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Abstract

To build an artificial neural network like the biological intelligence system, recent
works have unified numerous tasks into a generalist model, which can process vari-
ous tasks with shared parameters and do not have any task-specific modules. While
generalist models achieve promising results on various benchmarks, they have per-
formance degradation on some tasks compared with task-specialized models. In this
work, we find that interference among different tasks and modalities is the main fac-
tor to this phenomenon. To mitigate such interference, we introduce the Conditional
Mixture-of-Experts (Conditional MoEs) to generalist models. Routing strategies
under different levels of conditions are proposed to take both the training/inference
cost and generalization ability into account. By incorporating the proposed Condi-
tional MoEs, the recently proposed generalist model Uni-Perceiver can effectively
mitigate the interference across tasks and modalities, and achieves state-of-the-art
results on a series of downstream tasks via prompt tuning on 1% of downstream
data. Moreover, the introduction of Conditional MoE:s still holds the generalization
ability of generalist models to conduct zero-shot inference on new tasks, e.g., video-
text retrieval and video caption. Code and pre-trained generalist models are publicly
released at https://github.com/fundamentalvision/Uni-Perceiver.

1 Introduction

Generalist models that handle multiple modalities and numerous tasks have been long pursued by
the machine learning community. However, previous researches [65, 189, [71] focus on developing
specialized models with task-specific modules. When these models are applied to new tasks, the
specifically-designed components need to be redesigned on demand and fine-tuned on sufficient
downstream data. As a result, their model size increases with the number of diverse downstream
tasks, conflicting with the goal of generalist models.

Recently, some pioneers [93} 79 13} 184, 86, 162]] have made preliminary attempts to build generalist
models by modeling various tasks into a unified formulation. With the unified modeling, large-scale
pre-training on various datasets enables the generalist models to process different downstream tasks
using shared parameters. These generalist models not only achieve competitive performance on
pre-training tasks [[79, 3| 84, [86]], but also can perform zero-shot inference on novel tasks without
introducing additional parameters [93}162].

However, compared to specialized models with specific parameters for each task, generalist models
with shared parameters would suffer from the task-interference issue — different tasks with shared
parameters may conflict with each other [88]]. The same issue is also observed in multilingual NLP
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models [4] 81} [83]]. We argue that the task-interference issue is mainly caused by the inconsistent
optimization in multi-task learning. As shown in Tab. |1} during the training phase of generalist
models, the gradient directions of different tasks would be inconsistent or even opposite. Thus,
if multiple tasks share parameters, the optimal update direction of the shared parameters will be
uncertain, resulting in sub-optimal performance.

Allowing conflicting modalities and tasks to use separate parameters should effectively mitigate the
interference issue in generalist models. Mixture of Experts (MoEs) [43, 23] provides a potential
solution, which learns to activate sub-networks dynamically without introducing any task-specific
modules. Nevertheless, vanilla MoEs [67]] select the experts according to token representations,
which suffers from high training/inference cost and neglects the information of different tasks and
modalities. In this work, we argue that routing strategies of MoEs require special design when applied
to generalist models for mitigating the task-interference issue.

To address the task-interference issue in generalist models, we propose Conditional Mixture-of-
Experts (Conditional MoEs), which improve vanilla MoEs by introducing information under different
levels of conditions, including token-level, context-level, modality-level, task-level, and predefined
token attributes. In this case, vanilla MoEs is a token-level variant of our Conditional MoEs, which
can be replaced by other-level variants to implement stronger generalist models. We carefully
discussed the training/inference cost and generalization ability of different variants, and ablated their
performances in mitigating the interference issue of generalist models. Notably, Conditional MoEs
with predefined token attributes introduces 8-bit attribute embedding to describe the information of
currently processed task and modalities, which demonstrate excellent computational and memory
efficiency and good generalization ability.

To verify the effectiveness of Conditional MoEs, we incorporated it with the recently proposed
generic perception model Uni-Perceiver [93] by replacing the linear projection in self-attention
and FFN blocks with conditional MoE layers. Experiments demonstrate that, by mitigating task
interference with our proposed Conditional MoEs, Uni-Perceiver can be pre-trained on various tasks
jointly without performance degradation, while its generalization to other tasks can be maintained
simultaneously. Our main contributions are as follows:

* We carefully analyze the task-interference issue in generalist models, and provide an explanation
from the gradient direction perspective as well as a metric to quantify the issue.

