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ABSTRACT

Deep Learning based methods have emerged as the indisputable leaders for virtually
all image restoration tasks. Especially in the domain of microscopy images, various
content-aware image restoration (CARE) approaches are now used to improve
the interpretability of acquired data. Naturally, there are limitations to what can
be restored in corrupted images, and like for all inverse problems, many potential
solutions exist, and one of them must be chosen. Here, we propose DIVNOISING, a
denoising approach based on fully convolutional variational autoencoders (VAEs),
overcoming the problem of having to choose a single solution by predicting a
whole distribution of denoised images. First we introduce a principled way of
formulating the unsupervised denoising problem within the VAE framework by
explicitly incorporating imaging noise models into the decoder. Our approach
is fully unsupervised, only requiring noisy images and a suitable description of
the imaging noise distribution. We show that such a noise model can either be
measured, bootstrapped from noisy data, or co-learned during training. If desired,
consensus predictions can be inferred from a set of DIVNOISING predictions,
leading to competitive results with other unsupervised methods and, on occasion,
even with the supervised state-of-the-art. DIVNOISING samples from the posterior
enable a plethora of useful applications. We are piq showing denoising results for
13 datasets, piiq discussing how optical character recognition (OCR) applications
can benefit from diverse predictions, and are piiiq demonstrating how instance cell
segmentation improves when using diverse DIVNOISING predictions.

1 INTRODUCTION

The goal of scientific image analysis is to analyze pixel-data and measure the properties of objects of
interest in images. Pixel intensities are subject to undesired noise and other distortions, motivating
an initial preprocessing step called image restoration. Image restoration is the task of removing
unwanted noise and distortions, giving us clean images that are closer to the true but unknown signal.

In the past years, Deep Learning (DL) has enabled tremendous progress in image restoration (Mao
et al., 2016; Zhang et al., 2017b; Zhang et al., 2017; Weigert et al., 2018). Supervised DL methods
use corresponding pairs of clean and distorted images to learn a mapping between the two quality
levels. The utility of this approach is especially pronounced for microscopy image data of biological
samples (Weigert et al., 2017; 2018; Ouyang et al., 2018; Wang et al., 2019), where quantitative
downstream analysis is essential. More recently, unsupervised content-aware image restoration
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Figure 1: Training and prediction/inference with DIVNOISING. (top) A DivNoising VAE can be trained
fully unsupervised, using only noisy data and a (measured, bootstrapped, or co-learned) pixel noise model
pNMpxi|siq (see main text for details). (bottom) After training, the encoder can be used to sample multiple
zk „ qφpz|xq, giving rise to diverse denoised samples sk. These samples can further be used to infer consensus
point estimates such as a MMSE or a MAP solution.

(CARE) methods (Lehtinen et al., 2018; Krull et al., 2019; Batson & Royer, 2019; Buchholz et al.,
2019) have emerged. They can, enabled by sensible assumptions about the statistics of imaging noise,
learn a mapping from noisy to clean images, without ever seeing clean data during training. Some
of these methods additionally include a probabilistic model of the imaging noise (Krull et al., 2020;
Laine et al., 2019; Prakash et al., 2020; Khademi et al., 2020) to further improve their performance.
Note that such denoisers can directly be trained on a given body of noisy images.

All existing approaches have a common flaw: distortions degrade some of the information content
in images, generally making it impossible to fully recover the desired clean signal with certainty.
Even an ideal method cannot know which of many possible clean images really has given rise to the
degraded observation at hand. Hence, any restoration method has to make a compromise between
possible solutions when predicting a restored image.

Generative models, such as VAEs, are a canonical choice when a distribution over a set of variables
needs to be learned. Still, so far VAEs have been overlooked as a method to solve unsupervised
image denoising problems. This might also be due to the fact that vanilla VAEs (Kingma & Welling,
2014; Rezende et al., 2014) show sub-par performance on denoising problems (see Section 6).

Here we introduce DIVNOISING, a principled approach to incorporate explicit models of the imaging
noise distribution in the decoder of a VAE. Such noise models can be either measured or derived
(bootstrapped) from the noisy image data alone (Krull et al., 2020; Prakash et al., 2020). Additionally
we propose a way to co-learn a suitable noise model during training, rendering DIVNOISING fully
unsupervised. We show on 13 datasets that fully convolutional VAEs, trained with our proposed
DIVNOISING framework, yield competitive results, in 8 cases actually becoming the new state-of-
the-art (see Fig. 2 and Table 1). Still, the key benefit of DIVNOISING is that the method does not
need to commit to a single prediction, but is instead capable of generating diverse samples from
an approximate posterior of possible true signals. (Note that point estimates can still be inferred if
desired, as shown in Fig. 4.) Other unsupervised denoising methods only provide a single solution
(point estimate) of that posterior (Krull et al., 2019; Lehtinen et al., 2018; Batson & Royer, 2019) or
predict an independent posterior distribution of intensities per pixel (Krull et al., 2020; Laine et al.,
2019; Prakash et al., 2020; Khademi et al., 2020). Hence, DIVNOISING is the first method that learns
to approximate the posterior over meaningful structures in a given body of images.

We believe that DIVNOISING will be hugely beneficial for computational biology applications in
biomedical imaging, where noise is typically unavoidable and huge datasets need to be processed
on a daily basis. Here, DIVNOISING enables unsupervised diverse SOTA denoising while requiring
only comparatively little computational resources, rendering our approach particularly practical.

Finally, we discuss the utility of diverse denoising results for OCR and showcase it for a ubiquitous
analysis task in biology – the instance segmentation of cells in microscopy images (see Fig. 5).
Hence, DIVNOISING has the potential to be useful for many real-world applications and will not only
generate state-of-the-art (SOTA) restored images, but also enrich quantitative downstream processing.
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2 RELATED WORK

Classical Denoising. The denoising problem has been addressed by a variety of filtering ap-
proaches. Arguably some of the most prominent ones are Non-Local Means (Buades et al., 2005)
and BM3D (Dabov et al., 2007), which implement a sophisticated non-local filtering scheme. A
comprehensive survey and in-depth discussion of such methods can be found in (Milanfar, 2012).

DL Based Denoising. Deep Learning methods which directly learn a mapping from a noisy image
to its clean counterpart (see e.g. (Zhang et al., 2017a) and (Weigert et al., 2018)) have outperformed
classical denoising methods in recent years. Two well known contributions are the seminal works
by Zhang et al. (2017a) and later by Weigert et al. (2018). More recently, a number of unsupervised
variations have been proposed, and in Section 1 we have described their advantages and disadvantages
in detail. One additional interesting contribution was made by Ulyanov et al. (2018), introducing
a quite different kind of unsupervised restoration approach. Their method, Deep Image Prior,
trains a network separately for each noisy input image in the training set, making this approach
computationally rather expensive. Furthermore, training has to be stopped after a suitable but a priori
unknown number of training steps.

Recently, Quan et al. (2020) proposed an interesting method called SELF2SELF which trains a
U-NET like architecture requiring only single noisy images. The key idea of this approach is to use
blind spot masking, similar to Krull et al. (2019), together with dropout (Srivastava et al., 2014),
which avoids overfitting and allows sampling of diverse solutions. Similar to DIVNOISING, the
single denoised result is obtained by averaging many diverse predictions. Diverse results obtained
via dropout are generally considered to capture the so called epistemic or model uncertainty (Gal
& Ghahramani, 2016; Lakshminarayanan et al., 2017), i.e. the uncertainty arising from the fact that
we have a limited amount of training data available. In contrast, DIVNOISING combines a VAE
and a model of the imaging noise to capture what is known as aleatoric or data uncertainty (Böhm
et al., 2019; Sensoy et al., 2020), i.e. the unavoidable uncertainty about the true signal resulting
from noisy measurements. Like in Ulyanov et al. (2018), also SELF2SELF trains separately on
each image that has to be denoised. While this renders the method universally applicable, it is
computationally prohibitive when applied to large datasets. The same is true for real time applications
such as facial denoising. DIVNOISING, on the other hand, is trained only once on a given body of
data. Afterwards, it can be efficiently applied to new images. A detailed comparison of SELF2SELF
and DIVNOISING in terms of denoising performance, run time and GPU memory requirements can
be found in Appendix A.14 and Appendix Table 2.

Denoising (Variational) Autoencoders. Despite the suggestive name, denoising variational autoen-
coders (Im et al., 2017) are not solving denoising problems. Instead, this method proposes to add
noise to the input data in order to boost the quality of encoder distributions. This, in turn, can lead
to stronger generative models. Other methods also follow a similar approach to improve overall
performance of autoencoders (Vincent et al., 2008; 2010; Jiao et al., 2020).

