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Abstract

Remote education has proliferated in the twenty-first century, yielding rise to intelli-
gent tutoring systems. In particular, research has found multi-armed bandit (MAB)
intelligent tutors to have notable abilities in traversing the exploration-exploitation
trade-off landscape for student problem recommendations. Prior literature, how-
ever, contains a significant lack of open-sourced MAB intelligent tutors, which im-
pedes potential applications of these educational MAB recommendation systems.
In this paper, we combine recent literature on MAB intelligent tutoring techniques
into an open-sourced and simply deployable hierarchical MAB algorithm, capable
of progressing students concurrently through concepts and problems, determining
ideal recommended problem difficulties, and assessing latent memory decay. We
evaluate our algorithm using simulated groups of 500 students, utilizing Bayesian
Knowledge Tracing to estimate students’ content mastery. Results suggest that
our algorithm, when turned difficulty-agnostic, significantly boosts student success,
and that the further addition of problem-difficulty adaptation notably improves this
metric.

1 Introduction

With a rise in technologically-assisted education in the twenty-first century, intelligent tutoring
systems have received significant popularity across various domains (Mousavinasab et al., 2021;
Paladines & Ramirez, 2020). Though intelligent tutoring systems spread across multiple domains
of artificial intelligence, recent literature has argued that reinforcement learning models are optimal
for adaptive learning environments (Yan & Lin, 2022). This is due to the ability of reinforcement
learning to best sequence actions in uncertain and dynamic landscapes without prior data on students
or educational content (Kaelbling et al., 1996). As a result, abundant resources have been allocated
toward the research and expansion of reinforcement learning applications in education.

Within the realm of reinforcement learning, the multi-armed bandit (MAB) stands out as a dis-
tinctive framework for addressing and deploying exploration-exploitation trade-offs in a generalized
manner. In the MAB framework, an agent is equipped with multiple arms, each representing a
distinct action it can perform. The objective is to strategically select optimal arms over successive
interactions with the environment, given the rewards gained from its prior actions chosen. This
strategy aims to maximize cumulative rewards in a transient system.

Intelligent tutoring systems utilizing the MAB framework have since been applied for education
(Clement et al., 2015) with various modifications made for performance improvement (Mu et al.,
2018; Segal et al., 2018). However, there exists a significant lack of open-sourced MAB intelligent
tutors, which is vital for real-life applications of MAB on pedagogy (observational based on present-
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day literature), and literature denoting real trial applications of MAB intelligent tutoring systems
in real-world learning environments (Mui et al., 2021).

In this paper, we seek to alleviate the former dilemma by contributing a deployable, open-source,
and state-of-the-art MAB intelligent tutoring algorithm for remote education. First, we describe
the learning platform of our nonprofit organization, Aiphabet1, designed to informally teach middle
and high school students about artificial intelligence. This is the structural framework in which our
model will be devised about (Section 3). Then, we detail our own MAB intelligent tutor architecture,
which combines successful aspects of prior research into MAB intelligent tutoring literature for our
organization’s platform. Our algorithm utilizes novel hierarchical MABs, where separate MAB
agents are called to select a concept and dependently select a problem. This algorithm also takes
into account predefined problem difficulties from educational supervisors (Section 4), adapted from
prior literature. Lastly, we perform Bayesian Knowledge Tracing (BKT) simulations (Section 7) to
provide a theoretical basis for variability between a static expert-defined progression sequence and
our hierarchical MAB-defined progression sequence.

2 Related Work

2.1 Multi-Armed Bandit Intelligent Tutoring Frameworks - Without Difficulty Levels

The domain of MABs for intelligent tutoring is well defined in the literature (Mui et al., 2021) and
indeed has been distinguished in previous research. Clement et al. (2015) proposed using MABs to
recommend activities that optimize the exploration-exploitation trade-off for personalized student
progression sequences, developing their algorithm, Zone of Proximal Development and Empirical Suc-
cess (ZPDES), to deliver problems within students’ Zone of Proximal Development (ZPD) (Chaiklin,
2003). Proceeding literature modified ZPDES for more defined environments, with Mu et al. (2017)
modifying ZPDES to use probabilistic entropy for finding the initial ZPD and Mu et al. (2018)
combining it with the Multiscale Context Model (MCM; Pashler et al., 2009) concept forgetting
mechanism.