* We propose Conditional MoEs to address the task-interference issue in generalist models. By intro-
ducing the information of currently processed task and modalities, Conditional MoEs effectively
mitigate the interference issue, while keeping low computational and memory cost.

* Compared with previous SOTAs, our generalist model with 1% downstream data prompt tuning
achieves competitive performance, while only <5% training data and <10% training cost are used.
We hope this work can serve as a solid baseline for generalist models and motivate further research.

2 Related Works

Specialized Models. Previous research focuses on building specialized models for specific tasks.
CNNs [47) 126, [70] and ViTs [20} [53) [76} [80] are developed for image classification. Subsequent
works re-design them to adapt to diverse downstream visual tasks, e.g., object detection [63] and
segmentation [15} 48]]. In NLP, different architectures are specifically designed for neural machine
translation [[77]], natural language understanding [19]], and natural language generation [51]. As for
vision-language tasks, previous works usually combined modality-specific encoders and representa-
tion fusion modules together [[1354]. Recently, [89,165,[71] integrate several specialized models into
a single one to handle diverse tasks. Such integrated specialized models are equipped with multiple
task-specific modules to adapt to as many downstream tasks as possible. However, these methods
still follow the task-specific paradigm, which conflicts with the objective of generalist models.

Vanilla Generalist Models. Vanilla generalist models handle different tasks and modalities with
shared parameters. Uni-Perceiver [93|] formulates various perception tasks as finding the maxi-
mum likelihood target for each input through the similarity of their representations. OFA [79],
Flamingo [3]] and SimVLM [84] attempt to unify different tasks into sequence-to-sequence genera-
tion. UniCORN [86] and Gato [62] further incorporate bounding box and reinforcement learning
tasks into the unified formulation, respectively. These generalist models not only achieve competitive
performance on pre-training tasks with shared parameters, but also can perform zero-shot inference
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Figure 1: Comparisons of fully-shared standard encoder block, task-specific encoder block with
task-dedicated parameters, and encoder block with efficient MoE parameterization.

on new tasks [62,93]]. However, these methods rarely investigate the potential interference among
different modalities and tasks, which could result in the performance degradation of generalist models.

Multi-Task Learning. Multi-task learning [} [L7]] has been widely studied in the community
of vision [27, (74} [72], language [25} [16} |50] and vision-language learning [10, 55, 29]. While
multi-task training enables collaboration between tasks, it may also introduce the task interference
problem [814[83) 28 136, [72]. To mitigate the task-interference issue, some works|[ 14} 24} 38] propose
to dynamically adjust the loss weight for each task, while others [90,149.136] instead use task-dedicated
parameters. However, methods with task-specific parameters are difficult to generalize to new tasks
and do not meet the requirements of generalist models.

Mixture of Experts (MoEs). MoEs has shown its remarkable ability to scale neural networks [67} 43|
231164, 21]]. [67] first proves the effectiveness of MoEs by stacking MoE layers in the LSTM models.
(681 143] further introduce this approach to Transformer architectures. [23|40] train language models
with trillion parameters successfully by utilizing simplified MoE routing strategy and efficient training
techniques. There are also some works applying MoEs to CNNs for computer vision tasks [[1} 185} 82].
Recently, V-MoE [64] successfully employs MoEs to ViTs, showing promising performance on
many visual tasks. Task-MoE [42] focuses on applying MoEs for multilingual translation to mitigate
the interference among different languages. In this work, we aim to explore MoEs under different
conditions for general models.

3 Methodology

In this section, we first analyze the task-interference problem from the gradient direction perspective.
Based on the analysis, we propose Conditional Mixture-of-Experts (Conditional MoEs) for generalist
models, which introduces parameters conditioned by information of different levels to mitigate the
task-interference issue with negligible overhead.

3.1 Task Interference

To quantify the interference of the j-th task on the ¢-th task, we estimate the change in loss L; of the
i-th task, when optimizing the shared parameters 6 according to the j-th task L; as:

VeoLj(x;)

I\

T

VGLi(xi)) , (D
where x; and x; are the sampled training batches of the i-th and j-th tasks, respectively, and A is the
learning rate. Without loss of generality, we only consider the update direction ignoring the update
norm. Then, the interference of the j-th task on the ¢-th task can be quantified as:

T, =E,. (AjLz‘(xi)) 7
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Table 1: The average interference metric Z; ; of the task j on the task ¢ at the 4-th/12-nd FFN blocks.
To calculate the interference metric, we sample 100 batches for each tasks, and record the gradients
based on the pre-trained Uni-Perceriver-Ti. The red value indicates that the task j has a negative
impact on the task ¢, and the green value indicates a positive impact.

