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Abstract

Being able to provide explanations for a model's decision has become a central
requirement for the development, deployment, and adoption of machine learning
models. However, we are yet to understand what explanation methods can
and cannot do. How do upstream factors such as data, model prediction,
hyperparameters, and random initialization influence downstream explanations?
While previous work raised concerns that explanations (E) may have little
relationship with the prediction (Y), there is a lack of conclusive study to
quantify this relationship. Our work borrows tools from causal inference to
systematically assay this relationship. More specifically, we study the relationship
between F and Y by measuring the treatment effect when intervening on their
causal ancestors, i.e., on hyperparameters and inputs used to generate saliency-
based E's or Y's. Our results suggest that the relationships between E and
Y is far from ideal. In fact, the gap between ‘ideal’ case only increase in
higher-performing models—models that are likely to be deployed. Our work is a
promising first step towards providing a quantitative measure of the relationship
between E and Y, which could also inform the future development of methods
for E with a quantitative metric.

1 Introduction and Related Work

Being able to provide explanations for a machine learning (ML) model’s decision has become
central to the development, deployment, and adoption of ML models. Explanations are important
not only to help practitioners better understand the model's underlying rationale to debug
models (Adebayo et al., 2022; Rieger et al., 2020) and to influence the model's decision (Koh
et al., 2020; Bau et al., 2020; Meng et al., 2022), but also to ensure that models comply with
regulatory requirements (Parliament & of the European Union, 2016). However, Existing tools for
interpretability have however elicited criticisms, often highlighting computational or qualitative
user-study-based evidence that explanations generated from these tools may contain critical errors
and must be used with care (Poursabzi-Sangdeh et al., 2018; Chu et al., 2020; Adebayo et al.,
2018; Algaraawi et al., 2020; Srinivas & Fleuret, 2021; Kindermans et al., 2019).

One focal point in many investigations is the relationship between explanations (E) and predictions
(Y). In this work, we seek to formalize this relationship, inspired by the common cause principle
of Reichenbach (1956) that states that if two variables are statistically dependent, there must be
a common cause influencing both of them, and this common cause can be chosen such that it
explains all the dependence. We develop a measure of dependence via the Potential Outcomes
framework (Rubin, 2005). Viewed through a lens of causality, we evaluate the treatment effect
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Figure 1: Explanation generating process involve three stages: training, predicting, and explaining
(left). Intervening on factors (H, X) allow for studying their treatment effect (i.e., causal
influence) on down-stream targets (i.e., Y, E) (right).

of hyperparameters of the model, H (i.e., H taking on value h/, the counterfactual antecedent)
on F and Y conditioned on a particular instance x. In other words, by measuring the treatment
effect of each hyperparameter (e.g., choice of activation, initialization, training budget), we are
measuring its influence on E and Y, and in particular, how the influence is different or similar
in £ and Y (Fig. 1; left). Furthermore, under a careful evaluation, we tease apart the direct
influence of H on FE vs. its indirect influence mediated through Y to better understand the flow
of causation (Fig. 1; right).

Our study reveals a surprising relationship between E and Y (precisely, measured by how a causal
ancestor of the two influences them). In particular, for top-performing models, the influence
on E from Y decreases compared to relatively lower-performing models. For some methods, a
causal ancestor of both Y and E directly influences E much more than Y, leaving Y's influence
on E minimal, even though this ancestor, i.e, hyperparameter, should not inform the explanation
of the model in any way. This finding was consistent across 30k pre-trained models with different
hyperparameters across different datasets. Our work informs practitioners on what different
explanation methods can and cannot be used for: if one's goal is to find E that is related to
the prediction, Y, methods with little relationship between E and Y under our framework aren’t
the best choices. Our framework can also be used to drive the development of new methods by
providing a quantitative metric.

2 Methodology

To understand the relationship between E and Y via H's impact on them, we perform an
exploratory analysis on a class of ML models and then analyze their causal effects on the
downstream E and Y.

2.1 Explanation Generating Process

At a high level, the explanation generating process (EGP) shown in Figure 1 describes a mechanical
system that is engineered to train an ML model given an initial set of hyperparameters, h,
which yields a prediction g, (z) and an explanation é;(x) given a test instance x. Formally, a
supervised ML model is obtained through a training procedure T : H x D — F given a set of
training hyperparameters and a dataset D := (X, ). The training procedure typically contains
initialization, optimization, and regularization. Once trained, the model can predict the target of
a given test instance x via a prediction procedure P : F x X — ). Finally, local explanations e
are the result of an explanation procedure E : F x X x Y — & applied to a tuple of a trained
model, test instance, and predicted target, §,(z). Note the absence of noise variables; under a
fixed random seed, the procedures above are deterministic.

