
Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Wenqing Zheng 1 S P Sharan 1 Ajay Kumar Jaiswal 1 Kevin Wang 1 Yihan Xi 1 Dejia Xu 1 Zhangyang Wang 1

Abstract

For a complicated algorithm, its implementation
by a human programmer usually starts with outlin-
ing a rough control flow followed by iterative en-
richments, eventually yielding carefully generated
syntactic structures and variables in a hierarchy.
However, state-of-the-art large language models
generate codes in a single pass, without interme-
diate warm-ups to reflect the structured thought
process of “outline-then-detail”. Inspired by the
recent success of chain-of-thought prompting, we
propose ChainCoder, a program synthesis lan-
guage model that generates Python code progres-
sively, i.e. from coarse to fine in multiple passes.
We first decompose source code into layout frame
components and accessory components via ab-
stract syntax tree parsing to construct a hierarchi-
cal representation. We then reform our prediction
target into a multi-pass objective, each pass gener-
ates a subsequence, which is concatenated in the
hierarchy. Finally, a tailored transformer archi-
tecture is leveraged to jointly encode the natural
language descriptions and syntactically aligned
I/O data samples. Extensive evaluations show
that ChainCoder outperforms state-of-the-arts,
demonstrating that our progressive generation
eases the reasoning procedure and guides the lan-
guage model to generate higher-quality solutions.
Our codes are available at: https://github.
com/VITA-Group/ChainCoder.

1. Introduction
The goal of automatic program synthesis has been estab-
lished and extensively researched for decades (Waldinger
& Lee, 1969; Backus et al., 1957). Recently, with the rapid
advancements of Large Language Models (LLMs), a surge

1VITA Group, The University of Texas At Austin, Austin,
TX, US. Correspondence to: Wenqing Zheng, Zhangyang Wang
<w.zheng@utexas.edu, atlaswang@utexas.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

of methods leverage transformers to model programs as se-
quences, and have demonstrated prospects to automatically
analyze, annotate, translate, or synthesize code (Li et al.,
2022; Austin et al., 2021; Fried et al., 2022; Chen et al.,
2021a; Kanade et al., 2020; Feng et al., 2020; Clement et al.,
2020; Svyatkovskiy et al., 2020; Wang et al., 2021). These
LLMs are trained on a large corpus of code so as to imbibe
syntactic and semantic understanding into model weights,
and develop logical reasoning for program synthesis.

Though current LLMs have gained success in code under-
standing and generation, their inherent design, as well as the
training/finetuning techniques, are largely borrowed from
the natural language modeling. This limits their potential
in code generation modeling due to two reasons.

First, for a given problem specification, LLMs generate
end-to-end code solutions autoregressively in a single pass
regardless of the logical complexity involved. Even from a
programmer’s perspective, it is difficult to write good code
in a single shot without laying out logical and hierarchical
thinking. In other words, composing code involves mold-
ing an overall “warm-up” proceeded by lower-level atomic
algorithms and variable definitions1.

Second, LLMs tokenize the code using tokenizers meant for
everyday-natural-language strings and disregard syntactical
awareness as structural priors (Chen et al., 2022; Hendrycks
et al., 2021; Li et al., 2022; Chen et al., 2021a; Austin et al.,
2021; Athiwaratkun et al., 2022; Nijkamp et al., 2022; Xu
et al., 2022; Wang et al., 2022; Chen et al.; Li et al., 2023;
Mao et al., 2022). Notably, programming languages contain
complex rules and conform to more rigorous layouts com-
pared to their natural language counterparts (Casalnuovo
et al., 2019; Naur, 1975). They have fewer choices of syn-
onyms, stringent syntax requirements, and diverse control
flows (sequential statement execution, selection/branching,
and repetition such as for and while loops).

In our ChainCoder, we investigate if addressing the afore-
mentioned flaws is indeed promising. As shown in Figure 1,
we aim to remodel the code generation that previous works
treat as a no-warm-up, single-shot textual sequence comple-

1This is usually termed as a top-down practice in programming:
beginning with creating an outline or high-level view of the pro-
gram, and then successively breaking it down into smaller and
smaller components until the entire program is complete.

1

https://github.com/VITA-Group/ChainCoder
https://github.com/VITA-Group/ChainCoder

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Merge Intervals (LeetCode 56, medium difficulty): Given an array of intervals where intervals[i] = [start-i, end-i], merge all
overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.

Input: intervals = [[1,3],[2,6],[8,10],[15,18]] Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].

Input: intervals = [[1,4],[4,5]] Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.

Problem Description

Core Algorithm Hint SubsequenceOutline Subsequence Layout Frame Subsequence Accessory subsequence

Variables Initialization

Core Algorithm Loop

Preprocessing

Extreme Case Handling

𝒔!! 𝒔"! 𝒔#! 𝒔$! 𝒔!" 𝒔"" … 𝒔%" 𝒔!# 𝒔"# … 𝒔&'!# 𝒔!$ 𝒔"$ 𝒔&$…

Solution Code

Coarse-To-Fine Prediction Target
PAD PAD PAD EOSBOS … … …

𝑺! 𝑺" 𝑺# 𝑺$

Outlining stages (coarse level) Detailing stages (fine level)

Figure 1. Our prediction target formulation illustrated with an example. In the Merge Intervals problem (one medium difficulty problem
on leetcode), the solution requires first tackling extreme cases, initializing variables, then entering the main algorithm loop. A programmer
needs to first come up with this outline, then think deeper on how to implement the algorithm loop. They may then think about using a
stack to keep track of the biggest end time and to decide whether to close or extend the current interval. Finally, after being clear with
these ideas, they may write the formal answer with carefulness on both syntax and variable names. This reasoning procedure happens
from coarse to fine. We therefore construct the prediction target into four subsequences. Note that the boxed substrings only roughly
indicate the tokens, while our actual tokens take the forms of the grouped nodes in the syntax tree.

tion task into a multi-step intermediate reasoning strategy
through syntactical decomposition.

In a similar context of harnessing multi-step reasoning capa-
bility of LLMs (on natural language), recent works discover
that chain-of-thought (CoT) prompting (Zhang et al., 2022;
Wei et al., 2022; Shi et al., 2022) significantly boosts perfor-
mance. CoT prompting advances LLMs to naturally develop
a series of intermediate reasoning steps before providing
the final answer through exemplar demonstrations. This
exposes a profound potential of refactoring LLMs to explic-
itly perform coherent intermediate step-wise reasoning,
rather than directly concluding final solutions.

Inspired by the success of chain-of-thought prompting for
LLMs, we design a novel approach that follows a step-wise,
outline-then-detail thought process. We decompose the
source code into a predefined hierarchy of code logic, and
prepare the LLM generation target in each level (S1−4 in
Figure 1) so that the model predicts them in multiple passes
separately. We refer to our model as ChainCoder, and such
hierarchical prediction as “coarse-to-fine” generation, sim-

ilar to Dong & Lapata (2018). Specifically, ChainCoder
first builds a logical skeleton of the code, then move to
step-wise implementation of lower-level atomic details/al-
gorithms. This is inherently different from vanilla CoT
prompting, as CoT methods require external prompting and
are mainly developed in the context of natural language
reasoning, while ChainCoder is the first program synthesis
model that progressively generates code by itself.

