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Recurrent Convolutional Fusion for RGB-D
Object Recognition

Mohammad Reza Loghmani , Mirco Planamente, Barbara Caputo , and Markus Vincze

Abstract—Providing robots with the ability to recognize objects
like humans has always been one of the primary goals of robot vi-
sion. The introduction of RGB-D cameras has paved the way for a
significant leap forward in this direction thanks to the rich infor-
mation provided by these sensors. However, the robot vision com-
munity still lacks an effective method to synergically use the RGB
and depth data to improve object recognition. In order to take a
step in this direction, we introduce a novel end-to-end architec-
ture for RGB-D object recognition called recurrent convolutional
fusion (RCFusion). Our method generates compact and highly dis-
criminative multi-modal features by combining RGB and depth
information representing different levels of abstraction. Extensive
experiments on two popular datasets, RGB-D Object Dataset and
JHUIT-50, show that RCFusion significantly outperforms state-of-
the-art approaches in both the object categorization and instance
recognition tasks. In addition, experiments on the more challenging
Object Clutter Indoor Dataset confirm the validity of our method in
the presence of clutter and occlusion. The code is publicly available
at: “https://github.com/MRLoghmani/rcfusion.”

Index Terms—RGB-D perception, recognition, visual learning.

I. INTRODUCTION

HUMAN-BUILT environments are, ultimately, collections
of objects. Every daily activity requires to understand and

operate a set of objects to accomplish a task. Robotic systems that
aim at assisting the user in his own environment need to possess
the ability to recognize objects. In fact, object recognition is
the foundation for higher-level tasks that rely on an accurate
description of the visual scene.

Despite the interesting results achieved for object recogni-
tion using standard RGB images, there are inherent limitations
due to the loss of data caused by projecting the 3-dimensional
world into a 2-dimensional image plane. The use of RGB-D
(Kinect-style) cameras alleviates these shortcomings by using
range imaging technologies to provide information about the
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camera-scene distance as a depth image. These sensors became
ubiquitous in robotics due to their affordable price and the rich
visual information they provide. In fact, while the RGB image
contains color, texture and appearance information, the depth
image contains additional geometric information and is more ro-
bust with respect to lighting and color variations. Since RGB-D
cameras are already deployed in most service robots, improving
the performance of robot perceptual systems through a better
integration of RGB and depth information constitutes a “free
lunch”.

After the pivotal work of Krizhevsky et al. [1], deep con-
volutional neural networks (CNNs) quickly became the domi-
nant tool in computer vision, establishing new state-of-the-art
results for a large variety of tasks. Research in RGB-D object
recognition followed the same trend, with numerous algorithms
(e.g. [2]–[4]) exploiting features learned from CNNs instead of
the traditional hand-crafted features. The common pipeline in-
volves two CNN streams, operating on RGB and depth images
respectively, as feature extractors. However, the lack of a large-
scale dataset of depth images to train the depth CNN forced the
vision community to find practical workarounds. Much effort
has been dedicated to develop methods that colorize the depth
images to exploit CNNs pre-trained on RGB images. However,
the actual strategies to extract and combine the features from
the two modalities have been neglected. Several methods sim-
ply extract features from a specific layer of the two CNNs and
combine them through a fully connected or a max pooling layer.
We argue that these strategies are sub-optimal because (a) they
assume that the selected layer always represents the best ab-
straction level to combine RGB and depth information and (b)
they do not exploit the full range of information from the two
modalities during the fusion process.

In this letter, we propose a novel end-to-end architecture for
RGB-D object recognition called recurrent convolutional fusion
(RCFusion). Our method extracts features from multiple hid-
den layers of the CNNs for RGB and depth, respectively, and
combines them through a recurrent neural network (RNN), as
shown in Figure 1. Our idea is that combining RGB and depth
features from several levels of abstraction can provide greater
information to the classifier to make the final prediction. Al-
though RNNs are typically used to process sequential data, this
type of neural networks have been proven to be very effective
information compressors [5] and scale well in the parameters
with respect to the number of extracted features, as discussed
in Section III-C. In addition, we provide experimental evidence
that this solution is superior to simply fusing the concatenated
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Fig. 1. High-level scheme of RCFusion. The blue boxes are instantiated with
convolutional neural networks and the thick arrows represent multiple feature
vectors extracted from different layers of a CNN.

features with a fully connected layer (see ablation study in
Section IV-D).