VAEs for Diverse Solution Sampling. Although not explored in the context of unsupervised de-
noising, VAEs are designed to sample diverse solutions from trained posteriors. The probabilistic
U-NET (Kohl et al., 2018; 2019) uses conditional VAEs to learn a conditional distribution over seg-
mentations. Baumgartner et al. (2019) improve the diversity of segmentation samples by introducing
a hierarchy of latent variables to model segmentations at multiple resolutions. Unlike DIVNOISING,
both methods rely on paired training data. Nazabal et al. (2020) employ VAEs to learn the distribution
of incomplete and heterogeneous data in a fully unsupervised manner. Babaeizadeh et al. (2017)
build upon a VAE style framework to predict multiple plausible future frames of videos conditioned
on given context frames. A variational inference approach was used by Balakrishnan et al. (2019) to
generate multiple deprojected samples for images and videos collapsed in either spatial or temporal
dimensions. Unlike all these approaches, we address the uncertainty introduced by common imaging
noise and show how denoised samples can improve downstream processing.

3 THE DENOISING TASK

Image restoration is the task of estimating a clean signal s “ ps1, . . . , sN q from a corrupted obser-
vation x “ px1, . . . , xN q, where si and xi, refer to the respective pixel intensities. The corrupted
x is thought to be drawn from a probability distribution pNMpx|sq, which we call the observation
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likelihood or the noise model. In this work we focus on restoring images that suffer from insufficient
illumination and detector/camera imperfections. Contrary to existing methods, DIVNOISING is
designed to capture the inherent uncertainty of the denoising problem by learning a suitable posterior
distribution. Formally, the posterior we are interested in is pps|xq9ppx|sqppsq and depends on two
components: the prior distribution ppsq of the signal as well as the observation likelihood pNMpx|sq
we introduced above. While the prior is a highly complex distribution, the likelihood ppx|sq of a
given imaging system (camera/microscope) can be described analytically (Krull et al., 2020).

Models of Imaging Noise. The noise model is usually thought to factorize as a product of pixels,
implying that the corruption, given the underlying signal, is occurring independently in each pixel as

ppx|sq “
N
ź

i

pNMpxi|siq. (1)

This assumption is known to hold true for Poisson shot noise and camera readout noise (Zhang et al.,
2019; Krull et al., 2020; Prakash et al., 2020). We will refer to the probability pNMpxi|siq of observing
a particular noisy value xi at a pixel i given clean signal si as the pixel noise model. Various types of
pixel noise models have been proposed, ranging from physics based analytical models (Zhang et al.,
2019; Luisier et al., 2010; Foi et al., 2008) to simple histograms (Krull et al., 2020). In this work, we
follow the Gaussian Mixture Model (GMM) based noise model description of (Prakash et al., 2020).
The parameters of a noise model can be estimated whenever pairs px1, s1q of corresponding noisy and
clean calibration images are available (Krull et al., 2020). The signal s1 « 1

M

řM
j“0 x

1j can then be
computed by averaging these noisy observations (Prakash et al., 2020). In a case where no calibration
data can be acquired, s1 can be estimated by a bootstrapping approach (Prakash et al., 2020). Later,
we additionally show how a suitable noise model can be co-learned during training.

4 THE VARIATIONAL AUTOENCODER (VAE)

We want to briefly introduce the VAE approach introduced by Kingma & Welling (2014). A more
complete introduction to the topic can be found in (Doersch, 2016; Kingma & Welling, 2019). VAEs
are generative models, capable of learning complex distributions over images x, such as hand written
digits (Kingma & Welling, 2014) or faces (Huang et al., 2018). To achieve this, VAEs use a latent
variable z with a fixed (usually a unit normal distribution) prior ppzq and describe

pθpxq “

ż

pθpx|zqppzqdz. (2)

Like conventional autoencoders, they consist of two components: A decoder network gθpzq that takes
a point in latent space and maps it to a distribution pθpx|zq in image space and an encoder network
fφpxq, which takes an observed image and maps it to a distribution qφpz|xq in latent space. By φ and
θ, we denote network parameters of the encoder and decoder, respectively.

Note that the decoder alone (together with a suitable prior ppzq) is sufficient to completely describe
the generative model in Eq. 2. It is usually modelled to factorize over pixels

pθpx|zq “
N
ź

i“1

pθpxi|zq, (3)

where pθpxi|zq is a normal distribution, with its mean and variance predicted by the decoder network
network gθpxq. The encoder distribution is modelled in a similar fashion, factorizing over the
dimensions of the latent space.

Training for VAEs consists of adjusting the parameters θ to make sure that Eq. 2 fits the distri-
bution of training images x. Kingma et al. show that this can be achieved with the help of the
encoder by jointly optimizing φ and θ to minimize the loss Lφ,θpxq “ LR

φ,θpxq ` LKL
φ pxq, where

LR
φ,θpxq “ Eqφpz|xqr´ log pθpx|zqs “ Eqφpz|xq

”

řN
i“1´ log pθpxi|zq

ı

, and LKL
φ pxq is the KL di-

vergence KL pqφpz|xq||ppzqq. While LKL
φ pxq can be computed analytically, the expected value in

LR
φ,θpxq is approximated by drawing a single sample z1 from qφpz|xq and using the reparametrization

trick by Kingma & Welling (2014) for gradient computation.
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Figure 2: Qualitative denoising results. We compare two DIVNOISING samples, the MMSE estimate
(derived by averaging 1000 sampled images), and results by the supervised CARE baseline. The diversity
between individual samples is visualized in the column of difference images. (See Appendix A.9 for additional
images of DIVNOISING results.)

5 DIVNOISING

In DIVNOISING, we build on the VAE setup but interpret it from a denoising-specific perspective.
We assume that images have been created from a clean signal s via a known noise model, i.e.,
x „ pNMpx|sq. To account for this within the VAE setup, we replace the generic normal distribution
over pixel intensities in Eq. 3 with a known noise model pNMpx|sq (see Eq. 1). We get pθpx|zq “
pNMpx|sq “

śN
i pNMpxi|siq, with the decoder now predicting the signal gθpzq “ s. Together

with ppzq and the noise model, the decoder now describes a full joint model for all three variables,
including the signal:

pθpz,x, sq “ pNMpx|sqpθps|zqppzq, (4)

where we assume that pNMpx|s, zq “ pNMpx|sq. For a given zk, as for standard VAEs, the decoder
describes a distribution over noisy images ppx|zq. The corresponding clean signal sk, in contrast, is
deterministically defined. Hence, pθps|zq is a Dirac distribution centered at gθpzq.

Training. Considering Eq. 1, the reconstruction loss becomes LR
φ,θpxq “

Eqφpz|xq
”

řN
i“1´ log ppxi|s “ gθpzqq

ı

. Apart from this modification, we can follow the stan-
dard VAE training procedure, just as described in Section 4. Since we have only modified how the
decoder distribution is modeled, we can assume that the training procedure still produces piq a model
describing the distribution of our training data, while piiq making sure that the encoder distribution
well approximates the distribution of the latent variable given the image. A complete derivation of
the DIVNOISING loss (from probability model perspective) can be found in Appendix A.12.
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+

Figure 3: Sensibility of Noise Models. For each predicted signal
intensity (x-axis), we show the variance of noisy observations (y-
axis). The plot is generated from experiments on the Convallaria
dataset. The dashed red line shows the true noise distribution (mea-
sured from pairs of noisy and clean calibration data). This true
distribution, as well as the noise model created via bootstrapping,
and the noise model we co-learned with DIVNOISING, show sim-
ple (approximately) linear relationships between signal intensities
and noise variance. Such a relationship is known to coincide with
the physical reality of Poisson noise (shot noise) (Zhang et al.,
2019). The implicitly learned noise model of the vanilla VAE
has to independently predict the noise variance for each pixel. Its
predictions clearly deviate from the true linear relationship. See
Appendix A.13 for results on BioID Face dataset and more details.