(a) The 4-th FFN Block (b) The 12-nd FFN Block
Task j . Task j .
Task 7 ImgCLS (Img) | MLM (Text) | Caption (Img-Text) Task 7 ImgCLS (Img) | MLM (Text) | Caption (Img-Text)
ImgCLS (Img) 1.00 -0.57 1.29 ImgCLS (Img) 1.00 -2.91 -2.45
MLM (Text) 0.07 1.00 0.68 MLM (Text) -1.65 1.00 -1.05
Caption (Img-Text) 0.01 0.01 1.00 Caption (Img-Text) -0.11 0.19 1.00

where the denominator is used to normalize the loss change scale. As reported in Tab. [T} we sample
100 batches for each tasks, and record the gradients to calculate the average interference metric Z; ; of
the j-th task on the ¢-th task at the 4-th/12-nd FFN blocks. We see that, at shallow layers, the image
caption task has positive impacts on image classification and masked language modeling, suggesting
that cooperation between different tasks exists. While at deep layers, tasks with different optimization
objectives hardly enhance each other, and the gradient directions may even opposite.

Fig. [[| summarizes three mainstream architectures for multi-task models. The first is the standard
architecture [93} |31}, 32]] with parameters fully shared by different tasks, which suffers from task
interference problem as analyzed above. The second is task-specific parameterized architecture [89,
635, 29, [71]] equipped with dedicated parameters for each task. Although this architecture address the
interference problem by task-specific parameters, it is difficult to generalize to new tasks that did
not emerge in the training phase. Unlike the above two architectures, the Mixture-of-Experts (MoE)
architecture [67, 43 23| 40, [64] activates models sparsely according to different given inputs by
selectively utilizing different subset of the model parameters. The sparse routing mechanism makes it
possible to train very large generalist models, which maximizes the collaboration and meanwhile
mitigates the interference problem. In this work, we focus on exploring Conditional MoEs for general
models, whose experts are gated by conditions from different levels.

3.2 Conditional Mixture-of-Experts (Conditional MoEs)

We first describe the prototype of Conditional MoEs, and then provide its specific instantiations under
different conditions, as well as the application to generalist models.

Prototype. Given any token x; in the input sequence X = {z;}% |, conditional MoEs with E
experts firstly introduces a gate decision vector G € R that dispatches different input tokens to
different experts, which is calculated as:

G = top,, (softmax (W - R(z;) +¢€)). 3)

where R(-) defines a general routing strategy for gate decision, which is alternative under different
conditions. W is the trainable weights in gate decision and e is the noise term. The top,(-) operator
sets all values to be zero except the largest k values. Since G only has k& < F non-zero values, the
token x; is routed to only a small number of experts. After getting the gate decision vector G, the
corresponding output y; is the weighted combination of each expert’s computation on z; as:

E
yizzge'we'xiz (4)
e=1

where Wy is the linear projection weights of the e-th expert and gate decision G, determines how
much the e-th expert contributes to the output y;. Note that, experts with G, = 0 does not need to be
computed for saving computation.

In Conditional MoEs, the routing strategy R(-) plays an important role in the multi-modality and
multi-task training of generalist models. By sparsely activating experts according to different
conditions, Conditional MoEs can mitigate the interference issue while maintaining the generality
of the pretrained model. Next, we introduce variants with specific routing strategies under different
conditions, as shown in Fig. 2]

Token-Level Routing. Similar to vanilla MoEs [67} 43| 23], 140} 64], the token-Level MoEs directly
use the token representation for the routing strategy, which can be written as:

Rioken(2:) = 2. (©)
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Figure 2: Comparisons of routing strategies with the top-1 gate decisions under 2-task training.

The routing strategy of token-level MoEs is an identical function, where the gate decision only
depends on each token’s own representation.