We evaluate our method on standard object recognition bench-
marks, RGB-D Object Dataset [6] and JHUIT-50 [7], and we
compare the results with the best performing methods in the
literature. The experimental results show that our method out-
performs the existing approaches and establishes new state-of-
the-art results for both datasets. In order to further consolidate
the effectiveness of our method, we adapt an object segmenta-
tion dataset, called Object Clutter Indoor Dataset (OCID) [8],
to the instance recognition task to further evaluate RCFusion.
OCID has been recently released to provide object scenes with
high level of clutter and occlusion, arguably two of the biggest
challenges faced by robotic visual perception systems [9]. Our
method confirms its efficacy also on this challenging dataset,
despite the small amount of training data available. An imple-
mentation of the method, relying on tensorflow [10], is publicly
available at: https://github.com/MRLoghmani/rcfusion.

In summary, our contributions are:
� a novel architecture for RGB-D object recognition that se-

quentially combines RGB and depth features representing
different levels of abstraction,

� state-of-the-art performance on the most popular RGB-D
object recognition benchmark datasets,

� introduction of a new benchmark with robotic-oriented
challenges, i.e. clutter, occlusion and little training data.

The remainder of the letter is organized as follows: the
next section positions our approach compared to related work,
Section III introduces the proposed method, Section IV presents
the experimental results and Section V draws the conclusions.

II. RELATED WORK

The diffusion of RGB-D cameras fueled an increasing effort in
designing visual algorithms able to exploit the additional depth
information provided by these sensors. Classical approaches for
RGB-D object recognition (e.g. [6], [11]) used a combination of

different hand-crafted feature descriptors, such as SIFT, textons,
and depth edges, on the two modalities (RGB and depth) to
perform object matching. More recently, several methods have
exploited shallow learning techniques to generate features from
RGB-D data in an unsupervised learning framework [12]–[14].

Since the ground-breaking work of Krizhevsky et al. [1],
data-hungry deep CNNs have been the go-to solution for fea-
ture extraction. While large-scale datasets of RGB images, such
as ImageNet [15], allowed the generation of powerful CNN-
based models for RGB feature extraction, the lack of a depth
counterpart posed the problem of how to extract features from
depth images. An effective and convenient strategy to circum-
vent the problem is to colorize the depth images to exploit CNNs
pre-trained on RGB data. Several hand-crafted colorization ap-
proaches have been proposed to map the raw depth value of
each pixel [2] or derived physical quantities, such as position
and orientation [16] or local surface normals [17], to colors.
Carlucci et al. [18] proposed instead a leaning-based approach
to colorize the depth images by training a colorization network.
Other methods use alternatives to RGB-trained CNNs for ex-
tracting features from depth data. Li et al. [19] generate the
depth features using a modified version of HONV [20] encoded
with Fisher Vector [21]. Carlucci et al. [4] generate artificial
depth data using 3D CAD models to train a CNN that extracts
features directly from raw depth images.

The aforementioned methods focus on effectively extracting
features from the depth data and use trivial strategies to combine
the two modalities for the final prediction. For example, Carlucci
et al. [18] simply select the class with the highest activation
among the RGB and depth predictions, while Eitel et al. [2]
and Aakerberg et al. [3] use a fully connected layer to learn to
fuse the predictions from the two modalities. Alternatively, a
few works prioritize the development of an effective modality
fusion. Wang et al. [22] alternate between maximizing the dis-
criminative characteristics of each modality and minimizing the
inter-modality distance in feature space. Wang et al. [23] obtain
the multi-modal feature by using a custom layer to separate the
individual and correlated information of the extracted RGB and
depth features. Both methods combine the two modalities by
processing features extracted from one layer of the CNNs and
rely on cumbersome multi-stage optimization processes.

Recent works from related areas, such as object detection
and segmentation from color images, show the benefits of us-
ing features extracted from multiple layers of a CNN. Hariha-
ran et al. [24], increase the resolution of higher level features
by combining information from lower layers at a pixel level for
segmentation purposes. Bell et al. [25] perform object detection
at different scales using features extracted from different layers
of a pre-trained network. These methods mostly take advantage
of the difference in receptive fields in various layers of the neu-
ral network and use a simple combination of pooling and linear
transformations to process the extracted features.