Fully Unsupervised Unsup. (pNM requ.) Supervised
Dataset N2V Vanilla VAE DivNoising PN2V DivNoising CARE

FU
-P

N
2V

Convallaria 35.73˘0.037 36.57˘0.033 36.78˘0.007 36.47˘0.031 36.90˘0.004 36.71˘0.026
ë Bootstrapped 36.70˘0.012 36.64˘0.023

Mouse Act. 33.39˘0.014 33.46˘0.158 33.82˘0.006 33.86˘0.018 33.99˘0.004 34.20˘0.021
Mouse Nuc. 35.84˘0.015 35.84˘0.023 36.05˘0.052 36.35˘0.018 36.26˘0.047 36.58˘0.019

W
2S

Ch.0 (avg1) 34.59˘0.041 33.02˘0.147 34.24˘0.006 - 34.13˘0.002 35.22˘0.069
Ch.1 (avg1) 32.11˘0.030 31.36˘0.041 32.22˘0.021 - 32.22˘0.013 32.88˘0.021
Ch.2 (avg1) 35.04˘0.073 33.72˘0.187 35.24˘0.028 32.79˘0.085 35.18˘0.020 35.91˘0.030
Ch.0 (avg16) 39.01˘0.019 39.27˘0.192 39.45˘0.036 39.36˘0.103 39.63˘0.007 42.35˘0.012
Ch.1 (avg16) 37.91˘0.059 38.33˘0.021 38.41˘0.018 38.46˘0.012 38.39˘0.007 39.64˘0.061
Ch.2 (avg16) 40.30˘0.023 40.24˘0.043 40.56˘0.019 40.36˘0.091 40.41˘0.041 42.03˘0.027

D
en

oi
Se

g Mouse 33.84˘0.070 34.06˘0.003 34.06˘0.005 34.19˘0.037 34.13˘0.003 35.11˘0.016
Flywing 24.79˘0.034 24.88˘0.045 24.92˘0.016 24.85˘0.036 25.02˘0.024 25.79˘0.014
Mouse s&p 32.98˘0.020 23.62˘0.084 35.19˘0.030 29.67˘0.079 36.21˘0.015 37.03˘0.016
BioID Face 32.34˘0.080 32.58˘0.022 33.02˘0.020 33.76˘0.079 33.12˘0.039 35.06˘0.051

Table 1: Quantitative results. For all experiments, we compare all results in terms of mean Peak Signal-to-
Noise Ratio (PSNR in dB) and ˘1 standard error over 5 runs. Overall best performance indicated by being
underlined, best unsupervised method in bold, and best fully unsupervised method in italic. For many datasets,
DIVNOISING is the unsupervised SOTA, typically not being far behind the supervised CARE results.

Prediction. While we can use the trained VAE to generate images from pθpxq (see Appendix A.5),
here we are mainly interested in denoising. Hence, we desire access to the posterior pps|xq, i.e. the
distribution of possible clean signals s given a noisy observation x. Assuming the encoder and decoder
are sufficiently well trained, samples sk from an approximate posterior can be obtained by piq feeding
the noisy image x into our encoder, piiq drawing samples zk „ qφpz|xq, and piiiq decoding the
samples via the decoder to get sk “ gθpz

kq.

Inference. Given a set of posterior samples sk for a noisy image x, we can infer different consensus
estimates (point estimates). We can, for example, approximate the MMSE estimate (see Fig. 2),
by averaging many samples sk. Alternatively, we can attempt to find the maximum a posteriori
(MAP) estimate, i.e. the most likely signal given the noisy observation x, by finding the mode of the
posterior distribution. For this purpose, we iteratively use the mean shift algorithm (Cheng, 1995)
with decreasing bandwidth to find the mode of our sample set (see Fig. 4 and Appendix A.4).

Fully Unsupervised DivNoising. So far we explained our setup under the assumption that the
noise model can either be measured with paired calibration images, or bootstrapped from noisy
data (Prakash et al., 2020). Here, we propose yet another alternative approach of co-learning the
noise model directly from noisy data during training. More concretely, this is enabled by a simple
modification to the DIVNOISING decoder. We assume that the noise at each pixel i follows a normal
distribution with its variance being a linear function of si, i.e., σ2

i “ asi ` b. Linearity is motivated
by noise properties in low-light settings (Faraji & MacLean, 2006; Jezierska et al., 2011). The
learnable network parameters a and b are co-optimized during training. Since variances cannot be
negative, we additionally constrain the predicted values for σ2

i to be positive (see Appendix A.3 for
details).
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Denoising with Vanilla VAEs. While not originally intended for denoising tasks, we were curious
to see how vanilla VAEs perform when applied to these problems. Just like fully unsupervised
DIVNOISING, also the vanilla VAE does not require a noise model. It does, instead, directly predict
per-pixel mean and variance (see Section 4), leaving the possibility open that the right values could
be learned. However, here the decoder is not restricted to make each pixel’s variance a function of
predicted signal. We investigate the denoising performance of the vanilla VAE in Section 6 and show
in Fig. 5 that the predicted variances significantly diverge from ground truth noise distributions.

Signal Prior in DIVNOISING. Classical denoising methods often explicitly model the image/signal
prior ppsq e.g. as smoothness priors (Grimson & Grimson, 1981; Li, 1994), non-local similarity
priors (Buades et al., 2005; Dabov et al., 2007), sparseness priors (Tibshirani, 1996) etc., assum-
ing specific properties of the images at hand. They effectively assign the same probability to all
images/signals sharing e.g. the same level of smoothness. However, the true distribution ppsq
of clean signals (e.g. for a particular experimental setup in a fluorescence microscope) is gener-
ally more complex. Instead of explicitly modelling ppsq, DIVNOISING only implicitly describes
pθpsq “

ş

pθps|zqppzqdz as integral over all possible values of z. We recall that the prior ppzq is
assumed to be the unit Gaussian distribution and the conditional distribution pθps|zq is learned by
the decoder network as the Dirac distribution centered at gθpzq. Depending on its parameters θ, the
network will implement the function differently, leading to a different pθps|zq, and ultimately to a
different pθpsq. This implicit distribution is quite powerful and can capture complex structures. See
Appendix A.5 for samples obtained from this signal prior for different datasets.

6 DATA, EXPERIMENTS, RESULTS

We quantitatively evaluated the performance of DIVNOISING on 13 publicly available datasets (see
Appendices A.1 and A.2 for data details), 9 of which are subject to high levels of intrinsic (real world)
noise. To 4 others we synthetically added noise, hence giving us full knowledge about the nature of
the added noise.

Denoising Baselines. We choose state-of-the-art baseline methods to compare against DIVNOISING,
namely, the supervised CARE (Weigert et al., 2018) and the unsupervised methods NOISE2VOID
(N2V) (Krull et al., 2019) and Probabilistic NOISE2VOID (PN2V) (Krull et al., 2019). All baselines
use the available implementations of (Krull et al., 2020) and, as long as not specified otherwise, make
use of a depth 3 U-NET with 1 input channel and 64 channels in the first layer. As an additional
baseline, we choose vanilla VAEs with the same network architecture as DIVNOISING, but predicting
per pixel mean and variance independently. Training is performed using the ADAM (Kingma & Ba,
2015) optimizer for 200 epochs with 10 steps per epoch with a batch size of 4 and a virtual batch
size of 20 for N2V and CARE and a batch size of 1 and a virtual batch size of 20 for PN2V, an
initial learning rate of 0.001, and the same basic learning rate scheduler as in (Krull et al., 2020). All
baselines use on the fly data augmentation (flipping and rotation) during training.

Training Details. In all experiments we use rather small, fully convolutional VAE networks, with
either 200k or 713k parameters (see Appendix A.3). For all experiments on intrinsically noisy
microscopy data, validation and test set splits follow the ones described in the respective publication.
In contrast to the synthetically noisy data, no apriori noise model is known for microscopy datasets.
For these datasets, we used GMM-based noise models (Prakash et al., 2020; Khademi et al., 2020),
which are measured from calibration images, as well as co-learned noise models. For the W2S
datasets, no dedicated calibration samples to create noise models are available. Hence, for this dataset,
we use the available clean ground truth images and all noisy observations of the training data to learn
a GMM-based noise model. All GMM noise models use 3 Gaussians and 2 coefficients each. Find
more training details in Appendix A.3.

Denoising Results. In Table 1, we report denoising performance of all experiments we conducted
in terms of peak signal-to-noise ratio (PSNR) with respect to available ground truth images. The
DIVNOISING results (using the MMSE estimate from 1000 averaged samples) are typically either
on par or even beyond the denoising quality reached by the baselines in the ’fully unsupervised’
category, as well as the ’unsupervised with noise model’ category.

Note that sampling is very efficient. For all presented experiments sampling 1000 images consistently
took less than 7 seconds (see Table 3 in Appendix A.15 for precise sampling times). The effect of
averaging a different number of samples is explored in Appendix A.8.
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Input MMSE Estimate Clusters in Posterior MAP Estimate Ground Truth

Figure 4: Exploring the learned posterior. The MMSE estimate (average of 10k samples) shows faintly
overlaid letters as a consequence of ambiguities in noisy input. Among these samples from the posterior, we
use mean shift clustering (on smaller crops) to identify diverse and likely points in the posterior. We show 9
such cluster centers in no particular order. We also obtain an approximate MAP estimate (see Supplementary
Material), which has most artifacts of the MMSE solution removed.

DivNoising
Sample 1 + Seg

DivNoising
Sample 2 + Seg.

DivNoising
Sample 3 + Seg.

DivNoising
Sample 4 + Seg.