Although these procedures may not be expressible in closed-form, e.g., one may not conclusively
infer the trained weights of a neural network by only looking at the hyperparameters, each
procedure is executable on a computer, e.g., the model weights can be obtained by training
procedure under a training setting and given budget.



2.2 Potential Outcomes Framework

To study the causal effects of hyperparameters, we adopt the Potential Outcomes (PO) frame-
work (Rubin, 2005). Given the temporal precedence of hyperparameters over the trained model
parameters and in turn over the prediction and explanation, one may alternatively view the
mechanical system in Figure 1a as the causal system shown in Figure 1b (with graphical and
structural components). In this framing, the causal influence of up-stream factors (e.g., H, X)
on down-stream targets (e.g., Y, F) can be measured as the treatment effect of a factor (e.g.,
treatment H = h vs. control H = k'), on the down-stream target.

In what follows, we will refer to Y;*(x) and Ej(x) as potential prediction and explanation on an
instance x when the model is trained with the hyperparameter h. For any pair h,h' € H, the
individual treatment effect (ITE), which quantifies the treatment effect of assigning two different
parameters, can be defined as

ITEy (2) = Yy (2) — Yy (). (1)

Similarly defined, the treatment effect for explanation is denoted as ITEg. In principle, it is
possible to realize Y;*(x) and Ej(x) for all h € H given unlimited computational resources. As
a result, one can evaluate ITE(z) in practice by contrasting the predictions of models trained
on hyperparameters h and I/. However, when this process becomes computationally prohibitive,
we might face the so-called fundamental problem of causal inference, i.e., for each x € X, we
can only observe Y;*(z) and Ej(x) for a small number of hyperparameters h, but not the other
h' # h. Furthermore, we may not be able to interpret the observed differences between Y and E
that arise from two different H as a causal effect unless the assumption of ceteris paribus, i.e., all
else being equal, is fulfilled. Retraining almost identical neural networks with all possible values
of hyperparameters is however computationally prohibitive. Instead, we perform an observational
study on a model zoo, a large collection of pre-trained models (Unterthiner et al., 2020; Jiang
et al., 2019), to study the relationship between E and Y.

Since our research question seeks to investigate the impact of multiple, potentially-non-binary
treatments (e.g., set of numerical and categorical H) on the target prediction/explanation (see
Figure 1a), we amend the treatment definitions above as follows:

Yir:l(x) - Y;:O('r) Em/?é” D/}z(:n (l‘) - }/}T:m (33)]
effectof h=1wrth=0onz e X (2) effectof h=nwrth#nonzeX (3)
(single binary treatment) (single non-binary treatment)
Ens (Bt [ Yz @) = Vi —n @]
effect of hy =nworth; #nonx e X (4)

(multiple non-binary treatments)

which allows for answering queries of the form “what is the treatment effect of optimizer choice
vy as opposed to vy on the local prediction of x?". Were the optimizer choice, v, to be the
only hyperparameter in the system, this query would be answered by (3). In the setting of
Figure 1a, however, (4) is employed to also marginalize out the effect of other Hs. Although
these expressions average over multiple set of Hs, they all refer to the prediction of the same
individual (ITE); extensions to CATE and ATE, aggregated over x ~ X, follow naturally.

3 Analysis and Results

This section provides details of our analysis and results of our observational study in both global
setting (all models) and local setting (models in each performance buckets).

3.1 Details of Observational Study

Model zoo dataset and pre-processing explanations The dataset provided by Unterthiner et al.
(2020) contains 30,000 3-layer CNNs (4,970 parameters; weights and biases) that were trained
until convergence (or a maximum of 86 epochs) for multiple datasets. The hyperparameters are
drawn “independently at random"” from pre-specified ranges. Both the ranges and the training
procedure are natural and resemble standard practice in machine learning, and the models are
trained on commonly used CIFAR10, SVHN, MNIST, and FASHION MNIST datasets. The
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Figure 2: Comparison of ITE values of hoptimizer 0n Y (left) and E (right) for models across
different performance buckets, showing the discrepancy in the effect of H on Y vs. that on F
(top: CIFAR10; bottom: SVHN). Interestingly, there is a difference of ITEg across accuracy
buckets, and more importantly, none of the explainability methods resemble ITEy.

random seed (for mini-batch GD sampling and for weight initialization) and the architecture of
the base models are fixed throughout. The diversity of hyperparameters allows for a representative
study of treatment effects (details in Appendix A.3; code).

