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Abstract

Text generation with beam search has proven001
successful in a wide range of applications. The002
commonly-used implementation of beam de-003
coding follows a first come, first served heuris-004
tic: it keeps a set of already completed se-005
quences over time steps and stops when the006
size of this set reaches the beam size. We in-007
troduce a patience factor, a simple modifica-008
tion to this decoding algorithm, that general-009
izes the stopping criterion and provides flexi-010
bility to the depth of search. Extensive empiri-011
cal results demonstrate that the patience factor012
improves decoding performance of strong pre-013
trained models on news text summarization and014
machine translation over diverse language pairs,015
with a negligible inference slowdown. Our ap-016
proach only modifies one line of code and can017
be thus readily incorporated in any implemen-018
tation.1019

1 Introduction020

Beam search has become a dominant inference021

algorithm for a wide range of language genera-022

tion tasks, such as machine translation (Sutskever023

et al., 2014; Bahdanau et al., 2015; Vaswani et al.,024

2017), summarization (Nallapati et al., 2016; See025

et al., 2017), and image captioning (Anderson et al.,026

2018; Li et al., 2020). Beam decoding2 is an ap-027

proximate, pruned version of breadth-first search028

that seeks the highest-probability sequence under029

an autoregressive (left-to-right) language genera-030

tion model. In this work, we examine a popular im-031

plementation of beam decoding and propose a sim-032

ple modification (one line of code) that improves033

the decoding performance of strong, neural lan-034

guage generation models (Fig. 1).035

A widely-used implementation of beam lan-036

guage decoding (e.g., fairseq, Ott et al., 2019;037

1Our codebase is available at anonymized.
2In this paper, we use “beam decoding” to mean beam

search applied to decoding for text generation.

FCFS Beam Decoding with Controlled Patience
k: beam size, M : maximum length, V: Vocabulary
score(·): scoring function, p: patience factor.

1: B0 ← {⟨0, BOS⟩}, F0 ← ∅
2: for t ∈ {1, . . . ,M−1} :
3: H ← ∅, Ft ← Ft−1

4: for ⟨s,y⟩ ∈ Bt−1 : # Expansion.
5: for y ∈ V :
6: s← score(y ◦ y), H.add(⟨s,y ◦ y⟩)
7: Bt ← ∅
8: while |Bt| < k : # Find top k w/o EOS from H .
9: ⟨s,y⟩ ← H.max()

10: if y.last() = EOS :
11: Ft.add(⟨s,y⟩) # Finished hypotheses.
12: else Bt.add(⟨s,y⟩)
13: if |Ft| ≥ k · p : # Originally, p=1.
14: return Ft.max()
15: H.remove(⟨s,y⟩)
16: return Ft.max()

Figure 1: First come, first served (FCFS) beam decod-
ing with patience factor p. The common implementa-
tion can be considered as a special case where p= 1.
The highlighted line is the only modification that this
work introduces for performance improvement. Ft: al-
ready completed sequences; Bt: beam of continuing
sequences. Ht: expanded hypotheses before the top-k
operation. The input sequence to score is omitted.

Hugging Face’s Transformers, Wolf et al., 2020)3 038

follows a first come, first served (FCFS) heuristic: 039

when a total of k finished candidates is found (k 040

is the beam size), it returns the best one from the 041

k candidates and discards all of the current, unfin- 042

ished k sequences in the beam. Beam size k thus 043

determines both the breadth and depth of search. 044

We propose a patience factor (Fig. 1) that decom- 045

poses these two roles and controls how many fin- 046

ished candidates have to be found before terminat- 047

ing the decoding. The patience factor generalizes 048

the commonly-used implementation and provides 049

flexibility in the depth of beam search by changing 050

3https://github.com/pytorch/fairseq/blob/
main/fairseq/sequence_generator.py; https:
//github.com/huggingface/transformers/blob/
master/src/transformers/generation_utils.py.
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the stopping criterion.051

