical areas, providing broad cov-
erage of medical visual understanding tasks.

ProbMed (Yan et al., 2024): A specialized
benchmark designed for evaluating model hal-
lucination, comprising 6,303 images and 57,132
question-answer pairs. It includes carefully de-
signed adversarial QA pairs across three modali-
ties (X-ray, MRI, CT scan) and four anatomical
regions (abdomen, brain, chest, spine).
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B.1 Evaluation Protocol

Following (Xia et al., 2024a), we construct our
evaluation benchmark using diverse medical image-
text pairs from eight datasets. For classic Med-
VQA benchmarks VQA-RAD and SLAKE, we use
their complete test sets (451 and 1,061 QA pairs
respectively) to maintain consistency with previous
works. For larger-scale datasets (IU-Xray, Harvard-
FairVLMed, OL3I, PMC-OA, OmniMedVQA, and
ProbMed), we randomly sample 500-1,500 test ex-
amples from their original test sets due to computa-
tional constraints.

The remaining training samples from these datasets
serve as our in-context learning pool for few-shot
evaluation. For each test image, we retrieve similar
examples based on visual and semantic similarity to
construct few-shot prompts. This diverse collection
of datasets, covering various modalities and answer
formats (Yes/No, Open-ended, and Multi-choice),
enables comprehensive evaluation of medical vi-
sual understanding capabilities.

C Evaluation Metrics

For the closed-ended questions, we report the ac-
curacy in a more strict way compared to prior
work (Li et al., 2024b). Instead of checking
whether the ground-truth answer appears anywhere
in the generated response, we only consider the
first occurring yes/no-type word as the final predic-
tion. This eliminates the inflated accuracy caused
by long generated texts that include both "yes" and
"no". For open-ended questions, we use recall to
evaluate the ratio of ground-truth tokens that ap-
pear in the generated sequences. Different from the
literature that selects from a fixed set of training
answers, we do not provide any constraints on the
model’s open-ended responses. This makes our for-
mulation closer to real open-ended questions but is
intrinsically more challenging. For a fair compari-



Method VQA-RAD SLAKE IU-Xray OL3I OmniMedVQA FairVL-Med PMC-OA Average

Open Closed ‘ Open Closed ‘ Closed ‘ Closed ‘ Closed ‘ Open ‘ Open ‘

General MLLMs (without Medical Pre-training)

InstructBLIP 16.09 62.50 22.14 59.86 62.30 36.11 33.40 4522 42.90 42.28
+ AMANDA 29.86 (+13.77) 65.81 (+3.31) |41.03 (+18.89) 66.35 (+6.49) | 68.30 (+6.00) [61.11 (+25.00) | 52.30 (+18.90) |64.83 (+19.61) [ 63.08 (+20.18) | 56.96 (+14.68)
+ AMANDA w/ FS 38.96 (+22.87) 68.01 (+5.51) |48.61 (+26.47) 69.71 (+9.85) | 71.30 (+9.00) | 63.89 (+27.78)| 54.40 (+21.00) |64.81 (+19.59)63.12 (+20.22) | 60.31 (+18.03)
Xgen-MM 16.08 62.50 22.14 59.86 53.30 37.80 44.70 58.38 49.19 44.88
+ AMANDA 35.20 (+19.12) 67.28 (+4.78) |46.47 (+24.33) 70.19 (+10.33)| 59.20 (+5.90) (48.80 (+11.00)| 54.10 (+9.40) | 67.34 (+8.96) |64.85 (+15.66) |57.05 (+12.17)
+ AMANDA w/ FS 37.76 (+21.68) 75.37 (+12.87) | 47.92 (+25.78) 74.28 (+14.42) | 69.60 (+16.30) [ 51.60 (+13.80) | 58.10 (+13.40) | 67.42 (+9.04) | 64.72 (+15.53) | 60.75 (+15.87)

Table 6: Generalization to general-purpose MLLMs. Zero-shot and few-shot results across Med-VQA bench-
marks using general MLLMs, showing the framework’s strong generalization capability beyond Med-MLLMs.