The focus of this letter is on the synthesis of multi-modal fea-
tures from RGB-D data rather than the depth processing. In fact,
for the depth processing part, we adopt the standard colorization
method based on surface normals, since it has been proven not
only to be the most effective non-learned colorization method



2880 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019

Fig. 2. Architecture of recurrent convolutional fusion. It consists of two streams of convolutional neural networks (CNN) that process RGB and depth images,
respectively. The output of corresponding hidden layers from the two streams are projected into a common space, concatenated and sequentially fed into a recurrent
neural network (RNN) that synthesizes the final multi-modal features. The output of the RNN is then used by a classifier to determine the label of the input data.

in the literature, but also to surpass learned methods in some
instances [18]. Differently from existing works, our method
produces highly informative global features from different lev-
els of abstraction through a dedicated non-linear unit, called
projection block. Features from the RGB and depth modalities
are then combined together in a sequential manner to generate
the final multi-modal representation. In addition, our model can
be trained end-to-end, without the need of optimizing in multiple
stages.

III. RECURRENT CONVOLUTIONAL FUSION

Our multi-modal deep neural network for RGB-D object
recognition is illustrated in Figure 2. The network’s architec-
ture has three main stages:

1) Multi-level feature extraction: two streams of convolu-
tional networks, with the same architecture, are used to
process RGB and depth data (RGB-CNN and Depth-
CNN), respectively, and extract features at different levels
of the networks;

2) Feature projection and concatenation: features extracted
from each level of the RGB- and Depth-CNN are individ-
ually transformed through projection blocks and concate-
nated to create the corresponding RGB-D feature;

3) Recurrent multi-modal fusion: RGB-D features extracted
from different levels are sequentially fed to an RNN that
produces a descriptive and compact multi-modal feature.

The output of the recurrent network is then used by a softmax
classifier to infer the object label. The network can be trained
end-to-end with a cross-entropy loss using standard backprop-
agation algorithms based on stochastic gradient descent. In the
following, we describe in greater detail each of the aforestated
characteristics of RCFusion.

A. Multi-Level Feature Extraction

CNNs process the input with sets of filters learned from a large
amount of data. These filters represent progressively higher lev-
els of abstraction, going from the input to the output: edges,
textures, patterns, parts, and objects [26]. Methods for RGB-D
object recognition commonly combine the output of one of the
last layers of the RGB- and Depth-CNN (typically the last layer
before the classifier) and assume that the chosen layer represents
the appropriate level of abstraction to combine the two modal-
ities. We argue that it is possible to remove this assumption by
combining RGB and depth information at multiple layers across
the CNNs and use them all to generate a highly discriminative
RGB-D feature. Let us denote with xrgb ∈ X rgb the RGB input
images, with xd ∈ X d the depth input images and y ∈ Y the la-
bels, where X rgb, X d and Y are the RGB/depth input and label
space. We further denote with frgb

i and fd
i the output of layer

i of RGB-CNN and Depth-CNN, respectively, with i = 1, ..., L
and L the total number of layers of each CNN. Notably, visu-
alizing the learned filters has shown [26] that, for a given task,
a chosen CNN architecture consistently generates features with
the same level of abstraction from a reference layer. For ex-
ample, AlexNet [1] learns various types of Gabor filters in the
first convolutional layer. So, the same architecture is chosen for
RGB- and Depth-CNN to ensure the same abstraction level at
corresponding layers.

B. Feature Projection and Concatenation

One of the main challenges in combining features obtained
from different hidden layers of the same network is the lack of
a one-to-one correspondence between elements of the different
feature vectors. More formally, f ∗

i and f ∗
j , with i �= j and ∗

indicating any of the superscripts rgb or d, have (in general)
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Fig. 3. Implementation of the projection block that transforms the feature f∗
i

into the projected feature p∗i . conv(k × k)×D indicates a convolutional layer
with D filters of size (k × k), BN indicates a batch normalization layer and
ReLU indicates an activation layer with ReLU non-linearity.

different dimensions and thus belong to distinct feature spaces,
Fi andFj . In order to make features coming from different levels
of abstraction comparable, we project them into a common space
F̄ :

p∗i = G∗
i (f

∗
i ) s.t. p∗i ∈ F̄ (1)

The projection block Gi(.) performs a set of non-linear opera-
tions to transform a volumetric input into a vector of dimensions
(1×D). More specifically, Gi(.) is defined by two convolutional
layers (with batch normalization and ReLU non-linearity) and a
global max pooling layer, as shown in Figure 3. The projected
RGB and depth features of each layer i are then concatenated to
form pi =

[
prgbi ; pdi

]
.