We apply the one-line modification to strong off-052

the-shelf transformer models without any change053

to the trained models for machine translation (Tang054

et al., 2021) and text summarization (Lewis et al.,055

2020). Our experiments demonstrate that our056

method outperforms the original algorithm on the057

CNN/Dailymail (Hermann et al., 2015) and XSUM058

(Narayan et al., 2018) news summarization tasks059

and the WMT 2020/2021 machine translation tasks060

(Barrault et al., 2020; Akhbardeh et al., 2021)061

across diverse language pairs. Further, the introduc-062

tion of the patience factor only results in a negli-063

gible inference slowdown, confirming its practical064

advantage in downstream applications.065

Our analysis shows that, while the performance066

gain is sensitive to hyperparameters of beam decod-067

ing (beam size and length penalty; Johnson et al.,068

2017), the patience factor is consistently beneficial.069

Moreover, we extensively compare our results with070

the vanilla implementation of beam search that071

much prior work assumes (Meister et al., 2020b;072

Stahlberg and Byrne, 2019, inter alia). Empiri-073

cally, we found that the vanilla algorithm performs074

competitively with FCFS on machine translation075

but substantially underperforms on summarization.076

The FCFS beam decoding with our patience factor077

is thus a simple yet effective algorithm for both078

language generation tasks.079

2 Beam Decoding with Patience080

Vanilla and FCFS Implementations Beam de-081

coding has been applied to sequence-to-sequence082

models (Graves, 2012; Boulanger-Lewandowski083

et al., 2013a,b), and it is now used in many state-084

of-the-art systems for language generation tasks085

(Zhang et al., 2020, 2021; Tran et al., 2021; Raf-086

fel et al., 2020, inter alia). Figs. 1 and 2 describe087

its two major implementations. They differ pri-088

marily in the treatment of finished sequences with089

the EOS symbol at the end: FCFS collects fin-090

ished sequences in a first come, first served manner091

and removes them from the beam (Line 11, Fig.092

1), whereas the vanilla version finds the top k se-093

quences, including both finished and unfinished se-094

quences (Line 5 in Fig. 2). While often unspecified095

in the literature, our later experiments in §3.2 will096

show that this difference can affect the downstream097

performance substantially, especially on news text098

4https://www.tensorflow.org/addons/api_docs/
python/tfa/seq2seq/BeamSearchDecoder.

Vanilla Beam Decoding
k: beam size, M : maximum length,
V: Vocabulary, score(·): scoring function.

1: B0 ← {⟨0, BOS⟩}
2: for t ∈ {1, . . . ,M−1} :
3: for ⟨s,y⟩ ∈ Bt−1 :
4: if y.last() = EOS :
5: H.add(⟨s,y⟩)
6: continue
7: for y ∈ V :
8: s← score(y ◦ y), H.add(⟨s,y ◦ y⟩)
9: Bt ← ∅

10: while |Bt| < k : # Find top k from H .
11: ⟨s,y⟩ ← H.max(), Bt.add(⟨s,y⟩)
12: H.remove(⟨s,y⟩)
13: if y.last() = EOS, ∀y ∈ Bt : # All finished.
14: return Bt.max()

15: return Bt.max()

Figure 2: The vanilla version of beam decoding. The
top-k operation is applied over H , the union of the
finished and continuing sequences. This is implemented,
for example, in the TensorFlow Addons library (Abadi
et al., 2015).4 See also Stahlberg and Byrne (2019);
Meister et al. (2020b).

