
Tree-Structured Non-Autoregressive Decoding for
Sequence-to-Sequence Text Generation

Anonymous ACL submission

Abstract001

Autoregressive Transformer (AT) dominates002
sequence-to-sequence generation tasks but suf-003
fers from high inference latency due to se-004
quential token generation. Non-Autoregressive005
Transformer (NAT) improves inference effi-006
ciency by parallelizing token prediction, yet007
degrades generation quality. To address these008
limitations, we propose Tree-structured Non-009
Autoregressive Decoding (TNAD), a novel010
paradigm that bridges autoregressive and non-011
autoregressive decoding. TNAD generates a012
sentence through a top-down, layer-wise expan-013
sion of its constituency parse tree, enabling par-014
allel generation within each layer while preserv-015
ing contextual dependencies across layers. Ex-016
perimental results on machine translation and017
paraphrase generation demonstrate that TNAD018
outperforms AT in efficiency and NAT in gener-019
ation quality, thus offering a new alternative to020
AT and NAT in the trade-off between efficiency021
and quality.022

1 Introduction023

Autoregressive Transformer (AT) has shown strong024

performance in both language modeling (Radford025

et al., 2019; Achiam et al., 2023) and sequence-to-026

sequence (seq2seq) tasks (Vaswani et al., 2017;027

Lewis et al., 2019) thanks to its autoregressive028

decoding paradigm. However, its reliance on se-029

quential token generation introduces significant in-030

ference latency bottlenecks. To tackle the ineffi-031

ciency problem, Non-Autoregressive Transformer032

(NAT) (Gu et al., 2017; Kasai et al., 2020) has033

been proposed as a counterpart that generates all to-034

kens simultaneously. Though achieving substantial035

inference speedup, the non-autoregressive decod-036

ing paradigm neglects the contextual dependen-037

cies among generated tokens, resulting in the multi-038

modality problem (i.e., mixing parts from different039

valid output sequences, thus lacking grammatical040

coherence) (Gu et al., 2017) and suffering from no-041

table degradation in generation quality. A balanced042

Figure 1: An illustration of the generation process. In
each step, TNAD expands one layer of the constituency
parse tree in a non-autoregressive way.

generation paradigm that bridges autoregressive 043

and non-autoregressive decoding and reconciles 044

the trade-offs in generation quality and efficiency 045

remains underexplored. 046

In this paper, we propose Tree-structured Non- 047

Autoregressive Decoding (TNAD) as a new text 048

generation paradigm, which generates a sentence 049

by top-down layer-wise expansion of its con- 050

stituency parse tree, with all elements within a 051

layer generated in parallel, as illustrated in Fig. 1. 052

It theoretically relieves the inference latency bur- 053

den of AT by reducing inference steps from O(n) 054

(n for sentence length) to O(log n) (log n for av- 055

erage tree height). Moreover, this paradigm alle- 056

viates the multi-modality problem encountered by 057

NAT because preceding tree layers can be observed 058

for later generations, creating conditional depen- 059

dencies absent in NAT. The experimental results 060

on machine translation and paraphrase generation 061

show that our proposed paradigm surpasses NAT in 062

generation quality and AT in generation efficiency. 063

In contrast to conventional paradigms that prior- 064

itize either quality or efficiency, TNAD strikes a 065

new balance between the two and offers a novel 066

alternative to AT and NAT. 067

2 Method 068

In this section, we first introduce the top-down 069

layer-wise generation process and then how to im- 070

1



Figure 2: Model architecture. In this example, NP, VBZ, DT, JJ, NN are non-terminals, run is a token, and [M1] and
[M2] stand for the non-terminal placeholder and the token placeholder.

