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Abstract— Solving the traffic congestion problem has many 
benefits financially and environmentally. The application of 
Artificial Intelligence to solving the traffic congestion problem 
has been going on for a while. However, most of the current 
research in this area depends on knowing lots of information 
about all vehicles in the network. While it produces promising 
results, applying these techniques in the current world is not 
easy. In this paper, we apply reinforcement learning to the field 
of traffic control under the assumption that only minimal 
information is available. Our approach produces results that are 
better than currently deployed fixed-time traffic lights without 
having heavy requirements. In our first test configuration, our 
agent’s waiting time is 82.3% of the best fixed-time traffic lights’ 
waiting time and the average CO2 emissions produced by our 
agent is 97.5% of the emissions produced by the best fixed-time 
traffic lights. This shows the potential of applying reinforcement 
learning to the Traffic Control problem with limited resources.  

Keywords—Artificial Intelligence; Reinforcement Learning; 
Traffic Control; 

I.  INTRODUCTION 
Traffic congestion is one of the problems that have massive 

cost in our life. Some even call it a plague of modern life[1]. 
According to the World Economic Forum, traffic congestion 
costs the US economy alone nearly $87 billion in 2018[2]. 

Minimizing traffic congestion can be achieved by multiple 
ways ranging from very primitive but often costly solutions 
such as widening the roads to much more advanced techniques 
such as guiding all the vehicles in the network based on their 
sources and destinations to routes that would cause limited to 
no traffic congestion. Widening the road has its limitations as 
roads cannot be widened if there are existing buildings around 
the side. Guiding all vehicles on the other hand requires 
massive amount of information, processing, and connections. 

The main contributions of this paper can be summarized as 
follows: 

• Experimenting the efficiency of reinforcement 
learning in the traffic control problem given 
limited resources. 

• Achieving a better average waiting time and 
carbon dioxide CO2 emissions than fixed-time 
traffic lights in most tested configurations. 

• Examining the effect of single vs multiple sensors 
per lane. 

The remainder of this paper is organized as follows: 
Section II gives the necessary background on reinforcement 
learning which we used to train our agent. Section III describes 
the problem that we tackled in detail. The proposed model to 
solve the problem follows in Section IV. The experiment setup 
is explained in Section V followed by the results in Section VI. 
Finally, the paper is concluded in Section VII with some 
comments on the results and some suggested future work. 

II. REINFORCEMENT LEARNING BACKGROUND 
Machine learning can be classified into classical learning, 

ensemble methods, neural nets and reinforcement learning. 
Classical learning includes supervised and unsupervised 
learning. In this paper, we use reinforcement learning. In 
reinforcement learning, there is an agent that is given an 
environment and is asked to behave optimally in that 
environment. It learns by trying different actions and observing 
the rewards that result from these actions. Its goal is to try to 
maximize its rewards. In this section, we explore the details of 
reinforcement learning as it is the method used in this paper 
[3]. 

Consider an environment in which there is a specific goal 
that should be achieved. The environment has many states and 
it can be in any of those states. Consider S to be the set of all 
possible states in which the environment can be. An agent has 
the ability to take any action from a set of possible actions A. 
taking an action !" ∈ $ while the environment is in a state %" ∈
& moves the environment to be in a state %"'( ∈ & and the 
agent takes a reward )"'(. The agent’s goal is to maximize its 
rewards over time giving preference to short-term rewards than 
long-term rewards. i.e. a reward at time * + 1 is better than a 
reward at time * + 2. We will be representing this as a value 
called the Return ./ = 	∑ 34)"'4'(	

5
467 . where 3, ranging 

between 0 and 1, is known as the discount factor and it 
indicates how important are future rewards with respect to 



present rewards. The higher its value, the more the agent cares 
about future rewards. If it is 0, then the agent only cares about 
the current reward and pays no attention to upcoming rewards. 
The agent should find a policy 8 which indicates for each state 
which action to take in order to maximize the return. An 
optimal policy 8∗is a policy that gives you the maximum return 
possible from any state. Obtaining the optimal policy 8∗ is 
frequently a difficult task given that the agent only has the 
ability to try an action on the given environment and observe 
the reward from that action and the new state in which the 
environment is at as shown in Fig. 1.  