To build such a multi-level hierarchical representation, ap-
propriate disentanglement of the code is required. To this
end, we tailor the tokenization step to better display complex
programming language rules. We parse the code into the
Abstract Syntax Tree (AST), which naturally exposes exten-
sive domain knowledge and structures expressed in the tree
nodes and edges. We then disentangle the syntax tree into
two components: the layout frame component, which tells
more clause type and other syntactical information, and the
accessory component, which includes concrete variable and
function names, etc. The syntax tree-based tokenizer brings
advantages in two-fold: its domain knowledge eases the
comprehension of source code, and would possibly boost

2

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

the syntactical correctness. Unlike previous research on
applying syntax aware tokenizer (Jimenez et al., 2018) or
simplification tricks during the tokenization step (Gupta
et al., 2017; Chirkova & Troshin, 2020), ChainCoder is the
first approach to leverage syntax knowledge to disentangle
the code and build hierarchical prediction targets.

In brief, our work aims to reformulate program synthe-
sis from a sequential text completion task into a multi-
pass coarse-to-fine refinement strategy. As depicted in Fig-
ure 1, this comprises of four progressive steps – outlining,
core algorithm hinting, layout framing, and accessory sub-
sequencing inspired from the “warm-up” thought process
of programmers. We then leverage a tailored transformer
architecture that better encodes the syntactically aligned
I/O data to ease comprehension of problem specifications.
To the best of our knowledge, ChainCoder is the first large
language model to perform multi-pass coarse-to-fine code
generation to reflect intermediate warm-up procedure, in
contrary to existing single-shot sequential completion works.
In summary, our technical contributions are as follows:

• Inspired by the chain-of-thought process, we leverage
the unique syntax hierarchy to build the multi-pass
coarse-to-fine code generation framework. ChainCoder
is the first program synthesis approach that harnesses
progressive generation to elicit the step-wise reasoning
capability of LLMs and improve accuracy and syntactic
coherency.

• To enable progressive generation, we propose a syntax-
aware tokenizer that neatly disentangles the code and
outputs multi-level prediction targets accordingly. We
further develop a transformer to better leverage the
structure of the syntactically aligned data.

• Evaluations on the competition-level datasets show that
ChainCoder performs better than other state-of-the-art
models even with smaller model sizes. Ablation studies
verified the effectiveness of the coarse-to-fine guidance
and other design choices.

2. Related Works
Synthesizing program from the description and I/O pairs
(Chen et al., 2018; Bunel et al., 2018; Devlin et al., 2017;
Gulwani et al., 2012; Fox et al., 2018; Ganin et al., 2018;
Chen et al., 2019; Hong et al., 2021; Le et al., 2022) or other
modality inputs (Sun et al., 2018; Liu & Wu, 2019; Tian
et al., 2019) is a well-received benchmark, yet is challenging
due to the indefinite program space.

The classical approaches to program synthesis date back
to rule-based program synthesis which use formal gram-
mar to derive programs from well-defined specifications
(Waldinger & Lee, 1969; Manna & Waldinger, 1971; 1980).

Later on, symbolic and neuro-symbolic techniques (Ba-
log et al., 2017; Odena & Sutton, 2019; Ellis et al., 2018;
2020; Devlin et al., 2017; Panchekha et al., 2015) have also
been explored to generate code with higher quality. How-
ever, these methods are mainly applied to domain-specific
languages (DSLs), which limits the applicability in more
advanced programming languages.

Program Synthesis With LLMs. Recently, there has been
a huge surge in exploiting language models for program
synthesis with extension to general-purpose programming
languages (Austin et al., 2021; Hendrycks et al., 2021; Chen
et al., 2021b; Clement et al., 2020; Wang et al., 2021). These
models are trained on massive codes and natural language
datasets, and learn to condition the code on the natural lan-
guage descriptions or existing code fragments. For example,
Devlin et al. (2017) uses an encoder-decoder network formu-
lating synthesis process as a sequence generation problem.
CodeT5 (Wang et al., 2021) prominently focuses on under-
standing tasks such as code defect detection, translation,
and clone detection. Codex (Chen et al., 2021b) uses GPT-
3 architecture, evaluating its synthesis performance on a
new benchmark of simple programming problems. Code-
BERT (Feng et al., 2020) is pre-trained for natural language
and programming languages like Python, Java, JavaScript,
etc., and captures the semantic connection between natural
language and programming language.

More recent state-of-the-art works such as APPS
(Hendrycks et al., 2021) and AlphaCode (Li et al., 2022)
have shown promising results over competition-level prob-
lems. Another related program synthesis framework In-
Coder (Fried et al., 2022) is able to refine the code via
infilling under a bidirectional context. Similarly, Parsel
(Zelikman et al., 2022) generates programs by combining
hierarchical generations of sub-programs during interactions
between the LLM and an external environment. However,
these methods still adopt natural language tokenizers that
overlook the special syntax structures of the programs and
do not execute the necessary warm-up before generation.

Multi-Step Reasoning In Language Modeling. Recent
years have witnessed a shift of LLM paradigm from “pre-
train, fine-tune” procedure into “pre-train, prompt, and pre-
dict” (Liu et al., 2021). Among the prompting methods, the
chain-of-thought (CoT) has become the research highlight
(Zhang et al., 2022; Wei et al., 2022; Shi et al., 2022). Chain
of thought refers to techniques that provide intermediate
reasoning steps as prompting demonstrations for language
models (Zhang et al., 2022).

The CoT methods allow LLMs to decompose problems into
intermediate steps. They provide an interpretable window
into the model behaviors to ease the debugging, and can be
readily elicited by adding examples in the few-shot prompt-
ing (Wei et al., 2022). They have also been demonstrated

3

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

to improve model performance in-situ for multiple choice
question answering tasks (Lewkowycz et al., 2022), and to
better perform in multi-step reasoning task such as the math
word problems (Chowdhery et al., 2022).

Generating Programs Hierarchically From Abstractions
Recently, a few papers aims to improve the scalability by
generating certain forms of sketches first, then convert to
full operational programs. Specifically, Murali et al. (2017)
starts with generating sketches that leave out names and
operations. They then infer a posterior distribution over
sketches, from which to samples type-safe programs using
combinatorial techniques. Nye et al. (2019) follows previ-
ous strategies to break code generation into two steps: to
generate sketches and to fill full in them. Previous methods
assign the generation step with pattern recognition or per-
form symbolic search (Zheng et al., 2022a;b) in a fixed way.
This paper proposed a novel algorithm that learns when to
switch between the two ways without direct supervision.
Brockschmidt et al. (2018) uses a graph to represent the
intermediate state of the generated output. It generates code
by interleaving grammar-driven expansion steps with graph
augmentation and neural message-passing steps. Similarly,
Zhong et al. (2023) separately learned two stages: (1) a high-
level module to comprehend the task specification from long
programs into task embeddings, and (2) a program decoder
that can decode a task embedding into a program.

In comparison, ChainCoder uses a unified space to repre-
sent the middle step sketches and the final representations,
instead of specifically curating different forms of representa-
tions. On the other hand, the entire decoding mechanism of
ChainCoder is learned by a single LLM, and the results are
also directly sampled from this LLM. The decomposition of
the program into syntax and components is explicitly done
via a novel tokenizer, also in the form of a unified string.

3. Coarse-To-Fine Programming Language
Modeling With ChainCoder

This section discusses how ChainCoder tokenizes and pre-
dicts code in a hierarchical fashion. In brief, the ChainCoder
first lays out a coarse-level outline of the code, then fo-
cuses on fine-grained details. The coarse-level layout can be
thought of as the summarized representation of constituent
fine-level parts. In order to better leverage code structure
and ease learning, our tokenization does not base on code
as raw text but rather as a specialized data structure parsed
from source code – namely, the abstract syntax tree (AST).
In the following, we first discuss the preliminaries for AST
parsing in Section 3.1, and formulate the tokenization al-
gorithm in Section 3.2. We then discuss the construction
of multi-step prediction targets in Section 3.3 and finally
describe ChainCoder’s model architecture in Section 3.4.