We study four commonly deployed saliency methods: gradient (Simonyan et al., 2013; Erhan
et al., 2009; Baehrens et al., 2009), SmoothGrad (Smilkov et al., 2017), Integrated Gradients
(IG) (Sundararajan et al., 2017), and Grad-CAM (Selvaraju et al., 2016). Note that many widely
used methods are built based on these four methods Xu et al. (2020); Wang et al. (2021);
Simonyan et al. (2013). The generated explanation maps are preprocessed as in Adebayo et al.
(2018) (see Appendix A.3). Since some methods only produce positive attributions, we zero out
any negative attributions for the methods that produce both positive and negative values; this
is so that we can compare all methods on an equal footing. Finally, to measure the goodness
of treatment effect values, we introduce and evaluate a reference explanation method, namely
Identity, whereby E is set to be identical to Y. This is not a useful explanation for humans, but
our goal is to create an ideal E that provides a point of comparison for our results.

3.2 Results

H influences Y (and E) differently across performance buckets: The relationship between
FE and Y when Y is from an untrained model v.s. a trained model should be qualitatively different.
Teasing out how much Y influences E is one of the long-standing questions in interpretability;
some have argued that E is visually indistinguishable when Y is from trained or untrained
models Adebayo et al. (2018). How the relationship between E and Y changes as a function of
the performance of the model is important for practitioners in deciding when E can or cannot
be used. Thus, we conduct the remaining analysis by stratifying models into different accuracy
buckets. In particular, we stratified the 30,000 models into 8 buckets according to their accuracies
to observe the treatment effect in each group (Figure 2). We use 0-20%", 20-40t", 40-60t",
60-80t" and 80-90t", 90-95t", 95-99*" and 99-100" percentiles as groups for all four datasets
(finer granularity for top models that are more likely to be deployed; summarized in Table 2).

The control group: Calculating ITE for each performance bucket requires a decision on control
groups, i.e., the point of comparison. There are two natural choices 1) select a control group
within each accuracy bucket or 2) use the same control group across all buckets. Each choice
means we are answering slightly different questions; (1) answers “the effect of h; = n w.r.t.
h; # n on x € X such that training on h; # n gives a similarly performing model” while (2)
answers “the effect of h; = n w.r.t h; # n on x € X such that training on h; # n gives a model
with baseline performance”. Although the latter enables comparison of performance buckets on
similar footing, two factors are changing simultaneously: a) h; = n to h; # n and b) the change
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Figure 3: (left) Each column represents accuracy subsets, and each row denotes a distinct
explanation method. For low-performing CIFAR10 models (first column), prediction changes are
minimal as explanations vary, but high-performing models display the opposite trend. (right)
Correlations from the left plots reveal reduced alignment in the top 1% models.

in performance bucket, making it difficult to tease apart hyperparameters’ contributions to the
ITE values. Therefore, we continue with within-accuracy-bucket control groups, and refrain from
comparing absolute values of ITE (for Y or E) across buckets, but instead, look to relative ITE
values of H on Y and E across buckets.

As seen in Figure 2, while both ITEys (first column) and ITEgs (the remainder of columns) vary
across accuracy buckets, they appear not to follow the same pattern. This raises an important
question: how does the relationship between 'Y and E (measured by treatment effect of H on
both) change as models’ performance changes?

Understanding the (odd) relationship between ITEy and ITEg: We first investigate the
extent of the relationship between ITEy and ITEg by measuring their relative changes, before
separating the direct influence of H on E from the indirect influence mediated through Y.

One way to compare ITEy and ITEg is using scatterplots. Figure 3 (left) shows scatterplots for
different performance buckets and explanation methods. Since the absolute value of each ITE is
not directly comparable (due to different domains for Y and E, and different baseline control
groups, as explained above), we summarize the scatter plot trends by measuring the Pearson and
Spearman Rank correlations between the raw ITE values (Figure 3; right).

We observe that compared to the case of the Identity method,! whereby there is a perfect
correlation between ITEy and ITEg (the diagonal x = y line), no other method seems to
remotely follow a similar pattern. For most of the methods, the range of ITEg values varies
similarly regardless of low/mid/high accuracy models, while ITEy naturally shrinks in high
accuracy models, which can be explained by the models becoming similar in their predictions.
The correlation coefficient tells a similar, but more concise, story. While the correlation increases
for Grad and IG in the higher accuracy bucket, both show only moderate correlation compared to
the reference point (Identity). It is also unclear how the relationship between E and Y is similar
in mid-accuracy (e.g., 33%) and top-accuracy models. The pattern described above is shared
across all types of hyperparameters across four datasets (see Figure 15 and Figure 16).

To summarize, the corr(ITEy,ITEg) increases as the model accuracy increases, suggesting that
E (for Grad and IG) becomes a better reflection of Y in higher-performing models,? which is
desired. Despite this, the correlation values are substantially lower than a maximally informative
explanation (i.e., the ldentity method) suggests that explanations may still be explaining something
other than the prediction.

'We remind that while the Identity explanation is not useful for humans in any way, it helps us to
understand what a “good” explanation (where Y is a major factor in deciding E) may look like through
the lens of the proposed ITE analysis.