Context-Level Routing. Tokens with similar representations may appear in conflicting tasks, whose
optimal expert decisions should be different to mitigate the task interference. Therefore, to help gate
function making more reliable decisions, we explore the combination of global context and local
token representation. The routing strategy utilizing global context can be expressed as:

Reontext(x;) = concat(x;, attnpool (X)), 6)

where concat(-) indicates the concatenation operation, X = {z;}% , is sequence of all tokens in the
current sample, and attnpool(-) indicates the attention pooling operator [61]].

Modality-Level Routing. Most current practice uses modality-specific encoders with independent
parameters for different modality inputs. Inspired by this, we also explore to leverage the modality of
the current token as a routing strategy:

Ruodal (1) = embed (idmodar (7)) @)

Here, embed(-) represent the embedding layer, and idyogal(+) indicates the modality index of current
token x;. The routing function will assign this token to experts according to its modality embedding.

Task-Level Routing. In addition to modality information, task information can also be used to guide
gate functions to make reliable decisions for mitigating the task interference. Similar to Eqn. (7), the
routing strategy can be formulated as:

Rysk(z:) = embed(idsask (1)), ®)

where id¢,sk(+) is the task index of current token z;. The task embedding for this task will be used
to compute gate decision. Since all tokens from one task have the same task embedding, all tokens
corresponding to this task will be routed to the same set of experts.

Attribute Routing. Among the aforementioned variants, token-level, context-level, and modality-
level routing strategies only focus on input tokens but omit information about the currently processed
task. While task-level routing strategy relies on task-specific ids, it limits the generalization ability
to new downstream tasks. To introduce the information of currently processed task and modalities
without losing the generalization ability of generalist models, we propose to introduce token attributes
to assist the gate decision.

As described in Tab. [2] the attributes of the current token are represented as an 8-dimensional binary
embedding, whose attributes include the modalities of current task and token (index 0~5), the
causation type of the model (index 6), and the token source (index 7). As a result, the designed token
attributes provide comprehensive information of currently processed task meanwhile keeping the task
generalization ability. Based on the attribute embedding, the routing strategy is expressed as:

Ratr(x:) = layernorm (W - attr(ax;)) . 9)



Table 2: The 8-dimensional binary embedding used for attribute-level routing strategy. The attribute
embedding is assigned to a token by checking whether the statements of the eight descriptions match
the current token. For example, the attribute embedding for any token from the input sequences of
image classification task should be [1,0,0,1,1,0,0,1]. Please refer to the Appendix for detailed
look-up table of attribute embeddings for all tasks in our work.

Index ‘ Descriptions ‘ Yes ‘ No

0

0 Visual modality exists in the inputs of the current task.
Text modality exists in the inputs of the current task.
Visual modality exists in the targets of the current task.
Text modality exists in the targets of the current task.
The modality of current token is visual.

The modality of current token is text.

The attention mask of the current token is causal.
The current token comes from the inputs, not the targets.

e e e e e e

NN R W=
[=NeNoleNoNeNe}

Here, attr(x;) is the 8-dimensional binary attribute embedding of the current token z; as described
in Tab.[2] W, is the learnable weights to transform the attribute embedding to latent representation,
and layernorm(-) denotes the layer normalization [6] for training stabilization.

Application to Generalist Models. Without loss of generality, we explore the application of
Conditional MoEs to the generalist model Uni-Perceiver [93], which uses Transformers to handle
various modalities and tasks with shared parameters. We replace linear projection layers in both
self-attention and FFN blocks with Conditional-MoE layers (see Fig. [I).

3.3 Comparison of Conditional-MoE Variants

As illustrated in Fig. 2] among the variants of Conditional MoEs, token-level and context-level MoEs
are data-dependent, while modality-level, task-level, and attribute MoEs are data-independent.

Training and Inference Cost. Compared to dense models with the same number of parameters, all
Conditional MoE variants can significantly reduce the computational cost benefiting from the sparse
routing mechanism. Due to the dependence of input data, the memory consumption of token-level
and context-level MoE:s is relatively high during model training, and model parallelism is required to
relieve memory cost by partitioning experts across multiple devices, leading to heavy inter-device
communication overhead. This problem persists when using pre-trained models for task-specific
inference, where all experts need to be loaded into memory and might be activated by any token.