 

Fig. 1. Basic idea of reinforcement learning 

To be able to find an approximation of the optimal policy 
8∗, let us define a new function :;(%, !) which we will call 
the Quality of taking an action ! when in state % under policy 
8. That value is the expected return if one takes action ! and 
then follows policy 8 thereafter. 

:;(%, !) = ?; @A34)"'4'(	
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Where ?; is the expected value of the equation if we 
followed policy 8. We can define the optimal Q-function as the 
Q-function that has the maximum value from all possible 
policies as that gives the maximum return. 

:∗(%, !) = max
;
:;(%, !) 

If you have the optimal Q-function, you can easily get the 
optimal policy from it; Given any state, you would search for 
the Q-value in that state’s actions and choose to apply that 
action. 

We can thus define the optimal Q function as follows: 

:∗(%, !) = ?	 G)"'( + 	3max
HI

:∗(%"'(, !
J)K 

Where ? is the expected value of the equation and %"'(, 
and )"'( are the next state and the reward that are the results of 
applying action ! in state % respectively. This equation is 
called the Bellman optimality equation. It states that for any 
state-action pair, the quality, or expected return, from doing 
that action on that state is equal to the reward returned and the 
discount factor multiplied by the maximum Q-value that can be 
obtained from the next state by applying all its actions. 

Reinforcement learning is based on this equation and its 
goal is to build the optimal Q-function which is stored as a 
table in the memory. To build that table, we start by building 
an arbitrary table. We can for example start by setting all the 
values in the Q-function to 0. After that, we start applying 

random actions to the environment and as we apply actions, we 
start to learn some of the correct values of the Q-table and thus 
update the memory. After some iterations, the Q-table in the 
memory should converge to the optimal Q-function. 

To decide on how long we should apply random actions 
and how frequent should our actions be random, we define a 
value L called the exploration rate ranging between 0 and 1. It 
defines the probability of the agent taking random actions 
instead of using the existing Q-table to pick one. It is usually 
preferred to start with a large exploration value when the Q-
table is arbitrary and gradually decrease this value as the Q-
table is updated with more trustworthy values. 

The Q-table is updated according to the following equation: 

:MNO(%, !) = (1 − Q):RST(%, !)

+ 	Q U)"'( + 3max
HJ

:(%"'(, !′)W 

The value Q, also ranging between 0 and 1, is called the 
learning rate and it defines how much we trust the new Q-value 
obtained and how big of a change we want to make in the 
existing Q-table based on it. 

 

III. PROBLEM FORMULATION 

A. The Traffic Intersection 
The problem of traffic control has many formats in the 

literature. Some papers study controlling a traffic light in a 
single simple intersection where the movement is either 
vertical or horizontal with no turns allowed like [4] and [5].  
Others study more complex intersections where many possible 
movements between different lanes are allowed like [6], [7],  
[8] and [9]. Some papers study more than one intersection in 
the same problem such as [5] and [10]. This paper tackles the 
single simple intersection problem. Vehicles either move from 
the top lane to the bottom lane and vice versa or move from the 
left lane to the right lane and vice versa. The studied 
intersection is shown in Fig. 2 below. 

 

Fig. 2. The traffic intersection studied in this paper 



B. Information Available to the Agent 
Lots of the recent papers assume that information about all 

vehicles in the network is available. For example, the work in 
[5] and [11] assume that the position of all vehicles around the 
intersection is known and in [7] it is assumed that the positions 
and velocities of all vehicles around the intersection are known.  

In this paper, we will consider that the agent has access to 
minimal amount of information. The goal is to use limited 
resources to allow the application of the technique practically 
without excessive cost. We will assume that there are sensors 
placed in some positions around the intersection and that these 
sensors along with the traffic light state itself are the only 
sources of information available to the agent. A similar 
approach can be seen in [10]. The values that will be extracted 
from the sensors are defined in Section IV. 