DivNoising
MMSE + Seg.

Consensus/ Fusion 
Methods

High SNR
+ Seg.

Low SNR
+ Seg.

B
IC

Av
g.

Figure 5: DIVNOISING enables downstream segmentation. We show input images (upper row) and results
of a fixed (untrained) segmentation pipeline (lower row). Cells that were segmented incorrectly (merged or
split) are indicated in magenta. While segmentations of the noisy raw data are of very poor quality, sampled
DIVNOISING results give rise to much better and diverse solutions (cols. 2-5). We then use two label fusion
methods to find consensus segmentations (col. 6), which are even outperforming segmentation results on high
SNR (GT) images. Quantitative results are presented in Appendix Fig. 11.

DIVNOISING MMSE is typically, as expected, slightly behind the performance of the fully supervised
baseline CARE (Weigert et al., 2018). Additionally, on FU-PN2V Convallaria we have demonstrated
that a suitable noise model for DIVNOISING can be created via bootstrapping (Prakash et al., 2020;
Khademi et al., 2020). We also compare against Deep Image Prior (DIP) on DenoiSeg Flywing
dataset as it has smallest number of test images and DIP has to be trained for each image. DIP
achieves PSNR of 24.67˘ 0.050dB compared to 25.02˘ 0.024dB with DIVNOISING.

Due to the extensive computational requirements of SELF2SELF, we cannot run the method on
all images in any of our dataset. Instead, we run it on single, randomly selected images from the
FU-PN2V Convallaria, FU-PN2V Mouse actin, FU-PN2V Mouse nuclei, and W2S Ch.1 (avg1)
datasets. We compare SELF2SELF to DIVNOISING when piq trained on the same randomly chosen
image from the respective dataset, and piiq when DIVNOISING was trained on the entire dataset
and applied on the respective randomly selected image. Within a generous time limit of 10 hours
for training per image, DIVNOISING still outperforms SELF2SELF in measured PSNR performance
while requiring about 7 times less GPU memory (see Appendix A.14 and Appendix Table 2). Note
that the application of SELF2SELF to an entire dataset containing 100 images would require 1000
hours of cumulative training time, while an overall 10 hour training of DIVNOISING on the entire
dataset is sufficient to denoise all contained images. The performance on the natural image benchmark
dataset BSD68 (Roth & Black, 2005) is shown in Fig. 26 and discussed in Appendix A.10. Additional
qualitative results for all datasets can be found in Appendix A.9. A discussion on the accuracy of the
posterior modeled by DIVNOISING can be found in Appendix A.11.

Downstream Processing: OCR. In Fig. 4 we show how Optical Character Recognition (OCR)
applications might benefit from diverse denoising. While regular denoising approaches predict poor
compromises that would never be seen in clean text, DIVNOISING can generate a diverse set of rather
plausible denoised solutions. While our MAP estimates clean up most such problems, occasional
mistakes cannot be avoided, e.g. changing "hunger" to "hungor" (see Fig. 4). Diverse denoising
solutions obtained by clustering typically correspond to plausible alternative interpretations. It stands
to reason that OCR systems can benefit from having access to diverse interpretations.

Downstream Processing: Instance Cell Segmentation. We demonstrate how diverse denoised
images generated with DIVNOISING can help to segment all cells in the DenoiSeg Flywing data.
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While methods to generate diverse segmentations do exist (Kohl et al., 2018; 2019), they require
ground truth segmentation labels during training. In contrast, we use a simple and fast downstream
segmentation pipeline cpxq based on local thresholding and skeletonization (see Appendix A.6
for details) and apply it to individual samples (s1 . . . sK) predicted by DIVNOISING to derive
segmentations (c1 . . . cK). We explore two label fusion methods to combine the individual results
and obtain an improved segmentation. We do: piq use Consensus (BIC) (Emre Akbas et al., 2018)
and piiq create a pixel-wise average of (c1 . . . cK), followed by again applying our threshold based
segmentation procedure on this average, calling it Consensus (Avg).

For comparison, we also segment piq the low SNR input images, piiq the original high SNR images,
and piiiq the MMSE solutions of DIVNOISING. Figure 5 and Appendix Fig. 11 show all results of
our instance segmentation experiments. It is important to note that segmentation from even a single
DIVNOISING prediction outperforms segmentations on the low SNR image data quite substantially.
We observe that label fusion methods can, by utilizing multiple samples, outperform the MMSE
estimate, with Consensus (Avg) giving the best overall results (see Appendix Fig. 11).

7 DISCUSSION AND CONCLUSION

We have introduced DIVNOISING, a novel unsupervised denoising paradigm that allows us, for the
first time, to generate diverse and plausible denoising solutions, sampled from a learned posterior. We
have demonstrated that the quality of denoised images is highly competitive, typically outperforming
the unsupervised state-of-the-art, and at times even improving on supervised results.1

DIVNOISING uses a lightweight fully convolutional architecture. The success of Deep Image
Prior (Ulyanov et al., 2018) shows that convolutional neural networks are inherently suitable for image
denoising. Yokota et al. (2019) reinforce this idea and Tachella et al. (2020) additionally hypothesize
that a possible reason for the success of convolutional networks is their similarity to non-local
patch based filtering techniques. However, the overall performance of DIVNOISING is not merely a
consequence of its convolutional architecture. We believe that the novel and explicit modeling of
imaging noise in the decoder plays an essential role. This becomes evident when comparing our
results to other convolutional baselines (including Deep Image Prior and fully convolutional VAEs),
which do not perform as well as DIVNOISING on any of the datasets we used. Additionally, we
observe that incorrect noise models consistently lead to inferior results (see Appendix A.7).

We find that DIVNOISING is suited particularly well for microscopy data or other applications on
a limited image domain. In its current form it works less well on collections of natural images
(see Appendix A.10). This might not be very surprising, as we are training a generative model
for our image data and would not expect to be capturing the tremendously diverse domain of
natural photographic images with the comparatively tiny networks used in our experiments (see
Appendix A.3). For microscopy data, instead, the diversity between datasets can be huge. Images
of the same type of sample, acquired using the same experimental setup, however, contain many
resembling structures of lesser overall diversity (they are from a limited image domain). Nevertheless,
the stunning results we achieve suggest that DIVNOISING will also find application in other areas
where low SNR limited domain image data has to be analyzed. Next to microscopy, we can think
of astronomy, medical imaging, or limited domain natural images such as faces or street scenes.
Additionally, follow up research will explore larger and improved network architectures, able to
capture more complex DIVNOISING posteriors on datasets covering larger image domains.

While we constrained ourselves to the standard per-pixel noise models in this paper, the DIVNOISING
approach could in principle also work with more sophisticated higher level image degradation models,
as long as they can be probabilistically described. This might include diffraction, blur, or even
compression and demosaicing artefacts.

Maybe most importantly, DIVNOISING can not only produce competitive and diverse results, but
these results can also be leveraged for downstream processing. We have seen that cell segmentation
can be improved and that clustering our results provides us with meaningful alternative interpretations
of the same data (see Fig. 4). We believe that this is a highly promising direction for many applications,
as it provides us with a way to account for the uncertainty introduced by the imaging process. We are
looking forward to see how DIVNOISING will be applied and extended by the community, showcasing
the true potential and limitations of this approach.

1Supervised methods using perfect GT will outperform DIVNOISING, but GT data is at times not perfect.
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A APPENDIX

A.1 INTRINSICALLY NOISY MICROSCOPY DATA

We use public microscopy datasets which show realistic levels of noise, introduced by the respective
optical imaging setups. The FU-PN2V Convallaria (Krull et al., 2020; Prakash et al., 2020) data,
consists of 100 noisy calibration images (intended to generate a noise model), and 100 images of
size 1024ˆ 1024 showing a noisy Convallaria section. The FU-PN2V Mouse nuclei (Prakash et al.,
2020) data is composed of 500 noisy calibration images and 200 noisy images of size 512 ˆ 512
showing labeled cell nuclei. The FU-PN2V Mouse actin (Prakash et al., 2020) data from the same
source consists of 100 noisy calibration images and 100 noisy images of size 1024 ˆ 1024 of the
same sample, but labeled for the protein actin. Finally, we use all 3 channels of 2 noise levels
(avg1 and avg16) of the W2S (Zhou et al., 2020) data. For each channel, corresponding high quality
(ground truth) images are available. Each channel’s training and test sets consist of 80 and 40 images,
respectively. All images are 512ˆ 512 pixels in size.