Different from data-dependent Conditional MoEs, data-independent variants such as modality-level,
task-level, and attribute MoEs have excellent memory efficiency, since only top-k experts need to
be activated for all tokens with the same modality/task/attributes. Moreover, in both training and
inference phase, the experts in a data-independent MoE layer can be merged into a single linear
projection using reparameterization techniques. In this case, the computation cost of the network
with data-independent Conditional MoEs will be equivalent to a dense model without MoEs.

Generalization Ability. We hope to mitigate the task-interference issue in generalist models, while
keeping their generalization ability to new downstream tasks. While token-level, context-level, and
modality-level MoEs without task-specific designs do not harm the generalization ability, they ignore
the task-level information which is essential to resolve the task interference. Conversely, task-level
routing strategy is tied to a specific task id, which is difficult to generalize to new downstream tasks.
Attribute MoEs introduce predefined token attributes to comprehensively describe the information of
currently processed task and modalities, which can be transferred to new downstream tasks without
any task-specific modifications. This gives attribute MoEs the potential to mitigate task interference
without losing generalization ability.

4 [Experiments

In this section, we first describe our experimental setup. Then, we confirm the task-interference issue
in the generalist model Uni-Perceiver [93] and ablate the the ability of different Conditional MoEs to
mitigate task interference. Finally, large-scale training is conducted to verify the effectiveness of our
proposed Conditional-MoEs and its generalization ability to novel tasks.



Table 3: The performance of different routing strategies for Conditional MoEs. The base model
is Uni-Perceiver with BERT};,y. We also illustrate the task-specific variant where each task has its
own specialized parameters. The training and validation performance reported on three tasks: image
classification on ImageNet-1K [[18]], image caption on COCO Caption [12], and Masked Language
Modeling(MLM) on Books&Wiki. The best results within a tolerance of 1% are in bold.

model task-specific | training inference | ImageNet-1k COCO Caption MLM
parameterization | time time TacCuain  TacCyal | TacCuain TB @4y | TacCuain  Lpplval
. . . 1.0x 1.0x 47.3 68.3 49.2 18.2 54.5 5.86
Uni-Perceiver-Ti [23] v Lix  10x | 533 735 | 526 204 | 60.5 448
+ Conditional MOES (oken 1.8x 2.2x 53.1 72.7 52.9 20.9 58.3 4.96
+ Conditional MOES context 2.2% 2.6x 52.5 73.1 52.8 21.5 58.6 4.86
+ Conditional MoES modality 1.4x 1.0x 51.7 72.6 52.1 21.8 57.5 5.06
+ Conditional MOES sk 1.4x 1.0x 529 73.2 52.7 21.2 59.9 4.56
+ Conditional MoES ,tribute 1.4x 1.0x 52.8 73.3 53.1 23.0 60.0 4.56

4.1 Datasets

We use the same datasets in Uni-Perceiver [93] to pre-train our modelsﬂ Specifically, ImageNet-
21k [18] is used for image classification pre-training. Kinetics-700 [37] and Moments in Time [57]]
are used for video classification pre-training. Language modeling task is trained on BookCorpus [94]]
& English Wikipedia (Books&Wiki). For language modeling with image clues and image-text
retrieval, we use a combination of image-text-pair datasets: SBU Captions (SBU) [38]], Visual
Genome [41], COCO Caption [12]], CC3M [66], CC12M [9] and YFCC [35]]. Following Uni-
Perceiver, Imagenet1K [18]], Kinetics-400 [37], COCO Caption [12], and Flickr30k [59] are utilized
to evaluate the performance of generalist models on downstream tasks. We also use two datasets
that evaluate the generalization ability to novel tasks: MSVD [11] and GLUE [78]]. Additionally, all
dataset licenses are included in Appendix.

4.2 Implementation Details

We incorporate the vanilla generalist model Uni-Perceiver with Conditional MoEs for experiments
with three different variants: Uni-Perceiver-Ti (Tiny), Uni-Perceiver-B (Base), and Uni-Perceiver-L
(Large). Please refer to Appendix for architecture hyperparameters. If not specified, the input image
resolution is set to 224 x224. In each training iteration, each GPU independently samples a single task
and dataset. The gradients of different GPUs are synchronized after the gradient back-propagation.
We use the AdamW optimizer with a base learning rate of 0.0005 and a weight decay of 0.05. Similar
to [5261]], we find setting 3> = 0.98 and € = 10~ helps improve stability when large-scale training.
Besides, gradient clipping with 0.5 is used to stabilize training.