C. Recurrent Multi-Modal Fusion

In order to create a compact multi-modal representation, the
set

{
p1, . . . , pL

}
is sequentially fed to an RNN. Recurrent mod-

els align the positions of the elements in the sequence to steps in
computation time and generate a sequence of hidden states hi as
a function of the previous hidden state hi−1 and the current input
pi. In this letter, we use an instantiation of an RNN called gated
recurrent unit (GRU) [27]. This network is considered to be a
variation of long-short term memory (LSTM) [28] that requires
25% less parameters. GRU has been proven to be able to retain
information even in extremely long sequences with thousands
of elements [5].

GRU computes the nth element of the hidden state at step i
as an adaptive linear interpolation:

hn
i = (1− zni )h

n
i−1 + zni h̃

n
i , (2)

where zni is called update gate and is computed as

zni = sigmoid(θzpi + γzhi)
n, (3)

where sigmoid(.) is the sigmoid function and θz and γz are
the trainable parameters of the gate. Essentially, the update gate
determines how much the unit updates its content. The candidate
activation h̃i in Equation 2 is computed as

h̃n
i = tanh(θhpi + γh(ri � hi−1))

n, (4)

where ri is the reset gate, θh and γh are trainable parameters and
� is the element-wise multiplication operation. Similarly to zni ,
the reset gate rni is computed as

rni = sigmoid(θrpi + γrhi)
n, (5)

where θr and γr are the trainable parameters of the gate. When
rni assumes values close to zero, it effectively resets the hidden

state of the network to the current input pi. This double-gate
mechanism has the goal of ensuring that the hidden state pro-
gressively embeds the most relevant information of the input
sequence

{
p1, . . . , pL

}
.

The RNN, combined with a softmax classifier, models a prob-
ability distribution over a sequence by being trained to predict the
category label given the sequence of projected RGB-D features.
In particular, the prediction of the jth class of the multinomial
distribution of K object categories is obtained as

ŷj = Pr(yj = 1|p1, ..., p1) = exp(hT
Lθ

j
c)∑K

k=1 exp(h
T
Lθ

k
c )

, (6)

where θ is the matrix of trainable parameters of the classifier
and θj(/k) represents its jth(/kth) row, and the superscript T
represents the transpose operation.

The choice of a recurrent network for this operation is twofold:
(a) the hidden state of the network acts as a memory unit and
embeds a summary of the most relevant information from the
different levels of abstraction, and (b) the number of parameters
of the network is independent of L, while for a more straight-
forward choice, such as a fully connected layer, it grows lin-
early with L. Although RNNs are typically used to process time
series data, our atypical deployment is supported by previous
works [29], [30] that have shown that these type of networks are
also useful in compressing and combining information from dif-
ferent sources. We empirically demonstrate in the ablation study
in Section IV-D that a recurrent network is more effectively than
a typical fully connected layer to aggregate the RGB and depth
features from different levels of abstraction.

IV. EXPERIMENTS

In the following, we evaluate RCFusion on RGB-D Object
Dataset, JHUIT-50, and OCID. After revealing the protocol used
to set up the experiments, we discuss the setting used for train-
ing the network. Then, we show how the performances of our
method compare to the existing literature. Finally, we perform
an ablation study to identify the contribution of the different
elements of our method.

A. Datasets

RGB-D Object Dataset: It contains 41,877 RGB-D images
capturing 300 objects from 51 categories, spanning from fruit
and vegetables to tools and containers. Since its introduction,
this dataset has become the silver thread connecting the existing
methods for RGB-D object recognition. We use this dataset to
assess the performance of RCFusion in the object categorization
task. For the evaluation, we follow the standard experimental
protocol defined in [11], where ten training/test split are defined
in such a way that one object instance per class is left out of the
training set. The reported results are the average accuracy over
the different splits.