3.1. Preliminaries of Parsing and Abstract Syntax Tree

Codes are written by humans, but are executed by comput-
ers. Therefore, humans write them in a form that they can
understand, then the software transforms them in a way that
can be used by the computer. Such transformation is re-
ferred to as parsing, which determines a structured template
from the source code text. After parsing, the programming
language is converted to a better-formatted data structure,
usually a tree-type format called the abstract syntax tree.

Parsing the code into the tree-type format is common to al-
most all programming languages. Specifically in Python, the
leaf nodes of the abstract syntax tree are the function/class/-
variable/operator names and constant values. The branching
nodes of the tree represent syntactic relationships between
the leaf nodes. For example, consider the line of code x =
0. Its syntax tree is roughly a tree with three nodes, with the
root node being the assignment, and two leaf nodes being
x and 0. The root node conveys syntax information (“=”),
which tells that this line is an “assignment” type sequential
statement, there will be two placeholders as its children
nodes, and one child node will assign its value to the other
child node. The precise syntax tree is more complex though,
which we show in Figure 7 and Figure 8 in the Appendix.
The abstract syntax tree has better-formatted structures than
the raw text, but is overlooked by previous LLM research on
program synthesis. Therefore, we seek to ease the learning
of the LLM by tokenizing based on the parsed tree rather
than raw code text.

3.2. Syntax-Aware Tokenization: Layout Frame and
Accessory Components

The code contains complex structures both syntactically and
semantically. Writing algorithmic code is generally difficult,
partially due to the fact that both syntactic and semantic
information need to be handled simultaneously. To ease
this difficulty, we propose to disentangle the code into a
component that conveys more syntax information and an-
other component that conveys more semantic information
and generate them separately. We refer to these two com-
ponents as the layout frame subsequence and the accessory
subsequence. The disentanglement procedure is based on
the syntax tree representation, as it enables more flexible
treatments of the code in the domain of tree nodes and edges.

The layout frame subsequence is responsible for indicating
the clause type, assigning placeholders in the sequel, and
maintaining syntactic correctness. On the other hand, the
accessory subsequence contains the concrete variable/class/-
function/operator names, and constant values. In the above
example of x = 0, the syntax subtree of this line of code
could be unambiguously decoupled into two layout frame
tokens and two accessory tokens. First, the two accessory
tokens are easily identified as the leaf nodes, x and 0. Then,

4

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

the first layout frame token could be the root node assign-
ment (=) with the corresponding edge between it and the
leaf node x, while the second layout frame token could be
the edge between the root node and the other leaf node 0.
When these tokens are interleaved together, they become
the serialized representation of the syntax tree.

The training procedure of ChainCoder heavily relies on an
encoding step, which converts the source code into decou-
pled layout frame and accessory subsequences. In the encod-
ing step, the code is first parsed into an AST, which is then
partitioned into nodes and edges. These nodes and edges are
then re-grouped to generate these two subsequences. The
resulting subsequences are used for training and inference.
On the other hand, we use the term decoding to refer to the
reverse procedure. Given the decoupled subsequences, the
decoding procedure recovers the original source code. It is
noteworthy that the encoded two subsequences will be less
human-interpretable than the original code, yet they convey
precise information to the Python interpreter.

As revealed in Figure 1, the layout frame and the accessory
subsequences constitute the fine level part in the coarse-
to-fine hierarchy, and are referred to as S3 and S4. They
contain complete information to reconstruct the original
code by themselves. There are other parts of coarse level
subsequences (S1 and S2), which we discuss in Section 3.3.
Next we discuss the encoding and decoding steps in detail.

Encoding Step. The encoding step is used to preprocess the
training samples to construct the prediction targets. Prior to
training, each code sample in the training set is converted to
the coarse-to-fine hierarchical subsequences, and the Chain-
Coder is trained to generate these new subsequences.

The encoding step first parses the source code into the ab-
stract syntax tree, then disentangles the serialized syntax tree
into the layout frame subsequence (S3) and the accessory
subsequence (S4). It constructs the other two coarse-level
subsequences at the same time. The encoding algorithm of
ChainCoder is displayed in Algorithm 1.

In general, the encoding step is completed during the depth-
first pre-order traversal for the parsed syntax tree. Starting
from the root node, it first visits the current node, then vis-
its all the children nodes from left to right. Every time
it meets a leaf node, the traversal pauses, and it groups
all branching nodes seen so far into a token, and appends
the grouped branching nodes to the layout frame subse-
quence. It then appends the leaf node into the accessory
subsequence. By grouping the branching nodes, the algo-
rithm efficiently compresses token sequence length. The
following relationship always satisfies for the tokenized sub-
sequences: layout frame subsequence length
= accessory subsequence length + 1, where
the “+1” comes from the ending brackets in the layout frame

subsequence after the last accessory token is appended.

Algorithm 1 The Encoding Step Of ChainCoder
Require: Source code
Ensure: Four subsequences: outline S1, core algorithm

hint S2, layout frame S3, accessory S4

1: Parse the source code into syntax tree ϕ
2: Initialize S1,S2,S3,S4 with empty sequences
3: Branching nodes group t← empty string
4: while Traversal not finished do
5: Get next node ξ using pre-order traversal for ϕ
6: if ξ is branching node then
7: Group with previous branching nodes: t← t+ ξ
8: else if ξ is leaf node then
9: Append grouped branching nodes: S3 ← S3 + t

10: Append leaf node: S4 ← S4 + ξ
11: if ξ is within a loop or user-defined function then
12: Append packed branching nodes: S2 ← S2 + t
13: end if
14: if ξ is the first leaf node in the current line and line

indent level is 1 then
15: Add branching nodes to outline: S1 ← S1 + t
16: end if
17: t← empty string
18: else if ξ is the starting token of a new line then
19: Remove the doc-strings and comments, if any
20: for All variable names vi in this line do
21: if vi is not linked to any imported name, and is

not a built-in name then
22: Replace vi in S4 with a name pool candidate
23: end if
24: end for
25: end if
26: end while

The encoding algorithm offers two optional ways to fur-
ther simplify the generation task: the name replacement
and the doc-strings/comments removal. The name replace-
ment feature detects all user-defined names in the parsed
tree, and replaces them from a name pool. In this way, the
code logic is maintained, while the extra learning burden
caused by naming style differences can be avoided. The
doc-strings/comments removal also naturally takes advan-
tage of tree-based representation, they reduce the sequence
length without hurting the functionality.

By parsing and encoding, the program space is reduced
and the learning task is simplified. On one hand, thanks to
the degenerated variable names, the vocabulary could be
shrinked while still leading to clearer meanings. For exam-
ple, if there are two variables called student num and
student nums in one program, ChainCoder might tok-
enize them into two distinct words user defined var 7

5

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

and user defined var 8 drawn from the name pool,
rather than using the original names that might cause con-
fusion. The name pool size is also much smaller than the
natural language vocabulary which includes all possible
sub-words of variable names. On the other hand, the token
sequence could be shortened by removing the doc-strings
and comments without hurting the functionality. Some
sentences that would be tokenized into long sequences
by natural language tokenizer can now be represented
very concisely in the syntax tree domain, such as for i
in range(num), res = a if x is None else
b. What’s more, the names of variables/functions/class-
es/etc are never broken into multiple sub-words in the syntax
tree representation.

Decoding Step. The decoding step is used during the infer-
ence time. As ChainCoder generates the hierarchical sub-
sequences rather than the source code, this step is applied
to convert the resulting subsequences back to the human-
readable source code.

Given the design of the encoded subsequences, the decoding
algorithm is straightforward. We first interleave the tokens
in S3 and S4 and glue them together, so that the serialized
syntax tree is obtained. Then, an abstract syntax tree unparse
tool is used to convert the syntax tree into the source code.