Uni-Perceiver-B and Uni-Perceiver-L are equipped with Conditional-MoEs layer for every other
layers while Uni-Perception-Ti use Conditional MoEs in all layers. A normal noise is also used on
the gate logits following [64] for a better exploration for new potential experts. If not specialized,
top-2 gate function is used. For other hyper-parameters of MoE layers, please refer to Appendix.

4.3 Ablation Studies

This part explores whether Conditional MoEs can effectively mitigate task interference in generalist
models and compares different routing strategies. Tab. [3|summarizes the performance of Uni-Perceiver
and its variants on three typical tasks. Compared with task-specific parameterization, the performance
degradation of Uni-Perceiver confirms the existence of task interference. Incorporating Conditional
MoEs with any routing strategy can mitigate the task-interference issue and significantly improve
the performance. Among these five routing strategies, token-level, context-level, and modality-level
MoEs deliver slightly worse performance. We argue the missed task information is critical for
resolving the task interference. Besides, the data-dependent MoEs, i.e., token-level and context-level,
have relatively higher training and inference cost, while the other three MoEs have excellent efficiency
by using reparameterization techniques. Although both task-level and attribute MoEs achieve good
performance, the specialized task-id design in task-level MoEs makes it difficult to generalize to new
tasks. Therefore, the Conditional MoEs with attribute routing strategy will be used.

! As far as we know, all datasets do not contain any personally identifiable information or offensive content.



Table 4: The performance of incorporating Conditional MoEs with Uni-Perceiver on image classi-
fication, video classification and image-text retrieval. “#param” is the parameters required during
model deployment. “#data” is the amount of visual training samples involved. “WT”, “PT”, and
“FT” indicate w/o tuning, prompt tuning, and fine-tuning, respectively. “1%” and “100%” indicate
the proportion of downstream data used for tuning. “FT o991 means fine-tuning with larger image
size. The subscript number next to score indicates that a different image resolution than 224 is used.
t These methods use > 20x training data size and > 10x training cost than ours.

(a) Image Classification accuracy on ImageNet-1k. ) . ) o
(b) Video classification accuracy on Kinetics-400.

Method ‘#param #data‘WT PTi%  FTioow FTio0%T

DeiT-B [76] 86M 1.28M |- - 81.8  83.1as Method | #param #data |[WT PTis FTioow
ViT-B [13 86M 15.5M |- - 84.0  85.534 TimeSformer-B [7] |121.4M 142M |- - 80.7
ViT-L [73] 307M 15.5M | - - 84.0 85.6334 VATT-B [2] 87.9M 238M |- _ 79.6320
OFA [19 472M 60.6M | - - - 84.9450 VATT-L [2] 306.IM 238M |- - 82.1320
CLIP o] S07M_ 400M | 76233 - - - ViViT-L [3] >307M 142M |- - 817
fALIGN|33 480M  1.8B |76.4259 - - 88.6289 ViViT-L [3] >307M  300M | - - 84.9
TFlorence (89 637M  900M | 83.7354 - - 90.0>384

; >3 T __

1CoCa-B [§7 86M  4.8B 82657 - - 88.3576 Hlorence (5] ‘ 647M 900M‘ 86.5354
tCoCa-L [87] 303M  4.8B | 84.857 - - 902576 CoCa [87] 21B  48B|- - 88.9576
"Flamingo-3B (3] 32B  23B]|- 710320 - - Uni-Perceiver-B 86M 44.1M |74.5 748 77.7
Uni-Perceiver-B 86M 44.1IM[79.2 809 840 8523 + Conditional MoEs | 86M 44.1M | 76.8 77.2 79.3
+ Conditional MoEs |  86M 44.1M|80.3  82.0  84.5 8583 Uni-Perceiver-L 303M 44.1M|79.5 80.0 81.9
Uni-Perceiver-L 354M 303M |82.7 842 862  87.0s + Conditional MoEs | 303M 44.1M | 82.1 83.0 842
+ Conditional MoEs | 303M 44.1M |834 849 864  87.0

(c) Image-text retrieval R@1 performance.