VQA-RAD SLAKE
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Figure 4: Effectiveness of Adaptive Reasoning Refinement. (a) Overview of the adaptive reasoning refinement
mechanism. The Evaluator computes a confidence score based on the current answer and reasoning history. When
the score falls below a predefined threshold, the Action module is triggered for additional knowledge augmentation;
otherwise, the system outputs the final answer. (b) Performance comparison between adaptive refinement and fixed
iterations. Results show that performance initially improves with more iterations but then degrades, demonstrating
the negative impact of excessive refinement. Our adaptive mechanism significantly reduces the required iterations
while improving overall performance.

son, we use the same strict accuracy metric forall E Effectiveness of Adaptive Reasoning
methods. While this might lead to lower absolute Refinement
numbers compared to what is typically reported,
we believe it better reflects the true performance  As shown in Figure 4(a), our adaptive reasoning
and is more meaningful. refinement mechanism dynamically controls the
knowledge augmentation process. The Evaluator
computes a confidence score based on the current
D Additional Results of AMANDA answer and reasoning history. When the score falls
Framework on General MLLMs below a predefined threshold, the Action module is
triggered for additional knowledge augmentation;
While our main experiments demonstrate the ef-  otherwise, the system outputs the final answer. Fig-
fectiveness of AMANDA on medical-specialized  ure 4(b) demonstrates the significant advantages of
MLLMs, we further evaluate its generalization ca-  this adaptive approach over fixed-iteration strate-
pability on general-domain MLLMs that lack med-  gies. We observe three key findings. First, our
ical pre-training. As shown in Table 6, our frame-  adaptive mechanism significantly improves both
work demonstrates strong generalization capabil-  efficiency and performance, reducing the average
ity across different models. Specifically, when ap-  number of iterations from 3.0 to 0.61 while increas-
plied to InstructBLIP (Dai et al., 2023), AMANDA  ing accuracy from 66.54% to 68.75%. Second,
achieves an average improvement of 14.68% over = while we set a maximum of 3 iterations, the adap-
direct inference. These results suggest that our  tive control enables flexible refinement: simpler
framework can effectively bridge the domain gap  cases conclude early, while challenging cases re-
and enable general-purpose MLLMs to perform  ceive more thorough analysis. Third, experiments
reliable medical visual reasoning. on both VQA-RAD and SLAKE datasets reveal
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Algorithm 1 AMANDA Framework Pipeline

def AMANDA(I:
Data-efficient Med-VQA
Args:
I: Input medical
Q: Input question
Returns:
Final answer

Image, Q: str) -> str:

image

nnn

# Initialize reasoning history

H =[]

# Initial Visual Understanding

C, A_Q = Perceiver(I, Q) # Generate
medical caption and initial
answer

H.append ((C, A_0))

A_0 = Reasoner(Q, H) # Initial

reasoning

confidence = Evaluator(A_0, H)

# Medical Knowledge Augmentation

while confidence < THRESHOLD:
# Intrinsive Med-KA
Q_sub, A_sub = Explorer(Q,
H.append ((Q_sub, A_sub))

H)

# Extrinsive Med-KA
K = Retriever (H)
H.append(K)

# Re-reasoning with Enhanced

Knowledge
A_t = Reasoner(Q, H)
confidence = Evaluator(A_t, H)

return A_t

that fixed iterations lead to performance degrada-
tion after reaching a peak, confirming the negative
impact of excessive refinement.

F Pseudo-Code of AMANDA Framework

The algorithm illustrates how our framework or-
chestrates multiple specialized agents for collabo-
rative medical reasoning. The process operates as
follows:

* The Perceiver agent first analyzes the medical
image and generates a detailed caption along with
an initial answer, establishing a foundation for
visual understanding.

* The Reasoner agent then processes this initial
information to generate a preliminary medical
analysis based on the visual findings.

* The Evaluator agent assesses the confidence of
the current answer by analyzing its consistency
with the accumulated evidence.
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* When confidence is insufficient, the Explorer
agent generates strategic follow-up questions to
probe deeper into critical visual details, while the
Retriever agent supplements the analysis with rel-
evant medical knowledge from external sources.

e This iterative process continues until the
Evaluator determines that sufficient confidence
has been achieved, ensuring both comprehensive
analysis and reliable diagnosis.

G Case Study

As shown in Table 7, this case study demonstrates
how our AMANDA framework effectively corrects
initial misdiagnosis through comprehensive med-
ical knowledge augmentation. Initially, the Med-
MLLM baseline incorrectly identifies a rightward
mediastinal shift. Our framework then initiates a
systematic analysis through three key components.
First, the Perceiver generates a detailed medi-
cal caption, establishing a foundation for under-
standing the image’s key features. Second, through
intrinsic Med-KA, the Explorer generates strate-
gically designed sub-questions that progressively
examine the mediastinal position from different
perspectives. Third, the Retriever provides rel-
evant medical knowledge about the mediastinum.
Based on this augmented knowledge, the Reasoner
generates a refined answer, which the Evaluator
determines to be highly confident, demonstrating
the effectiveness of our adaptive reasoning refine-
ment. This case study exemplifies how our frame-
work enhances medical reasoning through struc-
tured analysis and knowledge augmentation, lead-
ing to efficient and accurate diagnosis.