JHUIT-50: It contains 14,698 RGB-D images capturing 50
common workshop tools, such as clamps and screw drivers.
Since this dataset presents few objects, but very similar to each
other, it can be used to assess the performance of RCFusion
in the instance recognition task. For the evaluation, we follow
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the standard experimental protocol defined in [7], where train-
ing data are collected from fixed viewing angles between the
camera and the object while the test data are collected by freely
moving the camera around the object.

OCID: It includes 96 cluttered scenes representing com-
mon objects organized in three subsets: ARID20, ARID10, and
YCB10. The ARID20 and ARID10 subsets contain scenes that
include, respectively, up to 20 and 10 out of 59 objects from
Autonomous Robot Indoor Dataset [9]. Similarly, the YCB10
subset contains scenes with up to 10 objects from Yale-CMU-
Berkeley object and model set [31]. Each scene is built incre-
mentally by adding one object at a time and recording new
frames at each step. Two ASUS-PRO cameras, positioned at
different heights, are used to simultaneously record each scene.
Further scene variation is introduced by changing the support
plane (floor and table) and the background texture. Since OCID
has been acquired to evaluate object segmentation methods in
cluttered scenes, semantic labels are not provided by the authors.
In order to adapt this dataset to a classification task, we crop out
the objects from each frame and annotate them with semantic
labels similar to the RGB-D Object Dataset. To avoid redun-
dancies, we go sequentially through the frames of each scene
and save only the crops that have an overlap with the bounding
box of a newly introduced object. We then filter out the classes
with less than 20 images to ensure a minimum amout of training
samples per class. We use the crops from the ARID20 subset
to train the network for an instance recognition task and then
use the crops from the ARID10 subset for testing. Overall, we
obtain 3,939 RGB-D images capturing 49 distinct objects. The
original datasets, as well as the crops and annotation used in this
letter are available at “https://www.acin.tuwien.ac.at/en/vision-
for-robotics/software-tools/object-clutter-indoor-dataset/”.

B. Architecture

The network architecture of RCFusion passes through inde-
pendent design choices of three main elements: RGB-/Depth-
CNN, projection blocks and RNN.

RGB-/Depth-CNN: With computational and memory effi-
ciency in mind, we choose a CNN architecture with a relatively
small number of parameters. Since residual networks have be-
come a standard choice, we deploy ResNet-18, the most compact
representation proposed by He et al. [32]. ResNet-18 has 18 con-
volutional layers organized in five residual blocks (∼40, 000 pa-
rameters). We extract our features after each skip connection in
the network. The network has two skip connections per residual
blockand we start extracting from the second block: this results
in L = 8 extracted features per network. An implementation of
ResNet-18 pre-trained on ImageNet is available in [33].

Projection blocks: The projection blocks, shown in Figure 3,
are designed in such a way that the first convolutional layer
focuses on exploiting the spatial dimensions of the input, width
and height, withD = 512filters of size (7× 7), while the second
convolutional layer exploits its depth withD = 512filters of size
(1 × 1). Finally, the global max pooling computes the maximum
of each depth slice. This instantiation of the projection blocks
has provided the best performances among those that we tried.

TABLE I
ACCURACY (%) OF SEVERAL METHODS FOR OBJECT RECOGNITION ON RGB-D

OBJECT DATASET [6]. RED: HIGHEST RESULT; BLUE: OTHER

CONSIDERABLE RESULTS

RNN: In a trade-off between network capacity and small num-
ber of parameters, we use the popular GRU [27]. In our exper-
iments, we process the sequence of projected vectors with a
single GRU layer with a number of memory neurons M = 50.
An implementation of GRU can be found in all the most popular
deep learning libraries, including tensorflow.

C. Training

We train our model using RMSprop optimizer with batch size
64, learning rate 0.001, momentum 0.9, weight decay 0.0002
and max norm 4. The architecture specific parameters have been
fixed through a grid search to projection depth D = 512 and
memory neurons M = 50. The weights of the two ResNet-18
used as the RGB- and Depth-CNN are initialized with values
obtained by pre-training the networks on ImageNet. The rest
of the network is initialized with Xavier initialization method
in a multi-start fashion, where the network is initialized multi-
ple times and, after one epoch, only the most promising model
continues the training. All the parameters of the network, in-
cluding those defining the RGB- and Depth-CNN, are updated
during training. The input to the network is synchronized RGB
and depth images pre-processed following the procedure in [3],
where the depth information is encoded with surface normals,
the best non-learned colorization method (see Section II). For
JHUIT-50 and OCID, we compensate for the small training set
with simple data augmentation techniques: scaling, horizontal
and vertical flip, and 90 degree rotation.

