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Abstract001

Multitask learning has been widely explored to002
improve end-to-end speech-to-speech transla-003
tion (S2ST) systems, typically by incorporating004
auxiliary speech-based tasks such as automatic005
speech recognition (ASR) and speech-to-text006
translation (S2T). However, these tasks provide007
only indirect semantic supervision and may in-008
troduce noise due to acoustic variability. In009
this work, we propose a semantically enhanced010
multitask framework that introduces a text-to-011
unit (T2U) auxiliary task to provide explicit012
text-level supervision. To further bridge the013
modality gap between speech and text, we em-014
ploy Cross-Attentive Regularization (CAR), an015
attention-based loss that encourages alignment016
between speech and text encoder representa-017
tions. We also adopt a teacher-student train-018
ing strategy where a pretrained T2U model019
serves as a fixed semantic teacher to guide the020
speech encoder. Experiments on the CVSS-C021
corpus show that our method consistently im-022
proves over a basic S2UT baseline, achieving023
BLEU gains of +2.0 (Fr–En), +3.8 (Es–En),024
and +2.4 (De–Ee), along with substantial im-025
provements in semantic similarity as measured026
by Sentence-BERT. Additional experiments un-027
der low-resource conditions and with alterna-028
tive encoders (e.g., Branchformer) further vali-029
date the generalizability of our approach.1030

1 Introduction031

Speech-to-speech translation (S2ST) aims to di-032

rectly translate spoken utterances from a source lan-033

guage into spoken utterances in a target language.034

Traditional S2ST systems are typically constructed035

through a cascade of automatic speech recogni-036

tion (ASR), machine translation (MT), and text-to-037

speech (TTS) synthesis modules, or alternatively,038

through a combination of speech translation (ST)039

and TTS. Although these pipeline systems benefit040

1Audio samples are available at:
https://cars2ut.github.io/cars2ut/

from modularity, they suffer from error propagation 041

between components and lack end-to-end optimiza- 042

tion. 043

To address these challenges, recent research has 044

shifted toward end-to-end S2ST models, which di- 045

rectly map source speech to target speech with- 046

out relying on intermediate text representations. 047

Among these, the speech-to-mel paradigm has been 048

extensively studied. Translatotron introduced the 049

first direct S2ST model using an attention-based 050

encoder-decoder architecture to translate source 051

mel spectrograms into target mel spectrograms, 052

while jointly predicting phoneme sequences in both 053

source and target languages to improve translation 054

quality(Jia et al., 2019). Subsequent improvements, 055

such as Translatotron 2 and Translatotron 3, fur- 056

ther refined the modeling of speaker identity and 057

prosody(Jia et al., 2022a; Nachmani et al., 2024). 058

In parallel, speech-to-unit translation has 059

emerged as a promising alternative. These meth- 060

ods leverage self-supervised pre-trained models to 061

extract speech representations from the target lan- 062

guage, followed by clustering (e.g., via k-means) 063

to obtain discrete acoustic units. The S2ST task is 064

then reformulated as a two-stage pipeline: translat- 065

ing source speech into target discrete units, which 066

are subsequently synthesized into waveforms using 067

a unit vocoder(Lee et al., 2021a). Variants of this 068

framework explore different enhancements, such 069

as normalizing target units or employing stronger 070

acoustic feature extractors(Lee et al., 2021b). 071

Despite these advances, both speech-to-mel and 072

speech-to-unit systems rely heavily on multitask 073

learning (MTL) with auxiliary tasks such as ASR 074

and ST to improve performance. This is because di- 075

rectly learning the mapping from source speech to 076

target speech is challenging, given the noisy and re- 077

dundant nature of speech signals, which encode not 078

only semantic information, but also speaker char- 079

acteristics, acoustic variations, and environmental 080

noise. However, existing MTL approaches primar- 081
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ily leverage auxiliary information from the speech082