A.2 DATA EXPOSED TO SYNTHETIC NOISE

We use the well known MNIST (LeCun et al., 1998) as well as the KMNIST (Clanuwat et al., 2018)
dataset showing 28ˆ 28 images of handwritten digits and phonetic letters of hiragana, respectively.
Both datasets contain 60000 training examples and 10000 test examples. Onto both datasets we added
pixel-wise independent Gaussian noise with µ “ 0 and σ “ 140. As a third text-based dataset we
rendered the freely available eBook “The Beetle” (Marsh, 2004) and extracted 40800 image patches
of size 128 ˆ 128. We separated 34680 patches for training and 6120 patches for validation, and
added pixel-wise independent Gaussian noise with µ “ 0 and σ “ 255. Additionally, we use three
datasets from microscopy. The DenoiSeg Mouse (Buchholz et al., 2020) data, showing cell nuclei in
the developing mouse skull, consists of 908 training and 160 validation images of size 128ˆ 128,
with additional 67 images of size 256ˆ 256 for testing. Two noisy datasets were created with this
data, one by exposing all images to pixel-wise independent Gaussian noise with µ “ 0 and σ “ 20
and another one by first applying poisson noise with λ “ 1 followed by adding gaussian noise with
µ “ 0 and σ “ 10 followed by randomly changing 3% of pixels to either 0 or 255. This dataset
is called Mouse s&p in Table 1. The DenoiSeg Flywing (Buchholz et al., 2020) data is showing
membrane labeled cells in a fly wing, consisting of 1428 training and 252 validation patches of size
128ˆ128, with additional 42 images of size 512ˆ512 for testing. We exposed this data to pixel-wise
independent Gaussian noise with µ “ 0 and σ “ 70 to create a synthetic low SNR version. All
original datasets are 8-bit. Lastly, we randomly select 500 images of size 384ˆ 286 from BioID Face
recognition database (noa) and corrupt them with pixel-wise independent Gaussian noise with µ “ 0
and σ “ 15. We use 340, 60 and 100 images for training, validation and test respectively.

A.3 TRAINING AND NETWORK DETAILS

Here, we provide additional details about the network architecture and training parameters used
throughout the main manuscript. For all DIVNOISING experiments, we use rather lightweight depth
2 and depth 3 VAE architectures (see Appendix Figs. 6 and 7, respectively). All networks use
a single input channel and 32 feature channels in the first network layer except for the network
trained on mouse s&p dataset which uses 96 feature channels in the first network layer. We use two
3ˆ 3 convolutions (with padding 1), each followed by ReLU activation, followed by a 2ˆ 2 max
pooling layer. After each such downsampling step, we double the number of feature channels. For
all experiments we use a network architecture of depth 2 (with 2 down/upsampling steps). The only
exceptions are our experiments on DenoiSeg Flywing and eBook data, for which we use a depth 3
architecture (with 3 down/upsampling steps). In total, our depth 2 networks have only around 200k
parameters and depth 3 networks have around 700k parameters.

While we generally use a VAE bottleneck of 64 latent space feature dimensions for each pixel of
the image (after encoding), for the small 28ˆ 28 MNIST and KMNIST images we use only 8 such
latent space dimensions.
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We consistently use 8-fold data augmentation (rotation and flipping) in all experiments. All networks
are trained with a batch size of 32 and an initial learning rate of 0.001. The learning rate is multiplied
by 0.5 if the validation loss does not decrease for 30 epochs.

For all datasets other than MNIST and KMNIST, we extract training patches of size 128 ˆ 128,
and separate 15% of all patches for validation. We set the maximum number of epochs such that
approximately 22 million steps are performed, and in each epoch the entire training data is being fed.
Training is terminated if the validation loss does not decrease by at least 10´6 over 100 epochs.

For DenoiSeg Flywing we observed KL vanishing and solved it via Annealing within the first 15
epochs (Bowman et al., 2015).

The fully unsupervised DIVNOISING decoder directly predicts the signal and the noise variance per
pixel where the variance is constrained to linearly depend on the signal (See Section 5). To avoid
numerical problems and ensure that the predicted variance always remains positive, we allow the user
to set a minimum allowed variance/standard deviation σ2

min/σmin, and enforce this by clamping the
predicted values. Note that a viable choice for this parameter depends on the intensity range of the
dataset. We use the following values: For all FU-PN2V datasets σmin “ 50, for DenoiSeg Flywing
and DenoiSeg Mouse datasets σmin “ 3, for DenoiSeg Mouse s&p dataset σmin “ 1, for BioID Face
dataset σmin “ 15, for W2S avg 1 datasets σmin “ 25 and for W2S avg 16 datasets σmin “ 3.

Run Time and Hardware Requirements.

DIVNOISING using light weight fully convolutional networks (see Appendix Figs. 6 and 7) runs on
relatively cheap computational budget. Our depth 2 networks trained for all experiments requires
about 1.8 GB GPU memory and our depth 3 networks roughly 5 GB GPU memory on a NVIDIA
TITAN Xp GPU. The training time varied from 5´ 12 hours on average depending on the dataset.
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Figure 6: The fully convolutional architecture used for depth 2 networks. We show the depth 2
DIVNOISING network architecture used for FU-PN2V Convallaria, FU-PN2V Mouse nuclei, FU-
PN2V Mouse actin, all W2S channels and DenoiSeg Mouse datasets. These networks count about
200k parameters and have a GPU memory footprint of approximately 1.8GB on a NVIDIA TITAN Xp.
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Convolution (3, 3)    (32, 64, 64)

Convolution (3, 3)    (32, 64, 64)

Transposed Convolution (3, 3)    (32, 128, 128)

Figure 7: The fully convolutional architecture used for depth 3 networks. We show the depth 3
DIVNOISING network architecture used for DenoiSeg Flywing and eBook datasets. These networks
count about 700k parameters and have a GPU memory footprint of approximately 5GB on a NVIDIA
TITAN Xp.
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A.4 CLUSTERING OF SOLUTIONS AND DERIVING THE MAP ESTIMATE

Here we provide additional details on how the cluster centers and the approximate MAP estimate
of Fig. 4 (see main text) were found. We first drew 10000 sampled images from the approximate
posterior as described in Section 4 of the main text. We then performed mean shift (Cheng, 1995)
clustering (using the existing scipy implementation) on the cropped image region shown in the figure.
We set a bandwidth of 800 and the the maximum number of iterations to 20, and used the 100 first
samples of DIVNOISING as seeds. We finally show 9 of the resulting cluster centers in the figure.

To produce the MAP estimate, we employ a similar strategy. In order to find the mode of the sampled
distribution efficiently, we assume that dependencies in the predicted samples should be local. This
assumption is valid, since our network only has only a finite receptive field for each predicted pixel.
Hence, we apply mean shift algorithm on locally overlapping regions. We use a window size of
10ˆ 10 pixels with an overlap of 3 pixels in x and y. On each such region, the mean shift algorithm
is executed repeatedly with decreasing bandwidth, always using the latest result as new seed. We
start by using the sample mean as seed and with an initial bandwidth of 200. After each iteration the
bandwidth is decreased by a factor of 0.9, until it drops below 100.

Similar results should also be achievable by applying mean shift algorithm on the entire image.
But since samples will differ at any location in the image, this global approach would require an
excessively large number of DIVNOISING samples.

A.5 GENERATING IMAGES WITH DIVNOISING MODELS

Just as with a vanilla VAE (see Section 4 in the main text), we can use a trained DIVNOISING VAE
to synthesise images of structures resembling the training data. To achieve this, we sample from the
normal distribution zk „ ppzq and process each sample with the decoder network sk “ gθpz

kq. We
show such generated images in comparison to real crops from the test data in Appendix Figs. 8 to 10.
We see that the images appear most plausible for local structures, indicating that the small networks
we use in this work are not capable of capturing larger structural features in the given data.
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Figure 8: Generating synthetic images with the DIVNOISING VAE for the FU-PN2V Conval-
laria dataset Krull et al. (2020); Prakash et al. (2020). DIVNOISING can also be used to generate
images by sampling from the unit normal distribution ppzq and then using the decoder to produce an
image. Here, we compare generated images and randomly cropped real images. We show images of
different resolutions to see how well the VAE captures structures at different scales. The VAE we
use for denoising is only able to realistically capture small local structures. Note that the network we
use is quite shallow (see Appendix Fig. 6).
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Figure 9: Generating synthetic images with the DIVNOISING VAE for the DenoiSeg Fly-
wing Buchholz et al. (2020) dataset. DIVNOISING can also be used to generate images by sampling
from the unit normal distribution ppzq and then using the decoder to produce an image. Here, we
compare generated images and randomly cropped real images. We show images of different reso-
lutions to see how well the VAE captures structures at different scales. Note that the network (see
Appendix Fig. 7) we use is a bit deeper compared to Supplementary Fig. 8. This VAE captures larger
structures a little better but struggles to produce crisp high frequency structures. This is likely a
consequence of the increased depth of the used network.
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Figure 10: Generating synthetic images with the DIVNOISING VAE for the MNIST LeCun
et al. (1998) dataset. DIVNOISING can also be used to generate images by sampling from the
unit normal distribution ppzq and then using the decoder to produce an image. Here, we compare
generated images and random ground truth images. Our fully convolutional architecture allows us to
generate images of different sizes (despite all input images being only of size 28ˆ 28).
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Figure 11: DIVNOISING enables downstream segmentation. Evaluation of segmentation results (using the
F1 score (Van Rijsbergen, 1979), Jaccard score (Jaccard, 1901) and Average Precision (Lin et al., 2014). On the
x-axis we plot the number of DIVNOISING samples used. The performance of BIC is only evaluated up to 100
samples because we limited run-time to 30 minutes). Remarkably, Consensus (Avg) using only 30 DIVNOISING
segmentation labels, outperforms segmentations obtained from high SNR images.