2At least in the manner in which changes in E reflect changes in Y as a result of changes in H
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Figure 4: Pearson correlation between ITEy and ITEg in total vs. direct effect (first column).
The second column highlights the difference between total and direct, with higher values signifying
greater influence of H on E through Y (optimal). The third column shows the delta correlation
deviation from the ideal (ldentity) for each method, reflecting divergence from optimal as model
performance improves.

Direct vs. indirect influences: To understand how much of the explanation is reflecting the
prediction, we can tease apart the effect of H on E that flows directly vs. indirectly through
the prediction Y3 Intuitively, if explanations were only sensitive to Y, one would observe a low
direct effect and a high indirect effect. Conversely, a high direct effect of H on E hints at the
sensitivity of explanations to factors not related to the prediction. Unlike all ITEg values we
discussed so far that measures the total effect of H on E (arising both directly and indirectly
through Y), we “sever” the influence that H has on Y while retaining its effect on E. We
compare H's treatment effects on ¥ when Y is and is not randomly permuted.

In the first column in Figure 4, we first observe that none of explanations seem to follow the
‘ideal case’ (Identity, E is maximally informative of Y). The second column simply plots the
difference between total and direct effects by subtracting direct effect from total effect (dotted
line — solid line in the first column). This quantity roughly corresponds to the effect of H on FE
mediated through Y (ideally, this value should be high in higher-performing buckets).

What is even more concerning is how much the difference between ideal case v.s., actual case
worsens in higher performing models. The third column plots this value: the difference between
the ideal case (blue dotted line in the second column) and others. In other words, the higher
a model performs, the more information for £ comes from something other than Y. This is
particularly concerning because these are models that are more likely to be deployed. For the
case of SG and Grad-CAM, the influence of H on E mostly comes from H, not from the trained
model or the prediction from it Y. Putting it together, our comparison of direct and indirect
influence reveals that the pattern of how Y mediates the total influence of H on E is surprising
and undesirable at times.

4 Discussion and Conclusions

Our work investigates the relationship between E and Y using tools from causal inference. In
analyzing the treatment effect of a causal ancestor (i.e., H, determined prior to model training)
of E and Y on them, the patterns observed for the direct and indirect influence reveals an
undesirably high direct influence of H on E relative to influce of Y on E. Our results suggest
that the relationships between E and Y is far from ideal. In fact, the gap between ‘ideal’ case
only increases in higher-performing models—models that are likely to be deployed. This means
that there are other factors that influence E more than the prediction of the model, Y, and
their influence becomes bigger and bigger as a model performs better. If the users' goal is to
understand the model's prediction, then most of the influence of H on E should be through
Y (note that which H should not influence E is a decision by a user). The goal of our work
is to first show that such influence exists in current models and present methods to perform
quantitative analysis via the lens of the causal inference framework.

One can view our analysis as a more extensive, causal edition of Adebayo et al. (2018); we
measure the treatment effect of H on E and Y across 30,000 models, while they quantitatively
measure visual similarities of Es as varying the quality of Y in a single pair of models (trained

3Since the individual for which E is sought is fixed throughout (i.e., X does not change; see discussion
on identifiability at Appendix A.2), we disregard the effect of X on E in this study.



and untrained). Furthermore, our analysis reveals that Grad-CAM (which arguably ‘passed’ the
sanity check in Adebayo et al. (2018)) shows a worse correlation between the two ITEs across
the buckets, meaning that the hyperparameters affect Y and E differently, hinting that no
methods concretely outperform others. Our results should be taken as a strong encouragement
for practitioners to review other evidence instead of taking explanations at face value in their
final decision-making.
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Figure 5: Extended version of explanation generating process from Figure 1b, now with weights
W and dataset D made explicit.

A Additional background material

A.1 The explanation generating process

To ease understandability, we refer to Figure 5 as the extended graph of Figure 1b which makes
the weights W and data D explicit variables. Similar to Figure 1, diamond nodes are considered
factors whose effect we study, and circle nodes are random variables. In this extended graph, we
clarify that H is not the model or trained weights. In other words, what we call hyperparameters
(H) are sets like “method of optimization: SGD or AdaGrad" or “regularizer coefficients: 0.1 or
0.01 etc”. All Hs can be assigned a value before we train any model and before observing any
data. Note that we do not have weights (denoted by W) in Figure 1b, as they are not the focus
of our study; instead, we are interested in whether and how decisions made prior to training a
model (i.e., assignments of H) influence downstream Y and E.

Furthermore, considering the manner in which the model zoo was constructed whereby hyperpa-
rameters are sampled independently from some domain, there are no edges (no backdoors) from
X (or D) to H. On the other hand, W may be affected by the data distribution D, directly
and/or through the training samples, but W is not the focus of our work. Since we focus on
the causal effect of hyperparameters H on Y and E (not the weights W on Y and E), the
formulations in Section 2.2 remain unchanged.