plement the process with the Transformer model.071

2.1 Generation Process072

TNAD generates a sentence by iteratively expand-073

ing layers of its constituency parse tree from the top074

down, as shown in Fig. 1. Each layer is expanded075

in one decoding step consisting of two consecutive076

operations:077

• Branching Prediction. Given the previous layer078

of the tree, we simultaneously predict the num-079

bers of child nodes (i.e., branching factors) for080

all non-terminals within it. These child nodes081

constitute the current layer. If a non-terminal is082

predicted to have only one child node, we iden-083

tify the non-terminal as a pre-terminal and its084

child node as a token; otherwise, we identify the085

child nodes as non-terminals.086

• Node Generation. Given the exact number of087

nodes and their identified types in the current088

layer, we simultaneously predict the labels of all089

the nodes (i.e., specific non-terminals or tokens)090

according to their types.091

Since the first layer contains only a single root node,092

we skip the Branching Prediction of the first layer093

and only perform Node Generation. After that, we094

iteratively execute decoding steps by performing095

Branching Prediction and Node Generation until096

no non-terminal is left to be expanded, obtaining a097

complete constituency parse tree whose leaf nodes098

constitute the generated sentence.099

2.2 Model100

We employ the architecture of Bart (Lewis et al.,101

2019), a representative encoder-decoder Trans-102

former architecture (Vaswani et al., 2017), for103

sequence-to-sequence tasks, with a shared decoder104

for both Branching Prediction and Node Genera-105

tion, as shown in Fig. 2. Note that we do not reuse106

the pretrained Bart parameters. Instead, we train 107

the whole model from scratch. 108

When performing Branching Prediction of a 109

layer, the decoder takes all the non-terminal la- 110

bels from the previous layer as input and predicts 111

their branching factors in parallel. We cast branch- 112

ing factor prediction as multi-class classification 113

by setting a maximum branching factor. When per- 114

forming Node Generation of a layer, the decoder 115

takes node placeholders as input, whose number 116

and types are determined by the preceding Branch- 117

ing Prediction. Specifically, if a predicted branch- 118

ing factor is 1, we input a token placeholder [M2]; 119

otherwise, a corresponding number of non-terminal 120

placeholders [M1] are input. The decoder then pre- 121

dicts non-terminal labels for [M1] placeholders and 122

tokens for [M2] placeholders in parallel. 123

We also modify attention scoring and masking 124

in the decoder transformer to incorporate tree struc- 125

ture information as follows: 126

• Layer-wise causal attention mask. On top of the 127

standard causal mask, we allow full attention 128

within the same Branching Prediction or Node 129

Generation block. In other words, a position can 130

attend to everything to its left and those positions 131

to its right that fall into the same block. From the 132

perspective of the tree structure, a node can see 133

everything in the layer it belongs to as well as all 134

the preceding layers. 135

• Node-distance-based linear attention bias. We 136

define the distance between two nodes in a tree 137

structure as the length of the (only) path connect- 138

ing them. We employ the same distance com- 139

putation for non-terminal inputs and placeholder 140

inputs. Following ALiBi (Press et al., 2021), we 141

bias attention scores between two nodes with a 142

penalty proportional to their distance. 143

We use learnable absolute position embeddings as 144

2



Models
Machine Translation

IWSLT14 De-En IWSLT14 En-De WMT16 Ro-En
BLEU Speedup Iter BLEU Speedup Iter BLEU Speedup Iter

AT 35.64 1.0× 23.25 27.37 1.0× 23.98 33.33 1.0× 28.05
Vanilla-NAT 21.71 7.48× 1 13.07 8.50× 1 24.53 9.35× 1

TNAD 33.53 1.24× 18.31 23.37 2.19× 11.62 32.61 1.35× 20.18
For Reference (Orthogonal to TNAD)

DAT 32.99 5.71× 1 23.14 5.68× 1 32.25 6.13× 1

Table 1: Results on machine translation. ‘Iter’ means the number of decoding iterations. The speedup is evaluated
on the test set with a batch size of 1.

