
Low-Cost Traffic Control Using Reinforcement
Learning With Limited State

Ahmed F. AbouElhamayed, Hani Mahdi
Faculty of Engineering, Ain Shams University

Cairo, Egypt
ahmed.abouelhamayed@eng.asu.edu.eg, hani.mahdi@eng.asu.edu.eg

Cherif Salama
Faculty of Engineering, Ain Shams University

The American University in Cairo
Cairo, Egypt

cherif.salama@eng.asu.edu.eg

Abstract— Solving the traffic congestion problem has many
benefits financially and environmentally. The application of
Artificial Intelligence to solving the traffic congestion problem
has been going on for a while. However, most of the current
research in this area depends on knowing lots of information
about all vehicles in the network. While it produces promising
results, applying these techniques in the current world is not
easy. In this paper, we apply reinforcement learning to the field
of traffic control under the assumption that only minimal
information is available. Our approach produces results that are
better than currently deployed fixed-time traffic lights without
having heavy requirements. In our first test configuration, our
agent’s waiting time is 82.3% of the best fixed-time traffic lights’
waiting time and the average CO2 emissions produced by our
agent is 97.5% of the emissions produced by the best fixed-time
traffic lights. This shows the potential of applying reinforcement
learning to the Traffic Control problem with limited resources.

Keywords—Artificial Intelligence; Reinforcement Learning;
Traffic Control;

I. INTRODUCTION
Traffic congestion is one of the problems that have massive

cost in our life. Some even call it a plague of modern life[1].
According to the World Economic Forum, traffic congestion
costs the US economy alone nearly $87 billion in 2018[2].

Minimizing traffic congestion can be achieved by multiple
ways ranging from very primitive but often costly solutions
such as widening the roads to much more advanced techniques
such as guiding all the vehicles in the network based on their
sources and destinations to routes that would cause limited to
no traffic congestion. Widening the road has its limitations as
roads cannot be widened if there are existing buildings around
the side. Guiding all vehicles on the other hand requires
massive amount of information, processing, and connections.

The main contributions of this paper can be summarized as
follows:

• Experimenting the efficiency of reinforcement
learning in the traffic control problem given
limited resources.

• Achieving a better average waiting time and
carbon dioxide CO2 emissions than fixed-time
traffic lights in most tested configurations.

• Examining the effect of single vs multiple sensors
per lane.

The remainder of this paper is organized as follows:
Section II gives the necessary background on reinforcement
learning which we used to train our agent. Section III describes
the problem that we tackled in detail. The proposed model to
solve the problem follows in Section IV. The experiment setup
is explained in Section V followed by the results in Section VI.
Finally, the paper is concluded in Section VII with some
comments on the results and some suggested future work.

II. REINFORCEMENT LEARNING BACKGROUND
Machine learning can be classified into classical learning,

ensemble methods, neural nets and reinforcement learning.
Classical learning includes supervised and unsupervised
learning. In this paper, we use reinforcement learning. In
reinforcement learning, there is an agent that is given an
environment and is asked to behave optimally in that
environment. It learns by trying different actions and observing
the rewards that result from these actions. Its goal is to try to
maximize its rewards. In this section, we explore the details of
reinforcement learning as it is the method used in this paper
[3].

Consider an environment in which there is a specific goal
that should be achieved. The environment has many states and
it can be in any of those states. Consider S to be the set of all
possible states in which the environment can be. An agent has
the ability to take any action from a set of possible actions A.
taking an action !" ∈ $ while the environment is in a state %" ∈
& moves the environment to be in a state %"'(∈ & and the
agent takes a reward)"'(. The agent’s goal is to maximize its
rewards over time giving preference to short-term rewards than
long-term rewards. i.e. a reward at time * + 1 is better than a
reward at time * + 2. We will be representing this as a value
called the Return ./ = 	∑ 34)"'4'(

5
467 . where 3, ranging

between 0 and 1, is known as the discount factor and it
indicates how important are future rewards with respect to

present rewards. The higher its value, the more the agent cares
about future rewards. If it is 0, then the agent only cares about
the current reward and pays no attention to upcoming rewards.
The agent should find a policy 8 which indicates for each state
which action to take in order to maximize the return. An
optimal policy 8∗is a policy that gives you the maximum return
possible from any state. Obtaining the optimal policy 8∗ is
frequently a difficult task given that the agent only has the
ability to try an action on the given environment and observe
the reward from that action and the new state in which the
environment is at as shown in Fig. 1.