A.2 On the identifiability and computability of treatment effects

An astute reader may notice that evaluating the treatment effects above as the difference between
counterfactual contrasts bears a resemblance to another common explainability method, namely
counterfactual explanations (Wachter et al., 2017). This parallel is evident when thinking
of Figure 1 in a coarser manner, i.e., H,X — ), whereby the hyperparameters and dataset
instance enter a potentially blackbox but queriable procedure and yield a prediction. Whereas the
counterfactual explanations of Wachter et al. (2017) aim to identify minimal feature perturbations
of the dataset instance under a fixed model (i.e., the hyperparameters do not change; procedure:
model prediction), evaluating treatment effects as in Equation (1) is done by iterating over values
of hyperparameters to contrast resulting predictions given a fixed dataset instance (procedure:
model training).

Due to our mechanical setup, a number of interesting observations arise. Although the training
(T), predicting (P), and explaining (E) procedures may not be expressible in closed-form, the
prediction Y}, in Equation (1) is exactly computable on a computer through forward simulation.
In other words, upon selecting a set of hyperparameters, H = h, and under a fixed seed, all
sources of randomness are controlled for and the procedures T,P,E deterministically yield a
trained model, a prediction for a given instance, and the explanation for the said instance and
model. This is significant as it allows for the exact computation of both Yiguarmenr and Yeonrrow
which is all that is needed to yield the value of the ITE exactly. In other words, we can view both
Yigrearment and Yeonrrow as factual outcomes. Therefore, unlike real-world settings (e.g., taking
a headache medication) where one cannot measure the ITE exactly (due to the impossibility of
observing both factual and counterfactual outcomes simultaneously; whereby in such cases, the
ITE is either approximated or the ATE is used instead.) the effect of all treatments, on both
individual-level or population-level, are identifiable.



Table 1: Comparison of the classical and mechanical (our) setting for computing ITE values.

(2) In the classical setting for computing treat-  (b) In our mechanical setting, given a model, fn, the
ment effects, only one of the potential outcomes  potential outcome for any and all instances is com-
for each individual, ¢, is observable. The aver- putable (i.e., Y, (X;),i €T = IV (Xp)Vk €
age treatment effect is defined as the average 7). Instead, one asks how to compute the treatment
difference between individual treatment effects effect for A’ when no data is available for this hyper-

ATE = E[Y}"] — E[Y"]. parameter.
1 Yy Y1 Y vt Yy Y7 Yo
1 a - - 1 a e -
2 - f - 2 b f -
3 - - k 3 C g -
4 - h - 4 c h -

Although the treatment effects are identifable, evaluating them is computationally expensive.
To understand why, it helps to illustrate a parallel with the setting of counterfactual explana-
tions (Wachter et al., 2017). Whereas the treatment effects in our setting (see Equation (1))
contrasts Y;"(z) and Y} (z), the work of Wachter et al. (2017) contrasts Y, (z) and Y} ().
Unlike the latter which only requires the invocation of the predicting procedure given a new
instance x (e.g., a forward pass through a neural network), the former invokes the training
procedure given a new hyperparameter setting (i.e., a full re-training). In practice, computing
power is limited and we may only have access to the predictions under a single model, say, Y;*(z)
and it can be prohibitively expensive to produce the prediction under a different model, Y} (x),
especially for large neural networks.

In order to reason about Y}’ (x), one is compelled to instead ask a counterfactual question:
“What would the prediction have been, had the optimizer been v'?" which can be answered
through causal modeling without conducting real-world experiments, i.e., retraining with optimizer
v'. Metaphorically, there would have been no need for counterfactuals had one been able to
simulate the entire universe (limited by either identification or computation). It is the physical
constraints that call for these counterfactuals. Unfortunately, the procedures in Figure 1 (left) are
not available in closed form. We clarify that unlike the classical randomized control trial (RCT)
setting of evaluating ATE by contrasting average ITE values (where instances are randomly
assigned to control or treatment), the mechanical nature of our setting allows for the target
evaluation of all instances under control (h) or any treatment regime (h'); the challenge lies in the
fact that applying a treatment to any one individual is as expensive as applying it to all individuals
(see Table 1a and Table 1b for comparison). In this case, future research may explore the question
of whether one can learn approximate procedures (i.e., approximate structural equations) to
predict the predictions of an untrained classifier, given only its hyperparameters. In this regard,
our preliminary results suggest a promising alternative to training individual models: developing
meta-models that estimate a base model’s prediction and explanation for an instance using only
its hyperparameters, without actual training. This idea is derived from AutoML research, which
predicts model accuracy based solely on hyperparameters, without training Unterthiner et al.
(2020). As this issue rapidly evolves into a complex and multifaceted problem, we only briefly
present the preliminary results here: a simple 3-layer MLP (namely, “meta-model”) trained using
X and H from a 10% sample of models in the repository (i.e., 10% of 30,000 “base-models”),
can estimate the predictions Y for the rest of the base-models with an accuracy of approximately
45%. It is important to note that the input features do not have trained weights and rely on
hyperparameters instead, therefore saving compute. Furthermore, when the training is conducted
on a subset comprising 10% of the top-15% performing models rather than on all models (with a
mix of highly and poorly performing base models; refer to Table 2), the meta-model can predict
the predictions Y for the remaining base-models with an accuracy of around 80%. Not only
would this be a fascinating follow-up research project, but it would also hold substantial practical
value for our framework.