Another family of MAB intelligent tutors follows Lan & Baraniuk (2016), who developed upper
confidence bound (UCB)-based algorithms (Auer et al., 2002) to maintain expected arm rewards with
confidence intervals for personalized learning actions (PLAs) that maximize learning. Manickam
et al. (2017) built on this with an estimate framework for students’ prior knowledge with sparse
factor analyses on their previous responses. Additionally, they investigated new policies for selecting
PLAs that were adapted for binary-value student correctness rewards.

2.2 Multi-Armed Bandit Intelligent Tutoring Frameworks - With Difficulty Levels

Difficulty level adoption has been well observed in modern MAB algorithms with disparate methods
utilized. RiARiT, from Clement et al. (2015), utilizes multiple nodes per individual activity, each
node representing a more difficulty level than the last, in its progression graph. This allows the ZPD
to automatically choose whether it should pursue a proceeding activity or a previously tested activity
of higher difficulty. Andersen et al. (2016) used a novel probabilistic knowledge matrix to facilitate
their progression, with rows and columns representing proceeding concepts and difficulty levels
respectively. Segal et al. (2018) performed difficulty adjustment by linearly scaling the exploration
factor and by directly adjusting harder questions’ weights based on a student’s answer’s correctness.

3 Methodology: Platform Architecture

Our platform, Aiphabet, is a secondary school informal learning organization for teaching artificial
intelligence. The curriculum (Macar et al., 2023) is cocurated by many Columbia University faculty

1https://aiphabet.org
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members and students who are specialized in both computer science education and learning sciences
fields.

3.1 Platform Section, Concept, and Problem Definition

We begin by defining educational content sections for students to progress through. In our educa-
tional landscape, we define each section as consisting of an animated video lecture (approximately
three to five minutes long) or a slideshow of course content. Then, following each section is a quizzing
stage where students are asked sequential, material-related questions. Finally, after the question se-
quencing is completed, the student may proceed to another section of their choice, provided they
have finished all required prerequisite sections.

The educational content of a section is comprised of multiple concepts. These concepts form a concept
progression tree, where an arbitrary concept can become teachable after its prerequisites have been
understood and mastered. For example, if a section is titled “The Perceptron”, corresponding
concepts may be “Biological Inspiration”, “Classification Function”, and “The XOR Problem.”

Under each concept, we define problems as available questions for examining students’ knowledge
mastery of said concept. Difficulty levels are scores to rate problem complexity by a domain expert
within the range d ∈ [1, 5] where higher levels denote more difficult questions. These parameters,
however, are not given to the student but are used for internal algorithm calculations (Section 5.2).

4 Methodology: ZPDES Foundation for Algorithmic Progression

A MAB framework is used to select the concepts for students to be quizzed on in order to best solidify
the educational content of a section. However, as multiple questions with varying difficulties exist
for quizzing a particular concept with, it is not sufficient to have a single MAB instance selecting
both the concepts and problems at hand.

We solve this problem by implementing a progression algorithm embedded with multiple MAB agents
to explore the exploration-exploitation trade-off for students among both concepts and problems.
First, a single, MAB for concept selection (high-level decision; known as the concept MAB) chooses
a concept within the given section to quiz the student on, and then a corresponding MAB instance
for the selected concept (low-level decision; known as the problem MAB) chooses a problem from
that concept’s question bank to give to the student (see Appendix 9.4 for a visual representation).
Initializations for the proceeding parameters can be found in Appendix 9.1. We open-source our
code for educators and researchers to implement and build upon.2

4.1 ZPDES Multi-Armed Bandit Design Foundation

The base algorithm used for our MAB adaptation extends the Mu et al. (2018) MAB intelligent
tutoring implementation. Mu et al. (2018)’s algorithm combines the ZPDES algorithm and MCM
model for characterizing concept forgetting in a single study session.

The ZPDES algorithm aims to select student activities within a ZPD frontier. The ZPD is an
educational psychology idea that hypothesizes that optimal student activities should be difficult
enough for a student to be challenged by but not outside of a student’s current problem-solving
abilities (Chaiklin, 2003). As a result, concepts and problems within a student’s ZPD can challenge
students while preventing frustration, which increases motivation and student engagement.