FCFS

EOS

EOS EOS

EOS

Vanilla

Figure 3: FCFS with patience factor p vs. vanilla beam
decoding. k denotes the beam size. FCFS stores finished
sentences in F , but they stay in (and later may fall off
from) beam B during vanilla decoding. k ·p determines
the size of F . The illustration of beam decoding here is
inspired by Huang et al. (2012).

summarization. 099

Further comparing Figs. 1 and 2, we see their dif- 100

ference in terms of the breadth and depth of search. 101

Given the same beam size k, FCFS has a wider 102

breadth since it collects k unfinished sequences at 103

every step regardless of how many sequences are 104

finished with the EOS symbol.5 The vanilla algo- 105

rithm decodes until all top-k sequences are finished 106

(Line 13, Fig. 2), and therefore it tends to result in 107

deeper search. FCFS, in contrast, terminates when 108

a total of k finished sequences is found. 109

Patience Factor for FCFS Beam size k in FCFS 110

5In practice, this is implemented by taking the top 2k
sequences at every step. We find at most k EOS symbols, so
there are always at least k unfinished sequences. See https:
//github.com/huggingface/transformers/.
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thus controls both the breadth and stopping crite-111

rion (i.e., depth) of search. We introduce the pa-112

tience factor (Line 13, Fig. 1) that relaxes this as-113

sumption and separates the stopping criterion from114

the search breadth. Fig. 3 illustrates this patience115

factor as well as the difference between the FCFS116

and vanilla algorithms. The one-line change gen-117

eralizes FCFS (p=1) and adds flexibility. We will118

show that this flexibility is beneficial on machine119

translation and summarization (§3.2).120

3 Experiments121

We present extensive comparisons of beam decod-122

ing variants on text summarization and machine123

translation over a wide range of language pairs.124

Our simple addition of the patience factor improves125

performance across the board.126

3.1 Experimental Setup127

We evaluate four decoding algorithms on machine128

translation and summarization: greedy, vanilla,129

FCFS, and FCFS with the patience factor. For130

machine translation, we use multilingual BART131

(Tang et al., 2021), a strong, pretrained transformer132

model,6 and WMT 2020/2021 news test data (Bar-133

rault et al., 2020; Akhbardeh et al., 2021) for four134

diverse language pairs (eight directions): WMT135

2020 for EN↔PL (Polish) and 2021 for EN↔DE136

(German), EN↔JA (Japanese), and EN↔ZH (Chi-137

nese). We apply beam decoding with the same138

hyperparameters as Tang et al. (2021): beam size139

5 and length penalty 1. We measure performance140

with the COMET score (Rei et al., 2020a,b), a141

state-of-the-art evaluation metric based on multi-142

lingual contextual representations. For summariza-143

tion, we experiment with the CNN/Dailymail (CN-144

NDM, Hermann et al., 2015) and XSUM (Narayan145

et al., 2018) datasets. We apply the off-the-shelf146

BART models (Lewis et al., 2020) that are fine-147

tuned on each dataset.7 Performance is measured148

with ROUGE scores (Lin, 2004). We follow the149

original setting in Lewis et al. (2020): beam sizes 4150

and 6 and length penalty 2 and 1 for CNNDM and151

XSUM, respectively. More experimental details152

are described in Appendix §A.153

We experiment with the same patience factor on154

all datasets for each task, based on our preliminary155

development: p = 2 for machine translation and156

6https://github.com/pytorch/fairseq/tree/main/
examples/multilingual#mbart50-models.

7https://github.com/pytorch/fairseq/tree/main/
examples/bart.