mode. One notable exception is the UnitY model,083

which introduces text as an intermediate modality084

by decomposing S2ST into a speech-to-text stage085

followed by a text-to-unit translation stage, insert-086

ing a dedicated text-to-unit encoder(Inaguma et al.,087

2022). Although this approach successfully lever-088

ages rich semantic information, it introduces addi-089

tional inference complexity, since the text-to-unit090

encoder must be executed during decoding.091

In this work, we propose a novel multitask learn-092

ing framework for S2ST that leverages text-to-unit093

translation as an auxiliary task, enabling explicit094

semantic-level supervision without introducing ad-095

ditional overhead during inference. Specifically,096

we integrate a separately pre-trained text-to-unit097

(T2U) encoder, whose parameters are frozen dur-098

ing joint training, to guide the model toward seman-099

tically richer acoustic representations. To further100

bridge the representational gap between speech101

and text modalities, we introduce a Cross-Attentive102

Regularization (CAR) mechanism, a bidirectional103

attention-based alignment loss that encourages the104

speech encoder to produce representations closely105

aligned with their text based counterparts.106

The key contributions of this paper are as fol-107

lows:108

• We propose a novel multitask framework for109

end-to-end S2ST that explicitly introduces110

semantic-level supervision via text-to-unit111

translation, complementing traditional speech-112

based auxiliary tasks.113

• We utilize CAR, an attention-based regulariza-114

tion mechanism designed to explicitly align115

hidden representations from the speech and116

text encoders, significantly reducing their rep-117

resentational discrepancy.118

• We demonstrate effective knowledge transfer119

from a pretrained text-to-unit model, serving120

as a frozen semantic teacher, to the speech en-121

coder, improving semantic fidelity without in-122

creasing inference-time computational costs.123

2 Related Work124

Early end to end S2ST systems typically adopted125

attention-based encoder decoder architectures,126

where the model directly mapped source speech127

to target speech. To improve the encoder’s ability128

to capture linguistic content, auxiliary tasks such129

as source phoneme recognition and source to tar- 130

get phoneme prediction were incorporated through 131

multitask learning(Jia et al., 2019). 132

Lee et al. proposed S2UT, a transformer based 133

encoder decoder model that outputs discrete acous- 134

tic units instead of mel spectrograms. This design 135

improves attention learning by providing more sta- 136

ble and symbolic targets(Lee et al., 2021a). S2UT 137

also incorporates auxiliary tasks such as source 138

speech to source character, source speech to target 139

character, and source speech to target text predic- 140

tion within a multitask learning framework. To 141

reduce variability in unit outputs across different 142

speakers, unit normalization techniques were intro- 143

duced(Lee et al., 2021b). Separately, Huang et al. 144

proposed TransSpeech, which addresses input-side 145

variability by applying bilateral perturbation to ex- 146

tract more speaker-invariant features(Huang et al., 147

2022). In addition, non-autoregressive (NAR) de- 148

coding methods have been explored to accelerate 149

inference in S2UT-style models. 150

Inaguma et al. introduced UnitY, a two-pass 151

framework combining speech to text and text to 152

unit translation. By injecting text as an intermedi- 153

ate representation, it leveraged rich semantic infor- 154

mation and improved translation accuracy. How- 155

ever, this also increased inference cost, since the 156

intermediate text must be generated even when 157

not part of the final output(Inaguma et al., 2022). 158

Other approaches replace the speech encoder with 159

self-supervised models like wav2vec 2.0, yielding 160

stronger acoustic representations and better overall 161

performance(Popuri et al., 2022). 162

Despite these advances, most existing multitask 163

learning methods rely solely on speech inputs, over- 164

looking the potential benefits of directly incorporat- 165

ing textual information. Although text representa- 166

tions inherently provide cleaner and more explicit 167

semantic guidance, naively integrating them as aux- 168

iliary inputs may confuse the model due to modality 169

differences. UnitY leveraged textual information, 170

but only as an intermediate representation rather 171

than a direct semantic learning signal. To more 172

effectively integrate textual supervision, Tang et al. 173

proposed Cross-Attentive Regularization, a method 174

that explicitly aligns hidden representations from 175

speech and text encoders to bridge the modality 176

gap and enhance semantic representation learning 177

and get the state-of-the-art result in speech transla- 178

tion(Tang et al., 2021). 179

Inspired by the success of CAR, we propose in- 180

corporating text-to-unit translation as an explicit 181
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auxiliary task during training, directly injecting182

