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ABSTRACT

Neural combinatorial optimization (NCO) models have achieved remarkable per-
formance, yet their learned underlying representations remain largely unclear.
This hinders real-world application, as industrial stakeholders may want a deeper
understanding of NCO models before committing resources. In this paper, we
make the first step towards interpreting NCO models by investigating embeddings
learned by various architectures through three probing tasks. Specifically, we an-
alyze representative and state-of-the-art attention-based models, including AM,
POMO, and LEHD, on the representative Traveling Salesman Problem and Ca-
pacitated Vehicle Routing Problem. Our findings reveal that NCO models encode
linear representations of Euclidean distances between nodes, while also capturing
additional knowledge that help avoid making myopic decisions. Furthermore, we
show that architectural choices affect the ability of deep models to accurately rep-
resent Euclidean distances and to incorporate non-myopic decision-making strate-
gies. We also verify to what extent NCO models understand the feasibility of con-
straints. Our work represents an initial effort to interpret NCO models, enhance
understanding of why certain architectures outperform others, and demonstrate
probing as a valuable tool for analyzing their internal mechanisms.

1 INTRODUCTION

Recently, learning-based neural combinatorial optimization (NCO) methods have achieved remark-
able performance on classic combinatorial optimization problems, such as routing, that is com-
parable to, or even surpasses, specialized heuristic algorithms designed for these problems (e.g.,
Concorde (Applegate et al., 2006), LKH3 (Helsgaun, 2017), HGS (Vidal, 2022), etc.). However, the
underlying reasons behind these impressive results, particularly the nature of the knowledge learned
by these neural models, remain largely unexplored and unclear.

Due to this lack of understanding, current research often relies on final performance metrics, such
as average objective function values, to retrospectively assess the strengths and weaknesses of dif-
ferent NCO architectures. This retrospective evaluation approach, however, may lack rigor and
precision. Various external influences, such as differing inference strategies (e.g., greedy, sampling,
beam search, or specialized methods like Random Re-Construct from Luo et al. (2023)), can lead to
significant differences in performance (Zhou et al., 2024). This obscures the assessment of the true
representational capacity of NCO models and hinders understanding of how effectively they capture
decision-supporting information. Misinterpreting the model architecture, in turn, can negatively
affect future model design. Therefore, addressing this gap is crucial.

To address this gap, for the first time, we bring the tool, probing, from the computer vision (CV)
and natural language processing (NLP) fields to the NCO field, so as to more directly explore the
representational capacity of neural network embeddings (Alain & Bengio, 2016; Adi et al., 2016;
Belinkov, 2022). Probing involves training auxiliary prediction tasks using the embeddings learned
by a pre-trained deep learning model. In the context of NLP, for example, if a simple model, partic-
ularly a linear model, can be trained to predict linguistic information about a word (e.g., its part-of-
speech tag) or a pair of words (e.g., their semantic relation) from the embeddings, we can reasonably
conclude that the embeddings encode this information (for more details, see Liu et al. (2019)).

Unlike NLP tasks, which naturally have intuitive subtasks (e.g., part-of-speech tagging, semantic re-
lation tagging) suitable for probing, combinatorial optimization (CO) problems typically lack such
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directly applicable subtasks. To deal with this, we designed probing tasks tailored to evaluate the
representational capacity of NCO models in specific CO problems and constructed corresponding
datasets. To demonstrate the effectiveness of probing in NCO, we selected two groups of NCO
models with similar architectures (both based on the transformer (Vaswani, 2017) structure) but
with contrasting design principles. In addition to uncovering certain knowledge embedded in their
representations through probing, we also compared the differences in this knowledge captured by the
embeddings, which result from the structural variations between the two groups of models. Specif-
ically, one group consists of the classical models AM (Kool et al., 2018) and POMO (Kwon et al.,
2020), while the other is their successor LEHD (Luo et al., 2023), which introduces a contrasting
architecture—the light encoder heavy decoder (LEHD) model structure, proposed as a potentially
more effective alternative to the heavy encoder light decoder (HELD) structure of the earlier models.

Experimental results in Luo et al. (2023) show that the LEHD model indeed outperforms AM and
POMO in solving the traveling salesman problem (TSP) and capacitated vehicle routing problem
(CVRP), specifically in terms of the objective function value, as measured by the average traveling
distances of the routing solutions. Luo et al. (2023) attribute this to the LEHD’s ability to bet-
ter capture the dynamic relationships between nodes of varying sizes. Through our probing tasks,
we provide additional and more direct evidence identifying specific factors that might make the
LEHD structure superior to the HELD one. These factors include improved perception of Euclidean
distances between nodes, a stronger ability to avoid myopic decision-making, and a more robust
capability to capture information related to constraints. Unlike final performance metrics, which
are influenced by inference strategies, these factors offer strong support for the design idea behind
LEHD models. This provides subsequent researchers with a clearer basis for determining whether to
incorporate such structural choices in their designs, enhancing confidence in these design decisions.

Contribution. Our contributions are as follows: (1) For the first time, we pioneer the use of probing
in the NCO field to explore and understand the embeddings learned by NCO models. (2) Akin
to other impactful probing research in non-NLP fields that lack natural subtasks for probing (Li
et al., 2022; Gurnee & Tegmark, 2023), we design targeted probing tasks and create corresponding
datasets. (3) We provide evidence that NCO models are capable of capturing knowledge relevant to
decision-making in routing problems. (4) By analyzing the differences in the knowledge learned,
we shed light on why state-of-the-art models achieve superior performance.

Overall, we take an important first step in unveiling the internal mechanisms of NCO model em-
beddings through probing techniques. We demonstrate how probing, as a toolkit, can be used to
verify why models are effective in CO problems and gain insights into model architecture design.
This analysis toolkit supports future work in understanding the representations of black-box NCO
models, providing more direct evidence beyond final problem results for performance exploration.

2 PROBING TASKS

Since combinatorial optimization problems do not have suitable subtasks to serve as probing tasks,
targeted task design is necessary for the specific CO problem being explored. Using the TSP problem
as an example, we propose two probing tasks to investigate NCO models: whether the model can
perceive the Euclidean distance between nodes (probing task 1); and whether the model can learn
to avoid constructing solutions in a myopic manner, such as greedily connecting to the nearest node
(probing task 2). Additionally, we also introduce a probing task using the CVRP problem, examining
whether NCO models can capture constraints (probing task 3).

Probing task 1: Euclidean distance When solving routing problems in Euclidean space, the
Euclidean distance between nodes is a critical piece of information for all solution methods. For
instance, a simple greedy algorithm for solving the TSP starts at an arbitrary node, computes the
Euclidean distance between the current node and all unvisited nodes, and selects the nearest one as
the next destination. This process is repeated until all nodes are visited, returning to the starting node
to form a Hamiltonian cycle. In traditional methods, whether using exact approaches (mathematical
programming) that rely on the distance matrix of nodes as input or approximate (heuristic) methods
(Reinelt, 2003; Liu et al., 2023), the Euclidean distance between any two nodes must be precomputed
or computed on the fly. Therefore, for a TSP solver, recognizing the Euclidean distances between
nodes is essential. Based on this, we aim to explore whether a trained learning-based NCO model
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can capture this critical Euclidean distance between the current node and any of the candidate nodes
in its representations.