p = 0.5 for summarization. Here we avoid addi- 157

tional effort and demonstrate the practical value 158

of our simple modification. We present detailed 159

sensitivity analysis over p in §3.3. 160

3.2 Results 161

Seen in Table 1 are results from our experiments. 162

FCFS with the patience factor outperforms the 163

widely-used FCFS algorithm across the board; e.g., 164

53.0 vs. 52.1 on EN→PL. Particularly notewor- 165

thy are the performance gains on the two summa- 166

rization datasets; e.g., 31.2 vs. 30.3 ROUGE-L on 167

CNNDM. Comparing vanilla decoding and FCFS, 168

we see that the former outperforms the latter (and 169

is competitive with or slightly better than FCFS 170

w/ p) on machine translation but underperforms 171

substantially on summarization; e.g., 34.4 vs. 33.1 172

ROUGE-L on XSUM. Vanilla decoding even per- 173

forms worse than greedy decoding in many cases. 174

We suspect this performance degradation on sum- 175

marization might be a reason why FCFS is used 176

instead of vanilla decoding in popular libraries. 177

3.3 Analysis 178

Here we use the standard dev. split from the XSUM 179

dataset and news test 2020 EN→DE and ZH→EN 180

data. We fixed the value of p for each task so far, 181

but Fig. 4 explores varying patience factors and 182

their effects on the performance (A: EN→DE; B: 183

XSUM) and the inference speed (C). The trans- 184

lation performance improves with larger patience 185

factors with diminishing gains. On the other hand, 186

summarization benefits more from patience factors 187

smaller than the original value of 1, possibly due to 188

issues in the scoring function (Wiseman and Rush, 189

2016) or ROUGE evaluations (Nenkova, 2006) and 190

the nature of the summarization task that aims to 191

generate concise text. Note, however, that we see 192

consistent patterns with ROUGE from COMET 193

(Rei et al., 2020b), which achieves the highest cor- 194

relation to human judgment on CNNDM (Kasai 195

et al., 2022a; see Table 3 in the appendix). Regard- 196

less, our patience factor provides useful flexibility 197

for any generation task. 198

As expected, generation slows down as p in- 199

creases (Fig. 4C). The inference slowdown from 200

around p=2 is still negligible, again showing the 201

practicality of our method. Fig. 5 explores the 202

performance gains from the patience factor over 203

varying beam sizes. The amount of improvement 204

changes, but the patience factor is generally bene- 205

ficial. We see similar trends for various values of 206
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WMT 2020/2021 Machine Translation (p=2) Summarization (p=0.5)

EN↔DE EN↔JA EN↔PL EN↔ZH CNNDM XSUM

Algorithm → ← → ← → ← → ← R-2 R-3 R-L R-2 R-3 R-L
Greedy 43.7 66.2 33.6 9.5 46.0 53.5 32.5 23.5 21.1 11.9 30.7 19.8 10.7 34.3
Vanilla 48.2 66.3 38.7 15.7 52.7 58.2 33.9 29.9 19.2 11.0 28.0 19.5 10.7 33.1
FCFS 47.9 66.2 38.0 15.0 52.1 58.1 33.7 29.6 20.4 11.6 30.3 20.4 11.4 34.4
FCFS w/ p 48.3 66.4 38.4 15.6 53.0 58.4 33.8 30.2 21.4 12.4 31.2 21.0 11.8 35.4

Table 1: We evaluate the four inference algorithms on the machine translation and news summarization test data
with the COMET score (Rei et al., 2020b) and ROUGE scores (ROUGE-2/3/L), respectively. FCFS w/ p indicates
our FCSF algorithm with the patience factor (p=2 for machine translation and p=0.5 for summarization). COMET
uses crosslingual contextual representations from XLM-RoBERTa (Conneau et al., 2020) and has shown to have
significantly higher correlation with expert human judgment than alternatives (Mathur et al., 2020b; Kasai et al.,
2022a) like BLEU (Papineni et al., 2002). Nonetheless, we see consistent patterns from BLEU (Appendix §B). For
CNNDM, we used 100 test articles with 10 human-written references each from Kryscinski et al. (2019).

the length penalty (see Fig. 6 in the appendix).207
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Figure 4: Effects of varying patience factors p on the dev.
score (A and B) and inference speed (C). The inference
speed is measured with batch size 20, relative to the
vanilla decoding algorithm on the same single Nvidia
A100-SXM GPU. Other languages pairs were similar
to EN→DE (A). CNNDM also had similar trends to
XSUM (B).
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Figure 5: Effects of controlled patience on the dev. data
over varying beam sizes. The length penalty value is 1.
We evaluate with COMET for machine translation and
ROUGE-L for XSUM summarization.