Fig. 1. Basic idea of reinforcement learning

To be able to find an approximation of the optimal policy
8∗, let us define a new function :;(%, !) which we will call
the Quality of taking an action ! when in state % under policy
8. That value is the expected return if one takes action ! and
then follows policy 8 thereafter.

:;(%, !) = ?; @A34)"'4'(

5

467

|	%" = 	%, !" = 	!C

Where ?; is the expected value of the equation if we
followed policy 8. We can define the optimal Q-function as the
Q-function that has the maximum value from all possible
policies as that gives the maximum return.

:∗(%, !) = max
;
:;(%, !)

If you have the optimal Q-function, you can easily get the
optimal policy from it; Given any state, you would search for
the Q-value in that state’s actions and choose to apply that
action.

We can thus define the optimal Q function as follows:

:∗(%, !) = ?	 G)"'(+ 	3max
HI

:∗(%"'(, !
J)K

Where ? is the expected value of the equation and %"'(,
and)"'(are the next state and the reward that are the results of
applying action ! in state % respectively. This equation is
called the Bellman optimality equation. It states that for any
state-action pair, the quality, or expected return, from doing
that action on that state is equal to the reward returned and the
discount factor multiplied by the maximum Q-value that can be
obtained from the next state by applying all its actions.

Reinforcement learning is based on this equation and its
goal is to build the optimal Q-function which is stored as a
table in the memory. To build that table, we start by building
an arbitrary table. We can for example start by setting all the
values in the Q-function to 0. After that, we start applying

random actions to the environment and as we apply actions, we
start to learn some of the correct values of the Q-table and thus
update the memory. After some iterations, the Q-table in the
memory should converge to the optimal Q-function.

To decide on how long we should apply random actions
and how frequent should our actions be random, we define a
value L called the exploration rate ranging between 0 and 1. It
defines the probability of the agent taking random actions
instead of using the existing Q-table to pick one. It is usually
preferred to start with a large exploration value when the Q-
table is arbitrary and gradually decrease this value as the Q-
table is updated with more trustworthy values.

The Q-table is updated according to the following equation:

:MNO(%, !) = (1 − Q):RST(%, !)

+ 	Q U)"'(+ 3max
HJ

:(%"'(, !′)W

The value Q, also ranging between 0 and 1, is called the
learning rate and it defines how much we trust the new Q-value
obtained and how big of a change we want to make in the
existing Q-table based on it.

III. PROBLEM FORMULATION

A. The Traffic Intersection
The problem of traffic control has many formats in the

literature. Some papers study controlling a traffic light in a
single simple intersection where the movement is either
vertical or horizontal with no turns allowed like [4] and [5].
Others study more complex intersections where many possible
movements between different lanes are allowed like [6], [7],
[8] and [9]. Some papers study more than one intersection in
the same problem such as [5] and [10]. This paper tackles the
single simple intersection problem. Vehicles either move from
the top lane to the bottom lane and vice versa or move from the
left lane to the right lane and vice versa. The studied
intersection is shown in Fig. 2 below.

Fig. 2. The traffic intersection studied in this paper

B. Information Available to the Agent
Lots of the recent papers assume that information about all

vehicles in the network is available. For example, the work in
[5] and [11] assume that the position of all vehicles around the
intersection is known and in [7] it is assumed that the positions
and velocities of all vehicles around the intersection are known.

In this paper, we will consider that the agent has access to
minimal amount of information. The goal is to use limited
resources to allow the application of the technique practically
without excessive cost. We will assume that there are sensors
placed in some positions around the intersection and that these
sensors along with the traffic light state itself are the only
sources of information available to the agent. A similar
approach can be seen in [10]. The values that will be extracted
from the sensors are defined in Section IV.