Probing task. Probing task 1 aims to examine whether the embeddings of NCO models encode the
distance between the current node and any of the candidate nodes during decision-making. Given
the embeddings of two nodes, a probing model is trained to directly predict the Euclidean distance
between them. This probing task, which takes two embeddings as input features, is similar to the
probing tasks used in NLP to evaluate pairwise relations between words (Liu et al., 2019).
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Figure 1: The process of creating the dataset for probing
task 1 is illustrated from left to right. For a given instance,
we input its complete data (all nodes) into the NCO model
being probed (with the dashed box representing the same
NCO model). We then extract the embeddings from the
probed part (e.g., the encoder or decoder) or layer of the
model and select the corresponding embeddings of the re-
quired nodes as features. These features, combined with the
label, form a single data point.

Dataset. Figure 1 illustrates the pro-
cess of creating a sample for probing
task 1 and its corresponding dataset.
Given the current node ni and any
randomly selected node nj from the
candidate nodes, we extract their em-
beddings hi and hj from the relevant
layers of the NCO model we want to
probe. The embeddings of the two
nodes are then concatenated into a
feature vector [hi, hj], with the Eu-
clidean distance between ni and nj

serving as the label. By collecting
sufficient data in this manner, we con-
struct the dataset for probing task 1.
Since the label (i.e., the distance) is a
continuous, probing task 1 is framed
as a regression prediction task.

Probing task 2: Avoidance of My-
opia Selecting the next unvisited
node solely based on the nearest Eu-
clidean distance, as in the greedy al-
gorithm, will not result in the opti-
mal solution from a global perspec-
tive. This approach is often described
as ”myopic”, and many efforts have
been made to avoid such shortsighted strategies (Bellman, 1958; Hart et al., 1968; Chekuri & Pal,
2005; Meliou et al., 2007). A well-designed NCO model must similarly learn to avoid myopic
strategies and adopt a more global perspective to solve the problem effectively. To investigate this,
we design probing task 2 to explore whether the embeddings of NCO models exhibit the ability to
avoid shortsighted decisions at a given step.

Probing task. We define probing task 2 as a binary classification task, where the probing model
is trained to determine whether the current node (e.g., ni) should be linked to node nj . Node nj

could either be a myopic choice that leads to a local optimum or the node connected to ni in the
global optimal solution. To assess whether the NCO models make myopic decisions by choosing
the nearest Euclidean distance, we construct data points as illustrated in Figure 2.

Dataset. First, we randomly generate an instance with N nodes, input it into a mathematical pro-
gramming model, and use the Gurobi (Gurobi Optimization, LLC, 2024) solver to obtain the theo-
retical optimal solution, as shown in Figure 2(a). Next, starting from each node, we use a greedy
algorithm to generate N solutions and select the best one (as illustrated in Figure 2(b), gradually
comparing the next node selected by the greedy algorithm with the optimal solution. For example,
in the instance shown in Figure 2, when the current node is node 4, the optimal solution selects
node 3, whereas the greedy algorithm selects the nearest one, node 5. Ultimately, we obtain two
data points for this instance: node 4 connected to node 3 represents the optimal choice, labeled as a
positive example (i.e., the feature is [h4, h3] and the label is 1), while node 4 connected to node 5
represents the myopic choice of the greedy algorithm, labeled as a negative example (i.e., the feature
is [h4, h5] and the label is 0).
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Domain knowledge. Unlike the relatively straightforward probing tasks and datasets in CV and
NLP, probing in the CO field requires incorporating domain-specific knowledge. For instance, in this
dataset, there may be multiple optimal solutions. Suppose one of them includes node 4 connected
to node 5, which would render a label of 0 incorrect. To verify this, we add a constraint to the
mathematical model that forces the connection between nodes 4 and 5. The new optimal solution
obtained under this constraint is worse than the original solution without the constraint. Similarly,
for data labeled 1, we add a constraint preventing the connection between nodes 4 and 3, and the
resulting solution is also worse. This confirms that both labels are valid.
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Figure 2: An example of solutions to the TSP for a specific
instance: (a) represents the optimal solution generated by
the mathematical model and solved using Gurobi; (b) shows
the best solution obtained through a greedy algorithm.

Probing task 3: Perception of Con-
straints For the TSP problem, the
first two probing tasks provide a
comprehensive analysis of the rep-
resentational capacity of NCO mod-
els. However, for more com-
plex VRP, where additional con-
straints are introduced, we are curi-
ous whether NCO models can cap-
ture these constraint-related informa-
tion. If not, it suggests that NCO
models might merely rely on masking
to artificially limit their outputs. This
would imply an inherent limitation in
how NCO models handle constraints.

Probing task. To answer this ques-
tion, we design probing task 3 to ex-
plore whether NCO models can cap-
ture the knowledge required to deter-
mine the feasibility of the capacity
constraint in the CVRP problem. Since the capacity constraint primarily involves the linear (ad-
ditive) relationship among the demands of nodes, we design probing task 3 to check whether the
embeddings of two nodes can represent the sum of their demands. Thus, for probing task 3, a
probing model is trained to predict the sum of the demands given the embeddings of two nodes.

Dataset. We extract the embeddings of two nodes, hi and hj , from the relevant layers of the NCO
model being probed. Unlike the previous non-linear probing tasks, predicting the sum of two de-
mands—a linear addition task—may be inherently too simple. Therefore, a linear probing model
might not be sufficient to demonstrate whether the NCO model can capture this knowledge. To delve
deeper, in addition to concatenating the embeddings of the two nodes ([hi, hj]) as the input for the
probing task, we also apply Hadamard product on the two embeddings, [hi ⊙ hj], as an alternative
input. The latter approach aims to simulate the attention computation process in attention-based
NCO models (as in most models where the decoder ultimately uses attention to compute a compati-
bility score to determine node selection probability), allowing us to examine whether the model can
capture the additive effect of demand features.

3 MODELS

Probing Model For all three probing tasks, we use a linear model for the corresponding regression
and classification tasks. Specifically, we train a simple linear fully connected (FC) layer for both
classification and regression tasks. If this linear model can accurately predict the probing tasks based
on the embeddings from the NCO models, it indicates that the knowledge relevant to the probing
tasks can be easily extracted from the embeddings (Alain & Bengio, 2016; Liu et al., 2019). This
also suggests that the NCO model, from which the embeddings for the probing tasks are derived,
has the ability to encode this knowledge in its representations after training.

It is important to note that a linear model cannot directly capture the nonlinear relationship of Eu-
clidean distance. For probing task 1 (the Euclidean distance regression task), a linear model would
have no explanatory power if the input only consists of the nodes’ coordinate information. In the
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Figure 3: The figure illustrates the architecture of two NCO models: (a) represents the HELD
structure, as seen in AM and POMO, while (b) represents the LEHD structure. The red arrows in
the figure indicate the positions where we probe the model, extracting the embeddings.

most extreme case, where the input for probing task 1 (i.e., the features) are solely the two nodes’
coordinates, the regression model’s R2 value would be zero, because the covariance between the
label and the linear model’s output is zero. This result is also reflected in the experimental find-
ings presented later in Section 5.1. However, when the probing model’s R2 value is greater than 0,
and the closer it is to 1, the stronger the evidence that the NCO model has the ability to perceive
Euclidean distances. This indicates that the information related to Euclidean distance, encoded in
the model’s embeddings, can be linearly extracted, thereby validating the NCO model’s ability to
effectively represent this relationship.