3.3. Multi-Level Coarse-To-Fine Prediction Targets

As visualized in Figure 1, the prediction target sequence is
composed of four components: the outline (S1), the core
algorithm structure hint (S2), the layout frame (S3) and the
accessory (S4) subsequences. These four subsequences are
concatenated by the system-level <PAD> token.

In the coarse outline S1, each token essentially corresponds
to a line of code with the smallest indent. For each of these
lines, one layout frame token is selected, which is the first
token, the one that contains the root node of the subtree
of this line. The S1 is a discontinuous subset of the entire
layout frame subsequence S3.

The core algorithm structure hint S2 is designed to warm-up
the model before generating the final solution (S3 and S4).
Since most algorithms contain loops, and the core functional
parts are usually implemented in the loops or user-defined
functions, we identify the implementations within the loop
or user-defined functions as the core algorithms and use
their layout frame tokens to construct S2. This part is a
continuous subset of S4.

The construction of the last two subsequences S3 and S4

has been discussed in Section 3.2. With these subsequences,
ChainCoder breaks the code generation task from a single
pass generation into four turns. In each turn, ChainCoder
focuses on a simpler subtask, i.e., only generates a specific
subsequence.

The functionalities of S1 and S2 are analogous to the chain-
of-thought prompting (Zhang et al., 2022; Wei et al., 2022;
Shi et al., 2022), except that they are generated by the model
itself rather than external prompting. They only exist to hint
the model generation procedure. When the entire solution
has been generated, they will be removed before checking
the correctness of this answer. Such design follows the
simple philosophy: an outline of the algorithm shall be built
before writing down the concrete answer, and a layout frame
shall be constructed before the detailed variable names /
constants / etc are filled in.

We adopt the same autoregressive generation recipe as other
LLMs, which asks ChainCoder to predict the next token
given all previously generated tokens. The inference pro-
cedure is also the same: ChainCoder completes the target
sequence token by token until a <EOS> token is generated.
As S1 and S2 need not to be complete, we apply token
dropout to let the model occasionally generate S3 and S4

with information in S1 and S2 missed out. We achieve this
by randomly dropping tokens in S1 and S2 with probabili-
ties 0.05 and 0.2, respectively.

3.4. The Model Architecture of ChainCoder

The inputs of program synthesis contain the problem descrip-
tion in natural language and a group of I/O data. Thanks to
the syntax tree parsing, the I/O data could be well-aligned
across samples based on the values’ syntax roles. After
alignment and padding, the tokens of I/O data are arranged
into a regular matrix with both sample and token dimen-
sions. The natural language descriptions can be well han-
dled by LLMs such as BERT. However, the one-dimensional
sequence modeling of LLMs fails to fully leverage the struc-
tures of the aligned I/O data. We accommodate this gap
with a new transformer architecture, which has a sample em-
bedder submodule that attends to the regular matrix-shaped
I/O data. The overall model architecture consists of four
components: a sample embedder, a description embedder, a
token encoder, and a program decoder. The architecture is
shown in Figure 2.

Sample Embedder. With the syntax-based encoding, align-
ment, and padding, the I/O data in each instance is now
represented as a matrix W ∈ RNsample×Ntoken×E , where
Ntoken is the maximum number of tokens across different
I/O data samples, Nsample is the number of samples for this
instance, and E represents the token embedding dimension.
The sample embedder processes the matrix-shaped aligned
I/O data. To track the locations of tokens in the matrix, the
tokens are added with two sets of positional embeddings
along the token and sample dimensions. At the output side
of the sample embedder, it uses first element pooling to
reduce the embedding size of each instance to Ntoken × E.

Description Embedder. Each instance in the I/O data cor-

6

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Input/Output
Data

Instances
(Batch)

Maximum
Number of

Tokens

Maximum
Number of
Samples

AST
Based

Tokenizer

Sample
Embedder

Problem Description
Encoder

Batch

Natural Language Description

Transformer
Encoder and

Decoder

Tokenized Program

Given an integer n and a list of
numbers, find how many elements are
greater than n.

Given an integer n and a list of
numbers, find how many elements are
greater than n.

Given an integer n and a
list of numbers, find how
many elements are greater
than n.

224 x

Figure 2. Overall Model Architecture of ChainCoder, which consists of the sample embedder, the problem description embedder, the
traditional transformer encoder, and decoder.

responds to a natural language problem description. We
utilize the BERT model (Devlin et al., 2018) to perform
natural language understanding, and distill its outputs into
four tokens: the first token, the last token, the minimum
pooling token, and the maximum pooling token. The output
dimensions for one instance is 4× E.

Token Encoder, Program Decoder And Training Loss.
From the sample embedder and the description embedder,
we get the embeddings for the I/O data and the problem
descriptions separately. We concatenate these embeddings
and get a sequence with dimensions (Ntoken + 4)× E. We
then follow the traditional transformer encoder and decoder
layers and training recipes. At the output of the decoder,
we ask the model to predict the coarse-to-fine subsequences
described in Section 3.3 using cross-entropy loss.

4. Experimental Results
In our work, we target improving the performance of lan-
guage models on code generation tasks particularly on
competition-level problem-solving. Following previous
works in this domain (Hendrycks et al., 2021; Li et al.,
2022; Chen et al., 2021a; Austin et al., 2021), we leverage
the CodeParrot GitHub-Code (CodeParrot, 2022) dataset for
model-pretraining on general purpose source code. We then
fine-tune on the training sets of competitive programming
benchmarks and evaluate on their test sets respectively. To
prevent the data leakage, we execute extra carefulness and
strictly followed the datasets as well as the processing steps
of AlphaCode and CodeRL (Le et al., 2022).

Datasets and Experimental Overview. The CodePar-
rot GitHub-Code pre-training dataset contains 7.2 million
Python files with a total size of 52.03 GB. These pre-training
codes do not contain corresponding I/O data pairs, and many
also lack natural language descriptions of their functional-
ities. In order to approach the absence of I/O data, our
sample-embedder submodule output is initially neglected

Sequence APPS (Hendrycks et al., 2021) Contests (Li et al., 2022)

length ChainCoder BERT Raw String ChainCoder BERT Raw String

Mean 155.808 176.312 416.419 145.676 176.509 432.566
Median 113.0 124.0 278.0 111.0 124.0 289.0
Std. 272.911 261.470 618.100 82.547 292.139 780.052

Table 1. The tokenization sequence length statistics. The syntax-
aware tokenizer sequence length is calculated by the summation
of layout frame and accessory subsequences. The ChainCoder tok-
enizer leads to shorder sequence thanks to the domain knowledge
built-in to syntax tree.

and is only updated during the fine-tuning phase. Mean-
while, to combat the lack of natural language descriptions,
we employ a pre-trained CodeT5-based (Wang et al., 2021)
Python code explanation model to generate natural language
descriptions for each code sample. The natural-language-
embedder-submodule is a pre-trained BERT (Devlin et al.,
2018) and is fixed during the pre-training phase, and opti-
mized during fine-tuning.

For the fine-tuning and evaluation, we choose two carefully
curated datasets, CodeContests (Li et al., 2022) and APPS
(Hendrycks et al., 2021), which are both massive and contain
problems of varied difficulties (see Table 2). The CodeCon-
tests dataset comprises of data scraped from Codeforces
along with existing data from Description2Code (Caballero
et al., 2016). Meanwhile, APPS is scraped from of Code-
wars, AtCoder, Kattis, and Codeforces. After pre-trained
on the GitHub codes, we use two copies of the model to
fine-tune on the training sets of CodeContests and APPS,
and evaluate on their test sets respectively.