in Bart for both non-terminal and placeholder in-145

puts based on their absolute positions in the input146

sequence. During training, the model is optimized147

using the standard cross-entropy loss, with gold148

output labels derived from ground-truth parse trees.149

3 Experiment150

Following Li et al. (2023), we perform experiments151

on two seq2seq tasks: machine translation and para-152

phrase generation. We compare our model, TNAD,153

primarily with AT and vanilla-NAT. Note that there154

exist several approaches to improving the perfor-155

mance of NAT, including training-based (Bao et al.,156

2022; Zhang et al., 2022) and model-based (Huang157

et al., 2022; Gui et al., 2023) methods, but these158

approaches are orthogonal to and can be combined159

with TNAD. Therefore, here we only provide the160

performance of DA-Transformer (DAT) (Huang161

et al., 2022), a representative improved NAT model,162

for reference.163

3.1 Experiment Setup164

Datasets. For machine translation, we conduct165

experiments on IWSLT14 German-English (De-166

En), IWSLT14 English-German (En-De), and167

WMT16 Romanian-English (Ro-En). For the168

IWSLT datasets, we follow the scripts provided by169

fairseq (Ott et al., 2019) to do preprocessing. For170

the WMT dataset, we use the same preprocessed171

data and train/dev/test splits as in Lee et al. (2018).172

We keep the raw version of these machine transla-173

tion datasets instead of utilizing knowledge distilla-174

tion techniques. For paraphrase generation, we use175

ParaNMT-Small (Chen et al., 2019). These datasets176

are all encoded into subword units by BPE (Sen-177

nrich et al., 2015). We use Berkeley Parser (Kitaev178

and Klein, 2018; Kitaev et al., 2019) to obtain silver179

constituency parse trees with an optional postpro-180

cessing step for all datasets. More dataset details181

are listed in Appendix A.182

Implementation Details. Following Gu et al. 183

(2017) and Vaswani et al. (2017), we adopt differ- 184

ent model configurations for different datasets. We 185

follow Gui et al. (2023) and Li et al. (2023) for the 186

training setup. When doing inference, we choose 187

greedy decoding as the decoding strategy for both 188

our model and baselines. We implement our code 189

and conduct experiments on the transformers 190

framework by HuggingFace1. More implementa- 191

tion details can be referred to in Appendix B. 192

Evaluation. In terms of generation quality, we 193

adopt the BLEU score (Papineni et al., 2002) as 194

the main evaluation metric for machine translation 195

tasks. The ROUGE score (Lin, 2004) is addition- 196

ally provided as a reference for paraphrase gen- 197

eration. For all the datasets, we pick the best 3 198

checkpoints based on the validation BLEU score 199

and average their test set performance. For genera- 200

tion efficiency, we measure the number of decoding 201

iterations (Iter) and inference speedup over AT. Iter 202

is the sequence length for AT and is 1 for Vanilla- 203

NAT and DAT. For TNAD, Iter is twice the height 204

of the generated parse tree because generating each 205

layer of the tree requires two iterations, one for 206

Branching Prediction and the other for Node Gen- 207

eration. The speedup is evaluated on the test set 208

with a batch size of 1 on a single A100 GPU. 209

3.2 Results 210

Machine Translation. We report results on ma- 211

chine translation tasks in Table 1. TNAD outper- 212

forms Vanilla-NAT and even the reference baseline 213

DAT in generation quality in all three datasets. In 214

terms of generation efficiency, TNAD surpasses 215

the AT baseline consistently. We also observe that 216

both the speedup and generation quality of TNAD 217

are correlated with decoding iterations. For the 218

IWSLT14 En-De dataset, the parse trees are flatter, 219

and hence TNAD achieves the maximum speedup 220

1https://github.com/huggingface/transformers

3

https://github.com/huggingface/transformers


Models Paraphrase Generation
BLEU ROUGE-1/2/L/avg Speedup Iter

AT 16.3 52.1 / 27.3 / 47.7 / 42.4 1.0× 12.1
Vanilla-NAT 10.6 47.8 / 20.7 / 43.0 / 37.2 4.2× 1

TNAD 12.3 48.0 / 22.4 / 44.5 / 38.3 1.2× 7.9
For Reference (Orthogonal to TNAD)

DAT 12.1 47.5 / 23.2 / 43.2 / 38.0 2.6× 1

Table 2: Results on paraphrase generation.

Models IWSLT14
De-En En-De

Trivial Tree 20.35 12.25
No Label 30.72 20.79
No ALiBi 32.16 22.26

TNAD 33.53 23.37

Table 3: Ablation study results, showing BLEU scores
on the IWSLT14 De-En and En-De datasets.