NCO Models We selected three NCO models for probing: AM (Kool et al., 2018), POMO (Kwon
et al., 2020), and LEHD (Luo et al., 2023). Figure 3 (adapted from the original figures in their re-
spective papers) illustrates the architecture of these models. Detailed descriptions of these models
can be found in the Appendix B. Through the three probing tasks described above, we demonstrate
that these models are capable of representing decision-related knowledge relevant to routing prob-
lems. Additionally, by comparing the differences in their embeddings across the three probing tasks
and analyzing the architectural differences between the models, we explore the reasons why the
higher-performing models exhibit superior results in terms of the final objective function value.

4 EXPERIMENTAL SETUP

Datasets In line with the problem settings of AM, POMO, and LEHD, we select 20 nodes as a
small-scale instance and 100 nodes as a relatively large-scale instance. This setup allows us to use
pre-trained models and extract embeddings from models corresponding to these scales. We will
make all the code and datasets publicly available for future research.

Routing instances. For probing task 1 and probing task 2, we generate 10,000 TSP instances with
20 nodes and 10,000 instances with 100 nodes, respectively, following the method introduced in
AM (Kool et al., 2018), which was subsequently used by both POMO and LEHD. Since probing
task 2 requires global optimal solutions and greedy solutions to create the probing dataset labels,
we use Gurobi to solve the optimal solution for these 20,000 instances. For the greedy solution, we
perform a greedy algorithm starting from each node. Then, we generate the datasets for these 20,000
instances following the method described in Section 2.

For probing task 3, we similarly generate 10,000 instances with 20 nodes and 10,000 instances with
100 nodes following the method used in AM. The aim of this paper is to pioneer the application of
probing to the study of NCO models. Therefore, as an initial exploration, we have conducted only
one constraint-related probing task on the CVRP. We believe that future probing research on CVRP
can offer deeper insights into how NCO models handle constraints. If further labeling of CVRP
solutions is required, we recommend using the HGS (Vidal, 2022) to solve CVRP instances.

Probing datasets. After generating the routing problem instances, we input them into the NCO
model to extract embeddings. For a finer-grained analysis, we extract embeddings from different
layers and positions, as indicated by the red arrows in Figure 3. We provide a detailed explanation

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of probing task results for NCO models. The underlined results indicate they
are derived from the final node embeddings of the three models, with further details available in
Figure 8 in the Appendix C.

Probing input Probing task 1 Probing task 2 Probing task 3
RMSE MAE R2 score Accuracy Precision Recall F1 score AUC RMSE MAE R2 score

20
no

de
em

be
dd

in
gs w

/o
in

ts
.

AM-Init 0.2452 0.2028 -0.0003 49.28% 0.49 0.47 0.48 0.49 0.0000 0.0000 1.0000
AM-Enc-l1 0.2066 0.1665 0.2899 66.90% 0.70 0.59 0.64 0.72 0.0088 0.0070 0.9945
AM-Enc-l3 0.2119 0.1711 0.2529 70.43% 0.73 0.65 0.69 0.76 0.0273 0.0219 0.9471
AM-Enc-l3-w/c 0.2140 0.1724 0.2381 69.30% 0.72 0.63 0.67 0.75 - - -
AM-Enc-l3-w/g 0.2134 0.1721 0.2423 70.97% 0.74 0.65 0.69 0.76 - - -
POMO-Enc-l1 0.2115 0.1711 0.2558 64.50% 0.68 0.56 0.61 0.67 - - -
POMO-Enc-l6 0.2196 0.1787 0.1981 70.10% 0.71 0.67 0.69 0.76 - - -
LEHD-Enc-l1 0.2115 0.1719 0.2554 64.08% 0.68 0.53 0.60 0.67 0.0038 0.0030 0.9990
LEHD-Dec-l1 0.0062 0.0046 0.9994 74.10% 0.79 0.66 0.72 0.78 0.0100 0.0078 0.9929
LEHD-Dec-l6 0.0590 0.0451 0.9421 78.25% 0.79 0.77 0.78 0.86 0.0366 0.0288 0.9047

w
/i

nt
s.

AM-Init 0.1318 0.1000 0.7111 51.95% 0.52 0.47 0.50 0.52 0.0000 0.0000 1.0000
AM-Enc-l1 0.0235 0.0171 0.9908 70.28% 0.74 0.63 0.68 0.77 0.0269 0.0209 0.9488
AM-Enc-l3 0.0657 0.0514 0.9282 75.90% 0.78 0.73 0.75 0.83 0.0955 0.0767 0.3533
AM-Enc-l3-w/c 0.0653 0.0512 0.9291 74.95% 0.77 0.72 0.74 0.82 - - -
AM-Enc-l3-w/g 0.0660 0.0518 0.9275 75.67% 0.78 0.72 0.75 0.83 - - -
POMO-Enc-l1 0.0543 0.0430 0.9510 69.23% 0.72 0.62 0.67 0.74 - - -
POMO-Enc-l6 0.1119 0.0890 0.7917 78.88% 0.79 0.80 0.79 0.86 - - -
LEHD-Enc-l1 0.0424 0.0325 0.9701 66.88% 0.71 0.57 0.63 0.72 0.0112 0.0087 0.9910
LEHD-Dec-l1 0.0069 0.0052 0.9992 74.12% 0.79 0.67 0.72 0.79 0.0159 0.0125 0.9820
LEHD-Dec-l6 0.0592 0.0452 0.9417 78.55% 0.80 0.77 0.78 0.86 0.0632 0.0502 0.7169

10
0

no
de

em
be

dd
in

gs w
/o

in
ts

.

AM-Init 0.2498 0.2084 -0.0012 50.48% 0.51 0.45 0.48 0.50 0.0000 0.0000 1.0000
AM-Enc-l1 0.2186 0.1791 0.2332 56.00% 0.57 0.53 0.55 0.60 0.0137 0.0110 0.9878
AM-Enc-l3 0.2212 0.1800 0.2151 66.30% 0.68 0.61 0.65 0.71 0.0237 0.0187 0.9635
AM-Enc-l3-w/c 0.2245 0.1830 0.1915 67.10% 0.69 0.62 0.65 0.72 - - -
AM-Enc-l3-w/g 0.2224 0.1806 0.2062 65.88% 0.68 0.60 0.64 0.71 - - -
POMO-Enc-l1 0.2210 0.1799 0.2166 57.60% 0.59 0.53 0.55 0.62 0.0199 0.0157 0.9743
POMO-Enc-l6 0.2231 0.1825 0.2014 71.83% 0.72 0.72 0.72 0.79 0.0445 0.0356 0.8710
LEHD-Enc-l1 0.2194 0.1796 0.2280 55.93% 0.56 0.54 0.55 0.60 0.0052 0.0040 0.9950
LEHD-Dec-l1 0.0094 0.0068 0.9986 67.45% 0.72 0.57 0.64 0.72 0.0069 0.0055 0.9913
LEHD-Dec-l6 0.0469 0.0370 0.9647 76.50% 0.77 0.75 0.76 0.85 0.0178 0.0140 0.9426

w
/i

nt
s.