H Prompt Design of AMANDA

In this section, we provide detailed prompt designs
for each agent in our framework. First, Table 8
presents the caption generation prompts used by
the Perceiver agent for comprehensive medical
image understanding. Then, Table 9 shows the
structured instructions for the Explorer agent to
generate coarse-to-fine follow-up questions. Ta-
ble 12 details how the Evaluator agent assesses
reasoning confidence. Finally, Tables 11 and 10
provide the Reasoner agent’s prompts for handling
closed-ended and open-ended questions respec-
tively, demonstrating our framework’s ability to
adapt to different question types.



Table 7: A case study AMANDA showing how our framework progressively refines the answer through knowledge
augmentation.

Main Question: Has the midline of the mediastinum shifted?

Medical Caption:

This is a chest X-ray, which is a type of medical imaging study that uses low-energy X-rays to visualize
the structures within the chest, including the lungs, heart, and bones. The chest X-ray shows bilateral
ground-glass opacities in both lungs, which can be indicative of various lung conditions such as infections,
inflammation, or other abnormalities.

Initial Answer: Yes, the midline of the mediastinum has shifted to the right.
Evaluator: Confident Score : 1

Coarse-to-fine question decomposition:

QI: Are there any visible signs of mediastinal shift, such as displacement of the trachea or heart?

Al: No, the chest X-ray does not show any visible signs of mediastinal shift, such as displacement of the
trachea or heart.

Q2: Is the position of the heart and trachea symmetrical and centered within the thoracic cavity?
A2: Yes, the position of the heart and trachea appears to be symmetrical and centered within the thoracic
cavity.

Q3: Are there any abnormalities in the lung volumes or pleural spaces that could contribute to a shift in
the mediastinum?
A3: No, there are no abnormalities in the lung volumes or pleural spaces that could contribute to a shift in
the mediastinum.

Retrieved Medical Knowledge:
Lung disease Localizes in: cavity, chest, diaphragm, mediastinum.

Iteration 1 Answer: No, the midline of the mediastinum has not shifted.
Evaluator: Confident Score : 4

Final Answer: No, the midline of the mediastinum has not shifted.
Ground Truth: No.
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Table 8: Prompts for the Perceiver Agent. Following LLaVA-Med’s instruction tuning strategy, we randomly
select one of these prompts to guide the Perceiver agent in generating comprehensive medical image descriptions.

PERCEIVER_CAPTION_PROMPTS:

* Describe the following image in detail

* Provide a detailed description of the given image

* Give an elaborate explanation of the image you see

* Share a comprehensive rundown of the presented image
 Offer a thorough analysis of the image

* Explain the various aspects of the image before you

* Clarify the contents of the displayed image with great detail
* Characterize the image using a well-detailed description

* Break down the elements of the image in a detailed manner
» Walk through the important details of the image

* Portray the image with a rich, descriptive narrative

» Narrate the contents of the image with precision

* Analyze the image in a comprehensive and detailed manner
¢ Illustrate the image through a descriptive explanation

» Examine the image closely and share its details

* Write an exhaustive depiction of the given image
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Table 9: Explorer agent instructions for generating follow-up questions.

EXPLORER_SYSTEM_PROMPT:

You are an Al language model tasked with helping clinicians analyze medical images. Your goal is to
decompose a primary clinical question into several sub-questions. By answering these sub-questions,
it will be easier to arrive at a comprehensive answer for the main question.
Instruction: Given a general caption that might not be entirely precise but provides an overall
description, and a clinical question, generate a series of sub-questions to help thoroughly answer
the main question. These sub-questions should guide the analysis step by step, focusing on the
different aspects that could influence the final answer, keeping in mind clinical relevance and imaging
characteristics.
Rules:
* Break down the question into smaller parts following this hierarchical approach:
(a) First, ask about general/overall observations
(b) Then, focus on specific anatomical regions or structures
(c) Finally, ask about detailed findings or specific characteristics
* Consider these aspects in your questions:
— Presence or absence of specific findings
— Characteristics of structures (e.g., size, shape, alignment)
— Orientation and positioning of the patient or organs
— Comparison of abnormal vs. normal findings
* The number of sub-questions should be less or equal to {max_sub_questions}.
* Order your questions from general to specific (coarse to fine-grained).
Format:
Sub-question 1: [General observation question]
Sub-question 2: [Specific anatomical region question]
Sub-question 3: [Detailed finding question]

EXPLORER_PROMPT:

Image description: {caption}

Main question: {question}

History: {history}

Please generate a series of follow-up questions following a coarse-to-fine approach. Start with
general observations and progressively move to more specific details.
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Table 10: Open-ended Reasoner instructions.