D. Results

In order to validate our method, we first compare the per-
formance of RCFusion to existing methods on two benchmark
datasets, RGB-D Object Dataet and JHUIT-50. We then test our
method on a more challenging dataset, OCID, and perform an
ablation study to showcase the contribution of each component
of the method.

Benchmark: We benchmark RCFusion on RGB-D Object
Dataset and JHUIT-50 against other methods in the literature.
Table I shows the results on RGB-D Object Dataset for the object
categorization task. The reported results for the RGB and depth
modality are obtained by training a classifier on the final fea-
tures of the RGB- and Depth-CNN, respectively. The reported
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Fig. 4. Per class accuracy (%) of RCFusion on RGB-D Object Dataset [6].

multi-modal RGB-D results show that our method outperforms
all the competing approaches. In addition, the results of the sin-
gle modality predictions demonstrate that ResNet-18 is a valid
trade-off between small number of parameters and high accu-
racy. In fact, on the RGB modality, the accuracy is second only
to [19], where they use a VGG network [34] that introduces
considerably more parameters than ResNet-18. For the depth
modality, ResNet-18 provides higher accuracy than all the com-
peting methods.

In order to gain a better insight on the performance of RCFu-
sion, we consider the accuracy on the individual categories of
RGB-D Object Dataset. Figure 4 shows that the multi-modal ap-
proach either matches or improves over the results on the single
modalities for almost all categories. For categories like “light-
bulb”, “orange” or “bowl”, where the accuracy on one modality
is very low, RCFusion learns to rely on the other modality. An
interesting insight on the functioning of the method is given
by comparing, for each category, which other categories gen-
erate the misclassification. Table III indicates, for few exam-
ple classes, the most frequently misclassified class in the RGB,
depth and RGB-D case. When an object class is confused with
distinct classes in the individual modalities, like for “keyboard”
and “calculator”, the RGB-D modality can perform better. How-
ever, when an object class is confused with the same classes in
both RGB and depth modalities, like for “pear” and “potato”,
the RGB-D modality can perform slightly worse than the single
modalities. This highlights a weakness of the method that will
be the subject of future investigations.

Table II shows the results on JHUIT-50 for the instance recog-
nition task. For the individual modalities, ResNet-18 shows
again a compelling performance. In the multi-modal RGB-D
classification, our method clearly outperforms all the competing
approaches with a margin of 2% on the best existing method,
DECO [18]. In summary, RCFusion establishes new state-of-
the-art results on the two most popular datasets for RGB-D ob-
ject recognition, demonstrating its robustness against changes
in the dataset and the task.

TABLE II
ACCURACY (%) OF SEVERAL METHODS FOR OBJECT RECOGNITION ON

JHUIT-50 [7]. RED: HIGHEST RESULT; BLUE: OTHER CONSIDERABLE RESULTS

TABLE III
MOST FREQUENTLY MISCLASSIFIED CLASSES IN RGB, DEPTH AND RGB-D

FOR SELECTED REFERENCE CLASSES

Challenge: To evaluate the performance of our method on
more robotic-oriented data, we show experiments on OCID.
This dataset has been recorded with the specific goal of creat-
ing highly cluttered and occluded object scenes (see Figure 6).
Since objects are presented in clutter rather than in isolation, us-
ing multiple modalities is useful to cope with ambiguous views,
thus making OCID particularly relevant to evaluate algorithms
for RGB-D object recognition. In addition, its small training set
of 2,428 cropped images represents an additional challenge. Ta-
ble IV shows the results on OCID for the instance recognition
task. As well as our method, we also report the results of DECO,
that showed competitive performance on RBG-D Object Dataset
and JHUIT-50. The results on the single modalities show that
the depth data alone are not very informative for this task, with a
gap of 50% with respect to the RGB modality. Nevertheless, our
method leverages both modalities and obtains an improvement
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Fig. 5. t-SNE visualization of the final features obtained for RGB, depth and
RGB-D modalities.