textual semantic knowledge into multitask S2ST.183

Unlike UnitY, our method employs text only dur-184

ing the training phase, thereby incurring no addi-185

tional computational overhead at inference. Fur-186

thermore, we utilize CAR to explicitly align speech187

and text encoder representations, complemented188

by a teacher-student knowledge transfer scheme.189

In this scheme, a pre-trained text-to-unit encoder190

serves as a semantic teacher, providing effective191

guidance for learning speech representations.192

3 Methods193

3.1 Overview194

Figure 1 presents an overview of our proposed195

framework for end-to-end speech-to-speech trans-196

lation (S2ST), which follows the S2UT framework197

proposed in (Lee et al., 2021a), where a speech en-198

coder and a unit decoder are trained to map source199

speech into discrete target units. On top of this base200

structure, we introduce several auxiliary tasks to201

support acoustic and semantic learning. Specif-202

ically, we add two auxiliary decoders that take203

intermediate outputs from the speech encoder to204

perform source-to-source and source-to-target char-205

acter prediction. In addition, a CTC-based speech-206

to-text objective is applied to an intermediate layer207

of the unit decoder, these components form the208

basic S2UT backbone.209

To further incorporate semantic information, we210

introduce a T2U translation branch and a CAR211

mechanism. The T2U branch supervises the unit212

decoder with representations from a pre-trained213

text encoder, while CAR explicitly aligns hidden214

representations from the speech and text encoders215

through attention-based reconstruction. These com-216

ponents are designed to encourage the speech en-217

coder to learn semantically meaningful represen-218

tations. All modules are jointly trained during the219

training phase. At inference time, however, only220

the speech encoder and unit decoder are used, en-221

suring that the proposed enhancements do not in-222

troduce any additional computational overhead.223

3.2 Text-to-Unit Semantic Supervision224

The text encoder and unit decoder are initialized225

from a separately pre-trained T2U model, and the226

encoder remains trainable to adapt to the multitask227

setting. This branch reinforces semantic ground-228

ing in the unit decoder by complementing speech-229

based inputs with textual representations.230

In parallel, we adopt a teacher–student strategy 231

in which the T2U branch serves as a semantic 232

teacher for the speech encoder. During Cross- 233

Attentive Regularization, gradients are blocked 234

from the text encoder to prevent interference, allow- 235

ing it to act as a fixed reference. This regularization 236

encourages the speech encoder to align with the 237

semantics encoded by the text encoder, without 238

altering the teacher’s parameters. 239

3.3 Cross-Attentive Regularization 240

To promote semantic consistency between modali- 241

ties, we introduce a CAR loss that encourages the 242

speech encoder to produce representations aligned 243

with those of the text encoder. CAR serves to re- 244

duce the representation gap between speech and 245

text encoders, enabling more effective cross-modal 246

supervision. The alignment is achieved by re- 247

constructing speech representations conditioned 248

on text features and enforcing similarity to a self- 249

attentive transformation of the text representations. 250

Let Hs = (hs1, h
s
2, . . . , h

s
n) ∈ Rn×d, and Ht = 251

(ht1, h
t
2, . . . , h

t
m) ∈ Rm×d denote the sequences 252

of hidden vectors from the speech and text en- 253

coders, respectively, where n and m are the se- 254

quence lengths. 255

We compute a similarity matrix S ∈ Rm×n, 256

where each entry measures the cosine similarity 257

between text and speech hidden vectors: 258

Si,j =
(hti)

⊤hsj
∥hti∥2 ∥hsj∥2

, ∀ i ∈ [1,m], j ∈ [1, n]