Flickr30K MSCOCO Caption

Method Image — Text Text — Image Image — Text Text — Image

#param #data | WT PT] A FT]()[)% WT PT 1% FT 100% WT PT 1% FT 100% WT PT 1% FT 100%
ImageBERT [60] 170M  10M |70.7 - 870 543 - 73.1 440 - 664 323 - 50.5
UNITER-B [13] 146M 9.6M |80.7 - 859 662 72.5 - - 644 - - 50.3
UNITER-L [13] 363M  9.6M |83.6 - 87.3 68.7 - 75.6 - - 657 - - 529
VILT [39] 8M 9.7M|732 - 74.8 56.5 - 61.5 550 - 644 404 - 427
FLAVA [71] 215M  70M | 67.7 - - 65.2 - - 42.7 - - 384 - -
CLIP [61] 417M  400M | 88.0336 - - 68.733 - - 584336 - - 37.8336 - -
TALIGN 820M  1.8B | 88.6280 - 953289 75. 7289 - 84.9289 | 58.6280 - 77.0289 45.6289 - 59.9280
Florence [89] 893M  900M | 90.9384 - 972384 76.7384 - 87.9384 | 64. 7384 - - 47 2384 - -
TC()C'd.-B [877 383M 4.8B 89,8575 - - 7648576 - - 63.8576 - - 47-5576 - -
iCoCa—L [87' 78TM 4.8B 92,5575 - - 8044576 - - 66.3576 - - 51-2576 - -
TFlamingo-3B [3J 3.2B 2.3B 89.3320 - - 79.532() - - 65.932() - - 4&0320 = -
Uni-Perceiver-B 124M 44.1M | 82.3 91.0 927 71.1 76.0 775 649 684 698 507 519 539
+ Conditional MoEs | 167M 44.1M | 82.1 913 936 724 785 798 646 689 705 516 526 541
Uni-Perceiver-L 354M 44.1M | 83.7 92.1 94.7 74.2 80.0 82.1 678 733 744 541 562 579
+ Conditional MoEs | 505M 44.1M |83.6 924 94.1 759 80.6 837 |679 733 747 553 57.1 583

4.4 Evaluation on Pre-training tasks

Large-scale training is conducted to verify the effectiveness of our method, we first evaluate it on tasks
involved in pre-training. Specifically, we use widely-used Imagenet-1k [18] and Kinetics-400 [37]]
to evaluate image and video classification respectively, and use popular Flickr30k [59] and COCO
Caption [12] to evaluate image caption and image-text retrieval.

Tab. [ and Tab. [5a]show the results on the four pre-training tasks. We see that Uni-perceiver with our
Conditional MoEs consistently outperforms vanilla Uni-perceiver by a large margin. Without any
tuning, our models achieve comparable performance with task-specific SOTAs trained with similar
model size and training data size. Note that, our approach is a generalist model pretrained on a unified
task formulation, while task-specific approaches are trained specifically for the target task.

When prompt tuned on only 1% downstream data, the performance of our models are boosted to a
level close to counterparts that use >50x training data sizes and >10x training cost. For the prompt
tuning of our models, only a small amount of parameters are tuned, and the encoder is still fixed and
shared among different tasks, indicating that generalist models with Conditional MoEs can handle
different tasks with significant low cost than counterparts.

We further fine-tune our models with 100% of the downstream data. In this case, our model achieves
performance on-par with or better than the SOTAs trained with similar data size on all these tasks,
which proves generalist models with Conditional MoEs has learned high-quality representations.



Table 5: The performance of incorporating Conditional MoEs with Uni-Perceiver on image caption,
natural language understanding, video-text retrieval and video caption, where the last three tasks are
not involved in pre-training.

(a) Image caption BLEU @4 performance. * means meth- (b) Natural language understanding (novel task) fine-
ods use region features as network inputs. * indicates that tuned on GLUE. BERTgas records from [34]. Visu-
Cider optimization is used. alBERT and LXMERT record from [30]]. *RoBERTa
uses 10X training text tokens than ours.