AM-Init 0.1334 0.1033 0.7143 51.82% 0.52 0.47 0.49 0.53 0.0000 0.0000 1.0000
AM-Enc-l1 0.0262 0.0193 0.9890 63.80% 0.66 0.57 0.61 0.68 0.0356 0.0278 0.9177
AM-Enc-l3 0.0444 0.0339 0.9684 69.08% 0.72 0.63 0.67 0.76 0.0645 0.0510 0.7290
AM-Enc-l3-w/c 0.0587 0.0463 0.9448 70.33% 0.73 0.66 0.69 0.77 - - -
AM-Enc-l3-w/g 0.0447 0.0340 0.9679 69.15% 0.72 0.63 0.67 0.75 - - -
POMO-Enc-l1 0.0276 0.0212 0.9877 66.15% 0.68 0.60 0.64 0.71 0.0272 0.0214 0.9517
POMO-Enc-l6 0.0802 0.0640 0.8968 72.47% 0.72 0.73 0.73 0.80 0.1157 0.0951 0.1281
LEHD-Enc-l1 0.0421 0.0325 0.9716 61.82% 0.63 0.59 0.61 0.66 0.0069 0.0053 0.9915
LEHD-Dec-l1 0.0075 0.0054 0.9991 67.20% 0.72 0.57 0.63 0.73 0.0086 0.0068 0.9867
LEHD-Dec-l6 0.0468 0.0367 0.9648 77.00% 0.78 0.76 0.77 0.85 0.0308 0.0243 0.8280

of these extracted embeddings in Section C.2. Each probing dataset is split into training and test
sets, with all reported results based on the test set, i.e., out-of-sample data.

Evaluation metrics To evaluate the performance of the probes, we utilize a variety of standard
metrics. For the regression tasks, we report metrics such as root mean square error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R2). For the classification tasks, the
evaluation metrics include accuracy, precision, recall, F1 score, and the area under the curve (AUC).

5 EMPIRICAL RESULTS

Table 1 presents the results of the three probing tasks. We introduce the ”Probing input” column
in Appendix C.2, which represents the embeddings extracted from different positions in the NCO
models. Figure 9 compares results across different layers, while Figure 10 highlights the changes
during training. More detailed results are provided in Appendix C.

5.1 RESULTS AND DISCUSSION FOR PROBING TASK 1

For Probing Task 1, we examine the ability of the three NCO models to linearly represent the Eu-
clidean distances between pairs of nodes (specifically, the current node and any unvisited node) dur-
ing decision-making, by training linear probes and evaluating their performance. First, we demon-
strate that all three NCO models can linearly capture the Euclidean distances between nodes. Then,
through comparison, we find that LEHD performs better in accurately perceiving Euclidean dis-
tances than POMO and AM, particularly in the robustness of its representation extraction method,
as the inclusion or exclusion of interaction terms has little impact on LEHD’s probing performance.
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Based on this observation, we analyze the possible reasons and provide additional experimental
results, leading to a key insight for NCO model design. Finally, by comparing the ability of differ-
ent layers to represent Euclidean distances, we validate why it is necessary to explicitly introduce
Euclidean distance information into NCO models.

Existence. As shown in the ”w/o ints.” rows of AM-Init in Table 1 for both 20-node and 100-
node examples, the values indicate that the initial embeddings of AM fail to capture the nonlinear
relationship of Euclidean distance (with R2 values close to 0). These embeddings are derived by
mapping the raw features, specifically the 2D coordinates in the TSP, through a linear projection
into the shared dimensional space of the encoder and decoder (128 dimensions for all three models
discussed in this paper). In Section 3, we explained that the R2 of a Euclidean distance regression
model using node coordinates as input is zero because it cannot capture the nonlinear nature of
Euclidean distance. As a result, the initial embeddings essentially retain the properties of the raw
features and similarly fail to linearly capture Euclidean distances. The phenomenon of an R2 value
of zero for the initial embeddings can be observed across all NCO models.

However, after passing through the NCO model, the R2 values for AM, POMO, and LEHD in-
crease to 0.2529, 0.1981, and 0.9421, respectively, for 20-nodes example. Even when considering
interaction terms, the R2 values for all three models’ embeddings after the encoder or decoder are
significantly higher than those of the initial embeddings, approaching 1 in 100-node example. This
indicates that the representations in these NCO models contain linearly decodable Euclidean dis-
tance information, meaning they have learned how to linearly represent Euclidean distances.

Comparison of HELD and LEHD. In the results shown in Table 1, for both the 20-node and 100-
node instances, LEHD’s approach—using a single encoder layer followed by multi-layer attention
calculations between the current node and other nodes in the decoder—outperforms the embedding
method used by AM and POMO, where all nodes are embedded through multiple encoder layers, in
perceiving Euclidean distances. Notably, without interaction terms, AM and POMO both struggle to
accurately perceive Euclidean distances. Additionally, as shown in the results for ”AM-Enc-l3-w/c”
and ”AM-Enc-l3-w/g,” even with the extra information provided by context embeddings or glimpse
embeddings, AM and POMO do not improve the accuracy of perceiving the Euclidean distance
between the current node and other nodes.

LEHD’s recalculation of the embeddings of candidate nodes in its decoder, through the attention
mechanism with the current node embedding, may allow it to more effectively capture the relation-
ships between the current node and other nodes. Specifically, as shown in the decoder of Figure 3(b),
the embedding of the current node, hs, participates in the attention calculations with the remaining
nodes after passing through a linear projection, updating their embeddings. In contrast to AM and
POMO, which treat all node embeddings equally and perform node embedding only once, LEHD’s
decoder design allows for a more accurate perception of the distances between the current node and
the remaining nodes. To verify this, we conducted additional experiments on LEHD, and the results
are presented in Table 2.

Table 2: Supplementary experiments for LEHD.
The first two rows show distance perception be-
tween non-current nodes and others, while the last
row shows the effect of removing attention from
LEHD.

Probing input RMSE MAE R2 score
LEHD-Dec-l1-other 0.2091 0.1694 0.2620
LEHD-Dec-l6-other 0.2318 0.1898 0.0927
LEHD-Dec-w/o-att 0.2115 0.1719 0.2555

First, we extract the embeddings of two remain-
ing nodes for probing and find that the probe
achieves an R2 of only 0.0927. This indicates
that LEHD is indeed more focused on the re-
lationship between the current node and other
nodes. Additionally, when we probe the em-
bedding from the linear projection below hs in
the decoder (Figure 3(b), before the attention
calculation), its R2 dropped to 0.2555, signifi-
cantly lower than the original 0.9421. This sug-
gests that the attention mechanism in LEHD’s
decoder is crucial for accurately capturing the
Euclidean distances between the current node
and the other nodes.