(1) 259

Row-wise softmax is applied to obtain attention 260

weights from the text to the speech modality: 261

S̃i,j =
exp(Si,j)∑n

j′=1 exp(Si,j′)
(2) 262

These weights are used to reconstruct speech- 263

side representations: 264

Ĥs = S̃ ·Hs ∈ Rm×d (3) 265

To further enhance semantic guidance, we apply 266

a self-attention operation over the text representa- 267

tions. Specifically, we compute: 268

A =
H⊤

t Ht

∥Ht∥2
∈ Rd×d (4) 269

This transformation is applied to the text encoder 270

output to obtain refined representations: 271
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Figure 1: Overall architecture of the proposed S2ST framework with text-to-unit supervision and cross-attentive
regularization

H̃t = Ht ·A ∈ Rm×d (5)272

The CAR loss is then defined as the average L2273

distance between the reconstructed speech repre-274

sentation and the transformed text representation:275

LCAR =
1

m

∥∥∥Ĥs − sg(H̃t)
∥∥∥2
2

(6)276

Here, sg(·) denotes the stop-gradient operation,277

which prevents gradients from flowing into the text278

encoder. This allows the text side to act as a fixed279

semantic teacher, guiding the speech encoder with-280

out being updated.281

3.4 Training Objectives282

The model is trained using a combination of the283

main speech-to-unit translation loss and several284

auxiliary objectives. The overall loss is defined as:285

Ltotal = λ1LS2UT + λ2LSRC-CHAR + λ3LTGT-CHAR286

+ λ4LST + λ5LT2U + λ6LCAR (7)287

Here, LS2UT denotes the cross-entropy loss288

for the main speech-to-unit translation task.289

LSRC-CHAR and LTGT-CHAR are computed using290

two auxiliary decoders, each predicting source291

and target language characters from the interme-292

diate speech encoder outputs via a standard cross-293

entropy objective. LST is a CTC loss applied to294

the intermediate layer of the shared unit decoder to295

predict target text. LT2U supervises the T2U loss,296

and LCAR is the cross attentive regularization loss.297

The weights λ1 through λ6 control the relative 298

contributions of each objective and are predefined 299

hyper-parameters. 300

4 Experimental Setup 301

4.1 Datasets 302

All experiments are conducted on the CVSS-C cor- 303

pus (Jia et al., 2022b), which provides multilin- 304

gual speech-to-speech translation data. We use 305

French-English (Fr-En), Spanish-English (Es-En), 306

and German-English (De-En) as our main eval- 307

uation language pairs. To evaluate the model’s 308

generalization in limited resource settings, we also 309

conduct experiments on Fr-En using 30% and 10% 310

of the training data, as well as on two additional 311

language pairs with relatively low-resource condi- 312

tions: Italian-English (It-En) and Russian-English 313

(Ru-En). For the T2U pretraining, we only use the 314

source side text from the corresponding CVSS-C 315

corpus of each language. No additional data or 316

multilingual corpus is used. Details of data prepro- 317

cessing and splits are provided in Appendix A. 318

4.2 Model Configuration and Training 319

Our base model follows the S2UT framework (Lee 320

et al., 2021a), consisting of a Transformer encoder 321

and a Transformer-based unit decoder. We also 322

add auxilary speech to character and text transla- 323

tion tasks. Following Lee et al. (2021a), we use 324

Pretrained HuBERT-base (6-layer) representations 325

followed by KMeans clustering (with K = 100) to 326

extract discrete units from target speech. During 327

inference, the predicted unit sequences are con- 328

verted back to waveform audio using a unit-based 329
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Table 1: BLEU and Sentence-BERT scores on Fr-En, Es-En, and De-En. The ground truth BLEU is computed
between the ASR transcription of the reference audio and the reference text. Cascade system uses separate ASR,
MT, and TTS modules. All other systems are end-to-end S2UT-based models.