4 Further Related Work208

Stopping Criteria for Beam Decoding The pa-209

tience factor changes the stopping criterion and210

adds flexibility in the search depth of the common211

beam search algorithm. Similarly, several prior212

works studied stopping criteria to improve machine213

translation (Huang et al., 2017; Yang et al., 2018;214

Ma et al., 2019). Our machine translation experi-215

ments are consistent with their findings: stopping216

criteria that yield accurate search improve perfor- 217

mance. In the case of summarization, however, we 218

observed that less patient and thus less accurate 219

search can improve ROUGE scores. 220

Breadth of Beam Decoding Much prior work 221

explored downstream effects of the search breadth 222

(Koehn and Knowles, 2017; Murray and Chiang, 223

2018; Ott et al., 2018; Cohen and Beck, 2019; 224

Stahlberg and Byrne, 2019, inter alia). Beam de- 225

coding with larger beam sizes can find sequences 226

with higher scores but lead to performance degrada- 227

tion (often called the beam search curse; Yang et al., 228

2018). Recent work (Meister et al., 2020a) argued 229

that beam decoding with small beams introduces 230

bias that is related to the uniform information den- 231

sity of human-produced text (Levy, 2005). Freitag 232

and Al-Onaizan (2017) proposed a method to adap- 233

tively shrink the beam width based on the partial 234

scores to speed up inference. This work focused 235

on the stopping criteria (i.e., depth) and separated 236

them from the breadth of the commonly-used beam 237

decoding. 238

5 Conclusion 239

We introduced the patience factor that generalizes 240

the widespread implementation of beam text de- 241

coding. Our extensive experiments showed that 242

the patience factor improves the generation perfor- 243

mance of strong, off-the-shelf models on machine 244

translation and summarization with an insignificant 245

slowdown in generation. As it only requires a mini- 246

mal change in code, we hope that many researchers 247

and practitioners of language generation will bene- 248

fit from our simple yet effective modification. 249

4



Limitations and Ethical Considerations250

We evaluated our decoding method both on ma-251

chine translation and news summarization. Our252

machine translation experiments span diverse lan-253

guages, including morphologically rich languages254

(e.g., Japanese and Polish) and languages with non-255

Latin scripts (e.g., Japanese and Chinese). Nonethe-256

less, our summarization experiments are limited to257

English and the news domain mainly due to our258

budget constraints. There are also many other lan-259

guage generation tasks for which our method can260

be useful. Since our improvement only requires261

one line of code, we hope that practitioners will262

implement it for the domain and the task of their263

interest and further assess how our decoding algo-264

rithm performs over a wider range of applications.265

Evaluating language generation remains a chal-266

lenging research problem. We carefully set up our267

experiments to mitigate potential evaluation issues.268

The WMT 2020/2021 test data consist only of news269

text written in the original language, in contrast to270

the test data from WMT 2018 (Bojar et al., 2018)271

or earlier. For example, the WMT 2021 EN→DE272

and DE→EN test data come from completely dif-273

ferent documents. This avoids the translationese274

effect that would overestimate the translation per-275

formance due to the simplicity of translated text276

(Graham et al., 2020). Moreover, some language277

pairs in the WMT 2020 and 2021 test data have mul-278

tiple references per instance, which increases the279

correlation of automatic evaluations with human280

judgment (Kasai et al., 2022a). We presented re-281

sults using automatic metrics from recent work (Rei282

et al., 2020b) as well as conventional, n-gram over-283

lap metrics (Papineni et al., 2002; Lin, 2004). Re-284

cent automatic metrics have shown to have higher285

correlation with human judgements, but human286

judgments are sometimes inconsistent, especially287

when crowdsourced (Clark et al., 2021; Kasai et al.,288

2022b). Since our decoding method is a generaliza-289

tion of the widely-used beam search algorithm, we290

hope that it will be tested and used in real-world291

systems of language generation.292
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dalena Biesialska, Ondřej Bojar, Rajen Chatter- 310
jee, Vishrav Chaudhary, Marta R. Costa-jussa, 311
Cristina España-Bonet, Angela Fan, Christian Fe- 312
dermann, Markus Freitag, Yvette Graham, Ro- 313
man Grundkiewicz, Barry Haddow, Leonie Harter, 314
Kenneth Heafield, Christopher Homan, Matthias 315
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai, 316
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp 317
Koehn, Nicholas Lourie, Christof Monz, Makoto 318
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki 319
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au- 320
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar- 321
cos Zampieri. 2021. Findings of the 2021 conference 322
on machine translation (WMT21). In Proc. of WMT. 323