This leads to an insight for future NCO model: recalculating node embeddings through the attention
mechanism in the decoder enables more accurate perception of Euclidean distances than relying
solely on context embeddings, as in the case of AM and POMO, to provide current information.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

As Layers Deepen. By comparing the results (including both node-scale instances and whether
interaction terms are used) of the same model across different layers, we find that the ability of the
embeddings to perceive Euclidean distances decreases as the number of attention layers increases
in all three models. Notably, after six attention layers, POMO shows a more significant decline
in Euclidean distance perception compared to AM, which has the same structure but only three
attention layers. This suggests that while deeper attention layers may enhance other decision-making
capabilities (as discussed in the next section), the model’s ability to perceive distances diminishes.

In subsequent research based on AM/POMO models, some models introduce node distance infor-
mation to enhance performance: either by explicitly incorporating distance information to adjust
the model’s output (Wang et al., 2024), or by designing distance-aware attention mechanisms (Zhou
et al., 2024). Through probing experiments, we verify that these approaches introduce Euclidean
distance to mitigate its perception deficiency as the number of layers increases in NCO models.
This provides important guidance for future improvements to AM and POMO-based models.

5.2 RESULTS AND DISCUSSION FOR PROBING TASK 2

Through Probing Task 2, we explore whether NCO models can learn to avoid making decisions
based solely on distance. First, we demonstrate that the embeddings of all three NCO models exhibit
the ability to avoid myopic decision-making. Then, by comparison, we find that LEHD performs
better in this regard than POMO, with POMO outperforming AM. This result aligns with their per-
formance on the objective function values in the routing problem and further supports the conclusion
from Probing Task 1 regarding the impact of model structure on performance.

Existence. We use the “AM-Init” results as a baseline reference, with AUC values consistently at
0.5, indicating that the initial embeddings cannot linearly extract the knowledge needed to distin-
guish which nodes are connected to the current ones in the global optimal solutions (namely, the
optimal edges). To confirm that Probing Task 2 is not relying on Euclidean distances for node dif-
ferentiation, we further examine the initial embeddings with interaction terms, whose AUC values
remain close to 0.5, suggesting they still fail to distinguish between global optimal or greedy edges.
In contrast, in Probing Task 1, the initial embeddings with interaction terms achieve an R2 above
0.7, indicating that the initial embeddings with interaction terms have linear explanatory power for
Euclidean distances. This observation confirms that the two probing tasks are fundamentally differ-
ent. It also implies that if the embeddings in an NCO model can be linearly distinguished in Probing
Task 2, the model has learned to avoid myopic decision-making and capture the knowledge needed
to find the global optimal solution.

Comparison. The results in Table 1 show that all three NCO models possess the ability to avoid
myopic decision-making, and this ability improves as the number of attention layers increases. Ad-
ditionally, for the 20-node instance, LEHD’s performance in this regard matches POMO (both with
an AUC of 0.86) and slightly outperforms AM (0.83). In the 100-node instance, however, LEHD
outperforms the others with an AUC of 0.85, compared to 0.80 for POMO and 0.76 for AM. These
results are fully consistent with their performance on the optimization problem outcomes. More
detailed results can be found in Figure 8 in Appendix C.3.

Furthermore, by observing the results of “AM-Enc-l3-w/c” and ”AM-Enc-l3-w/g”, which show
almost no difference from ”AM-Enc-l3” and remain lower than LEHD, we further support the con-
clusion from Probing Task 1: LEHD’s heavy decoder structure captures more relevant decision-
supporting information compared to AM and POMO, which rely on context embeddings.

5.3 RESULTS AND DISCUSSION FOR PROBING TASK 3

Through Probing Task 3, using the capacity constraint in the CVRP problem as an example, we
demonstrate that probing can be applied to study the ability of NCO models to represent constraints.
We observe that, while all three NCO models can capture the linear (additive) relationship between
node demands, this ability weakens with an increasing number of layers, similar to the perception of
Euclidean distances. This observation is particularly noteworthy in the Hadamard product probing
input, [hi ⊙ hj]. As discussed in Section 2, we simulate attention calculations using this Hadamard
product input. Many NCO models, including AM and POMO, calculate a compatibility score by
attention calculations before applying the output Softmax. In this context, the R2 values for the final
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output layer decrease significantly compared to the first layer, as shown in the ”w/ ints.” rows in Table
1. In some results, R2 even drops to the 0.1-0.35 range, indicating that these NCO models may no
longer accurately capture whether the demand exceeds vehicle capacity and are likely relying on
masking to impose final output modifications and constraints.

This probing task raises an interesting research question for designing NCO models to handle con-
straints: should additional constraint-related information be incorporated into NCO models, similar
to how distance information is added in studies (Wang et al., 2024; Zhou et al., 2024)? Future work
can further explore this by designing and implementing more probing tasks to deepen the under-
standing of how NCO models handle constraints.

5.4 PROBING MODEL RESULTS

In addition to the quantitative results mentioned above, we pioneeringly introduce an analysis of the
probing model’s outcomes. Unlike prior applications of probing in CV, NLP, or other fields, which
primarily focused on the performance of the probing model, we delve deeper into the CO domain
by analyzing the probing model’s coefficients. This analysis reveals differences in how various
NCO models’ embeddings capture information. Consequently, it helps uncover the reasons why the
better-performing NCO models achieve their superior results.

Figure 4 presents the coefficients of the probing models obtained on the test datasets for the two
TSP-related probing tasks across the three NCO models. In each subplot, the horizontal axis rep-
resents the feature indices, while the vertical axis shows the coefficient values. The upper part of
each subplot displays the actual values of the coefficients for the corresponding features. The two
colors on the left and right sides represent the embeddings of two nodes: the first 128 dimensions
correspond to the embeddings of the first node (the current node), and the latter 128 dimensions
correspond to the embeddings of the second node (one of the candidate nodes). The lower part of
each subplot illustrates the statistical significance of the respective features.
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0.10 (a) AM Probing Task 1
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Figure 4: The figure illustrates the coefficients of probing models for two TSP-related probing tasks
across all NCO models.

From the results shown in Figure 4, we observe that LEHD, the best-performing model, exhibits
more statistically significant features in its node embeddings for both TSP-related probing tasks
compared to AM and POMO. Specifically, examining the coefficients of each node’s embeddings
reveals that for the current node, the probing model’s coefficients tend to have smaller absolute
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values, with only a subset being statistically significant. In contrast, the embeddings of other nodes
(those relevant to the decision-making process for selecting the next node to visit in the current
step) have a greater number of statistically significant dimensions. This pattern is also observed
in AM and POMO during the myopia-avoidance task, albeit with far fewer statistically significant
features in their embeddings compared to LEHD. However, when it comes to perceiving Euclidean
distances, the embeddings of AM and POMO as features show no such distinction. In subplots (a)
and (c), the coefficients and the number of significant features for the two nodes’ embeddings are
similar, regardless of their roles as the current node or other nodes.