C. Actions Doable by the Agent 
In this paper, we will consider that the agent has the ability 

to control the traffic light only and has no control over the 
routes of the vehicles. Vehicles and their routes are generated 
without knowledge or control from the agent. The traffic light 
is said to have many phases. It can be in one of those phases. A 
phase is a combination of red/yellow/green lights in different 
directions. Some of the papers study the possibility of having 
variable times, set by the agent, for the yellow light like [12]. 
While others like [13] and [8] have a predefined time for 
yellow light. Some of the papers allow the agent to specify the 
phase of the traffic light at specific times like [14] but adds a 
limitation such that the action taken might not be applied 
immediately but a series of other phases might have to happen 
to allow that phase to keep the vehicles safe to have a yellow 
light in any direction while switching from green to red for 
example. In this model, the order of phases at different times is 
not guaranteed to be constant. In other papers like [6], the agent 
is only allowed to select when the next phase should happen 
but the ordering of phases is always preserved. In this paper, 
we have a fixed time for the yellow light and since there are 
actually 2 phases only that contain no yellow light, choosing 
the phase manually or choosing the go to the next phase is 
similar in our case but when going from green to red, yellow 
must happen first. The agent is not given control while the 
phase contains a yellow light and it is given control in all other 
times. Yellow time is fixed at 6 timesteps. 

D. Goal 
The goal of reducing traffic congestion is difficult to 

measure. [6] takes into account 3 criteria: number of arrived 
vehicles, average waiting time of a vehicle and the time loss for 
each vehicle. [5] measures the travel time and [10] measures 
the average number of vehicles waiting at stoplights during the 
simulation as well as the average amount of CO2 emissions per 
distance travelled by the vehicles in the simulation. 

In this paper, we consider the average waiting time per 
vehicle as well as the average CO2 emissions per vehicle. 
Waiting time is calculated by adding up the number of vehicles 
at each timestep that have been waiting for more than one 
timestep. A vehicle is considered waiting if its speed is less 
than 0.1 meters/sec. 

IV. PROPOSED MODEL 

A. State 
We have to derive the state from the sensors and the traffic 

light only to achieve the goal of minimizing the cost required to 
apply this research practically. Some papers like [5] use a 
binary matrix where 1 indicates that a vehicle is present in the 
position and 0 otherwise. While this representation is valid in 
their case as this matrix covers a wide area around the traffic 
intersection, it would not be sufficient in our case since we 
have access to a small number of positions, the ones that have 
sensors, and thus we need to include as much information as 
possible about these positions. 

 We are limited to information that can actually be 
calculated by the sensor. So, we cannot get the cumulative 
waiting time of the vehicle standing over the sensor since the 
sensor has no way of knowing the history of that vehicle. 
However, we can get the waiting time of the vehicle standing 
over it as the waiting time of a vehicle standing over a sensor 
can be easily calculated using software as long as the sensor 
can identify when a new vehicle is in its range. In addition to 
the information from the sensors, we add the current traffic 
light phase to the state to help the agent take the correct action. 

One final element is added to the state, which is the 
duration of the current phase; The time that the traffic light has 
been in this phase. This is to help the agent know whether it 
should switch phases or not if both lanes have waiting vehicles. 

If we keep the state as described above without any 
modifications, the state-space would be infinite as the numbers 
are continuous. To be able to apply Q-table without the need to 
go with Deep Q-Network to approximate it, we split the 
possible numbers into ranges and give a number to each range. 
The ranges and their mappings are shown in Table I. below. 

TABLE I.  MAPPING OF RANGES TO VALUES IN THE STATE 

Element 
Mapping 

Range Value 

Waiting Time of 
the vechicle on 
the sensor (in 
timesteps) 

No Vehicles 0 

0 - 3 1 

3 - 20 2 

>= 20 3 

Phase Duration 
(in timesteps) 

0 – 3 0 

3 – 6 1 

6 – 10 2 

>= 10 3 

B. Reward 
The reward is one of the key components that affect the 

performance of the agent. Unlike the state, where we had to 
depend only on information from the sensors; In the calculation 
of the reward we can depend on any information available in 
the environment. The goal of the agent is to maximize the 
reward. However, in the traffic control problem, what we 
usually want to do is penalize the agent for congestion and so 



the reward is most of the time a negative value or the inverse of 
another value. There are some exceptions when the reward is 
calculated as the throughput of the vehicles as the case in [15] 
or a function in the speed of the vehicles as in [16]. Some 
papers like [17] and [18] calculate the reward function as a 
function of queue lengths. Other papers like [19] consider 
multiple reward functions, some of them are functions of the 
delay experienced by the vehicles. Some papers consider 
multiple weighted factors in the reward such as [12] including 
penalties for switching the phase, waiting time, delay and 
emergency stops, which happen when the vehicle is asked to 
decelerate heavily, usually as a result of small yellow time. 
Some papers consider the reward as the difference between 
some function before applying the action and after it like [7]. 