C. Actions Doable by the Agent
In this paper, we will consider that the agent has the ability

to control the traffic light only and has no control over the
routes of the vehicles. Vehicles and their routes are generated
without knowledge or control from the agent. The traffic light
is said to have many phases. It can be in one of those phases. A
phase is a combination of red/yellow/green lights in different
directions. Some of the papers study the possibility of having
variable times, set by the agent, for the yellow light like [12].
While others like [13] and [8] have a predefined time for
yellow light. Some of the papers allow the agent to specify the
phase of the traffic light at specific times like [14] but adds a
limitation such that the action taken might not be applied
immediately but a series of other phases might have to happen
to allow that phase to keep the vehicles safe to have a yellow
light in any direction while switching from green to red for
example. In this model, the order of phases at different times is
not guaranteed to be constant. In other papers like [6], the agent
is only allowed to select when the next phase should happen
but the ordering of phases is always preserved. In this paper,
we have a fixed time for the yellow light and since there are
actually 2 phases only that contain no yellow light, choosing
the phase manually or choosing the go to the next phase is
similar in our case but when going from green to red, yellow
must happen first. The agent is not given control while the
phase contains a yellow light and it is given control in all other
times. Yellow time is fixed at 6 timesteps.

D. Goal
The goal of reducing traffic congestion is difficult to

measure. [6] takes into account 3 criteria: number of arrived
vehicles, average waiting time of a vehicle and the time loss for
each vehicle. [5] measures the travel time and [10] measures
the average number of vehicles waiting at stoplights during the
simulation as well as the average amount of CO2 emissions per
distance travelled by the vehicles in the simulation.

In this paper, we consider the average waiting time per
vehicle as well as the average CO2 emissions per vehicle.
Waiting time is calculated by adding up the number of vehicles
at each timestep that have been waiting for more than one
timestep. A vehicle is considered waiting if its speed is less
than 0.1 meters/sec.

IV. PROPOSED MODEL

A. State
We have to derive the state from the sensors and the traffic

light only to achieve the goal of minimizing the cost required to
apply this research practically. Some papers like [5] use a
binary matrix where 1 indicates that a vehicle is present in the
position and 0 otherwise. While this representation is valid in
their case as this matrix covers a wide area around the traffic
intersection, it would not be sufficient in our case since we
have access to a small number of positions, the ones that have
sensors, and thus we need to include as much information as
possible about these positions.

 We are limited to information that can actually be
calculated by the sensor. So, we cannot get the cumulative
waiting time of the vehicle standing over the sensor since the
sensor has no way of knowing the history of that vehicle.
However, we can get the waiting time of the vehicle standing
over it as the waiting time of a vehicle standing over a sensor
can be easily calculated using software as long as the sensor
can identify when a new vehicle is in its range. In addition to
the information from the sensors, we add the current traffic
light phase to the state to help the agent take the correct action.

One final element is added to the state, which is the
duration of the current phase; The time that the traffic light has
been in this phase. This is to help the agent know whether it
should switch phases or not if both lanes have waiting vehicles.

If we keep the state as described above without any
modifications, the state-space would be infinite as the numbers
are continuous. To be able to apply Q-table without the need to
go with Deep Q-Network to approximate it, we split the
possible numbers into ranges and give a number to each range.
The ranges and their mappings are shown in Table I. below.

TABLE I. MAPPING OF RANGES TO VALUES IN THE STATE

Element
Mapping

Range Value

Waiting Time of
the vechicle on
the sensor (in
timesteps)

No Vehicles 0

0 - 3 1

3 - 20 2

>= 20 3

Phase Duration
(in timesteps)

0 – 3 0

3 – 6 1

6 – 10 2

>= 10 3

B. Reward
The reward is one of the key components that affect the

performance of the agent. Unlike the state, where we had to
depend only on information from the sensors; In the calculation
of the reward we can depend on any information available in
the environment. The goal of the agent is to maximize the
reward. However, in the traffic control problem, what we
usually want to do is penalize the agent for congestion and so

the reward is most of the time a negative value or the inverse of
another value. There are some exceptions when the reward is
calculated as the throughput of the vehicles as the case in [15]
or a function in the speed of the vehicles as in [16]. Some
papers like [17] and [18] calculate the reward function as a
function of queue lengths. Other papers like [19] consider
multiple reward functions, some of them are functions of the
delay experienced by the vehicles. Some papers consider
multiple weighted factors in the reward such as [12] including
penalties for switching the phase, waiting time, delay and
emergency stops, which happen when the vehicle is asked to
decelerate heavily, usually as a result of small yellow time.
Some papers consider the reward as the difference between
some function before applying the action and after it like [7].