Method BLEU-FR BLEU-ES BLEU-DE SBERT-FR SBERT-ES SBERT-DE

S2UT Baseline(Lee et al., 2021a) 23.09 14.43 13.11 0.659 0.566 0.516

+ T2U 22.16 13.99 12.55 0.654 0.540 0.512
+ Pretrained T2U 23.86 16.04 13.80 0.672 0.613 0.548
+ T2U + CAR 23.51 14.07 12.67 0.644 0.548 0.510
+ Pretrained T2U + CAR 25.11 18.22 15.51 0.699 0.634 0.575

Cascade (ASR+MT+TTS) 33.36 31.21 32.45 0.768 0.744 0.775

Ground Truth 84.60 88.60 88.40 – – –

HiFi-GAN vocoder(Polyak et al., 2021).330

We conduct three groups of experiments to eval-331

uate the effectiveness and generality of our pro-332

posed method. First, we investigate the contribu-333

tion of each component: T2U multitask learning,334

CAR, and T2U pretraining through ablation com-335

parisons. Second, we evaluate the model under336

limited resource settings, using only 30% and 10%337

of the Fr-En training data, as well as two additional338

language pairs (It-En and Ru-En) with relatively339

scarce paired speech. Lastly, we test the general-340

ization of our method across architectures by re-341

placing the Transformer encoder with a Branch-342

former (Peng et al., 2022) and observing perfor-343

mance changes with and without CAR. Model hy-344

perparameters, layer configurations, and loss co-345

efficients are summarized in the Appendix A. All346

our experiments were conducted using the Speech-347

Brain framework(Ravanelli et al., 2024).348

4.3 Evaluation Metrics349

We evaluate translation quality by following the350

procedure introduced in Lee et al. (2021a), where351

an automatic speech recognition (ASR) model is ap-352

plied to the generated speech output. BLEU scores353

are then computed between the ASR-transcribed354

text and the corresponding reference translations.355

We report corpus-level BLEU using the sacreBLEU356

toolkit with default settings to ensure reproducibil-357

ity (Post, 2018). For ASR, we adopt a publicly358

available English Transformer-based model that359

achieves a word error rate of 2.27% on the Lib-360

riSpeech test-clean set.361

To assess semantic preservation beyond surface-362

level lexical similarity, we also report Sentence-363

BERT similarity (Reimers and Gurevych, 2019) be-364

tween the transcribed hypothesis and the reference.365

This embedding-based metric provides a more ro-366

bust measure of semantic fidelity in generation.367

We compare our approach against basic direct 368

S2UT baseline without text-based supervision pro- 369

posed by (Lee et al., 2021a) and a ASR (Conneau 370

et al., 2021) + MT (Devlin et al., 2019) + TTS 371

(Pratap et al., 2024) cascade system. 372

5 Results 373

5.1 Effectiveness of Text-to-Unit and CAR 374

Supervision 375

Table 1 presents the BLEU and Sentence-BERT 376

scores for three language pairs (Fr-En, Es-En, and 377

De-En). We can find that our best configuration 378

combining pre-trained T2U translation with CAR 379

achieves consistent improvements across all lan- 380

guages. Compared to the S2UT baseline, this setup 381

yields gains of up to +4.1 BLEU (on Es-En) and 382

improves semantic similarity by +0.06 to +0.08 on 383

Sentence-BERT, demonstrating the effectiveness 384

of incorporating stable semantic supervision. 385

However, these gains are not observed uniformly 386

across configurations. Simply adding the T2U 387

task without pretraining slightly degrades BLEU 388

while offering only marginal improvement in se- 389

mantic similarity. This is likely due to decoder 390

over-reliance on the text encoder, which shares pa- 391

rameters with the speech-to-unit decoder. Since 392

the text encoder provides easier input during early 393

training, the decoder may prioritize this path to 394

minimize loss, while under-utilizing the speech en- 395

coder. At inference time, when the text encoder 396

is not present, this discrepancy results in degraded 397

generation quality. 398

Pretraining the T2U branch mitigates this issue 399

by providing a more stable decoder initialization 400

and better text–unit alignment. In this case, the de- 401

coder is less incentivized to overfit to the text path, 402

and begins to learn more effectively from speech 403

inputs. The result is a small BLEU improvement 404
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Table 2: Qualitative examples comparing model outputs. Errors such as repetition and malformed expressions are
shown in bold.