In this paper, we use the negative value of the waiting time 
of all vehicles in all lanes as the reward function. Since our 
agent is only given choice when the traffic light is in a phase 
that contains a green light, i.e. a phase that does not contain a 
yellow light, when the action of the agent causes a phase with 
yellow light, the reward in that case is negative the sum of all 
the values of waiting times of all vehicles in all lanes in all the 
timesteps in which the phase contains a yellow light. This 
means that the reward when the agent causes a switch is much 
worse than when the agent keeps the phase as it is. This 
discourages the agent from causing a switch unless necessary 
without explicitly penalizing switching like [12]. 

C. Action Space 
The agent is asked for an action in each time step in which 

the traffic light has no yellow light. This means that the agent 
does not control yellow times as mentioned earlier. The actions 
allowed are binary; 0 means keep everything as is and 1 means 
go to the next phase which necessarily means that the currently 
green lane is going to be red, after a yellow light phase, and the 
currently red lane is going to be green. Some of the papers like 
[10] give control to the agent only every fixed amount of 
timesteps but we are not following that and we are not putting 
any minimum time for the green light to let the agent learn it on 
its own and to not enforce the traffic light to have a green lane 
that has no vehicles while the other red lane has vehicles 
waiting for some time. 

V. EXPERIMENTS 
Multiple experiments are carried out to test the performance 

of the proposed model using a simulated 
environment. Simulation of Urban Mobility (SUMO) [20] is 
used to carry out the experiments. It is a platform where the 
roads, routes, vehicles and traffic lights are defined. Traci [21], 
which provides an API to get information about vehicles and 
traffic lights as well as controlling the simulation and its 
components, is used to get information needed to provide the 
state, rewards, and performance measurements. It is also used 
to actuate the actions of the agent in the environment. Next is a 
description of each of the experiments that are carried out. 

Some values are common in all experiments. Exploration 
rate L is set to 1.0 initially and decreases by 0.01 per episode 
such that the agent starts by fully exploring and then moves to 
exploiting as it goes through new episodes and it reaches full 

exploitation after 100 episodes. The value of α is also set to 1.0 
at the beginning and decreases by 0.005 per episode till it 
reaches 0.02 and stays at that value for the remainder of the 
training. The value of γ is 0.95. For the first 5000 timesteps, 
vehicles are generated according to specific probabilities 
defined for each of the experiments. 

A. Experiment 1: One Sensor Per Lane 
In this experiment, we have a total of 4 sensors and the size 

of the state space is 2( × 4Z × 4 = 2048. 2 is for the phase of 
the traffic light. Since it is limited to the phases where there is a 
green light. It has only 2 possible values. The 44 correspond to 
the possible values of the 4 sensors, while the last 4 
corresponds to the duration of the current traffic light phase. 
The 4 sensors are each placed at a distance of 5 meters away 
from the end of the lane approaching the traffic light. It is the 
position at which the first vehicle waiting in the queue of that 
traffic light would stand.  

For training, each episode takes one of configurations 1-3 
shown in Table II in turns. The model is trained for 700 
episodes. The average waiting time per vehicle for each 
episode is shown in Fig. 3. It is worth noting that at the 
beginning of the training the actions are mostly random due to 
high exploration rate and as episode 100, when exploration 
stops, is reached, the agent behaves much better than the 
random behavior at the beginning. 

 

Fig. 3. Training performance for Experiment 1 

B. Experiment 2: Two Sensors Per Lane 
In this experiment, we have a total of 8 sensors and the size 

of the state space is 2( × 4] × 4 = 524,288. The values are 
the same as the previous experiment with the addition of 
another 44 corresponding to each of the additional sensors. The 
4 new sensors are each placed at a distance 50 meters away 
from the end of the lane approaching the traffic light to detect 
if the queue of waiting cars in each of the lanes has reached this 
length. The goal of this experiment is to assess the effect of 
increasing the number of sensors. 

Training is done in the same way as the previous 
experiment. The average waiting time per vehicle for each 
episode is very similar to the one obtained from the previous 
experiment shown in Fig. 3. 

Another set of experiments is performed for configurations 
4, 5 and 6 which represent heavier traffic. For these 
experiments, a 2-sensor agent is trained sequentially for 500 
episodes without changing the other parameters. 