Tokenization. Before pre-training, we sweep across the
APPS and CodeContests datasets to collect vocabulary,
yielding 212, 892 distinct layout frame tokens. These tokens
follow a long tail distribution as illustrated in Figure 3. Our
tokenization step filters out some code files in the dataset
that yield too long or incompatible sequences. After our
tokenization step, we obtain 81, 339 code files from APPS,

7

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

and 1, 337, 655 code files from CodeContests.

1 1e5 212892
Layout Frame Tokens

101

103

105

Nu
m

be
r O

f
Ap

pe
ar

an
ce

s
(lo

g)

Figure 3. Token frequency distribution. Visibly, the majority of
tokens are rarely met. From our inspection, these highly infrequent
tokens are not necessarily tied to the code solutions but rather
just happened to occur randomly. Therefore, it is safe to assume
that ChainCoder can be trained on the more-frequent end of the
distribution alone without facing any performance losses.

Architectural Details and Metrics. ChainCoder contains
two sample-embedder transformer blocks, two transformer
encoder blocks, 224 transformer decoder blocks, with the
512 hidden dimensions for these submodules, yielding 1.09
billion parameters in total. The natural-language-embedder
inherits weights of the pre-trained BERT model, while all
other submodules of ChainCoder are trained from scratch.
We diversify the learning difficulty during the fine-tuning
phase by periodically changing the number of I/O data pairs
(sweeping between 1 and 32, with a 15 epoch period) and
the number of programs that the model predicts (sweeping
between 1 and 8, with a 37 epoch period). At inference
time, we set our beam-search width to 5. We adopt the
same evaluation metric as AlphaCode (Li et al., 2022): the
n@k, which measures the fraction of problems the model
can solve when allowed to generate k solutions but only
submit the best n of them for evaluation. The results are
shown in Table 2, and the ablation study results are shown
in the bottom section of Table 2. We make the following
observations.

101 102 103 104

Number of model generations

0%

5%

10%

15%

20%

25%

Pa
ss

 ra
tio

 fo
r

10
 b

es
t s

ub
m

iss
io

ns

Significantly
Larger Models

AlphaCode 9B
AlphaCode 41B

ChainCoder1B
AlphaCode 3B
AlphaCode 1B
AlphaCode 300M

Figure 4. Results on CodeContests dataset compared with Alpha-
Code ChainCoder with 1 billion parameters outperforms Alpha-
Code with similar sizes.

ChainCoder Achieves Better Results. As seen in Table 2
and Figure 4, ChainCoder reaches state-of-the-art perfor-
mance. ChainCoder with one billion parameters outper-
forms the AlphaCode with similar size, and slightly out-
performs AlphaCode with three billion parameters. With

regard to the syntax-error-free rate, ChainCoder also stays
competitive. As shown in Table 2, ChainCoder generated
codes showcase impressive syntax pass rates on the APPS
test set. This implies that the disentanglement of the layout
frame and the accessory helps the model to better learn the
syntax structure.

ChainCoder Tokenizer Leads To Shorter Sequences
Than Natural Language Tokenizer. Shorter sequence
lengths intuitively points towards easier optimization and
prediction for LLMs. We collect the sequence lengths of
different tokenizers in Table 1. The sequence length cal-
culation of the ChainCoder tokenizer takes into account
the components with complete information: len(S3) +
len(S4). We found that the ChainCoder’s tokenizer en-
codes the program into shorter sequences, compared with
the BERT tokenizer. For example, in the APPS dataset, the
average sequence length is 78.404 layout frame tokens +
77.404 accessory tokens (155.808 in total), whereas BERT
tokenizer on average generates 176.312 tokens. Though the
sequence length will become longer if adding the coarse
level S1 and S2 subsequences together, they do not add new
prediction difficulty as they are subsets of S3.

Syntax Aware Tokenization And I/O Aligned Sample
Embedder Both Improve Model Performance. In this
ablation study, we design ablation studies to justify the con-
tributions of the design choices used in the tokenization step.
Specifically, we testify the coarse-to-fine syntax aware tok-
enization, the sample embedder with I/O data cross-sample
alignment, the variable name replacement, the title summa-
tion based descriptor pre-training, and show the results in
Table 2. The ChainCoder with GPT code tokenizer uses the
natural language tokenizer for codes at the model output
side, while the model input side uses the same tokenizer as
the ChainCoder. The second variant, ChainCoder I/O not
aligned refers to the ablation study for the matrix-shaped
aligned I/O data processed by the sample embedder. In this
case, the I/O data is not aligned; instead, it is tokenized
into a one-dimensional sequence with a natural language
tokenizer. This sequence is then passed into the embedder
as usual but with only one set of positional encodings. The
third variant ChainCoder no var-name replacement does
not apply the variable name replacement step. The fourth
variant ChainCoder no destriptor during pre-train do not
feed input natural language summation to the model during
the pre-training stage.

As can be seen from the results, ChainCoder with GPT code
tokenizer significantly underperforms the original Chain-
Coder. And when the I/O data alignment is dropped, the
model also degrades. These results verify the contributions
of the core model designs, i.e., the syntax-aware tokeniza-
tion and the induced I/O data cross-sample alignment. When
no variable name replacement is applied, the performance

8

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Filtered From(k) Attempts (n) Introductory Interview Competition
n@k syntax-error-free n@k syntax-error-free n@k syntax-error-free

GPT-3 few shot N/A 1 0.20% 31.0% 0.03% 42.0% 0.00% 40.0%
GPT-Neo 2.7B N/A 1 3.90% 87.9% 0.57% 87.9% 0.00% 85.0%
GPT-Neo 2.7B N/A 5 5.50% 97.4% 0.80% 96.0% 0.00% 95.4%
AlphaCode 1B 1,000 5 14.36% N/A 5.63% N/A 4.58% N/A

ChainCoder 1B 1,000 5 17.52% 100% 7.36% 100% 5.48% 100%

ChainCoder I/O not aligned 1,000 5 14.85% 100% 5.90% 100% 4.82% 100%
ChainCoder with GPT code tokenizer 1,000 5 14.80% 100% 4.55% 100% 3.46% 100%
ChainCoder no var-name replacement 1,000% 5 17.40% 100% 7.25% 100% 5.32% 100%
ChainCoder no destriptor during pre-train 1,000% 5 15.34% 100% 6.29% 100% 3.70% 100%

ChainCoder tokenizer no warm-up 1,000 5 16.10% 100% 5.30% 100% 4.22% 100%
ChainCoder tokenizer no S1 1,000% 5 16.50% 100% 5.80% 100% 5.10% 100%
ChainCoder tokenizer no S2 1,000% 5 16.90% 100% 6.20% 100% 5.22% 100%

ChainCoder S3/S4 interleaved 1,000 5 16.75% 100% 6.80% 100% 5.10% 100%

Table 2. The results of APPS (Hendrycks et al., 2021), AlphaCode (Li et al., 2022) and ChainCoder on the APPS test set, fine-tuned on
the APPS training set.

is slightly worse, which suggests that in our case where the
model learns to predict syntax format decoupled from the
raw string text, learning the logical relationship between the
variables are enough, and adding the semantic meaning of
the variable names do not add performance to it. The per-
formance for no descriptor is also unstable, which suggests
the need for natural language from the pre-training stage.