5.5 ROBUSTNESS CHECK

To further validate the robustness of probing as a tool for analyzing NCO models and the probing
tasks we designed, we demonstrate Probing Task 1 for distance perception in non-Euclidean space.
Specifically, we selected MatNet (Kwon et al., 2021), a state-of-the-art model designed for solving
asymmetric TSP (ATSP).

We use MatNet’s row embeddings and column embeddings for pairs of nodes as features, and the
distances between the corresponding nodes in the distance matrix as labels to construct the probing
dataset. For example, the row embeddings of node i and node j are used as features, with the
corresponding label being the value in the distance matrix at the intersection of row i and column j,
denoted as dist(i, j). Similarly, the column embeddings of node i and node j are used as features,
with the label being dist(j, i).

The results are shown in Figure 11. As the number of layers in MatNet increases, the ability of
its embeddings to perceive distances improves, with the R2 rising from less than 0.2 in the first
layer to approximately 0.5 in the final layer. Additionally, we conduct supplementary comparison
experiments. In the first experiment, serving as a baseline, the embeddings of node i and node j are
used as inputs, but the labels are replaced with random distance values unrelated to both nodes from
the distance matrix. The resulting probing R2 is -0.0232, indicating that the probe could not learn
any distance information from random labels based on the embeddings. In the second experiment,
we swap the labels between row and column embeddings, assigning the row embeddings of node i
and j with the label dist(j, i) and vice versa. The resulting probing R2 is 0.2532. Comparing these
results, we conclude the following: MatNet’s dual-attention structure effectively learns information
from the asymmetric distance matrix. Furthermore, regardless of whether the embeddings of two
nodes are correctly aligned, they can still partially represent distance information. However, the
model’s ability to capture correct distance information between two nodes is significantly stronger
than its ability to capture incorrect distance information, with R2 values of approximately 0.5 versus
0.2, respectively.

6 CONCLUSION

Using the probing method, we are the first to reveal the representational capabilities of NCO mod-
els, thereby deepening the understanding of the internal mechanisms of these black-box models.
Through three probing tasks, we find that both classical and state-of-the-art attention-based NCO
models can perceive Euclidean distances and have learned to avoid making myopic decisions based
solely on distance. Although the ability to perceive Euclidean distances decreases as the number of
attention layers increases, the models simultaneously acquire more knowledge to avoid shortsighted
decision-making. Similarly, the ability of these NCO models to perceive linear constraints weakens
with deeper layers. This finding offers insights and supports for future works focused on improving
NCO models’ ability to handle constraints. Additionally, by comparing the performance of differ-
ent models, we uncover that the best-performing SOTA models possess a stronger representational
capacity for capturing decision-relevant knowledge.

We believe that with the design and introduction of more probing tasks in the future, the reliability
and interpretability of NCO models will further improve, increasing their potential for real-world
applications. Additionally, our exploration of combining combinatorial optimization knowledge
with probing to understand model representations in the NCO domain provides a method to enhance
the potential of deep learning applications in other areas. This approach is expected to promote the
broader application of deep learning models in scientific and engineering fields.
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A RELATED WORK

Neural (deep learning-based) methods have been applied to various combinatorial optimization
problems for several years (Khalil et al., 2017; Bengio et al., 2021). With the rapid advancement
of deep learning (DL), an increasing number of approaches have been introduced to address these
classical problems in operations research (OR). In the context of the routing problem discussed in
this paper, researchers have explored methods such as graph convolutional networks (GCNs) (Kool
et al., 2022; Zhou et al., 2023), pointer networks with recurrent neural networks (RNNs) (Bello
et al., 2016; Nazari et al., 2018), diffusion-based approaches (Sun & Yang, 2023), and attention
mechanisms (Kool et al., 2018; Lu et al., 2019; Kwon et al., 2020; Ma et al., 2021; Luo et al., 2023),
which are the primary focus of this study.

Although NCO methods have seen rapid development in academia, industries remain cautious about
deploying them to replace classical OR methods. This is because these DL-based methods are per-
ceived as black-box models, lacking the reliability and interpretability of traditional OR approaches.
As a result, even though some NCO models have achieved strong performance on certain instances,
they are still met with skepticism. For example, Santana et al. (2023) raises concerns about the
overuse of GNNs, noting that the improvements achieved by GNN-based methods over traditional
distance-related approaches were minimal. To address this, we are the first to unveil the inner work-
ings of NCO models, aiming to enhance understanding of their internal mechanisms.

The probing method used in this paper was initially applied to understand the representations of
DL models in computer vision (Alain & Bengio, 2016) and natural language processing (Adi et al.,
2016). Beyond traditional DL tasks, probing has also demonstrated effectiveness in other domains,
such as exploring world representations (Li et al., 2022; Gurnee & Tegmark, 2023) in large language
models, auditory representations (Shah et al., 2021; Ngo & Kim, 2024), and studying the quality of
unsupervised reinforcement learning representations (Zhang et al., 2022).

B AM, POMO, LEHD

AM is one of the earliest and most successful learning-based models for routing tasks. It is pio-
neering in introducing the widely popular Transformer architecture to combinatorial optimization
problems, inspiring a multitude of subsequent models. POMO, as a notable example, retains a
structure fundamentally similar to AM (with minor differences, such as in context embedding) but
introduces a novel reinforcement learning (RL) training method.

AM not only introduces the Transformer architecture but also makes significant contributions to the
model design for routing problems. A notable idea is AM’s context embedding in the decoder, which
focuses on the current node and the starting node (for TSP problems). Although many later models
do not adopt this exact context embedding design, the core idea of focusing on these two key nodes
remains. For example, even though LEHD’s decoder design differs from AM’s, it fundamentally
considers how to represent information from these two critical nodes.

Specifically, the difference between LEHD and AM lies in their architectural design. Figure 3 illus-
trates the architecture of both models. In Figure 3(a), AM uses a multi-layer encoder to learn how to
represent node information based on their input features (coordinates), while the decoder performs
a single attention computation on the node representations generated by the encoder, producing a
global ”glimpse” for decision-making without updating the node embeddings. This is known as the
”Heavy Encoder Light Decoder” structure. In contrast, LEHD adopts a ”Light Encoder Heavy De-
coder” structure, where the encoder uses only a single attention layer to learn node representations,
while the decoder, at each step, re-learns the embeddings of the current node, destination node, and
candidate nodes through multiple attention layers. In LEHD, as shown in Figure 3(b), hs and hd

represent the embeddings of the current node (referred to as the starting node in LEHD) and the
destination node, while the node embeddings located in the middle are filtered in LEHD to exclude
previously visited nodes.
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C DETAILED RESULTS FROM THREE PROBING TASKS

C.1 ANALYSIS OF INPUT DATA

For each probing task, we begin by analyzing the input probing dataset, using Probing Task 1 as
an example for dataset exploration and preprocessing. As this is a regression problem, we first
analyze the target variable to observe whether the label distribution is skewed, whether there are
outliers, and other characteristics. Figure 5 shows the label distribution for the 20-node dataset in
Probing Task 1 and Probing Task 3, with the dataset generation process detailed in Section 2. As
seen, the distribution of distances between randomly selected nodes after a current node is chosen
approximates a normal distribution. The distribution of demand follows a similar pattern. For
Probing Task 2, we generate one data point with a label of 1 and one with a label of 0 for each
routing instance, resulting in a 1:1 label distribution.
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Figure 5: The figure shows the label distribution for a probing datasets in Probing Task 1 and Probing
Task 3.