Source: Es la máxima autoridad administrativa en la materia electoral en la República de Chile
Target: In the Republic of Chile it is the highest administrative authority in electoral matters
S2UT: She is the adominization material and the electoral material at the Chile

+ T2U: It is the dynast rate of administrative in the material of Chile
+ Pretrained T2U: It is the dominated material and the electoral material at the Chile

+ CAR: It is the dominant territory in the electoral matter of Chile
+ PreT2U + CAR: It is the largest administrative authority in the electoral material at the Chile

Source: Durante este tiempo su principal objetivo era informar de las actividades eclesiásticas del reino
Target: During this time the main goal was to inform all the ecclesiastical activities of the kingdom
S2UT: During this time their main ejective was inform all the reign attivities of the kingdoms

+ T2U: During this time his main ejective mane was an ecclesiasticities of the kingdom
+ Pretrained T2U: During this time his main goal was informed of the equipment of the kingdom of the kingdom

+ CAR: During this time their main objective was the informal activities of the kingdom of the kingdom
+ PreT2U + CAR: During this time his main objective was informed the ecclesiastical activities of the kingdom

(approximately +1 point on average) and a clearer405

gain in semantic similarity. These findings sug-406

gest that even without structural changes, semantic407

pretraining can guide the decoder toward more se-408

mantically meaningful representations.409

When applying CAR without pretraining, perfor-410

mance declines further. Although CAR is designed411

to align speech and text encoder representations,412

its effectiveness depends on the quality of the text413

encoder as a semantic reference. If the text en-414

coder is not well-trained, it may serve as a poor415

teacher and introduce noise into the alignment ob-416

jective. In contrast, combining CAR with a pre-417

trained text encoder significantly improves both418

BLEU and semantic similarity. The speech en-419

coder benefits from the additional regularization,420

learning to produce representations more consistent421

with semantically grounded text features.422

Qualitative Examples. To further validate the423

semantic improvements of our method, we present424

several translation examples from the Es-En test425

set in Table 2. The first example presents a case426

where the output yields a low BLEU score yet pre-427

serves the full semantic content of the reference.428

This highlights our method’s capacity to recover429

meaning even when surface forms diverge. The430

second example involves lexical errors in baseline431

outputs, such as repeat or misinterpreted terms. In432

contrast, our approach generates fluent and seman-433

tically faithful translations that more accurately434

reflect the source.435

5.2 Low-Resource Generalization436

To assess the effectiveness of our method in437

data-scarce scenarios, we conduct experiments on438

limited-resource conditions using (i) 30% and 10%439

Table 3: BLEU and Sentence-BERT scores under low-
resource settings. PreT2U is pretrained using the full
text available in CVSS-C for each language.

Language Pair Method BLEU / SBERT

Fr-En (30%) S2UT 12.42 / 0.482
+ PreT2U + CAR 13.35 / 0.505

Fr-En (10%) S2UT 3.14 / 0.243
+ PreT2U + CAR 5.66 / 0.266

Ru-En S2UT 2.61 / 0.211
+ PreT2U + CAR 2.81 / 0.215

It-En S2UT 7.28 / 0.377
+ PreT2U + CAR 8.43 / 0.411

of the Fr-En training data, and (ii) two additional 440

low-resource language pairs: It-En and Ru-En. No- 441

tably, the T2U pretraining for all settings is per- 442

formed using the full available text data in CVSS- 443

C. Table 3 reports BLEU and Sentence-BERT 444

scores for the S2UT baseline and our proposed 445

PreT2U+CAR configuration. In the Fr-En setting, 446

where the T2U model is pretrained on the full cor- 447

pus, we observe consistent improvements under 448

both the 30% and 10% speech training conditions. 449

BLEU increases by +0.93 and +2.52 respectively, 450

while semantic similarity also improves. 451

For It-En, our method yields modest gains in 452

both BLEU and semantic similarity, indicating that 453

even limited in-domain text can provide useful su- 454

pervision. In contrast, Ru-En shows little improve- 455

ment, which we attribute to the extremely limited 456

availability of both paired and monolingual data, 457

leading to an undertrained T2U module that offers 458

insufficient guidance for CAR. 459

Beyond aggregated scores, we observe that CAR 460

contributes positively to semantic alignment at the 461

sentence level, particularly for shorter or moder- 462
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Table 4: Performance on Es-En using a Branchformer
encoder and Transformer decoder.