over AT. On the other hand, for the IWSLT14 De-221

En and WMT16 Ro-En datasets, the decoding iter-222

ations are larger because of deeper parse trees, and223

TNAD can be seen to only slightly underperform224

AT in terms of the BLEU score.225

Paraphrase. Table 2 shows the results on para-226

phrase generation. TNAD surpasses Vanilla-227

NAT and DAT in the BLEU score and additional228

ROUGE scores. For generation efficiency, be-229

cause AT requires fewer decoding iterations than230

in machine translation due to shorter target sen-231

tences, the inference speedup for Vanilla-NAT,232

DAT, and TNAD is smaller in comparison with the233

machine translation results. Nonetheless, TNAD234

still achieves positive speedup over AT.235

3.3 Ablations236

We perform ablation experiments on TNAD as237

shown in Table 3. Trivial Tree refers to TNAD238

trained with balanced binary trees (with a dummy239

non-terminal label on all non-leaf nodes) instead240

of silver trees. No Label denotes replacing all the241

non-terminal labels with a dummy label in TNAD.242

No ALiBi is TNAD without node-distance-based243

linear attention bias mentioned in section 2.2.244

It can be seen that Trivial Tree degrades the245

most in translation quality, even underperform-246

ing Vanilla-NAT. We believe it is because with247

a balanced binary tree structure, most tokens are248

predicted simultaneously during Node Generation249

in the last layer, which is similar to Vanilla-NAT.250

No Label suffers a clear decline in generation qual-251

ity as well. The results from the above two base-252

lines suggest that the performance gains of TNAD253

over Vanilla-NAT stem from its incorporation of 254

reasonable syntactic structures and non-terminal 255

labels, rather than from increased computational 256

costs compared with Vanilla-NAT. Finally, the re- 257

sults of No ALiBi show that our proposed linear 258

attention bias is also critical for enhancing model 259

performance. 260

4 Related Work 261

Non-autoregressive Transformers. Gu et al. 262

(2017) proposes non-autoregressive decoding to ac- 263

celerate text generation at the expense of degraded 264

quality. A series of work (Bao et al., 2022; Kasai 265

et al., 2020; Akoury et al., 2019; Huang et al., 2022; 266

Gui et al., 2023) has been developed to address 267

the performance discrepancy. Among these, DA- 268

Transformer (Huang et al., 2022) shows superior 269

effectiveness and establishes itself as a state-of-the- 270

art non-autoregressive method. Recently, diffusion- 271

based methods (Austin et al., 2021; Arriola et al., 272

2025) provide a new direction for parallelized de- 273

coding. In comparison, our work decomposes the 274

generation process into a series of top-down steps 275

aligned with the syntax tree, where each step em- 276

ploys non-autoregressive decoding. 277

Syntax-Based Generation. One thread of re- 278

search (Sartran et al., 2022; Murty et al., 2023; Hu 279

et al., 2024; Zhao et al., 2024) focuses on jointly 280

modeling syntactic trees and sentences. They se- 281

quentially generate not only tokens, but also actions 282

building up a syntactic parse tree. Another thread 283

of research (Welleck et al., 2019; Li et al., 2023) 284

performs hierarchical generation under the guid- 285

ance of syntax. These studies primarily focus on 286

generation quality instead of efficiency improve- 287

ments in the generation process. Different from 288

their work, our work exploits the inherent paral- 289

lelism of hierarchical tree structures to achieve effi- 290

ciency gains in generation. 291

5 Conclusion 292

We propose TNAD, a new text generation paradigm 293

that generates a sentence by iteratively expanding 294

layers of its constituency parse tree from the top 295

down, with all nodes within a layer predicted in 296

parallel by performing Branching Prediction and 297

Node Generation. Experimental results on seq2seq 298

tasks show that TNAD outperforms NAT in genera- 299

tion quality and AT in generation efficiency, which 300

demonstrates TNAD as a balanced option between 301

AT and NAT. 302

4



6 Limitations303

There are several limitations of this work: (1)304

TNAD relies on constituency parse trees for train-305

ing, which are predicted by an external parser in306

this study. For languages with limited access to307

high-quality constituency parsers, the advantages308

of TNAD could diminish. (2) We adopt a shared309

decoder transformer for Branching Prediction and310

Node Generation. Intuitively, Branching Prediction311

is an easier task than Node Generation. We may ap-312

ply techniques such as layer skipping to Branching313

Prediction for further efficiency gains. (3) Since314

TNAD bridges NAT and AT, we conduct experi-315

ments on seq2seq tasks, which serve as a common316

ground where both paradigms are widely applied.317

TNAD is also suitable for other architectures and318

tasks, such as the decoder-only transformer archi-319

tecture for language modeling. We leave it as future320

work.321

References322

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal,323
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-324
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-325
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,326
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim327
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, and328
260 others. 2023. Gpt-4 technical report.329

Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. 2019.330
Syntactically supervised transformers for faster neu-331
ral machine translation. In Annual Meeting of the332
Association for Computational Linguistics.333