Fig. 6. Examples of object crops from the Object Cluttered Indoor Dataset [8]
with their instance label.

of 6.1% in accuracy with respect to the RGB modality alone.
On the contrary, DECO reveals its limits and maintains the same
performance of the RGB modality even in the multi-modal case.
This result is due to the simple strategy used in DECO for the
multi-modal fusion: the final prediction is made by selecting the
class with the maximum probability among the RGB and depth
predictions. The more complex modality fusion of RCFusion
thus translates into a non-trivial improvement of over 10% in
accuracy with respect to DECO.

Feature analysis: An interesting intuition of the effectiveness
of RCFusion comes from the visualization of the features learned
on the OCID dataset. Figure 5 represents the two dimensional
t-SNE embedding of the final features of the different modal-
ities. As expected, the t-SNE embedding of the depth features
clusters together objects with similar shapes. For example, ob-
jects with near-spherical shapes like “orange_1”, “pear_1” and
“ball_2(/3)” are grouped together. The RGB modality provides
more discriminative features, but similar pairs of objects, like
(“orange_1”-“peach_1”) and (“cereal_box_1”-“cereal_box_2”)
are very close to each other. Instead, the embedding of the
RGB-D features neatly separates each object in discernible
clusters.

Ablation study: To observe the contribution of the two
main elements of RCFusion, multi-level feature extraction and

TABLE IV
ACCURACY (%) OF DECO [18] AND VARIATIONS OF RCFUSION ON OBJECT

CLUTTER INDOOR DATASET [8]. “RCFUSION - RES5” IS THE VARIATION OF

RCFUSION WHEN ONLY THE FEATURES FROM THE LAST RESIDUAL LAYER

(RES5) ARE USED FOR CLASSIFICATION. “RCFUSION - FC” IS THE VARIATON

OF RCFUSION WITH A FULLY CONNECTED LAYER USED INSTEAD OF THE

RECURRENT NEURAL NETWORK FOR COMBINING THE RGB
AND DEPTH FEATURES

recurrent fusion, we alternatively remove these elements and
compare the performance with the full version of the method.
Table IV presents the results of these variations on OCID. It can
be noticed that using only the features from the last layer of the
RGB-/Depth-CNN (RCFusion - res5) drops the performance by
2% in accuracy. This confirms that explicitly using features from
several levels of abstraction improves the multi-modal recogni-
tion compared to only using the final features of single modal-
ities. Analogously, if instead of using the RNN we concatenate
the multi-modal features from the projection blocks and fuse
them with a fully connected layer, the performance drops by
3.1% in accuracy. This confirms that a more sophisticated fu-
sion mechanism that effectively combines the modalities while
retaining the crucial information from the different levels of ab-
straction is crucial for obtaining a final discriminative RGB-D
feature.

V. DISCUSSION AND CONCLUSION

In this letter, we have presented RCFusion: a multi-modal
deep neural network for RGB-D object recognition. Our method
uses two streams of convolutional networks to extract RGB and
depth features from multiple levels of abstraction. These features
are concatenated and sequentially fed to an RNN to obtain a com-
pact RGB-D feature that is used by a softmax classifier for the
final classification. We show the validity of our approach by out-
performing the existing methods for RGB-D recognition on two
standard benchmarks, RGB-D Object Dataset and JHUIT-50.
We also stress test RCFusion with some of the main challenges
of robotic vision by evaluating it on OCID. In fact, not only does
this dataset present highly cluttered and occluded scenes, but it
also provides few training samples. Despite these challenges,
RCFusion presents compelling results on OCID and marks the
superiority of our multi-modal fusion mechanism.

Our experiments also show that there is space for improve-
ment. For the classes where the predictions of the RGB and the
depth modality are often fooled by the same class, RCFusion
can perform worse than the single modalities. In future work,
we will investigate how to mitigate this problem by using an
ensemble of different fusion mechanisms.

The novel architectural choices of this letter are presented
in their simplest instantiation to promote the validation of the
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underlying idea rather than a specific implementation. In future
work, we will evaluate more complex configurations of recur-
rent networks for the multi-level sequential fusion. Due to their
implementation-agnostic nature, the main concepts presented in
this letter can be adapted to different tasks. The results obtained
on object categorization encourage further research to extend
this approach to higher level tasks, such as object detection and
semantic segmentation.
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