In this paper, we use the negative value of the waiting time
of all vehicles in all lanes as the reward function. Since our
agent is only given choice when the traffic light is in a phase
that contains a green light, i.e. a phase that does not contain a
yellow light, when the action of the agent causes a phase with
yellow light, the reward in that case is negative the sum of all
the values of waiting times of all vehicles in all lanes in all the
timesteps in which the phase contains a yellow light. This
means that the reward when the agent causes a switch is much
worse than when the agent keeps the phase as it is. This
discourages the agent from causing a switch unless necessary
without explicitly penalizing switching like [12].

C. Action Space
The agent is asked for an action in each time step in which

the traffic light has no yellow light. This means that the agent
does not control yellow times as mentioned earlier. The actions
allowed are binary; 0 means keep everything as is and 1 means
go to the next phase which necessarily means that the currently
green lane is going to be red, after a yellow light phase, and the
currently red lane is going to be green. Some of the papers like
[10] give control to the agent only every fixed amount of
timesteps but we are not following that and we are not putting
any minimum time for the green light to let the agent learn it on
its own and to not enforce the traffic light to have a green lane
that has no vehicles while the other red lane has vehicles
waiting for some time.

V. EXPERIMENTS
Multiple experiments are carried out to test the performance

of the proposed model using a simulated
environment. Simulation of Urban Mobility (SUMO) [20] is
used to carry out the experiments. It is a platform where the
roads, routes, vehicles and traffic lights are defined. Traci [21],
which provides an API to get information about vehicles and
traffic lights as well as controlling the simulation and its
components, is used to get information needed to provide the
state, rewards, and performance measurements. It is also used
to actuate the actions of the agent in the environment. Next is a
description of each of the experiments that are carried out.

Some values are common in all experiments. Exploration
rate L is set to 1.0 initially and decreases by 0.01 per episode
such that the agent starts by fully exploring and then moves to
exploiting as it goes through new episodes and it reaches full

exploitation after 100 episodes. The value of α is also set to 1.0
at the beginning and decreases by 0.005 per episode till it
reaches 0.02 and stays at that value for the remainder of the
training. The value of γ is 0.95. For the first 5000 timesteps,
vehicles are generated according to specific probabilities
defined for each of the experiments.

A. Experiment 1: One Sensor Per Lane
In this experiment, we have a total of 4 sensors and the size

of the state space is 2(× 4Z × 4 = 2048. 2 is for the phase of
the traffic light. Since it is limited to the phases where there is a
green light. It has only 2 possible values. The 44 correspond to
the possible values of the 4 sensors, while the last 4
corresponds to the duration of the current traffic light phase.
The 4 sensors are each placed at a distance of 5 meters away
from the end of the lane approaching the traffic light. It is the
position at which the first vehicle waiting in the queue of that
traffic light would stand.

For training, each episode takes one of configurations 1-3
shown in Table II in turns. The model is trained for 700
episodes. The average waiting time per vehicle for each
episode is shown in Fig. 3. It is worth noting that at the
beginning of the training the actions are mostly random due to
high exploration rate and as episode 100, when exploration
stops, is reached, the agent behaves much better than the
random behavior at the beginning.

Fig. 3. Training performance for Experiment 1

B. Experiment 2: Two Sensors Per Lane
In this experiment, we have a total of 8 sensors and the size

of the state space is 2(× 4] × 4 = 524,288. The values are
the same as the previous experiment with the addition of
another 44 corresponding to each of the additional sensors. The
4 new sensors are each placed at a distance 50 meters away
from the end of the lane approaching the traffic light to detect
if the queue of waiting cars in each of the lanes has reached this
length. The goal of this experiment is to assess the effect of
increasing the number of sensors.

Training is done in the same way as the previous
experiment. The average waiting time per vehicle for each
episode is very similar to the one obtained from the previous
experiment shown in Fig. 3.