TABLE II.  PROBABILITIES OF VEHICLES IN EACH CONFIGURATION 

Configuration 
Probabilities of vehicle generation 

Route Probability 

Configuration 1 

East to West / West to East 
0.04 

North to South / South to North 

Configuration 2 
East to West / West to East 0.04 

North to South / South to North 0.02 

Configuration 3 
East to West / West to East 0.02 

North to South / South to North 0.04 

Configuration 4 
East to West / West to East 

0.1 
North to South / South to North 

Configuration 5 
East to West / West to East 0.02 

North to South / South to North 0.1 

Configuration 6 
East to West / West to East 0.1 

North to South / South to North 0.02 

VI. RESULTS 
As recent researches are taking a different approach with 

higher cost data, our proposed solution is compared with the 
fixed-time traffic lights configuration to understand the 
efficiency of applying such a low-cost solution instead of the 
currently widespread fixed-time traffic lights. 3 different fixed-
time traffic lights configurations are tested: 

• Long Phase: 60 seconds between switching 

• Medium Phase: 30 seconds between switching 

• Small Phase: 15 seconds between switching 
The yellow time for all of them and for the agent is fixed at 

6 seconds. The simulation is run for 100 episodes on each of 
the models in comparison. During these episodes, no learning 
happens but the vehicles generation is different randomly. The 
results are reported in the Fig. 4. The x-axis contains the 
episodes and the y-axis contains the average waiting time per 
vehicle. 

 

Fig. 4. Testing results for configuration 1. 

The results show that both our agents outperform the fixed-
time traffic lights. The performance is close to the Short Phase 
version of the fixed-time traffic lights and in one of the 
episodes, the fixed-time traffic lights beat the 1-sensor Agent. 
The results also show that 2-sensors Agent is better than 1-
Sensor Agent 68% of the time. 

The result of configuration 2 is shown in Fig. 5 and it is very 
similar to the result of configuration 3. Similar to the previous 
configuration, our agent outperforms the fixed-time traffic 
lights. In these configurations, the agents are always better than 
fixed-time traffic lights. Interestingly, the 1-sensor model 
outperformed the 2-sensors model in these configurations. The 
2-sensors model performed better than the 1-sensor model only 
28% and 41% of the times in configurations 2 and 3 
respectively. In Fig. 6, it can be seen that the 2-sensor agent 
outperforms the Short Phase in CO2 emissions as well. The x-
axis contains the episodes and the y-axis contain the average 
CO2 emissions per vehicle. 

In Fig. 7, it can be seen that the Medium and Long Phases 
perform better than our agent for configuration 4. However, in 
configuration 5, our agent outperforms all others as shown in 
Fig. 8. A similar performance is observed in configuration 6. 

 

Fig. 5. Testing results for Configuration 2. 

 

Fig. 6. CO2 emissions for configuration 1. 

 

Fig. 7. Testing results for configuration 4. 

 

Fig. 8. Testing results for configuration 5. 



VII. CONCLUSION AND FUTURE WORK 
In this paper, we showed the potential of applying 

reinforcement learning in the field of traffic control without 
needing much information and showed that it has high 
potential as our proposed model beat fixed-time traffic lights in 
the problems under test. We examined 2 different models with 
a different number of sensors. The models managed to score 
less average waiting time per vehicle for most of the 
configurations. We showed the effect of adding extra sensors 
which improved the performance in some cases and made it 
worse in some others given that both were given the same 
amount of training. This shows that adding more sensors would 
require more training so that it can reach the same performance 
of the less sensors model. The agent is outperformed by two of 
the fixed-phase traffic lights in case of heavy traffic. Observing 
the behavior of the agent shows that it does not perform 
optimally in case of traffic congestion on both approaching 
lanes as it switches quicker than the optimal. More training or 
tweaking of the reward function might be the solution to fixing 
this behavior. That trained model still beats all fixed-time 
traffic lights in all the other configurations. 

Some of the methods used can be fine-tuned or replaced by 
other methods which might be a little more expensive or 
require more processing but might actually perform better. 
Fine-tuning the ranges used in the state-space and the positions 
of the sensors might lead to better performance. Replacing the 
Q-Table with a deep Q-Network can also improve the 
performance although it might require more training. 
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