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhi-334
han Yang, Zhixuan Qi, Jiaqi Han, Subham Sekhar335
Sahoo, and Volodymyr Kuleshov. 2025. Block diffu-336
sion: Interpolating between autoregressive and diffu-337
sion language models. ArXiv, abs/2503.09573.338

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel339
Tarlow, and Rianne van den Berg. 2021. Structured340
denoising diffusion models in discrete state-spaces.341
ArXiv, abs/2107.03006.342

Yu Bao, Hao Zhou, Shujian Huang, Dongqi Wang, Li-343
hua Qian, Xinyu Dai, Jiajun Chen, and Lei Li. 2022.344
Glat: Glancing at latent variables for parallel text345
generation. In Annual Meeting of the Association for346
Computational Linguistics.347

Mingda Chen, Qingming Tang, Sam Wiseman, and348
Kevin Gimpel. 2019. Controllable paraphrase gener-349
ation with a syntactic exemplar. In Proceedings of350
the 57th Annual Meeting of the Association for Com-351
putational Linguistics, pages 5972–5984, Florence,352
Italy. Association for Computational Linguistics.353

Jiatao Gu, James Bradbury, Caiming Xiong, Vic- 354
tor OK Li, and Richard Socher. 2017. Non- 355
autoregressive neural machine translation. arXiv 356
preprint arXiv:1711.02281. 357

Shangtong Gui, Chenze Shao, Zhengrui Ma, Xishan 358
Zhang, Yunji Chen, and Yang Feng. 2023. Non- 359
autoregressive machine translation with probabilistic 360
context-free grammar. ArXiv, abs/2311.07941. 361

Xiang Hu, Pengyu Ji, Qingyang Zhu, Wei Wu, and 362
Kewei Tu. 2024. Generative pretrained structured 363
transformers: Unsupervised syntactic language mod- 364
els at scale. In Proceedings of the 62nd Annual 365
Meeting of the Association for Computational Lin- 366
guistics (Volume 1: Long Papers), pages 2640–2657, 367
Bangkok, Thailand. Association for Computational 368
Linguistics. 369

Fei Huang, Hao Zhou, Yang Liu, Hanguang Li, and 370
Minlie Huang. 2022. Directed acyclic transformer 371
for non-autoregressive machine translation. ArXiv, 372
abs/2205.07459. 373

Jungo Kasai, James Cross, Marjan Ghazvininejad, and 374
Jiatao Gu. 2020. Non-autoregressive machine trans- 375
lation with disentangled context transformer. In In- 376
ternational Conference on Machine Learning. 377

Diederik P. Kingma and Jimmy Ba. 2014. Adam: 378
A method for stochastic optimization. CoRR, 379
abs/1412.6980. 380

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi- 381
lingual constituency parsing with self-attention and 382
pre-training. In Proceedings of the 57th Annual Meet- 383
ing of the Association for Computational Linguistics, 384
pages 3499–3505, Florence, Italy. Association for 385
Computational Linguistics. 386

Nikita Kitaev and Dan Klein. 2018. Constituency pars- 387
ing with a self-attentive encoder. In Proceedings 388
of the 56th Annual Meeting of the Association for 389
Computational Linguistics (Volume 1: Long Papers), 390
pages 2676–2686, Melbourne, Australia. Association 391
for Computational Linguistics. 392

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 393
2018. Deterministic non-autoregressive neural se- 394
quence modeling by iterative refinement. ArXiv, 395
abs/1802.06901. 396

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 397
Ghazvininejad, Abdel rahman Mohamed, Omer Levy, 398
Veselin Stoyanov, and Luke Zettlemoyer. 2019. Bart: 399
Denoising sequence-to-sequence pre-training for nat- 400
ural language generation, translation, and compre- 401
hension. In Annual Meeting of the Association for 402
Computational Linguistics. 403

Yafu Li, Leyang Cui, Jianhao Yan, Yongjing Yin, Wei 404
Bi, Shuming Shi, and Yue Zhang. 2023. Explicit 405
syntactic guidance for neural text generation. In Pro- 406
ceedings of the 61st Annual Meeting of the Associa- 407
tion for Computational Linguistics (Volume 1: Long 408
Papers), pages 14095–14112, Toronto, Canada. As- 409
sociation for Computational Linguistics. 410