Coarse-To-Fine Generation Leads To Better Perfor-
mance. In this ablation study, we replace our multi-step
coarse-to-fine strategy with a single-shot final answer gener-
ation scheme. In other words, the ChainCoder only predicts
steps S3 and S4, and omits S1 and/or S2. The result is rep-
resented as ChainCoder tokenizer no warm-up (it has neither
S1 nor S2), ChainCoder tokenizer no S1 and ChainCoder
tokenizer no S2 in Table 2. As shown in the results, once
the outline subsequence S1 and/or the core algorithm hint
subsequence S2 are dropped, ChainCoder’s performance
takes a hit. This validates our assumption that warm-up
with certain coarse information before generating the final
results helps smooth the reasoning chain and improve the
performance. The performance drop is especially promi-
nent for more difficult benchmarks (the competition level
benchmark), which further implies that difficult problems
need more reasoning warm-up.

Disentangling Layout Frame And Accessory Leads To
Better Performance. In this case, we compare two settings
but use the same tokenizer. The first setting is the original
one, where S1, S2, S3, S4 are generated in four rounds,
i.e., the prediction target is [· · · , < PAD >, s31, s32, · · · ,
s3N+1, < PAD >, s41, s42, · · · , s4N , < EOS >]. For the
second setting shown in ChainCoder S3/S4 interleaved
in the bottom section of Table 2, the model is trained to
generate a different sequence, where S3 and S4 interleaved
together, just as originally shown in the syntax tree, i.e.,
the prediction target becomes [· · · , < PAD >, s31, s41, s32,
s42, · · · , s3N , s4N , s3N+1, < EOS >]. Comparing the results,
we can see that separate generation performs better than

interleaved version, validating the benefits of generating the
layout frame and accessory separately.

5. Conclusions
In this work, we propose ChainCoder, a program synthesis
language model that generates Python code progressively
in multiple passes. The ChainCoder decouples the code
snippet into the layout frame component and accessory com-
ponent and uses them to construct a step-by-step, coarse-to-
fine representation of the code as the prediction target. We
leverage a novel transformer architecture to encode the syn-
tactically aligned samples. Extensive evaluations showed
that ChainCoder outperforms state-of-the-art code genera-
tion models, which verifies that generating related informa-
tion before the final results as a warm-up helps to improve
the language model in difficult code generation tasks.

Acknowledgement
Z. Wang is in part supported by US Army Research Office
Young Investigator Award W911NF2010240 and the NSF
AI Institute for Foundations of Machine Learning (IFML).

References
Athiwaratkun, B., Gouda, S. K., Wang, Z., Li, X., Tian, Y.,

Tan, M., Ahmad, W. U., Wang, S., Sun, Q., Shang, M.,
et al. Multi-lingual evaluation of code generation models.
arXiv preprint arXiv:2210.14868, 2022.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Backus, J. W., Beeber, R. J., Best, S., Goldberg, R., Haibt,
L. M., Herrick, H. L., Nelson, R. A., Sayre, D., Sheridan,
P. B., Stern, H., et al. The fortran automatic coding system.
In Papers presented at the February 26-28, 1957, western

9

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

joint computer conference: Techniques for reliability, pp.
188–198, 1957.

Balog, M., Gaunt, A., Brockschmidt, M., Nowozin, S., and
Tarlow, D. Deepcoder: Learning to write programs. In
International Conference on Learning Representations
(ICLR 2017). OpenReview. net, 2017.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. arXiv
preprint arXiv:1805.08490, 2018.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. Leveraging grammar and reinforcement
learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Caballero, E., OpenAI, ., and Sutskever, I. Descrip-
tion2Code Dataset, 8 2016. URL https://github.
com/ethancaballero/description2code.

Casalnuovo, C., Sagae, K., and Devanbu, P. Studying the
difference between natural and programming language
corpora. Empirical Software Engineering, 24(4):1823–
1868, 2019.

Chen, B., Zhang, F., Nguyen, A., Zan, D., Lin, Z., Lou, J.-
G., and Chen, W. Codet: Code generation with generated
tests. arXiv preprint arXiv:2207.10397, 2022.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021a.

Chen, T., Zhang, Z., JAISWAL, A. K., Liu, S., and Wang, Z.
Sparse moe as the new dropout: Scaling dense and self-
slimmable transformers. In The Eleventh International
Conference on Learning Representations.

Chen, X., Liu, C., and Song, D. X. Towards synthesizing
complex programs from input-output examples. arXiv:
Learning, 2018.

Chen, X., Liu, C., and Song, D. Execution-guided neu-
ral program synthesis. In International Conference on
Learning Representations, 2019.

Chen, X., Song, D., and Tian, Y. Latent execution for neu-
ral program synthesis. Advances in Neural Information
Processing Systems, 2021b.

Chirkova, N. and Troshin, S. A simple approach for han-
dling out-of-vocabulary identifiers in deep learning for
source code. arXiv preprint arXiv:2010.12663, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Clement, C. B., Drain, D., Timcheck, J., Svyatkovskiy, A.,
and Sundaresan, N. Pymt5: Multi-mode translation of nat-
ural language and python code with transformers. ArXiv,
abs/2010.03150, 2020.

CodeParrot. Codeparrot/github-code. https:
//huggingface.co/datasets/codeparrot/
github-code, 2022.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. Robustfill: Neural program learning
under noisy i/o. In International conference on machine
learning, pp. 990–998. PMLR, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dong, L. and Lapata, M. Coarse-to-fine decoding for neu-
ral semantic parsing. arXiv preprint arXiv:1805.04793,
2018.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama,
A., and Tenenbaum, J. B. Learning libraries of subrou-
tines for neurally-guided bayesian program induction. In
NeurIPS, 2018.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. ArXiv, abs/2006.08381, 2020.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., et al. Code-
bert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Fox, R., Shin, R., Krishnan, S., Goldberg, K., Song, D., and
Stoica, I. Parametrized hierarchical procedures for neural
programming. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=rJl63fZRb.

Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E.,
Shi, F., Zhong, R., Yih, W.-t., Zettlemoyer, L., and Lewis,
M. Incoder: A generative model for code infilling and
synthesis. arXiv preprint arXiv:2204.05999, 2022.

Ganin, Y., Kulkarni, T. D., Babuschkin, I., Eslami, S. M. A.,
and Vinyals, O. Synthesizing programs for images using
reinforced adversarial learning. ArXiv, abs/1804.01118,
2018.

Gulwani, S., Harris, W. R., and Singh, R. Spreadsheet data
manipulation using examples. volume 55, pp. 97–105,
January 2012. Invited to CACM Research Highlights.

10

https://github.com/ethancaballero/description2code
https://github.com/ethancaballero/description2code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://openreview.net/forum?id=rJl63fZRb
https://openreview.net/forum?id=rJl63fZRb

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Gupta, R., Pal, S., Kanade, A., and Shevade, S. Deepfix:
Fixing common c language errors by deep learning. In
Thirty-First AAAI conference on artificial intelligence,
2017.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., et al.
Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Hong, J., Dohan, D., Singh, R., Sutton, C., and Zaheer,
M. Latent programmer: Discrete latent codes for pro-
gram synthesis. In International Conference on Machine
Learning, pp. 4308–4318. PMLR, 2021.

Jimenez, M., Maxime, C., Le Traon, Y., and Papadakis, M.
On the impact of tokenizer and parameters on n-gram
based code analysis. In 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME),
pp. 437–448. IEEE, 2018.

Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K.
Learning and evaluating contextual embedding of source
code. In ICML, 2020.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. Coderl: Mastering code generation through pre-
trained models and deep reinforcement learning. arXiv
preprint arXiv:2207.01780, 2022.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. arXiv preprint
arXiv:2206.14858, 2022.

Li, T., Shetty, S., Kamath, A., Jaiswal, A., Jiang, X., Ding,
Y., and Kim, Y. Cancergpt: Few-shot drug pair synergy
prediction using large pre-trained language models. arXiv
preprint arXiv:2304.10946, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Lago,
A. D., et al. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586, 2021.