Next, we conducted a feature correlation analysis on the probing dataset. For the probing dataset
formed by the embeddings of two nodes (128 dimensions each), there are a total of 256 features. By
examining the correlation heatmap in Figure 6, we observe that there are some positive and negative
correlations among the 128 dimensions within a single node’s embedding, but overall, there are not
many strong correlations apart from initial embedding. We can also observe that there are a few
scattered stronger correlations in LEHD’s embedding, which could be the source of its enhanced
ability to retain the perception of Euclidean distance. Additionally, there is no significant correlation
between the embeddings of the two nodes.

C.2 PROBING INPUTS

In the names under the ”Probing input” column of Table 1, the first segment (AM, POMO, LEHD)
indicates from which NCO model the embeddings are extracted. The second segment (Init., Enc.,
Dec.) represents the different parts of the NCO model from which the embeddings are extracted:
initial embeddings, encoder embeddings, and decoder embeddings, respectively.

In the encoder of the NCO model, the initial embeddings (Init.) are extracted before the attention
layer, as shown at position P1 in Figure 3. P2 and P5 represent the embeddings from the encoder’s
attention layers (Enc.), while P6 represents those from the decoder’s attention layers (Dec.). We
use ”l” followed by a number to indicate from which specific layer the embeddings are extracted.
Specifically, AM’s encoder has three layers, POMO’s encoder has six layers, and LEHD’s encoder
has only one layer, while its decoder has six layers.

Since AM and POMO do not update node embeddings in the decoder, their node embeddings in
decoder are not included as probing inputs. However, they introduce context embeddings in the
decoder to represent the information needed for routing decisions. For example, in solving TSP, the
context embeddings are formed by concatenating the embedding of the starting node hs, the current
node embedding, and the graph embedding hgraph—calculated as the mean of all node embeddings.
To explore the representational capacity of this design, we also use the context embeddings [hi, hj ,
hs, hgraph] as probing inputs, denoted as ”AM-Enc-l3-w/c”. Additionally, AM uses the context
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Figure 6: The figure shows the correlation heatmap for all 256 features (comprising two 128-
dimensional node embeddings) of the AM encoder embedding, POMO encoder embedding, and
the LEHD decoder embedding.

embeddings as a query to compute attention with other node embeddings, generating a glimpse
embedding hglimpse. To test this, we probe the input [hi, hj , hglimpse] and denote it as ”AM-Enc-
l3-w/g”. In Figure 3, P3 and P4 represent the positions where the context embeddings and glimpse
embeddings are extracted, respectively.

Additionally, for the first two probing tasks, besides using [hi, hj] as input, we also consider the
element-wise product of the two node embeddings as an interaction term (Liu et al., 2019), i.e.,
[hi, hj , hi ⊙ hj] as input. Some parts of certain models may linearly combine node embeddings
(for instance, many NCO models concatenate the embeddings of nodes and then pass them through
a linear projection). In such components of the models, the embeddings are expected to capture
decision-relevant information through simple linear combinations. However, embeddings from cer-
tain parts in attention-based models, such as those used to compute a compatibility score among
node embeddings through attention mechanisms, may behave differently. In this case, relying solely
on the linear input [hi, hj] may not fully assess the model’s representational capacity. Therefore, we
introduce the interaction term hi ⊙ hj to emulate the attention computation. We conduct probing
experiments with both input methods: ”w/o ints.” refers to input without interaction terms [hi, hj],
and ”w/ ints.” refers to input with interaction terms [hi, hj , hi ⊙ hj], as shown in Table 1.

For Probing Task 3, we use both [hi, hj] and [hi ⊙ hj] as inputs (the rationale is discussed in the
probing task 3 paragraph in Section 2). In Table 1, the ”w/o ints.” rows correspond to the results for
[hi, hj], while the ”w/ ints.” rows correspond to the results for [hi ⊙ hj]. Finally, for the 20-node
and 100-node instances, we conducted the three probing tasks using NCO models trained on the
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corresponding scales. The results for both are grouped and presented in Table 1 and discussed in the
following sections.

Table 3, Table 4, and Table 5 present the specific features, labels, and the number of observations
for the different inputs across the three probing tasks.

Table 3: The details of Probing inputs of Probing task 1.
Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

Coordinates

10000

[xi, xj]

∥xi − xj∥

AM-Init [hi, hj]
AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
AM-Enc-l3-w/c [hi, hj , hgraph]
AM-Enc-l3-w/g [hi, hj , hglimpse]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

Coordinates

10000

[xi, xj , xi ⊙ xj]

∥xi − xj∥

AM-Init [hi, hj , hi ⊙ hj]
AM-Enc-l1 [hi, hj , hi ⊙ hj]
AM-Enc-l3 [hi, hj , hi ⊙ hj]
AM-Enc-l3-w/c [hi, hj , hgraph, hi ⊙ hj]
AM-Enc-l3-w/g [hi, hj , hglimpse, hi ⊙ hj]
POMO-Enc-l1 [hi, hj , hi ⊙ hj]
POMO-Enc-l6 [hi, hj , hi ⊙ hj]
LEHD-Enc-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l6 [hi, hj , hi ⊙ hj]

Table 4: The details of Probing inputs of Probing task 2.
Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

AM-Init

20000

[hi, hj]

Binary

AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
AM-Enc-l3-w/c [hi, hj , hgraph]
AM-Enc-l3-w/g [hi, hj , hglimpse]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

AM-Init

20000

[hi, hj , hi ⊙ hj]

Binary

AM-Enc-l1 [hi, hj , hi ⊙ hj]
AM-Enc-l3 [hi, hj , hi ⊙ hj]
AM-Enc-l3-w/c [hi, hj , hgraph, hi ⊙ hj]
AM-Enc-l3-w/g [hi, hj , hglimpse, hi ⊙ hj]
POMO-Enc-l1 [hi, hj , hi ⊙ hj]
POMO-Enc-l6 [hi, hj , hi ⊙ hj]
LEHD-Enc-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l1 [hi, hj , hi ⊙ hj]
LEHD-Dec-l6 [hi, hj , hi ⊙ hj]
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Table 5: The details of Probing inputs of Probing task 3. di denotes the demand for node i.

Probing input # Observations Features Label

20
an

d
10

0

w
/o

in
ts

.

AM-Init

10000

[hi, hj]

di + dj

AM-Enc-l1 [hi, hj]
AM-Enc-l3 [hi, hj]
POMO-Enc-l1 [hi, hj]
POMO-Enc-l6 [hi, hj]
LEHD-Enc-l1 [hi, hj]
LEHD-Dec-l1 [hi, hj]
LEHD-Dec-l6 [hi, hj]

w
/i

nt
s.