ZPDES is a MAB algorithm designed to deploy optimized teaching sequences by exploring the
exploitation-exploration trade-off for student activities. By keeping track of belief states (denoted
as unmastered or mastered) for each activity, it proposes unmastered activities for students to solve
that are within their ZPD (i.e., unmastered activities that have mastered prerequisites). This occurs

2https://github.com/b-castleman/hierarchical-mab-tutoring
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by first computing the learning progress ra,t, also known as the reward, for a certain activity a:

ra,t =
t∑

k=t−L/2

Ca,k

L/2 −
t−L/2∑
k=t−L

Ca,k

L − L/2 (1)

where Ca,k is the correctness of the exercise given at time k, L is the history length, and t is the
current time being analyzed for mastery (Clement et al., 2015; Mu et al., 2018). The equation
compares the success of the last L/2 samples with the preceding L/2 samples to approximate a
performance gradient for this activity. In our implementation, if the designated history length is
greater than the current activity history, we assume the correctnesses of any hypothetical earlier
exercise to be zero.

The next problem is then selected by converting these rewards into weights (wa) for probabilistic
selection. In prior literature (i.e., Clement et al., 2015), MAB rewards are often used to update
weights with wa := βwa + ηra,i, where β and η are hyperparameters for rate updates. However, we
instead choose to follow Mu et al. (2018)’s weight update formulation, an averaging of all previous
rewards, in order to decrease the hyperparameters required for system tuning:

wa = 1
na

na∑
k=1

ra,k (2)

where na is the total number of times activity a has been presented to the student (Mu et al., 2018).
Finally, the activity weights are normalized based on the current activities in the ZPD and then are
introduced a factor of exploration probabilities for probabilistic selection:

wa,n = wa∑
a∈ZP D wa

, pa = wa,n(1 − γ) + γ

|ZPD|
(3)

where γ is the exploration rate hyperparameter and |ZPD| is the current size of the ZPD (Clement
et al., 2015; Mu et al., 2018). The activity is then randomly picked from the ZPD based on each
probability pa.

Once the average correctness over the last L attempts surpasses a threshold hyperparameter h
(h > 1

L

∑na

k=na−L+1 Ca,k), we choose to change the belief state of the activity to mastered and
remove it from the ZPD. This is consistent with Mu et al. (2018)’s approach but instead accounts
for the correctness variable rather than the net accuracy, which has particular implications for the
concept MAB implementation that will be discussed in Section 5.2.

4.2 MCM Algorithm Adaptation

In Mu et al. (2018), the MCM model is integrated into ZPDES to approximate students’ decaying
memory traces over time (Pashler et al., 2009). We choose to incorporate this as well for our
algorithm to parallel our work with present literature.

A memory trace xa,i (induced memory change) of an activity a the ith time after it has been seen by
a student decays with the time after its activation. This can be modeled according to the equation:

xi(t + ∆t) = xi(t)e( −∆t
τi

) (4)

where τi is the decay time constant with the constraint τi < τi+1, t is the activation time, and ∆t
is the time since activation (Mu et al., 2018; Pashler et al., 2009). The probability of receiving an
activity is related to the memory strength sa,t of a problem a after it has been seen n times:

sa,t = 1
Γn

n∑
i=1

ξixa,i(t), where Γn =
n∑

i=1
ξi (5)

where each ξi is a weight for each memory trace xa,i (Mu et al., 2018; Pashler et al., 2009).
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Figure 1: Progression tree examples for both the conceptual MAB and the problem MAB. Note that
there are separate problem progression trees for each concept in a given section.

Lastly, to integrate MCM with ZPDES, the set of activities available for selection is extended to
include a set M , the activities believed to have been previously learned. First, all activities in the
ZPD have weight calculations and updates as previously described. However, before probabilistic
selection, activities in the learned set obtain weights through the equation:

wa = mmmax(0, mt − sa), a ∈ M (6)

where mt is a memory threshold and mm is a memory multiplier for describing the effects of forgetting
(Mu et al., 2018). Then, normalization again occurs for the set of all possible problems before
probabilistic selection.