Liu, Y. and Wu, Z. Learning to describe scenes with pro-
grams. In International conference on learning represen-
tations, 2019.

Manna, Z. and Waldinger, R. J. Toward automatic program
synthesis. Commun. ACM, 14:151–165, 1971.

Manna, Z. and Waldinger, R. J. A deductive approach to
program synthesis. In TOPL, 1980.

Mao, Z., Jaiswal, A., Wang, Z., and Chan, S. H. Single
frame atmospheric turbulence mitigation: A benchmark
study and a new physics-inspired transformer model. In
Computer Vision–ECCV 2022: 17th European Confer-
ence, Tel Aviv, Israel, October 23–27, 2022, Proceedings,
Part XIX, pp. 430–446. Springer, 2022.

Murali, V., Qi, L., Chaudhuri, S., and Jermaine, C. Neural
sketch learning for conditional program generation. arXiv
preprint arXiv:1703.05698, 2017.

Naur, P. Programming languages, natural languages, and
mathematics. Communications of the ACM, 18(12):676–
683, 1975.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. ArXiv preprint, abs/2203.13474, 2022.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama, A.
Learning to infer program sketches. In International Con-
ference on Machine Learning, pp. 4861–4870. PMLR,
2019.

Odena, A. and Sutton, C. Learning to represent programs
with property signatures. In International Conference on
Learning Representations, 2019.

Panchekha, P., Sanchez-Stern, A., Wilcox, J. R., and Tat-
lock, Z. Automatically improving accuracy for floating
point expressions. Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, 2015.

Shi, F., Suzgun, M., Freitag, M., Wang, X., Srivats, S.,
Vosoughi, S., Chung, H. W., Tay, Y., Ruder, S., Zhou, D.,
et al. Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057, 2022.

Sun, S.-H., Noh, H., Somasundaram, S., and Lim, J. Neural
program synthesis from diverse demonstration videos.
In International Conference on Machine Learning, pp.
4790–4799. PMLR, 2018.

Svyatkovskiy, A., Deng, S. K., Fu, S., and Sundaresan, N.
Intellicode compose: code generation using transformer.
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

Tian, Y., Luo, A., Sun, X., Ellis, K., Freeman, W. T., Tenen-
baum, J. B., and Wu, J. Learning to infer and execute 3d
shape programs. arXiv preprint arXiv:1901.02875, 2019.

11

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Waldinger, R. J. and Lee, R. C. T. Prow: A step toward
automatic program writing. In IJCAI, 1969.

Wang, X., Li, S., and Ji, H. Code4struct: Code generation
for few-shot structured prediction from natural language.
arXiv preprint arXiv:2210.12810, 2022.

Wang, Y., Wang, W., Joty, S. R., and Hoi, S. C. H.
Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation.
ArXiv, abs/2109.00859, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E.,
Le, Q., and Zhou, D. Chain of thought prompting elic-
its reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Xu, F. F., Vasilescu, B., and Neubig, G. In-ide code gen-
eration from natural language: Promise and challenges.
ACM Transactions on Software Engineering and Method-
ology (TOSEM), 31(2):1–47, 2022.

Zelikman, E., Huang, Q., Poesia, G., Goodman, N. D.,
and Haber, N. Parsel: A unified natural language
framework for algorithmic reasoning. arXiv preprint
arXiv:2212.10561, 2022.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic
chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493, 2022.

Zheng, W., Chen, T., Hu, T.-K., and Wang, Z. Symbolic
learning to optimize: Towards interpretability and scala-
bility. arXiv preprint arXiv:2203.06578, 2022a.

Zheng, W., Sharan, S., Fan, Z., Wang, K., Xi, Y.,
and Wang, Z. Symbolic visual reinforcement learn-
ing: A scalable framework with object-level abstrac-
tion and differentiable expression search. arXiv preprint
arXiv:2212.14849, 2022b.

Zhong, L., Lindeborg, R., Zhang, J., Lim, J. J., and Sun, S.-
H. Hierarchical neural program synthesis. arXiv preprint
arXiv:2303.06018, 2023.

12

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

A. I/O data Augmentation Approach
The model inputs include the natural language description and the I/O data of the given problem. Our natural language
embedder uses a pre-trained BERT model, which has been trained on diverse texts. However, the sample embedder is only
trained with I/O data sample tokens, and is only trained in the fine-tuning stage. To train the sample embedder with diverse
texts, we carefully augment the I/O data and ensure that for each training instance in APPS and CodeContests, at least 100
program I/O pairs exist. The data augmentation is only applied to the training set within the existing instances and does not
cause data leakage.

We apply input distribution control and output distribution control to ensure the quality of the generated data. The input
distribution control aims to estimate the underlying distribution of the cases provided officially and draw more data from it.
We implement a wide variety of data generators, and use a mixture of these generators to generate the inputs. We augment
for both integer and string intputs, For example, if the program input is a list of integers, the values can be drawn from
uniform distribution, quantized Gaussian distribution, almost sorted, all same value, almost having the same values with a
few exceptions, or, the first element might be controlling the vector properties, such as the length of the vector, etc. We use
different generators for these cases, and empirically assign probabilities to mix these generators. The output distribution
control is only applied to bool program outputs. For each generated input sample, we use the existing code in the dataset to
run and get the outputs. If one label (true or false) is significantly more than the other in the augmented data, then more is
dropped to make sure the output labels are balanced.

B. Token Compositions
The encoded token strings for the S3 and S4 subsequences are visualized in Figure 5.

The ChainCoder leverages a novel tokenizer based on AST instead of natural language. More specifically, the code expert
tokenizer is used in the sample embedder to encode the program I/O data, and used in the model output side to encode the
program syntax tree.

The vocabulary comprises of two parts: the tokens for the layout frame subsequence, which are grouped branching nodes in
the syntax tree, and the tokens for the accessory subsequence, which are the leaf nodes. The layout frame part is collected
by sweeping the dataset, as shown in Figure 3, and the accessory part is pre-computed and stored. The composition of the
accessory part is shown in Table 3.

C. Visualizations
On the input side, for each given instance, multiple I/O data could be provided as part of the problem specifications. As
the I/O data sequence is python-interpretable, it is also processed by the AST based tokenizer. Thanks to the syntax tree
structure, they can be aligned across samples based on their syntax roles. The I/O data cross-sample alignment is shown in
Table 4.

In addition, the examples of generated code are shown in Figure 6, where we pick the is-palindrome problem and compare
the code generated by GPT Neo and ChainCoder.

Type Definition Example

Names The names of variables, functions, classes, operators, etc., replaced from name pool “var 1”, “func 1”, “class 1”, ...
Build in python vocabs About 600 common python’s built-in functions and keywords “ name ”, “ package ”, ...
Digit Int representation of single digit number 0,1,2,3,4,5,6,7,8,9
ASCII Character encoding “a”, “!”, “=”, “0”, “[SPACE]”,...
Common float Float that appears most common while training 0.1, 0.0001, 0.5, 0.2, ...