An implicit assumption made in (4) was that of mutual independence between hyperparameters,
ie, hy L by V j # 1 = hy ~ [[;;P(h;). This assumption yields an unconditional
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Table 2: Test accuracy boundaries for each performance bucket for each dataset in the model
zoo Unterthiner et al. (2020).

percentile  0-20  20-40 40-60 60-80 80-90 90-95 95-99 99-100
CIFAR10 5-15  15-25 25-33 33-38  38-46 46-50 50-52  50-57
SVHN 7-17  17-19.5 19.5-19.6 19.6-33 33-51 51-59 59-65 65-78
MNIST  4-11  11-35 35-73 73-89 89-95 95-96 96-97 97-98
FASHION 1-11  11-47 47-68 68-76  76-82 82-84 84-85 85-88

treatment effect, whereby the causal effect of h; = TREATMENT vs h; = CONTROL is averaged
over all possible combinations of other hyperparameters, even if the combination rarely occurs
in high-performing models. In practice, however, it is conceivable that the hyperparameters are
selected carefully by the system designer and may be interpreted as being sampled from a
distribution over hyperparameters, H, internalized by the designer through prior experience
in training desirable models (e.g., accuracy, fairness). Such down-stream criteria may act as
a common child of the hyperparameters, inducing complex inter-dependencies (cf. Berkson's
paradox, (Pearl, 2009)). In this case (i.e., h\; 7 [[;; P(h;)), the treatment effect answers such
a query as “among the set of hyperparameters that yield models with at least v performance,
what is the treatment effect of optimizer choice v; as opposed to v, on the local prediction of
x?" Therefore, whether or not we assume hyperparameters to be mutually independent depends
on the query being asked and assumptions made of the prediction/explanation generative process.

Finally, one could consider straightforward extensions of (3) and (4) to support distributions
over baseline control groups by adding an outer expectation that weights over the probability
control group occurrence.

A.3 Model zoo details

For each of the 4 datasets (CIFAR10, SVHN, MNIST, FASHION) we consider 30,000 pre-
trained models, with diverse test accuracies resulting from the combinations of hyperparameters
considered in the zoo (Unterthiner et al., 2020, Fig. 6). We optionally analyze models stratified
by their test performance, over 8 performance buckets; Table 2 shows the boundaries of these
buckets.

As a demonstration, Figure 6 shows the diversity in predictions of 30,000 base models for a subset
of CIFAR10 images for 1 randomly sampled datapoint from each class. It is noteworthy that the
non-kernelized ITE values of (4) can be read directly from the figure, by contrasting the mean
(shown in diamond) of each pair of nested bar plots (via application of linearity of expectations

to (4)).

Pre-processing explanations and other details To study the effect of hyperparameters on
explanations, we generate explanations, Ej(x), via saliency-based methods. In particular, the
Gradient (Simonyan et al., 2013; Erhan et al., 2009; Baehrens et al., 2009) and its smooth
counterpart, SmoothGrad (Smilkov et al., 2017), Integrated Gradient (IG) (Sundararajan et al.,
2017), and Grad-CAM (Selvaraju et al., 2016) methods are used due to their commonplace
deployment* (Adebayo et al., 2018). Note that many other widely used methods are based on
these four methods Kapishnikov et al. (2021); Xu et al. (2020); Wang et al. (2021); Simonyan
et al. (2013). The generated explanation maps Ep(z) are then processed to first remove outliers
(via percentile clipping the values above 99th percentile), following by normalizing all attributions
to fall in [0,1]. For Grad-CAM which only generates positive attributes, this is straightforward,;
for other methods that give positive and negative attributes (as each carry different semantics;
contributing towards/against the prediciton), we first normalize to [—1, 1] and then clip any value
below 0.