Encoder BLEU-ES SBERT-ES

Branchformer 14.73 0.565
+ PreT2U + CAR 17.67 0.620

ately long inputs. However, its effectiveness di-463

minishes for longer sentences: while the initial464

segments are often translated correctly, semantic465

content tends to degrade toward the middle or end.466

This suggests that CAR helps the model capture467

local semantic structure but may struggle with long-468

range dependencies due to limited contextual mod-469

eling. Representative cases illustrating this pattern470

are available on our demo page.471

5.3 Encoder Robustness472

To assess the generalizability of our method across473

different encoder architectures, we replace the474

Transformer encoder with a Branchformer en-475

coder (Peng et al., 2022), while keeping the476

Transformer-based unit decoder unchanged. This477

configuration allows us to isolate the impact of478

CAR on the encoder side, and verify whether the479

observed gains are architecture-agnostic.480

We conduct this experiment on the Es-En lan-481

guage pair. As shown in Table 4, the baseline482

Branchformer model achieves 14.73 BLEU and a483

Sentence-BERT similarity of 0.565. When CAR is484

applied in conjunction with a pretrained T2U mod-485

ule, performance improves significantly to 17.67486

BLEU and 0.620 in semantic similarity.487

These results confirm that CAR provides consis-488

tent benefits even when the encoder architecture489

changes, and does not rely on the inductive biases490

of a specific model.491

6 Conclusion492

In this work, we proposed a semantically guided493

multitask framework for speech-to-speech trans-494

lation by introducing a text-to-unit auxiliary task495

and a Cross-Attentive Regularization mechanism.496

Our approach leverages pretrained text encoders497

to provide stable semantic supervision and encour-498

ages alignment between speech and text representa-499

tions during training. Experiments on the CVSS-C500

corpus demonstrate consistent improvements over501

strong multitask baselines in both lexical accuracy502

and semantic similarity. Further evaluations under503

low-resource conditions and with alternative en-504

coders confirm the robustness and generalizability 505

of our method. These findings highlight the impor- 506

tance of semantic-level supervision in improving 507

the quality and stability of direct speech-to-speech 508

translation systems. 509

Limitations 510

While our proposed framework achieves consistent 511

improvements in both lexical and semantic metrics, 512

several limitations remain. First, the effectiveness 513

of our method in extremely low-resource settings is 514

limited. When the available text data is insufficient, 515

the pretrained T2U model fails to provide reliable 516

semantic supervision, thereby diminishing the ben- 517

efit of CAR. Second, the success of cross-attentive 518

regularization depends heavily on the quality of the 519

pretrained text encoder. In scenarios where the text 520

encoder is not well trained, CAR may misguide 521

the speech encoder and harm performance. Finally, 522

the multitask training setup introduces additional 523

model complexity and requires careful balancing of 524

multiple loss components. This increases the cost 525

of hyperparameter tuning and may limit scalability 526

in practical deployments. 527
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A Appendix 629

Table 5: Training data statistics for each language pair

Language Pair Source (h) Target (h) Utterances

Fr–En 264.3 174.0 207,364
Es–En 113.1 69.5 79,012
De–En 184.3 112.4 127,822

Fr–En (30%) 79.9 52.8 62,209
Fr–En (10%) 26.1 17.2 20,736

It–En 44.2 29.4 31,698
Ru–En 18.2 13.3 12,122

Table 6: Model architecture, training hyperparameters,
and loss weighting coefficients.

Module Setting

Speech Encoder layers 12
Aux. Src Char Encoder layers 6
Aux. Tgt Char Encoder layers 8
Aux. Char Decoder layers 2
Text Encoder layers 6
Unit Decoder layers 12
Aux. ST Decoder layers 3

Attention Heads 8
Hidden Size (dmodel) 512
Dropout 0.1
Learning Rate 0.0005
Optimizer AdamW

Loss Coefficients
λ1 = 1.0, λ2 = 0.2
λ3 = 0.2, λ4 = 0.2
λ5 = 0.1, λ6 = 0.1
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