A.6 INSTANCE CELL SEGMENTATION

Here, we provide additional details regarding the downstream segmentation task described in Section 6
of the main text. We used the first 21 images in the test set of DenoiSeg Flywing for our analysis.

Given an input image, our segmentation pipeline consists of piq generating segmentation masks using
local thresholding with a mean filter of radius 15, followed by piiq skeletonizing the space between
these masks, followed by piiiq connected component analysis to obtain instance segmentation.

Using this pipeline, we generated segmentation for the noisy (low SNR) images, ground truth (high
SNR) images, as well as for the DIVNOISING MMSE estimate (obtained by averaging 1000 sampled
denoised images).

We also apply the above described pipeline for each of the 1000 DIVNOISING samples separately to
serve as input for the two label fusion methods, namely piq Consensus (BIC), and piiq Consensus (Avg).
For the latter label fusion method we skip the connected component analysis and directly average the
thresholded and skeletonized images. To obtain the final result, we again apply the full segmentation
pipeline described above to this average image.

All segmentations were obtained with the open source image analysis software Fiji (Schindelin et al.,
2012).

The quantitative results illustrating the benefit of diverse segmentation for label fusion methods is
shown in Appendix Fig. 11.

A.7 THE RELATIVE IMPORTANCE OF THE KL LOSS COMPONENT

We can generalize our DIVNOISING training loss as a weighted combination of a modified recon-
struction loss (see Section 5 in the main text) and KL divergence loss, where the two loss components
are weighted equally. Following the exposition in (Higgins et al., 2017), we explore the effect of
weighting the KL loss component during training with a factor β. Our modified training loss thus
becomes

Lφ,θpxq “ LR
φ,θpxq ` βLKL

φ pxq, (5)

where setting β “ 1 gives our DIVNOISING setup described in Section 5 in the main text. Note that
increasing or reducing β, i.e. changing the relative importance of the reconstruction loss, is equivalent
to using a wider or narrower noise model, such as a Gaussian noise model with larger or smaller
standard deviation σ. We can thus interpret above results as the effect of using a mismatched noise
model that is either too wide or too narrow.

Effect of β on Denoising Quality. We investigated the effect of β on the denoising ability of
DIVNOISING network with the DenoiSeg Flywing dataset. As illustrated in Appendix Fig. 12a,
β “ 1 gives the optimal results for the MMSE estimate (obtained by averaging 1000 samples). Both
regimes, β ą 1 and β ă 1, yield sub-par denoising performance.

Effect of β on Diversity of Denoised Samples. We introduce a simple new metric, called standard
deviation PSNR, to quantify the diversity of denoised results obtained as a function of β. For a given
noisy image x and given a set of denoised samples Sx, we compute the PSNR of each sample a P Sx
with respect to the corresponding ground truth image s. This yields a vector of PSNR values v where
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vi “ PSNRps, aiq, for vi P v. Standard deviation PSNR for the noisy image x is then defined as
the standard deviation of elements in the vector v. Appendix Fig. 12b reports the average of standard
deviation PSNR obtained for 42 test images of the DenoiSeg Flywing dataset. The higher the beta,
the higher is the standard deviation PSNR indicating higher diversity. Qualitative results presented in
Appendix Fig. 13 show that with β ą 1, there is an increased diversity at the bigger image scales
(e.g. diverse predictions of cell membranes), and generated denoised images appear smoother than
those observed in real data. Setting β ă 1 reduces diversity and introduces grainy artefacts, thereby
yielding poor reconstructions. Note that β “ 1 gives the best results in terms of PSNR of MMSE
while maintaining a fair level of diversity.
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A.8 HOW DOES NOISE AFFECT THE DIVERSITY OF DIVNOISING SAMPLES?

We quantified how the diversity of DIVNOISING samples changes with the amount of noise present
in the original dataset. Increased level of noise introduces additional uncertainty about the true signal,
hence we would expect this to lead to increasingly diverse samples.

To test this hypothesis, we choose the DenoiSeg Flywing dataset and inject pixel wise independent
gaussian noise of mean 0 and standard deviations σ “ 30, 50 and 70. We report the standard
deviation PSNR diversity metric, introduced in Appendix Section A.7, for all three noise levels. As
demonstrated in Appendix Fig. 12c, the higher the noise level, the more diverse the DIVNOISING
samples become, thereby confirming our hypothesis.
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Figure 12: Analyzing the denoising quality and diversity of DIVNOISING samples with differ-
ent factors for the DenoiSeg Flywing dataset. (a) The heatmap shows how the quality (PSNR in
db) of DIVNOISING MMSE estimate changes with averaging increasingly larger number of samples
(numbers shown for 1 run). Unsurprisingly, the more samples are averaged, the better the results get.
We also investigate the effect of weighting the KL loss term with a factor β (Supplementary Eq. 5)
on the quality of reconstruction. We observe that the usual VAE setup with β “ 1 gives the best
results in terms of reconstruction quality. Increasing β ą 1 leads to higher diversity at the expense of
poor reconstruction (see Appendix Fig. 13.) (b) We quantify the denoising diversity achieved with
different β values in terms of standard deviation PSNR (see Appendix section A.7 for details on the
metric). We report the average standard deviation of PSNRs over all test images for different values
of β and observe that the higher β values increase the diversity. (c) We also investigate the effect
of noise on the diversity of denoised DIVNOISING samples by adding pixel wise independent zero
mean Gaussian noise of standard deviations 30, 50 and 70. The higher the noise, the more ambiguous
the noisy input images are, thus leading to higher diversity.
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Figure 13: Qualitative analysis of the effect of weighting KL loss term with factor β for De-
noiSeg Flywing dataset. (a) We show the DIVNOISING MMSE estimate obtained by averaging
1000 samples for all considered β values (Supplementary Eq. 5). We observe that the reconstruc-
tion quality suffers on either increasing β ą 1 or decreasing β ă 1. Best results (with respect to
PSNR) are obtained with β “ 1, as demonstrated in Fig. 12a. (b) For each β value, we show three
randomly chosen DIVNOISING samples as well as difference images. Increasing β ą 1, allows
the DIVNOISING network to generate structurally very diverse denoised solutions, while typically
leading to textural smoothing. Decreasing β ă 1 generates DIVNOISING samples with overall much
reduced structural diversity, introducing reconstruction artefacts/structures at smaller scales.
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A.9 ADDITIONAL RESULTS

More Qualitative Results. In addition to the qualitative results presented in Fig. 2 in the main text,
here we present more results for each considered dataset in Appendix Figs. A.9-24.

Input MMSE Ground truth Input MMSE Ground truth

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3 Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3

DivNoising
MMSE

Noisy input

Ground truth

Figure 14: Additional qualitative results for the DenoiSeg Mouse Buchholz et al. (2020) dataset.
Here, we show qualitative results for two cropped regions (green and cyan). The MMSE estimate
was produced by averaging 1000 sampled images. We choose 3 samples to display to illustrate the
diversity of DIVNOISING results.
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Input MMSE Ground truth Input MMSE Ground truth

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3 Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3

DivNoising
MMSE

Noisy input

Ground truth

Figure 15: Additional qualitative results for the DenoiSeg Flywing Buchholz et al. (2020)
dataset. Here, we show qualitative results for two cropped regions (green and cyan). The MMSE
estimate was produced by averaging 1000 sampled images. We choose 3 samples to display to
illustrate the diversity of DIVNOISING results.
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DivNoising
MMSE

Input MMSE Ground truth Input MMSE Ground truth

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3

Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3 Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3