5 Methodology: High-Level Concept Multi-Armed Bandit

With a MAB design foundation formed, we will now proceed to describe our induced MAB hierarchy
and difficulty extensions to the system, beginning with the MAB for concept selection.

5.1 Concept Progression Trees

Each section on the platform has multiple concepts that are taught by the educational content. To
solidify student knowledge, the MAB for concept progression is designated to quiz students on the
entire section that they have learned, beginning with the root prerequisite concepts and leading to
the more advanced concepts previously taught. For a concept to be taught, all prerequisites that lead
to it must have a mastered belief state. Figure 1 details an example of how a concept progression
tree may be defined, noting that concepts can run in series, parallel, and share postrequisites.

5.2 Problem Difficulty

As the difficulty of the problems solved (Section 3.1) affects the estimated knowledge trace for each
concept, we choose to incorporate the difficulty of completed problems into the reward calculation.

To account for difficulty, when a problem is completed, we update response correctness according
to:

Ca,k = Ca,k ∗ (σ(d − 3) + 1
2) (7)

where d is the difficulty of the problem and σ(x) is the sigmoid function. We choose to perform d−3
to center the difficulty scale along the sigmoid function (as d ∈ [1, 5]). The sigmoid function then
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scales the value to be within [0, 1], which is ideal as it contains asymptotic behavior but exhibits
sigmoidal growth. Finally, lifting the value by 1

2 results in the multiplier to be within [0.5, 1.5].
This multiplier generation therefore allows the ZPDES algorithm to reward more complex question
answers generously while maintaining frugality for simple problems.

6 Methodology: Low-Level Problem Multi-Armed Bandit

After concept selection, a problem MAB unique to the selected concept chooses the problem for
student presentation. This allows for the concept’s MAB to obtain parameters specific to the concept
and resultant question bank. We will now proceed to describe our difficulty extensions to the system,
beginning with the MAB for concept selection.

6.1 Problem Progression Trees

Each concept has multiple associated problems from that concept’s question bank that make up a
problem progression tree. These trees have a depth of one and consist only of edges in parallel from a
root to each associated problem from that concept’s question bank. As a result, the MAB framework
is capable of intelligently selecting all problems with trade-off considerations when the concept is
selected. Figure 1 demonstrates this problem progression tree design on an abstract concept.

6.2 Initial Problem Difficulty Integration

As all problems have an initial equal probability for selection through the base design of our MABs
framework, we seek to integrate the difficulty of the problems in order to skew the initial weights.
Therefore, very easy or hard problems can be initially discouraged before information on the student
in the current section is available.

To accomplish this, we introduce a problem multiplier variable ma that is multiplied onto the problem
weight wa after the weight calculation (Equation 2) and before the normalization and exploration
steps (Equation 3). This allows us to skew resultant weights according to difficulty adjustments.

We choose to initialize the multipliers ma for each problem within a concept according to:

ma = e− (d−3)2
ξ (8)

where d the difficulty of the problem (as aforementioned) and ξ is a hyperparameter for initial
problem weight skewing. After performing a centering along d = 3, this equation, a Gaussian
function, allows intermediate problems to be encouraged while discouraging problems of increasing
simplicity or difficulty. Thereby, the MABs framework is more likely to initially suggest a problem
meeting these conditions.

6.3 Transient Problem Ranking Integration

As student correctness data is collected on problems within the given concept, students will demon-
strate skill aptitudes which, even if the belief state of the given concept is unmastered, must be
perceived and processed for further recommending difficulty rankings. Thereby, students that have
completed difficult problems can be recommended problems of greater difficulty and students unable
to complete difficult problems can be recommended problems of lesser difficulty.

To accomplish this, we incorporate and modify the Update Question Grade calculation step from the
Multi-Armed Bandits based Personalization for Learning Environments (MAPLE) algorithm (Segal
et al., 2018), which combines difficulty ranking with MABs for this exact problem. MAPLE updates
problem weights according to the following method. For our implementation, we choose to make
various modifications to this step in MAPLE for our application, which can be found in Appendix
9.3. Along with tuning of the initial parameters (Appendix 9.1), the final implementation of the
problem ranking integration therefore becomes:
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Algorithm 1 Modified MAPLE Algorithm for Transient Problem Ranking Integration
Data: Student problem correctness Ca,k, normalization factor α, question qa