Method MSCOCO Caption Flickr30k
#param  data|WT  PTis FTuow |WT PTis FTuos Method MNLI QNLI QQP RTE SST-2 MRPC CoLA
*Unified VLP {92 86M  3.0M |- - 365 |- - 301 (Acc) (Acc) (F1) (Acc) (Acc) (F1) (Mcc)
*OSCAR-B 6 154M  6.5M |- - 365 - -
FOSCARL |[46 384M 65M |- e R LXMERT [75 804 842 753 572 902 804 39.0
UNICORN 86 198M 200k | - e VisualBERT [45] | 81.6 870 860 566 894 821 386
BLIP-B (44 250M  120M | - I SimVLM-B (84 834 886 872 639 909 844 467
BLIP-L {34 S3M 129M | - S 404w - - - BERTB 78 845 884 883 635 929 89.0 547
CLIP-VIL [69' >459M  400M | - - 4()_2‘ - - - BERT-L [78 86.6 923 913 704 932 880 60.6
SimVLM [84] 632M  1.8B| 1120 -  406s0|- - - OFA-B [79 843 911 884 708 927 90.6 523
OFA [79 472M 60.6M | - S Bdg|- - - OFA-L [79 86.6 928 889 736 947 914 531
tCoCa [87 2.1B  48B 40,9576 | -
Uni-Perceiver-B 797 873 867 711 893 860 43.1
Uni-Perceiver-B 124M 44.1M[320 355 364 |147 302 312 o Comiio e MoEs | 815 282 8§78 758 905 11 520
+Conditional MoEs | 167M 44.IM 332 368 373 |159 307 324 - > : g : : : ‘ g
. 5 Uni-Perceiver-L 825 89.2 87.7 737 912 902 520
Uni-Perceiver-L 354M 44.1M |35.3 38.6 39.2 15.1 329 355 Conditional MoEs | 857 919 89.5 784 934 912 574
+ Conditional MoEs | 505M 44.IM [35.5 393 405 |158 337 362 + Conditiona’ Vors | ©- : : - : : :

(c) Video-text retrieval (novel task) Recall@1 and video caption (novel task) BLEU@4 performance on MSVD.

Method Video — Text Text — Video Video Caption
#param #data| WT PTi4 FTiooe WT PTi4 FTige | WT PTig FTigow
CLIP2video [22] 132M  400M | - - 58.7 - - 47.0 - - -
HunYuan_tvr [56] 364M 400M | - - 68.0 - - 52.7 - - -
ORG-TRL [91] 86M 2.0M| - - - - - - - - 54.3
Uni-Perceiver-B 124M 44.1IM |503 62.7 62.8 387 438 458 |22.6 59.5 633
+ Conditional MoEs | 167M 44.IM |52.8 65.6 65.0 40.0 453 478 |234 60.0 654
Uni-Perceiver-L 354M 44.1M 454 655 652 342 486 508 |247 672 683

+ Conditional MoEs | 505M 44.1M |45.7 66.4 67.6 419 503 523 |24.6 67.6 68.9

4.5 Generalization to Novel Tasks

The generalization ability is the most attractive aspect of generalist models, while the dynamic
sub-networks activation of Conditional MoEs should maintain this ability while mitigating task
interference. To verify this, we conduct experiments on video caption, video-text retrieval, and
natural language understanding tasks, which did not appear in pre-training. As shown in Tab.|5c} our
Uni-Perceiver equipped with Conditional MoEs could generalize to video-related tasks very well.
They can obtain reasonable zero-shot performance on those tasks and also perform better than vanilla
Uni-Perceiver with a great margin. Moreover, Uni-Perceiver-MoEs can achieve comparable results to
SOTA methods with similar training cost by further conducting prompt tuning with only 1% data.
Beyond that, Conditional MoEs can significantly boost the performance of Uni-Perceiver on GLUE
benchmarks (Tab. [5b)), owing to its excellent ability to resolve task interference in generalist models.

5 Conclusion

In this paper, we propose Conditional MoEs to address the task-interference issue in generalist models.
By sparsely activate sub-networks without introducing any task-specific designs, generalist models
can be pre-trained on multiple tasks jointly without performance degradation, while keeping the
generalization ablity to novel tasks. We incorporate Conditional MoEs with the recently proposed
generalist model Uni-Perceiver. With prompt tuning on 1% downstream data, the proposed sparse
generalist model achieves competitive performance with previous SOTAs using only <5% training
data and <10% training cost. We hope this work can motivate further research in generalist models.

Limitations. Our method is currently verified on generalist models with millions of parameters. For
generalist models with billions of parameters, whether the task-interference issue exists and whether
our method is still effective are questionable, which we leave them to future work.

Potential Negative Societal Impact. This work shares the common negative impacts of large-scale
training, which may consume lots of electricity and result in increased carbon emissions. This method
also learns from a large number of datasets that may contain data biases.
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