OPEN_ENDED REASONER_SYSTEM_PROMPT:

You are a medical Al assistant with rich visual commonsense knowledge and strong reasoning
abilities.
You will be provided with:
1. A main question about an image.
2. An imperfect initial answer to the main question provided by a visual Al model. Note that the
answers may not be entirely precise.
A general caption that might not be entirely precise but provides an overall description.
Some conversation history containing follow-up questions and answers.
Some grounded medical information.
6. Some similar examples with their answers for reference.
Your goal: Based on the above information, find the answer to the main question.
Rules:
1. Begin with a brief paragraph demonstrating your reasoning and inference process. Start with
the format: "Analysis:".
2. Be logical and consistent in evaluating all clues, including as many relevant details as possible.
3. Use similar examples to inform your reasoning.
Response Format:
Analysis: XXXXXX.

U

Answer: XXXXXX

OPEN_ENDED_REASONER_PROMPT:

Imperfect image description: {caption}

Open-ended question: {question}

Initial answer: {initial_answer }

History:

{history}

Additional information: {rag_context}

Please provide a detailed answer to the open-ended question based on all the information provided.
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Table 11: Closed-ended Reasoner instructions.

CLOSED_ENDED REASONER_SYSTEM_PROMPT:

You are a medical Al assistant with rich visual commonsense knowledge and strong reasoning
abilities.
You will be provided with:
1. A main question about an image.
2. An imperfect initial answer to the main question provided by a visual AI model. Note that the
answers may not be entirely precise.
A general caption that might not be entirely precise but provides an overall description.
Some conversation history containing follow-up questions and answers.
Some grounded medical information.
6. Some similar examples with their answers for reference.
Your goal: Based on the above information, find the answer to the main question.
Rules:
1. Begin with a brief paragraph demonstrating your reasoning and inference process. Start with
the format: "Analysis:".
2. Be logical and consistent in evaluating all clues, but aim to preserve the initial answer unless
strong contradictions arise.
3. Use similar examples to inform your reasoning.
Response Format:
Analysis: XXXXXX.

SR

Answer: [Yes/No] or [Selected Option]

CLOSED_ENDED_REASONER_PROMPT:

Imperfect image description: {caption}

Closed-ended question: {question}

Initial answer: {initial_answer }

History:

{history}

Additional information: {rag_context}

Please provide an answer to the closed-ended question based on all the information provided.
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Table 12: Evaluator agent instructions for assessing confidence levels in medical image analysis responses.

EVALUATOR_SYSTEM_PROMPT:

You are a medical Al assistant specialized in evaluating answers for medical image analysis.
You will be provided with:
1. A main question about a medical image.
2. A general caption that might not be entirely precise and may contain false information.
3. Current answer.
4. History of the conversation.
5. Examples from in-context learning.
Your goal:
1. Assess the confidence level of a given answer and provide a brief explanation.
2. Provide a confidence score from 1 to 5, where 1 means completely uncertain and 5 means very
certain.
3. Use examples from in-context learning to assist in evaluating the answer.
Evaluation Criteria:
* Contradictory Evidence: Look for any information that strongly contradicts the current answer.
If significant conflicting information is found, reduce the confidence level.
Scoring Guidance:
* Score 5: The answer is accurate, consistent with all provided information, and has no significant
conflicting evidence.
* Score 4: The answer is mostly correct, with minor issues or slight uncertainty.
* Score 3: The answer is generally acceptable, with some uncertainty or minor inconsistencies,
but it mostly aligns with the question.
* Score 2: The answer has notable inaccuracies or lacks consistency, with some conflicting
information present.
* Score 1: The answer is largely incorrect, inconsistent, or contains major contradictions with the
provided information.
Response Format:
Score: [1-5]
Explanation: [Your explanation]

EVALUATOR_PROMPT:

Imperfect image description: {caption}

Main question: {question}

Current answer: {answer}

History:

{history}

Please evaluate the confidence level of the current answer and provide a brief explanation.
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