Table 3. Types of accessory tokens

13

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Module(body=[FunctionDef(name=
,args=arguments(posonlyargs=[],args=[arg(arg=
,annotation=None,type_comment=None)],vararg=None,kwonlyargs=[],kw_defaults=[],kwarg=None,defaults
=[]),body=[Assign(targets=[Name(id=
,ctx=Store())],value=Call(func=Name(id=
,ctx=Load()),args=[Name(id=
,ctx=Load())],keywords=[]),type_comment=None),If(test=Compare(left=Name(id=
,ctx=Load()),ops=[
],comparators=[Constant(value=
,kind=None)]),body=[Expr(value=Call(func=Attribute(value=Name(id=
,ctx=Load()),attr=
,ctx=Load()),args=[],keywords=[])),Expr(value=Call(func=Attribute(value=Name(id=
,ctx=Load()),attr=
,ctx=Load()),args=[],keywords=[])),Assign(targets=[Name(id=
,ctx=Store())],value=Constant(value=
,kind=None),type_comment=None),While(test=BoolOp(op=
,values=[Compare(left=Name(id=
,ctx=Load()),ops=[
],comparators=[Name(id=
,ctx=Load())]),Compare(left=BinOp(left=Subscript(value=Name(id=
,ctx=Load()),slice=Index(value=Name(id=
,ctx=Load())),ctx=Load()),op=
,right=Constant(value=
,kind=None)),ops=[
],comparators=[Name(id=
,ctx=Load())])]),body=[AugAssign(target=Name(id=
,ctx=Store()),op=
,value=Constant(value=
,kind=None))],orelse=[]),Return(value=Name(id=
,ctx=Load()))],orelse=[Return(value=Constant(value=
,kind=None))])],decorator_list=[],returns=None,type_comment=None)],type_ignores=[])

func_0
var_in_0
var_0
len
var_in_0
var_0
Gt()
0
var_in_0
sort
var_in_0
reverse
var_1
0
And()
var_1
Lt()
var_0
var_in_0
var_1
Sub()
1
GtE()
var_1
var_1
Add()
1
var_1
0

def h_index(counts):
 n = len(counts)
 if n > 0:
 counts.sort()
 counts.reverse()
 h = 0
 while (h < n and counts[h]-1>=h):
 h +=1
 return h
 else:
 return 0

Figure 5. Token strings demonstration: the strings in the above and below figures are S3 and S4 subsequences for the code snipped in the
bottom right, respectively.

14

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Sample Input Content Syntax

sample 1

Input 1

<align-padding> <align-padding>
<align-padding> <align-padding>
0 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
2 kind=None),Constant(value=
3 kind=None),Constant(value=

Input 2

<align-padding> <align-padding>
<align-padding> <align-padding>
0 kind=None)],ctx=Load()),Constant(value=
<wait-padding> kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])

sample 2

Input 1

0 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
2 kind=None),Constant(value=
3 kind=None),Constant(value=
5 kind=None),Constant(value=
1 kind=None),Constant(value=

Input 2

<align-padding> <align-padding>
<align-padding> <align-padding>
2 kind=None)],ctx=Load()),Constant(value=
<wait-padding> kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])

sample 3

Input 1

<align-padding> <align-padding>
4 Module(body=[Expr(value=List(elts=[List(elts=[List(elts=[Constant(value=
5 kind=None),Constant(value=
6 kind=None),Constant(value=
7 kind=None),Constant(value=

Input 2

5 kind=None)],ctx=Load()),Constant(value=
3 <wait-padding>
2 <wait-padding>
<wait-padding> kind=None)],ctx=Load())],ctx=Load()))],type ignores=[])’

Table 4. One instance with three exsamples of I/O data. io1 = [[[0,2,3],0], [12, ’abcd’]], io2 = [[[0,2,3,5,1],
2], [43, ’m’]], io3 = [[[4,5,6,7], 532], [9908, ’ss’]].

Figure 6. The example outputs of APPS model (GPT-Neo 2.7B, left) and ChainCoder (middle and right, with two different post-naming
rules), over the same problem.

15

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

(a) Full solution code

Assign(1
 targets=[Name(2
 id='reverse_n', 3
 ctx=Store())], 4
 value=Call(5
 func=Name(6
 id='list', 7
 ctx=Load()), 8
 args=[Call(9
 func=Name(10
 id='reversed', 11
 ctx=Load()), 12
 args=[Name(13
 id='n', 14
 ctx=Load())], 15
 keywords=[])], 16
 keywords=[]), 17
 type_comment=None) 18

(b) Syntax tree of
one line

def is (x : str) �� bool :

" " "

Returns True if given string is

palindrome else Falsea , .

" " "

↵

split string into list of char

n = list (x)

reverse input

= list ()reverse reversed (n)

↵

if n �� :

return True

else

return True

Natural language tokenizer by BERT

Layout frame & accessory subsequences

- Function Signatures

- Variables

- Operators and Callables

- Returns

- Conditionals

- Generic Textual Token

is_palindrome x

n list x

reverse_n list reversed n

if reverse_n��n

True

else

False

is_palindrome x

n list x

reverse_n list reversed n

if reverse_n��n

True

else

False

_ palindrome

n_

reverse n_

<T1>

<T2>

<T3>

Outline subsequence

Core Algorithm subsequence

if reverse_n��n

True

else

False
:

<T4>

Code expert tokenizer by ChainCoder

(c) Illustration of natural language and ChainCoder tokenizers

Figure 7. One Python solution to the is-palindrome example problem (left), and a subtree of the AST parsed syntax tree, from the sentence
reverse n = list(reversed(n)) (right). The full tree is in Figure 8 in the Appendix with 106 lines in total.

16

Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation

Module(1
 body=[2
 FunctionDef(3
 name='isPalindrome', 4
 args=arguments(5
 posonlyargs=[], 6
 args=[arg(7
 arg='x', 8
 annotation=Name(9
 id='int', 10
 ctx=Load()), 11
 type_comment=None)], 12
 vararg=None, 13
 kwonlyargs=[], 14
 kw_defaults=[], 15
 kwarg=None, 16
 defaults=[]), 17
 body=[18
 Assign(19
 targets=[Name(20
 id='n', 21
 ctx=Store())], 22
 value=Call(23
 func=Name(24
 id='list', 25
 ctx=Load()), 26
 args=[Call(27
 func=Name(28
 id='str', 29
 ctx=Load()), 30
 args=[Name(31
 id='x', 32
 ctx=Load())], 33
 keywords=[])], 34
 keywords=[]), 35
 type_comment=None), 36
 Assign(37
 targets=[Name(38
 id='reverse_n', 39
 ctx=Store())], 40
 value=Call(41
 func=Name(42
 id='list', 43
 ctx=Load()), 44
 args=[Call(45
 func=Name(46
 id='reversed', 47
 ctx=Load()), 48
 args=[Name(49
 id='n', 50
 ctx=Load())], 51
 keywords=[])], 52
 keywords=[]), 53

 type_comment=None), 54
 If(55
 test=Compare(56
 left=Name(57
 id='n', 58
 ctx=Load()), 59
 ops=[Eq()], 60
 comparators=[Name(61
 id='reverse_n', 62
 ctx=Load())]), 63
 body=[Return(value=Constant(64
 value=True, 65
 kind=None))], 66
 orelse=[Return(value=Constant(67
 value=False, 68
 kind=None))])], 69
 decorator_list=[], 70
 returns=Name(71
 id='bool', 72
 ctx=Load()), 73
 type_comment=None), 74
 Assign(75
 targets=[Name(76
 id='reverse_n', 77
 ctx=Store())], 78
 value=Subscript(79
 value=Constant(80
 value='121', 81
 kind=None), 82
 slice=Slice(83
 lower=None, 84
 upper=None, 85
 step=UnaryOp(86
 op=USub(), 87
 operand=Constant(88
 value=1, 89
 kind=None))), 90
 ctx=Load()), 91
 type_comment=None), 92
 Expr(value=Call(93
 func=Name(94
 id='print', 95
 ctx=Load()), 96
 args=[Call(97
 func=Name(98
 id='isPalindrome', 99
 ctx=Load()), 100
 args=[Name(101
 id='reverse_n', 102
 ctx=Load())], 103
 keywords=[])], 104
 keywords=[]))], 105
 type_ignores=[]) 106

Figure 8. Complete format of our AST tree, in the example of isPalindrome case. The corresponding code is in Figure 7.

17