Get student correctness Ca,k after solving question qa

if Ca,k is 1 then
Increase weights for questions more difficult than qa:
ma = αma

Decrease weights for questions less difficult than qa:
ma = 1

α ma

else
Decrease weights for questions more difficult than qa:
ma = 1

α ma

Increase weights for questions less difficult than qa:
ma = αma

end if

7 Results: Student Simulation

To validate our hierarchical MAB architecture before real-world implementation, we utilized BKT
to simulate a roster of 1500 students in an adaptive learning environment (Anderson et al., 1995;
Badrinath et al., 2021; Appendix 9.5). First, we fitted our hierarchical MAB application for our
organization’s AI material, where five of our education sections were utilized for the MAB intelligent
tutoring. These five sections were specifically picked as they have multiple concepts incorporated
into each section, versus the other shorter sections with only one concept each, which ensured the
algorithmic results captured are indeed hierarchical.

As the data available from our organization’s course material was not extensive enough for accu-
rate result interpretation, we chose to transform the ASSISTments dataset (Wang et al., 2015) by
mapping their data to our own concepts and questions to train the BKT model with. Question
difficulty was deciphered by calculating the inaccuracy rate to each problem and adapting it linearly
(da = 4 · inaccuracy ratea + 1) to obtain a difficulty score within our [1, 5] scale (Section 3.1).

We defined three groups for simulation: one with a randomized question sequence (where a question
is picked at random from a section’s question bank), one with a difficulty-agnostic hierarchical
MAB sequence (where problem difficulties are not utilized), and one fully realized hierarchical MAB
sequence with problem difficulties included. Each group contained 500 simulated students. We
simulated the hierarchical MAB students to the algorithms’ completions and ran the randomized
question sequence algorithm for the exact number of questions that was previously required by the
difficulty-agnostic hierarchical MAB sequence.

Figure 2 depicts each of the 500 simulated student groups’ averaged progression (in their groups
of 500) resultant from each algorithmic sequence recommendation. On average, we observe that,
initially, the randomized sequence performed best from our mastery estimation. This is likely at-
tributed to the inherent advantage of randomization, which boosts broad coverage of concepts rather
than revisiting previously addressed ones. As such, this approach likely increased the probability
of attaining more correct answers from different concepts, thereby contributing initial, significant
exponential gains to the mastery estimation3.

However, after a certain problem-prompting threshold, the hierarchical MAB frameworks suggest
more reliability in bringing students above the randomized sequence’s average asymptotic mastery
level. This likely occurs as the MAB algorithms can better detect students struggling with cer-
tain concepts and therefore can give more problem suggestions within that concept. We witness
that students obtained a slightly higher mastery level with the difficulty-included hierarchical MAB

3Problems typically have response correctness probabilities greater than 50%. This, in turn, promotes problem
coverage yielding greater mastery estimation initially as mastery estimation contributions towards individual concepts
exponentially decays with successive correct answers.
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Figure 2: The average progression for groups of 500 simulated students’ mastery of 5 sections (15
concepts) of material, using BKT. This includes a randomized sequence of questions (black), our
hierarchical multi-armed bandit framework without problem difficulty considerations (red), and our
hierarchical multi-armed bandit framework with problem difficulty included (blue).

sequence as opposed to the difficulty-agnostic one, demonstrating the isolated effect of difficulty
incorporation.

8 Conclusion and Future Work

In this paper, we present a deployable, open-source, and state-of-the-art MAB intelligent tutor for
remote education. We combine prior research into MAB intelligent tutoring literature to synthesize
our algorithm, which creates pedagogical advantages for instructors like assimilating concept maps
and problem difficulties. Our algorithm utilizes hierarchical MABs which contain separate MAB
agents to select concepts and problems. Lastly, we perform BKT simulations to build evidence for
our algorithm’s efficacy in real-world educational environments, which contrasts a randomized, MAB
difficulty-agnostic, and MAB difficulty inclusion problem sequencing.