The set of hyperparameters considered include the choice of optimizer, wy type, wp std., by
type, choice of activation function, learning rate, {5 regularization, dropout strength, and dataset
split (see Unterthiner et al., 2020, Appendix A.2). To evaluate treatment effects as per (4),

“All methods are openly accessible here: https://github.com/PAIR-code/saliency.
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continuous features are discretized by (log-)rounding to the nearest predetermined marker from
within the range of the feature.®

Relation to other explainability metrics

There are many such heuristics for rating explainability, and we recognize the absence of such
comparisons in our research study. At the same time, we emphasize that our proposed metric
assesses “how much of the explanation is actually explaining the prediction,” which, at least
from an intuitive standpoint, is neither implied by nor implies other such metrics as intelligibility,
transparency, complexity, or user-friendliness. We also recognize that relying solely on the
suggested metric may lead to misleading results and should not be considered adequate for
endorsing an explanation approach. As demonstrated in footnote 1, we provide an instance where
the Identity explanation implies an ideal correlation between IT Egr and ITFEy, even though it
does not offer a meaningful explanation. We encourage further investigation in this direction for
future research.

B Additional experimental results

In this section, we present additional experimental results to complement those in the main body
across different data dimensions or on new datasets.

As a demonstration, Figure 6 shows the diversity in predictions of 30,000 base models for a
subset of CIFAR10 (top) and SVHN (bottom) images for 1 randomly sampled datapoint from
each class. It is noteworthy that the non-kernelized ITE values of (4) can be read directly from
the figure, by contrasting the mean (shown in diamond) of each pair of nested bar plots (via
application of linearity of expectations to (4)).

>The following markers are used for (log-)rounding continuous features: lo  reg.:
[1le™3,1e7%,1e7*,1e7?], dropout: [0,0.2,0.45,0.7], wo std.: [le”* le~ 1e~' 0.5], learning rate:
[5e7*, 5e72,5e72].

12



|

Figure 6: The distribution of Y} (x;) for a subset of 10 random instances(1 per class) on 30,000
base models (row 1: CIFAR10; row 2: SVHN; row 3: MNIST; row 4: FASHION). For each
instance, each column holds the value of Agptimizer fixed at one of m unique values pertaining to
this hyperparameter, while unconditionally iterating over other hyperparameters. In this manner,
the difference in predictions across values of the hyperparameter, both at an individual (left) and
aggregate level (right) can be attribute to, and only to, changes in this hyperparameter.

|
|
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kernel (4: 0.000) Yi,,...=0.0000 € RX® Yi,,..=0.0000 ER®| kernel (i: 0.068)  Yh =000 ER™ Yy, 60000 ER™ | kernel (1: 0.011) Y= 0.0000 € R Yo =0.0000 € RX
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CIFARI10

SVHN

Figure 7: Examples of class predictions (Y=, (z) and Y,,(z)) and their dissimilarities
(lo(Yn=n(x)) — ¢(Yh¢n(x))||é) for different accuracy buckets for CIFAR10 (top) and SVHN
(bottom). Each row shows 10 random predictions from 3 models in the low- (left), mid- (center),
and top- (right) performance buckets, under two different treatment groups for the dropout
value (= 0 and # 0). In each performance bucket, there are three subplots. Each subplot is
showing 10 randomly selected samples (each row) and their post-softmax values for one of the
10 classes (hence a 10 x 10 grid). The first plot in each trio shows the RBF kernel evaluation
of the center and right predictions. The center and right plots show these treatment/control
groups. This figure is intended to complement Figure 2 to explain why ITE for Y is large for
mid-accuracy buckets and small for high-accuracy buckets. For CIFAR10, the values are small for
low-performing models (most models in this bucket predicting similarly) but for SVHN the values
are large due to different diverse predictions.

Linear Kernel Polynomial Kernel RBF Kernel Cosine Kernel

AN VS TMSProp
VS rmsprop

B optimizer: adam vs sgd

e e me R LL VoS

0.0 0.0 0.00

Grad SG 1G Grad-CAM Grad SG 1G Grad-CAM Grad SG 1G Grad-CAM Grad SG 1G Grad-CAM

Figure 8: Comparison of the ITE values with kernelized version of (4) for Ep,(x) obtained for 100
instances from CIFAR1O0 for different choices of the kernel (each column) shows that KTE is not
sensitive to the choice of kernels. Contrast this figure with ??; we conclude that the choice of
baseline (i.e., where we contrast optimizer: adam against all other optimizers as in ?? or against
other individual values) does not affect the overall trend and should be chosen according to the
question in mind: to compare the effect of a hyperparameter value against all other possible
values, or against a particular value.
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Figure 12: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right)
for models trained on MNIST across different performance buckets, showing the discrepancy in
the effect of H on Y vs. that on E.