Peter Anderson, Xiaodong He, Chris Buehler, Damien 324
Teney, Mark Johnson, Stephen Gould, and Lei Zhang. 325
2018. Bottom-up and top-down attention for image 326
captioning and visual question answering. In Proc. 327
of CVPR. 328

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- 329
gio. 2015. Neural machine translation by jointly 330
learning to align and translate. In Proc. of ICLR. 331

Loïc Barrault, Magdalena Biesialska, Ondřej Bo- 332
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Appendices526

Hyperparameter Value

WMT Machine Translation (All Pairs)
beam size 5
length penalty 1

CNNDM Summarization
beam size 4
length penalty 2
max-len-b 140
min-len 55
no-repeat-ngram-size 3

XSUM Summarization
beam size 6
length penalty 1
max-len-b 60
min-len 10
no-repeat-ngram-size 3

Table 2: Beam decoding hyperparameters. We generally
followed prior work: Tang et al. (2021) for machine
translation and Lewis et al. (2020) for CNNDM and
XSUM summarization.

A Beam Decoding Hyperparameters527

Table 2 shows the beam decoding hyperparameters528

in our experiments. We generally follow the origi-529

nal settings of the pretrained, off-the-shelf models530

(Tang et al., 2021; Lewis et al., 2020).531

B Additional Results532

Table 3 reports BLEU (Papineni et al., 2002) and533

COMET (Rei et al., 2020b) scores for the machine534

translation and summarization experiments, respec-535

tively. We use the sacreBLEU implementation for536

BLEU (Post, 2018). Note that much recent work537

(Mathur et al., 2020a; Kasai et al., 2022a,b; Edunov538

et al., 2020, inter alia) found poor correlation be-539

tween BLEU scores and human judgment for evalu-540

ating strong language generation models. COMET541

is an automatic metric for machine translation that542

uses crosslingual contextual representations from543

XLM-RoBERTa (Conneau et al., 2020), but it can544

be used monolingually for evaluating summariza-545

tion as well (Kasai et al., 2022a).546

Fig. 6 explores the performance gains from the547

patience factor over varying length penalty values.548

Consistent with the trends from various beam sizes549

(Fig. 5), the amount of improvement changes, but550

the patience factor is generally beneficial.551
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Figure 6: Effects of controlled patience on the dev. data
over varying length penalty values. The beam sizes are
all 5. We evaluate with COMET for machine translation
and ROUGE-L for XSUM summarization.
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WMT 2020 and 2021 Machine Translation (BLEU) Summarization

EN↔DE EN↔JA EN↔PL EN↔ZH CNNDM XSUM

Algorithm → ← → ← → ← → ← COMET COMET
Greedy 42.9 46.6 20.2 17.4 19.8 30.7 31.2 21.7 1.6 0.1
Vanilla 45.1 48.4 21.6 19.7 21.1 32.5 32.5 23.6 -5.5 -1.6
FCFS 45.0 48.4 21.3 19.5 21.0 32.4 32.6 23.4 -4.2 2.2
FCFS w/ p 45.0 48.5 21.7 19.8 21.1 32.5 32.3 23.7 -1.1 2.5

Table 3: We evaluate the four decoding algorithms on machine translation and summarization and report BLEU
(Papineni et al., 2002) and COMET (Rei et al., 2020b) scores here. FCFS w/ p indicates our FCSF algorithm with
the patience factor (p=2 for machine translation and p=0.5 for summarization). COMET is an automatic metric
for machine translation that uses crosslingual contextual representations from XLM-RoBERTa (Conneau et al.,
2020), but it can be used for evaluating summarization as well (Kasai et al., 2022a).
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