Noisy input

Ground truth

Figure 16: Additional qualitative results for the FU-PN2V Convallaria Krull et al. (2020);
Prakash et al. (2020) dataset. Here, we show qualitative results for two cropped regions (green
and cyan). The MMSE estimate was produced by averaging 1000 sampled images. We choose 3
samples to display to illustrate the diversity of DIVNOISING results.
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Input MMSE Ground truth Input MMSE Ground truth
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Figure 17: Additional qualitative results for the FU-PN2V Mouse nuclei Prakash et al. (2020)
dataset. Here, we show qualitative results for two cropped regions (green and cyan). The MMSE
estimate was produced by averaging 1000 sampled images. We choose 3 samples to display to
illustrate the diversity of DIVNOISING results.
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Input MMSE Ground truth Input MMSE Ground truth
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Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3 Sample 1 - Sample 2 Sample 1 - Sample 3 Sample 2 - Sample 3

DivNoising
MMSE

Noisy input

Ground truth

Figure 18: Additional qualitative results for the FU-PN2V Mouse actin Prakash et al. (2020)
dataset. Here, we show qualitative results for two cropped regions (green and cyan). The MMSE
estimate was produced by averaging 1000 sampled images. We choose 3 samples to display to
illustrate the diversity of DIVNOISING results.
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Figure 19: Additional qualitative results for the W2S Zhou et al. (2020) dataset (ch. 0, avg1).
Here, we show qualitative results for two cropped regions (green and cyan). The MMSE estimate
was produced by averaging 1000 sampled images. We choose 3 samples to display to illustrate the
diversity of DIVNOISING results.
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Figure 20: Additional qualitative results for the W2S Zhou et al. (2020) dataset (ch. 1, avg1).
Here, we show qualitative results for two cropped regions (green and cyan). The MMSE estimate
was produced by averaging 1000 sampled images. We choose 3 samples to display to illustrate the
diversity of DIVNOISING results.
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Figure 21: Additional qualitative results for the W2S Zhou et al. (2020) dataset (ch. 2, avg1).
Here, we show qualitative results for two cropped regions (green and cyan). The MMSE estimate
was produced by averaging 1000 sampled images. We choose 3 samples to display to illustrate the
diversity of DIVNOISING results.
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Figure 22: Additional qualitative results for the MNIST LeCun et al. (1998) dataset. Here, we
show qualitative results for two cropped regions (green and cyan). The MMSE estimate was produced
by averaging 1000 sampled images. We choose 3 samples to display to illustrate the diversity of
DIVNOISING results.
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Figure 23: Additional qualitative results for the KMNIST Clanuwat et al. (2018) dataset. Here,
we show qualitative results for two cropped regions (green and cyan). The MMSE estimate was
produced by averaging 1000 sampled images. We choose 3 samples to display to illustrate the
diversity of DIVNOISING results.
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Figure 24: Additional qualitative results for the eBook Marsh (2004) dataset. Here, we show
qualitative results for two cropped regions (green and cyan). The MMSE estimate was produced
by averaging 1000 sampled images. We choose 3 samples to display to illustrate the diversity of
DIVNOISING results.
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Figure 25: Additional qualitative results for the BioID Face noa dataset. Here, we show
qualitative results for two cropped regions (green and cyan). The MMSE estimate was produced
by averaging 1000 sampled images. We choose 3 samples to display to illustrate the diversity of
DIVNOISING results.
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A.10 RESULTS ON NATURAL IMAGES

We investigated the denoising performance of DIVNOISING network on the natural images benchmark
dataset BSD68 (Roth & Black, 2005) and show our results in Appendix Fig. 26, where the input has
been corrupted with Gaussian noise of σ “ 25. With our depth 2 network having 96 feature channels
in the first network layer, we achieve a PSNR of 27.45 dB while our unsupervised NOISE2VOID
baseline gives 27.71 dB. As discussed in the main text, this does not come as a surprise since our
DIVNOISING network is comparatively small and asked to learn a complete generative model of
the entire data domain (see main text and Appendix Figs. 8-10). Learning such a model for the
tremendous diversity present in natural images is challenging, and likely the reason why other
architectures solving problems posed on the domain of natural images are much larger than our
networks are. Future versions of DIVNOISING will address this issue by using more expressive
architectures. However, DIVNOISING already gives us access to clean samples from the true (data)
posterior (see Appendix Fig. 26).
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Input MMSE Ground truth Input MMSE Ground truth

Sample 1 Sample 2 Sample 3 Sample 1 Sample 2 Sample 3
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Figure 26: Qualitative results for the BSD68 dataset Roth & Black (2005). Our relatively small
DIVNOISING networks fail to capture the ample structural diversity present in natural photographic
images thereby exhibiting sub-par performance. However, diversity at adequately small image
scales (with respect to the used network’s capabilities) can still be observed, as demonstrated
with the different samples and the difference images corresponding to the green and cyan insets.
We are confident that future work on DIVNOISING with larger networks and different network
architectures/training schedules will expand the capabilities of this method to capture more complex
image domains.
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A.11 HOW ACCURATE IS THE DIVNOISING MODEL AND THE APPROXIMATE POSTERIOR?

Upon close inspection, we find that the images sampled by DIVNOISING exhibit various imperfec-
tions, making clear that they are in fact only samples from an approximate posterior.

For example, we find that DIVNOISING samples are often smoother than real images, see e.g.
Appendix Figs. 15 and 22. We attribute this problem to our network architecture (see also Appendix
Section A.9. For instance, a U-NET based supervised denoiser can make use of skip connections to
propagate high frequency information. But DIVNOISING VAEs have to pipe all information through
the downsampled latent variable bottleneck.

Another common artefact in sampled images is the presence of faint overlayed structures in the
background (see Suppl. Fig. 24). Note that this artefact is less pronounced than in the MMSE
estimate (where we expect such artefacts).

We believe that most of these remaining issues will be solved/reduced by using more sophisticated
network architectures and refined training schedules.

A.12 DERIVATION OF DIVNOISING LOSS FUNCTION FROM PROBABILITY MODEL
PERSPECTIVE

Here, we want to provide a more formal derivation of why our loss function can be used to train the
VAE as desired. We follow a similar line of argument as has been laid out for the standard VAE by
Doersch in (Doersch, 2016).

In our framework, we assume that the observed data x is generated from some underlying latent
variable z through some clean signal s via a known noise model pNMpx|sq. This process of data
generation is depicted as a graphical model shown in Appendix Fig. 27.

z s x
pθ(s|z) pNM(x|s)

Figure 27: Graphical model of the data generation process.

The decoder describes a full joint model for all three variables:

pθpz,x, sq “ ppx, s|zqppzq “ ppx|s, zqpθps|zqppzq (6)

In the assumed graphical model in (Appendix Fig. 27) x is conditionally independent of z given s.
Formally, this implies that

ppx|s, zq “ pNMpx|sq. (7)

Using Supp. Eq. 7, we can reformulate Supp. Eq. 6 as

pθpz,x, sq “ pNMpx|sqpθps|zqppzq. (8)

To train the generative model from Appendix Fig. 27 we try to adjust the parameters θ to maximize
the likelihood of observing our training data x. This means that we need to maximize

pθpxq “

ż

pNMpx|s “ gθpzqqppzqdz. (9)

However, computing the integral in Supp. Eq. 9 is intractable due to the high dimensionality of z. In
our particular model, we would need to integrate over 64 dimensions for each pixel for all our datasets
except MNIST and KMNIST datasets where we would need to integrate over 8 dimensions for each
pixel. An alternative to computing the integral would be to approximate it by sampling a large number
of values z1, z2, ..., zK from ppzq and computing pθpxq « 1

K

řK
k“1 pNMpx|s “ gθpz

kqq. However,
since pNMpx|s “ gθpz

kqq will be very close to 0 for almost all zk, this would require K to be a very
large number for each image in our training set.
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Following the idea introduced in (Kingma & Welling, 2014), we overcome this problem by instead
using an encoder to describe an auxiliary distribution qφpz|xq. The encoder can take a noisy image
x and yield a distribution over z values, which in turn are likely to produce x under the generative
model. We want the encoder distribution qφpz|xq to approximate the true underlying distribution
qφpz|xq « pθpz|xq, as it is implicitly described by our graphical model. From Bayes theorem,
pθpz|xq factorizes as

pθpz|xq “
pθpx|zqppzq

pθpxq
. (10)

The decoder in DIVNOISING setup is a deterministic function of z, i.e., gθpzq “ s. Hence, we can
reformulate Supp. Eq. 10 as

pθpz|xq “
pNMpx|s “ gθpzqqppzq

pθpxq
. (11)

We can describe the quality of the encoder distribution, i.e. how well it approximates the true pθpz|xq
via the KL divergence

KL pqφpz|xq||pθpz|xqq “ ´
ż

qφpz|xq log
pθpz|xq

qφpz|xq
dz. (12)

Substituting Supp. Eq. 11 in Supp. Eq. 12, we get

KL pqφpz|xq||pθpz|xqq “ ´
ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

pθpxqqφpz|xq
dz

“ ´

ż

qφpz|xqrlog
pNMpx|s “ gθpzqqppzq

qφpz|xq
´ log pθpxqsdz

“ ´

ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

qφpz|xq
dz`

ż

qφpz|xq log pθpxqdz

“ ´

ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

qφpz|xq
dz` log pθpxq

ż

qφpz|xqdz.