18



Prediction =it TrucatedNormal vs ot i RandomNorualvs ot W it bevormal v ot W it orfgonal vt W it lpapu AN

MMWMMWWM MMMMMMMMMM 4

1TE, ( )
E
=
=
E=— —3
E—
E——
ITEg(z)
=
=
=
E — 3

BN optimizer: sgd vsnot  WEE optimizer: rmsprop vs not M optimizer: adam vs not

!

Wi n mwmemmn

ITEy ( r)
E
=
=
T=
E— =
E =
ITEg(x)
=
=
=

”unw“nn“

ITEg(x)
|
+
> —=¢
> —

ITEy(x)
i
=
P =
=
E———
|
-
ITEg(x)
! i i
E
=
=
== = = = = > — E = —

W D2y 108 vsnot B Dreg 000 vsnot  BEE D2y leOdvsnot  WEE [2reg: 1606 vs not

ITE, (;)
&
E—2
E

W
|
|
|

ITE, (.r)
|
&
t
% 3:
== b —
ITEg(z)

BN dropout: 0.2vanot MM dropout: 0.43vsnot  MEM dropout: 0.0vs ot MEE dropout: 0.7 v mot

m“ M“M%wmm« SO 111 L LLLL

B nitstd: 0.01vsnot W initstd: 0.001vsnot  MEE initstd: 0.5 vsnot W initstd: 0.1 vsnot

WMmeMmm mmmmmmmm 5 o

ITEg(x)
=
=

e

N lcumingrate: 0.05vsnot B learningrate: 0.005vsuot  MEE leaming.rate: 0.0005 vs not

wm Mdemmmm SO 1 1T L L

W
|
44
|
|
M
N

ITEy(z)

Figure 13: Comparison of ITE values of all hyperparameters (each row)on Y (left) and E (right)
for models trained on FASHION across different performance buckets, showing the discrepancy
in the effect of H on Y vs. that on E.

19



Identity Grad SG 1G Grad-CAM
0.16
0.30 025 0.030 0.6
o= 0.14
02 0025 05
0.20 0.12
020 %
% o1 0.020 0.10 04
L]J 0.15 0.3
N oo b 0.015 0.08
0.10 ). 4
~ 0.06 0.2
. 0.010
0.05 0.05 0.04 01
0.00 0.005 0.02 0.0
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
ITEy (z) ITEy(z) ITEy(z) ITEy(x) ITEy(x)
Identity Grad SG IG Grad-CAM
035 0.030 06
0.25 0.20
030 0.025 0.5
025 0.20
” 0.15 04
\_LE 0.20 0.020 i
0.15 03
E 015 / 0.015 0.10
. 0.10 0.10 0.2
0.010
0.05 0.05 0.05 0.1
0.00 # 0.005 0.0
00 01 02 03 00 01 02 03 00 01 02 03 00 01 02 03 00 01 02 03
ITEy(x) ITEy (x) ITEy(z) ITEy (x) ITEy(x)
Identity Grad SG 1G Grad-CAM
0.5
0.5 0.030 00
0.30 0.20 04
0.025
— 025 . 0.08
B 0.15 0.020 03
& 020 0.06
E 0.15 0.10 0.015 + 0.2
= 0.10 .; ¢ 0.010 0.04 ¢ :
. 0.05 £ 01§
0.05 ’ 0.005 0.02 i
0.00 0.000 0.0
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
ITEy(x) ITEy(x) ITEy(x) ITEy(x) ITEy(x)
Identity Grad SG 1G Grad-CAM
, 0.200 0.030
035 0.14 05
0.175 .
0.30 0.025 0.12
— 025 0.150 04
) ) 0.020 0.10 §
o 020 0.125 { 0.3
r_,l? i 0.08 |
£ 05 0.100 | 0.015 3 02
~ 0.06 (%
0.10 0.075 [ 0.010 i ;
o ¥ 0.04 5 0.1 ¢
0.050
0.00 4 0.005 0.02 00
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
ITEy(x) ITEy (x) ITEy(x) ITEy(x) ITEy(x)

Figure 14: Scatter plot of ITE values for Y and E (row 1: CIFAR10; row 2: SVHN; row 3:
MNIST; row 4: FASHION) across explanation methods reveals no apparent patterns.
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Figure 16: Pearson correlation and Spearman’s Rank correlation for ITE of Y and ITE of E across
different explanation methods and model performance buckets, for mediated and unmediated
Y (row 1: CIFAR10; row 2: SVHN; row 3: MNIST; row 4: FASHION). Absolute values of
correlation values are smaller across both datasets (max around 0.5), suggesting that E takes
influence from H that does not necessarily pass through Y. The final absolute correlation is
going down for top-performing models in both datasets. The increase in delta correlation between
mediated and unmediated Y suggests that the direct impact of Y on F is becoming even more
important in top-performing models, even more so for SVHN than for CIFAR10.
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