AM-Init

10000

[hi ⊙ hj]

di + dj

AM-Enc-l1 [hi ⊙ hj]
AM-Enc-l3 [hi ⊙ hj]
POMO-Enc-l1 [hi ⊙ hj]
POMO-Enc-l6 [hi ⊙ hj]
LEHD-Enc-l1 [hi ⊙ hj]
LEHD-Dec-l1 [hi ⊙ hj]
LEHD-Dec-l6 [hi ⊙ hj]

C.3 PLOTS OF THE PROBING TASK 2 RESULTS

For Probing Task 2, we use AM as an example to plot the training loss when using the initial
embeddings and the encoder (layer 3) embeddings as probing inputs. As shown in Figure 7, the
loss for the encoder embeddings converges to a lower value. The final evaluation results, e.g., AUC,
also indicate that the encoder embeddings perform better in classification compared to the initial
embeddings.
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Figure 7: The figure shows the training loss for the initial embedding and encoder embedding of the
AM model.

Figure 8 provides more detailed results for Probing Task 2. The third row shows the results for
LEHD, where it consistently achieves better classification performance on both the 20-node and
100-node instances, regardless of whether interaction terms are used. Additionally, by analyzing the
classification of positive and negative examples, we can further understand the differences in how
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embeddings capture both the nearest distance and the global optimal solution. A detailed analysis
of positive and negative cases reveals the extent to which the model mistakenly identifies the nearest
node as the optimal solution node, leading to shortsighted (myopic) decisions.
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Figure 8: The confusion matrices for Probing Task 2 across the three models. The left two columns
represent the results for instances with 20 nodes, while the right two columns correspond to instances
with 100 nodes.

C.4 PLOTS FOR DETAILED PROBING RESULTS
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Figure 9: The figure illustrates the probing results across different layers.

In Figure 9, we present the results of two TSP probing tasks across different layers of embeddings
for three trained models. As shown in Figure 9(a), the initial embeddings (obtained by linearly pro-
jecting the coordinates into a high-dimensional space) of all three models exhibit weak Euclidean
distance perception. However, after passing through just one attention layer, all models achieve
highly accurate Euclidean distance perception. This ability slightly diminishes as model depth in-
creases.

Despite this slight decline in Euclidean distance perception, NCO models learn additional capabil-
ities that enable better decision-making. For instance, the ability to avoid myopic node selection
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Figure 10: The figure illustrates the probing results during NCO models training.
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Figure 11: The figure illustrates the probing results of MatNet across different layers.

improves with increased model depth, as illustrated in Figure 9(b). An exception is observed in the
last two layers of LEHD, where the ability to avoid myopic decisions slightly decreases, potentially
indicating that the model has learned more complex decision-making strategies. Future research
could further explore this phenomenon and what LEHD learns in its deeper layers. Overall, through
these two probing tasks, we demonstrate that when NCO models solve TSP problems, they can per-
ceive Euclidean distances (low-level features) in shallow layers and learn a decision space beyond
the Euclidean distance space (high-level features) in deeper layers. In this decision space, NCO
models can avoid making myopic decisions.

Figure 10 illustrates the evolution of results for two TSP probing tasks during the training process of
the three NCO models. As shown, for AM and POMO, the model performance improvement during
the initial epochs is the fastest, and the results for Probing Task 2 (related to avoiding myopic deci-
sions) also improve rapidly in early learning epochs. This alignment suggests a positive correlation
between Probing Task 2 results and the models’ final performance. In contrast, LEHD achieves peak
performance on Probing Task 2 right from the start of training, indicating that the LEHD model has
already learned how to avoid myopic decisions early in the process. What additional information
LEHD learns to make its node selection decisions could be further investigated in future research by
designing new probing tasks.

The probing results of MatNet are shown in Figure 11, with a detailed analysis provided in Section
5.5.

C.5 MORE POMO RESULTS

Table 6 presents additional experiments on POMO. The first row corresponds to the original POMO
data from Table 1, the second row represents the embeddings of a POMO model trained using super-
vised learning (SL), and the third row corresponds to POMO augmented with context embeddings.
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Table 6: More POMO Probing results.

Probing input Probing task 1 Probing task 2
RMSE MAE R2 score Accuracy Precision Recall F1 score AUC

20
no

de
s w
/o

POMO-Enc-l6 0.2196 0.1787 0.1981 70.10% 0.71 0.67 0.69 0.76
POMO-SL-Enc-l6 0.2183 0.1770 0.2073 70.50% 0.72 0.66 0.69 0.76
POMO-Enc-l6-w/c 0.2250 0.1809 0.1876 69.75% 0.71 0.67 0.69 0.76

w

POMO-Enc-l6 0.1119 0.0890 0.7917 78.88% 0.79 0.80 0.79 0.86
POMO-SL-Enc-l6 0.1044 0.0825 0.8186 76.35% 0.78 0.74 0.76 0.84
POMO-Enc-l6-w/c 0.1189 0.0942 0.7732 78.97% 0.79 0.80 0.79 0.86

10
0

no
de

s

w
/o

POMO-Enc-l6 0.2231 0.1825 0.2014 71.83% 0.72 0.72 0.72 0.79
POMO-SL-Enc-l6 0.2219 0.1809 0.2102 72.65% 0.73 0.72 0.72 0.81
POMO-Enc-l6-w/c 0.2249 0.1818 0.1646 71.25% 0.72 0.72 0.72 0.79

w

POMO-Enc-l6 0.0802 0.0640 0.8968 72.47% 0.72 0.73 0.73 0.80
POMO-SL-Enc-l6 0.0797 0.0638 0.8980 73.60% 0.74 0.73 0.74 0.81
POMO-Enc-l6-w/c 0.0807 0.0645 0.8923 72.28% 0.72 0.73 0.72 0.80

The results show that the SL-trained POMO achieves similar probing task results to the RL-trained
POMO. This observation aligns with the findings from the ablation study in Luo et al. (2023), where
SL-trained and RL-trained POMO models exhibit comparable performance.

C.6 JSSP PRECEDENCE CONSTRAINT

In addition to the routing problem analyzed earlier, we also apply probing to test the precedence
constraints in the Job-shop Scheduling Problem (JSSP). For JSSP, we evaluate a classic learning
model Zhang et al. (2020), which is based on a graph neural network. The datasets for this probing
task are constructed as follows: we extract embeddings for all nodes, pair two node embeddings that
satisfy the precedence constraint with a label of 1 ([hi,hj]-1), and pair two node embeddings that
violate the constraint with a label of 0 ([hm,hn]-0). As an ablation, we also construct an alternative
dataset where pairs that satisfy the precedence constraint are incorrectly labeled as 0: [hi,hj]-1,
[hn,hm]-0.

The results show that for the correct dataset, the probing model achieves an AUC of 1, while for
the ablation dataset, the AUC is 0.5. This indicates that the NCO model effectively captures the
precedence constraint information between nodes in its embeddings. Here, we provide an initial
demonstration of how probing can explore the NCO model’s perception of constraints in the JSSP.
In the future, more sophisticated probing tasks can be designed to further analyze how the NCO
model perceives constraints and incorporates them into its decision-making process, thereby offering
deeper insights into the design of NCO models.
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