Since
ş

qφpz|xqdz “ 1, we get

KL pqφpz|xq||pθpz|xqq “ ´
ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

qφpz|xq
dz` log pθpxq.

This implies

log pθpxq “

ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

qφpz|xq
dz` KL pqφpz|xq||pθpz|xqq

“ ELBO ` KL pqφpz|xq||pθpz|xqq ,
(13)

where ELBO is the Evidence Lower Bound as also introduced in (Kingma & Welling, 2019) in the
context of standard VAEs and here ELBO “

ş

qφpz|xq log
pNMpx|s“gθpzqqppzq

qφpz|xq
dz. Note that the KL

divergence term in Supp. Eq. 13 is always greater than or equal to 0 and hence, ELBO is a lower
bound for log pθpxq, i.e., log pθpxq ě ELBO. It follows from Supp. Eq. 13 that

ELBO “ log pθpxq ´ KL pqφpz|xq||pθpz|xqq (14)

Supp. Eq. 14 implies that maximizing ELBO with respect to φ and θ maximizes log pθpxq and
minimizes KL pqφpz|xq||pθpz|xqq, the goals we seek to achieve. Hence,
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maxELBO “ max

ˆ
ż

qφpz|xq log
pNMpx|s “ gθpzqqppzq

qφpz|xq
dz

˙

“ max

ˆ
ż

qφpz|xq log pNMpx|s “ gθpzqqdz`

ż

qφpz|xq log
ppzq

qφpz|xq
dz

˙

“ max

ˆ
ż

qφpz|xq log pNMpx|s “ gθpzqqdz´ KL pqφpz|xq||ppzqq

˙

“ max
`

Eqφpz|xqrlog pNMpx|s “ gθpzqqs ´ KL pqφpz|xq||ppzqq
˘

.

Maximizing the ELBO is equivalent to minimizing the negative ELBO, thus giving us the
DIVNOISING loss function

Lφ,θpxq “ minpEqφpz|xqr´ log pNMpx|s “ gθpzqqs ` KL pqφpz|xq||ppzqqq, (15)

where the expected value is approximated in each iteration by drawing a single sample from qφpz|xq.
Note that the first term in the summation in Supp. Eq. 15 is the same as described in Section 5 in the
main text whereas the second term in the summation is the same as used in the standard VAE loss.

A.13 COMPARISON OF PREDICTED VARIANCES BY VARIOUS METHODS

Unsupervised DIVNOISING and vanilla VAEs are both trained fully unsupervised, learning to predict
per pixel noise models. Learning a good noise model is essential for good denoising performance
as evident from Table 1. Here, we compare the noise models and variance maps predicted for two
datasets by our unsupervised DIVNOISING and vanilla VAEs.

BioID Face dataset. This dataset has been synthetically corrupted with Gaussian noise of µ “ 0 and
σ “ 15.

Input VAE denoised DivNoising denoised DivNoising varianceVAE variancea) b)

Figure 28: Comparison of noise models and variance maps predicted by the vanilla VAE and
DIVNOISING. (a) For each predicted signal intensity (x-axis), we show the variance of noisy
observations (y-axis). The plot is generated from experiments on the BioID Face dataset. The
dashed red line shows the true noise distribution (Gaussian noise with σ2 “ 225). The noise model
created via bootstrapping, and the noise model we co-learned with DIVNOISING, correctly show
(approximately) constant values across all signal intensities. The implicitly learned noise model of
the vanilla VAE has to independently predict the noise variance for each pixel. Its predictions clearly
deviate from the true constant noise variance. (b) We visually compare the denoising results and show
how the predicted variance varies across the image. While the variance predicted by the implicitly
co-learned vanilla VAE model varies depending on the image content, the variance predicted by the
co-learned DIVNOISING model correctly remains flat.

42



Published as a conference paper at ICLR 2021

Convallaria dataset. This dataset is intrinsically noisy and the noise distribution resembles the shot
noise and read out noise characteristics as typical for images acquired under low light settings.

Input VAE denoised DivNoising denoised DivNoising varianceVAE variancea) b)

Figure 29: Comparison of noise models and variance maps predicted by the vanilla VAE
and DIVNOISING. (a) For each predicted signal intensity (x-axis), we show the variance of noisy
observations (y-axis). The plot is generated from experiments on the Convallaria dataset. The dashed
red line shows the true noise distribution (measured from pairs of noisy and clean calibration data).
We compare the noise model co-learned by the vanilla VAE and DIVNOISING with ground truth
noise model and a noise model bootstrapped from noisy data alone as described in Prakash et al.
(2020). Clearly, the noise model learnt by unsupervised DIVNOISING is a much better approximation
to the ground truth noise model compared to the noise models learned/obtained by other methods.
(b) We visually compare the denoising results and show how the predicted variance varies across the
image. As a consequence of the approximately linear relationship between signal and noise variance,
both variance images closely resemble the denoised results. However, the result of the vanilla VAE
additionally contains artifacts.

A.14 QUANTITATIVE COMPARISON OF DIVNOISING WITH SELF2SELF

Since SELF2SELF is trained per image, leading to prohibitive computation times on our test sets, we
randomly chose single images for four of our datasets (FU-PN2V Convallaria, FU-PN2V Mouse
actin, FU-PN2V Mouse nuclei and W2S Ch.1 (avg1)) which contain real-world noise.

We compare the performance of SELF2SELF trained on single images with the performance of
DIVNOISING when trained on piq the same single image as SELF2SELF, and piiq the entire body of
available noisy data in the respective dataset. All trained networks are then applied to the selected
single images. Note that SELF2SELF is run with its default settings.

Since SELF2SELF training is computationally expensive even for a single image, we decided to limit
training time to 10 hours per input on a NVIDIA TITAN Xp GPU. We monitored its performance
by periodically computing the PSNR (every 3000 training steps), showing that even after 10 hours,
SELF2SELF is not yet fully converged. Table 2 shows all results we obtained. It can be seen that
DIVNOISING, when trained on the full dataset, leads consistently to better performance, while
DIVNOISING trained on single images leads to comparable results in a fraction of training time and
using significantly less GPU memory.
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Datasets PSNR (dB) Run time (hours) GPU memory (GB)
S2S DivN.1 DivN.all S2S DivN.1 DivN.all S2S DivN.1 DivN.all

FU
-P

N
2V

Convallaria 36.23 36.42 36.94 10 0.44 10 11 1.5 1.5
Mouse actin 33.15 33.80 33.99 10 1.09 10 11 1.5 1.5
Mouse nuclei 36.21 35.99 36.46 10 0.16 7 11 1.5 1.5

W
2S Ch.0 (avg1) 31.40 31.81 31.59 10 0.48 3.75 11 1.5 1.5

Table 2: Comparison of Self2Self with DivNoising. We train Self2Self (S2S) on a random single image per
dataset and compare it with DIVNOISING trained on the same single image (DivN.1) and DIVNOISING trained
with the full dataset (DivN.all). All methods are tested on the selected single image. Overall best method is
indicated in bold. For all datasets, DIVNOISING leads to best performance while being orders of magnitude
faster and needing significantly less GPU memory.

A.15 SAMPLING TIME DURING PREDICTION

During prediction, in order to obtain diverse results, or to compute the MMSE or MAP estimates,
we need to sample multiple denoised images from the trained DIVNOISING posterior. Table 3 reports
the time (in seconds) needed for sampling 1000 denoised images. For all datasets holds that sampling
1000 denoised images requires less than 7 seconds.

Datasets time (sec)

FU-PN2V
Convallaria 3.37˘0.059 sec
Mouse Act. 6.40˘0.052 sec
Mouse Nuc. 1.91˘0.043 sec

W2S

Ch.0 (avg1) 3.42˘0.074 sec
Ch.1 (avg1) 3.37˘0.068 sec
Ch.2 (avg1) 3.38˘0.053 sec
Ch.0 (avg16) 3.39˘0.060 sec
Ch.1 (avg16) 3.40˘0.062 sec
Ch.2 (avg16) 3.40˘0.048 sec

DenoiSeg
Mouse 1.17˘0.034 sec
Flywing 3.91˘0.034 sec
Mouse s&p 2.82˘0.070 sec
BioID Face 2.09˘0.046 sec

Table 3: Sampling times with DIVNOISING. Average time (˘ SD) needed to sample 1000 denoised images
from a trained DIVNOISING network (evaluated over all test images of the respective dataset).
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