5

https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:174801260
https://api.semanticscholar.org/CorpusID:174801260
https://api.semanticscholar.org/CorpusID:174801260
https://api.semanticscholar.org/CorpusID:276938178
https://api.semanticscholar.org/CorpusID:276938178
https://api.semanticscholar.org/CorpusID:276938178
https://api.semanticscholar.org/CorpusID:276938178
https://api.semanticscholar.org/CorpusID:276938178
https://api.semanticscholar.org/CorpusID:235755106
https://api.semanticscholar.org/CorpusID:235755106
https://api.semanticscholar.org/CorpusID:235755106
https://api.semanticscholar.org/CorpusID:247958037
https://api.semanticscholar.org/CorpusID:247958037
https://api.semanticscholar.org/CorpusID:247958037
https://doi.org/10.18653/v1/P19-1599
https://doi.org/10.18653/v1/P19-1599
https://doi.org/10.18653/v1/P19-1599
https://api.semanticscholar.org/CorpusID:265157981
https://api.semanticscholar.org/CorpusID:265157981
https://api.semanticscholar.org/CorpusID:265157981
https://api.semanticscholar.org/CorpusID:265157981
https://api.semanticscholar.org/CorpusID:265157981
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://api.semanticscholar.org/CorpusID:248811033
https://api.semanticscholar.org/CorpusID:248811033
https://api.semanticscholar.org/CorpusID:248811033
https://api.semanticscholar.org/CorpusID:220266146
https://api.semanticscholar.org/CorpusID:220266146
https://api.semanticscholar.org/CorpusID:220266146
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://api.semanticscholar.org/CorpusID:3438497
https://api.semanticscholar.org/CorpusID:3438497
https://api.semanticscholar.org/CorpusID:3438497
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://api.semanticscholar.org/CorpusID:204960716
https://doi.org/10.18653/v1/2023.acl-long.788
https://doi.org/10.18653/v1/2023.acl-long.788
https://doi.org/10.18653/v1/2023.acl-long.788


Chin-Yew Lin. 2004. Rouge: A package for automatic411
evaluation of summaries. In Annual Meeting of the412
Association for Computational Linguistics.413

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and414
Christopher D. Manning. 2023. Pushdown layers:415
Encoding recursive structure in transformer language416
models. ArXiv, abs/2310.19089.417

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,418
Sam Gross, Nathan Ng, David Grangier, and Michael419
Auli. 2019. fairseq: A fast, extensible toolkit for420
sequence modeling. In North American Chapter of421
the Association for Computational Linguistics.422

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-423
Jing Zhu. 2002. Bleu: a method for automatic evalu-424
ation of machine translation. In Annual Meeting of425
the Association for Computational Linguistics.426

Ofir Press, Noah A. Smith, and Mike Lewis. 2021. Train427
short, test long: Attention with linear biases enables428
input length extrapolation. ArXiv, abs/2108.12409.429

Alec Radford, Jeff Wu, Rewon Child, David Luan,430
Dario Amodei, and Ilya Sutskever. 2019. Language431
models are unsupervised multitask learners.432

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,433
Milovs Stanojevi’c, Phil Blunsom, and Chris Dyer.434
2022. Transformer grammars: Augmenting trans-435
former language models with syntactic inductive bi-436
ases at scale. Transactions of the Association for437
Computational Linguistics, 10:1423–1439.438

Rico Sennrich, Barry Haddow, and Alexandra Birch.439
2015. Neural machine translation of rare words with440
subword units. ArXiv, abs/1508.07909.441

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob442
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz443
Kaiser, and Illia Polosukhin. 2017. Attention is all444
you need. In Neural Information Processing Systems.445

Sean Welleck, Kianté Brantley, Hal Daumé, and446
Kyunghyun Cho. 2019. Non-monotonic sequential447
text generation. In International Conference on Ma-448
chine Learning.449

Kexun Zhang, Rui Wang, Xu Tan, Junliang Guo, Yi Ren,450
Tao Qin, and Tie-Yan Liu. 2022. A study of syntactic451
multi-modality in non-autoregressive machine trans-452
lation. In North American Chapter of the Association453
for Computational Linguistics.454

Yida Zhao, Chao Lou, and Kewei Tu. 2024. De-455
pendency transformer grammars: Integrating depen-456
dency structures into transformer language models.457
In Proceedings of the 62nd Annual Meeting of the458
Association for Computational Linguistics (Volume 1:459
Long Papers), pages 1543–1556, Bangkok, Thailand.460
Association for Computational Linguistics.461