Another set of experiments is performed for configurations
4, 5 and 6 which represent heavier traffic. For these
experiments, a 2-sensor agent is trained sequentially for 500
episodes without changing the other parameters.

TABLE II. PROBABILITIES OF VEHICLES IN EACH CONFIGURATION

Configuration
Probabilities of vehicle generation

Route Probability

Configuration 1

East to West / West to East
0.04

North to South / South to North

Configuration 2
East to West / West to East 0.04

North to South / South to North 0.02

Configuration 3
East to West / West to East 0.02

North to South / South to North 0.04

Configuration 4
East to West / West to East

0.1
North to South / South to North

Configuration 5
East to West / West to East 0.02

North to South / South to North 0.1

Configuration 6
East to West / West to East 0.1

North to South / South to North 0.02

VI. RESULTS
As recent researches are taking a different approach with

higher cost data, our proposed solution is compared with the
fixed-time traffic lights configuration to understand the
efficiency of applying such a low-cost solution instead of the
currently widespread fixed-time traffic lights. 3 different fixed-
time traffic lights configurations are tested:

• Long Phase: 60 seconds between switching

• Medium Phase: 30 seconds between switching

• Small Phase: 15 seconds between switching
The yellow time for all of them and for the agent is fixed at

6 seconds. The simulation is run for 100 episodes on each of
the models in comparison. During these episodes, no learning
happens but the vehicles generation is different randomly. The
results are reported in the Fig. 4. The x-axis contains the
episodes and the y-axis contains the average waiting time per
vehicle.

Fig. 4. Testing results for configuration 1.

The results show that both our agents outperform the fixed-
time traffic lights. The performance is close to the Short Phase
version of the fixed-time traffic lights and in one of the
episodes, the fixed-time traffic lights beat the 1-sensor Agent.
The results also show that 2-sensors Agent is better than 1-
Sensor Agent 68% of the time.

The result of configuration 2 is shown in Fig. 5 and it is very
similar to the result of configuration 3. Similar to the previous
configuration, our agent outperforms the fixed-time traffic
lights. In these configurations, the agents are always better than
fixed-time traffic lights. Interestingly, the 1-sensor model
outperformed the 2-sensors model in these configurations. The
2-sensors model performed better than the 1-sensor model only
28% and 41% of the times in configurations 2 and 3
respectively. In Fig. 6, it can be seen that the 2-sensor agent
outperforms the Short Phase in CO2 emissions as well. The x-
axis contains the episodes and the y-axis contain the average
CO2 emissions per vehicle.

In Fig. 7, it can be seen that the Medium and Long Phases
perform better than our agent for configuration 4. However, in
configuration 5, our agent outperforms all others as shown in
Fig. 8. A similar performance is observed in configuration 6.

Fig. 5. Testing results for Configuration 2.

Fig. 6. CO2 emissions for configuration 1.

Fig. 7. Testing results for configuration 4.

Fig. 8. Testing results for configuration 5.

VII. CONCLUSION AND FUTURE WORK
In this paper, we showed the potential of applying

reinforcement learning in the field of traffic control without
needing much information and showed that it has high
potential as our proposed model beat fixed-time traffic lights in
the problems under test. We examined 2 different models with
a different number of sensors. The models managed to score
less average waiting time per vehicle for most of the
configurations. We showed the effect of adding extra sensors
which improved the performance in some cases and made it
worse in some others given that both were given the same
amount of training. This shows that adding more sensors would
require more training so that it can reach the same performance
of the less sensors model. The agent is outperformed by two of
the fixed-phase traffic lights in case of heavy traffic. Observing
the behavior of the agent shows that it does not perform
optimally in case of traffic congestion on both approaching
lanes as it switches quicker than the optimal. More training or
tweaking of the reward function might be the solution to fixing
this behavior. That trained model still beats all fixed-time
traffic lights in all the other configurations.

Some of the methods used can be fine-tuned or replaced by
other methods which might be a little more expensive or
require more processing but might actually perform better.
Fine-tuning the ranges used in the state-space and the positions
of the sensors might lead to better performance. Replacing the
Q-Table with a deep Q-Network can also improve the
performance although it might require more training.