Future work includes the need for real student trials that aren’t dependent on student knowledge
models or idealized conditions. This invites the possibilities of other considerations, such as real-time
self-updating of problem difficulties, window size trade-off investigation, and material redirects for
underperforming students, to name a few.
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9 Appendix

9.1 ZPDES, MCM, and MAPLE Parameter Choices

We obtained many of our ZPDES and modified MAPLE algorithm initial parameters and hyperpa-
rameters through tuning before student simulation to converge onto values that a) progress students
at a reasonable rate and b) avoid overvaluing nor neglecting both complex and simple problems. For
ZPDES, we obtain γ = 0.1, wa,0 = 0.5, ξ = 7.37, Lconcept = 4, Lproblem = 2, h = 0.74. Problems
unlocked by completing prerequisites are also appended weights of wa,1 = 2. For MAPLE, we obtain
α = 1.3.

For the MCM algorithm, Pashler et al. (2009) used mass simulations for optimizing ξi and τi.
However, our lack of prior question data for model fitting leads us to follow Mu et al. (2018)’s
implementation (who had an identical dilemma for parameter value choice) of choosing ξi = 1 and
τi = i. Given the brevity of our platform’s sections (Appendix 9.5), we neglect tuning a memory
threshold mt or a memory multiplier mm value for our individual application.

9.2 Miscellaneous MAB Modifications

We modify the algorithm so that the belief states for problems successfully completed by the student
are marked as mastered and therefore are not given to the student again. Furthermore, if all problems
in a problem MAB instance have been completed, the conceptual MAB will have the corresponding
concept’s belief state updated to mastered as no more problems within the given concept are available
to give to the student.

9.3 MAPLE Modifications List

The following modifications were made to the Update Question Grade calculation step of the MAPLE
algorithm for integration with our hierarchical MAB algorithm:

• Instead of updating the weight problem weight wa directly, we choose to update the multi-
pliers for each problem ma.

• Our learning environment assumes that only binary grades are possible (0 and 1) for the
student grade gs. Therefore, we lower the number of hyperparameters by removing the
passing grade threshold conditional gs > η and replace it with Ca,k == 1, that is, if the
exercise given at time k is answered correctly.

• Only one normalization factor α is used and instead the normalization factor used for low-
ering multipliers (α3 in Segal et al., 2018) is the inverse of α.

• If the last question was answered correctly, we also decrease the multipliers for questions
less difficult than qa by the inverse of α.

• If the last question was answered incorrectly, we also increase the multipliers for questions
less difficult than qa.

• We remove direct exploration rate γ calculations from MAPLE.
• As each problem can only be answered correctly one time (see Appendix 9.2), we choose to

remove the exponential reward multiplier (eR in Segal et al., 2018) from the algorithm.
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By changing the problem multipliers for problems easier than the last given question, the algorithm
counteracts the initial problem difficulty integration incurred by Equation 8. However, as all prob-
lems (other than those of equal difficulty to qa) now have weights updated according to difficulty, it
is no longer necessary to change the exploration rate γ.

9.4 Hierarchical MAB Schematic
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(MAB picks problem)
Problem MAB
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ZPDES (Section 4.1)

Input: User Response

Adjust 
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2.Calculate 
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Figure 3: A schematic of how the concept MAB and problem MABs interact.
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9.5 pyBKT Setup

The pyBKT model implements a Hidden Markov Model (HMM) with sequences of the students’
response correctness as observable nodes and students’ latent knowledge throughout proceeding
knowledge states as hidden nodes. The model trains on past students’ response history to fit the
HMM’s learn (probability of transmission from an unlearned state λt = 0 to a learned state λt+1 = 1),
prior (probability of initial learned state λ0 = 1), guess (probability of responding correctly despite
a presently unlearned state λt = 0), and slip (probability of responding incorrectly despite presently
learned state λt = 1) parameters (Badrinath et al., 2021).

When an unlearned latent state is present (λt = 0), we provide a binary correctness Ct,k = 1 at the
current guess probability and otherwise respond Ct,k = 0. Conversely, when a learned latent state
is present (λt = 1), we provide correctness Ct,k = 0 at the current slip probability and otherwise
respond Ct,k = 1 (identical to Mu et al., 2018).

We do not implement any form of forgetting (learning states can not degrade from λt = 1 to
λt+1 = 0) in our simulations to simplify our assumptions, doing so in part to our observed low
question attempt count for section completeness (see Figure 2). Consequently, we neglect the MCM
algorithm’s weight contributions for this experimentation.
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