A Dataset Details 462

We provide statistics of the preprocessed datasets 463

in Table 4, including: (1) the number of samples for 464

each dataset split; (2) BPE: the merge operations 465

set for learning a BPE model to do tokenization; (3) 466

Length: the average length of the target sequence 467

in the train set; (4) Height: the average height of 468

the silver parse trees of the target sequences; (5) 469

Max BF: maximum branching factor of the silver 470

parse trees; (6) NT Labels: the number of types of 471

non-terminal labels of the silver parse trees. 472

For the ParaNMT-Small dataset, we perform a 473

postprocessing step after we obtain the silver parse 474

trees. We first remove a few extreme samples to 475

reduce the maximum branching factor from 325 to 476

80. Then, we modify the parse tree by restricting its 477

height. Specifically, we apply a depth-first traversal 478

over the tree. Once the number of leaf nodes cov- 479

ered by this visited node is less than some threshold, 480

we directly connect the covered leaf nodes, along 481

with their pre-terminals, to this visited node and 482

ignore the underlying subtree. The threshold we 483

set for ParaNMT-Small is 8. 484

B Implementation Details 485

Following Gu et al. (2017) and Vaswani et al. 486

(2017), we adopt a small model setting (dmodel = 487

256, dhidden = 1024, nlayer = 5, nhead = 4) for 488

the IWSLT14 datasets and a base setting (dmodel = 489

512, dhidden = 2048, nlayer = 6, nhead = 8) for 490

the other two datasets. For Vanilla-NAT, the length 491

prediction loss factor is set to 0.1. For DAT, we set 492

λ = 4 for the graph size. 493

We train models on 8 A100 GPUs. All models 494

are optimized with Adam (Kingma and Ba, 2014) 495

with β = (0.9, 0.999) and are trained for 200K 496

steps, with each batch containing 1024 samples. 497

The learning rate increases to 7 · 10−4 in the first 498

10K steps and then anneals exponentially. We set 499

the weight decay as 0.01 and the dropout as 0.3. 500

6

https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:964287
https://api.semanticscholar.org/CorpusID:264805063
https://api.semanticscholar.org/CorpusID:264805063
https://api.semanticscholar.org/CorpusID:264805063
https://api.semanticscholar.org/CorpusID:264805063
https://api.semanticscholar.org/CorpusID:264805063
https://api.semanticscholar.org/CorpusID:91184134
https://api.semanticscholar.org/CorpusID:91184134
https://api.semanticscholar.org/CorpusID:91184134
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:11080756
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:237347130
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:247187809
https://api.semanticscholar.org/CorpusID:247187809
https://api.semanticscholar.org/CorpusID:247187809
https://api.semanticscholar.org/CorpusID:247187809
https://api.semanticscholar.org/CorpusID:247187809
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:59606322
https://api.semanticscholar.org/CorpusID:59606322
https://api.semanticscholar.org/CorpusID:59606322
https://api.semanticscholar.org/CorpusID:250390651
https://api.semanticscholar.org/CorpusID:250390651
https://api.semanticscholar.org/CorpusID:250390651
https://api.semanticscholar.org/CorpusID:250390651
https://api.semanticscholar.org/CorpusID:250390651
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84


Dataset Train/Dev/Test BPE Length Height Max BF NT Labels
IWSLT14 De-En 160K/7K/6K 10K 23.65 9.75 53 71
IWSLT14 En-De 160K/7K/6K 10K 24.18 6.36 72 74
WMT16 Ro-En 608K/2K/2K 40K 26.48 11.17 68 72
ParaNMT-Small 493K/0.5K/0.8K 6K 12.22 4.53 80 73

Table 4: Details of datasets used in our experiments. BPE: the merge operations set for learning a BPE model to do
tokenization; Length: the average length of target sequence in the train set; Height: the average height of the silver
parse trees of the target sequences; Max BF: maximum branching factor of the silver parse trees; NT Labels: the
number of types of non-terminal labels of the silver parse trees;

7


	Introduction
	Method
	Generation Process
	Model

	Experiment
	Experiment Setup
	Results
	Ablations

	Related Work
	Conclusion
	Limitations
	Dataset Details
	Implementation Details