ACKNOWLEDGMENT (Heading 5)
The authors would like to acknowledge Instabug for

hosting part of this research during September 2019
Hackweek.

We would also like to thank Ahmed Bassel, Mai Yehia,
Mazen Magdy, and Youmna Elhassany for their contribution
in this research.

REFERENCES
[1. Arnott, R. and K. Small, The economics of traffic
congestion. American scientist, 1994. 82(5): p. 446-455.
2. Forum, W.E. Traffic congestion cost the US economy
nearly $87 billion in 2018. 2019; Available from:
https://www.weforum.org/agenda/2019/03/traffic-congestion-
cost-the-us-economy-nearly-87-billion-in-2018/.
3. Sutton, R.S. and A.G. Barto, Introduction to
reinforcement learning. Vol. 2. 1998: MIT press Cambridge.
4. Mousavi, S.S., M. Schukat, and E. Howley, Traffic
light control using deep policy-gradient and value-function-
based reinforcement learning. IET Intelligent Transport
Systems, 2017. 11(7): p. 417-423.
5. Van der Pol, E. and F.A. Oliehoek, Coordinated deep
reinforcement learners for traffic light control. Proceedings of
Learning, Inference and Control of Multi-Agent Systems (at
NIPS 2016), 2016.

6. Lin, Y., et al., An efficient deep reinforcement
learning model for urban traffic control. arXiv preprint
arXiv:1808.01876, 2018.
7. Liang, X., et al., Deep reinforcement learning for
traffic light control in vehicular networks. arXiv preprint
arXiv:1803.11115, 2018.
8. Genders, W. and S. Razavi, Using a deep
reinforcement learning agent for traffic signal control. arXiv
preprint arXiv:1611.01142, 2016.
9. Gao, J., et al., Adaptive traffic signal control: Deep
reinforcement learning algorithm with experience replay and
target network. arXiv preprint arXiv:1705.02755, 2017.
10. Stevens, M. and C. Yeh, Reinforcement learning for
traffic optimization. 2016, Stanford. edu.
11. Rijken, T., DeepLight: Deep reinforcement learning
for signalised traffic control. 2015, Master’s Thesis.
University College London.
12. van der Pol, E., Deep reinforcement learning for
coordination in traffic light control. Master's thesis,
University of Amsterdam, 2016.
13. Nishi, T., et al. Traffic Signal Control Based on
Reinforcement Learning with Graph Convolutional Neural
Nets. in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). 2018. IEEE.
14. El-Tantawy, S. and B. Abdulhai. An agent-based
learning towards decentralized and coordinated traffic signal
control. in 13th International IEEE Conference on Intelligent
Transportation Systems. 2010. IEEE.
15. Salkham, A.a., et al. A collaborative reinforcement
learning approach to urban traffic control optimization. in
Proceedings of the 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent
Technology-Volume 02. 2008. IEEE Computer Society.
16. Casas, N., Deep deterministic policy gradient for
urban traffic light control. arXiv preprint arXiv:1703.09035,
2017.
17. Abdoos, M., N. Mozayani, and A.L. Bazzan. Traffic
light control in non-stationary environments based on multi
agent Q-learning. in 2011 14th International IEEE conference
on intelligent transportation systems (ITSC). 2011. IEEE.
18. Zheng, G., et al., Diagnosing Reinforcement
Learning for Traffic Signal Control. arXiv preprint
arXiv:1905.04716, 2019.
19. El-Tantawy, S., B. Abdulhai, and H. Abdelgawad,
Multiagent reinforcement learning for integrated network of
adaptive traffic signal controllers (MARLIN-ATSC):
methodology and large-scale application on downtown
Toronto. IEEE Transactions on Intelligent Transportation
Systems, 2013. 14(3): p. 1140-1150.
20. Krajzewicz, D., et al., Recent development and
applications of SUMO-Simulation of Urban MObility.
International Journal On Advances in Systems and
Measurements, 2012. 5(3&4).
21. Wegener, A., et al. TraCI: an interface for coupling
road traffic and network simulators. in Proceedings of the
11th communications and networking simulation symposium.
2008. ACM.

