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Abstract

Multitask learning has been widely explored to
improve end-to-end speech-to-speech transla-
tion (S2ST) systems, typically by incorporating
auxiliary speech-based tasks such as automatic
speech recognition (ASR) and speech-to-text
translation (S2T). However, these tasks provide
only indirect semantic supervision and may in-
troduce noise due to acoustic variability. In
this work, we propose a semantically enhanced
multitask framework that introduces a text-to-
unit (T2U) auxiliary task to provide explicit
text-level supervision. To further bridge the
modality gap between speech and text, we em-
ploy Cross-Attentive Regularization (CAR), an
attention-based loss that encourages alignment
between speech and text encoder representa-
tions. We also adopt a teacher-student train-
ing strategy where a pretrained T2U model
serves as a fixed semantic teacher to guide the
speech encoder. Experiments on the CVSS-C
corpus show that our method consistently im-
proves over a basic S2UT baseline, achieving
BLEU gains of +2.0 (Fr-En), +3.8 (Es-En),
and +2.4 (De-Ee), along with substantial im-
provements in semantic similarity as measured
by Sentence-BERT. Additional experiments un-
der low-resource conditions and with alterna-
tive encoders (e.g., Branchformer) further vali-
date the generalizability of our approach.!

1 Introduction

Speech-to-speech translation (S2ST) aims to di-
rectly translate spoken utterances from a source lan-
guage into spoken utterances in a target language.
Traditional S2ST systems are typically constructed
through a cascade of automatic speech recogni-
tion (ASR), machine translation (MT), and text-to-
speech (TTS) synthesis modules, or alternatively,
through a combination of speech translation (ST)
and TTS. Although these pipeline systems benefit

! Audio samples are available at:

https://cars2ut.github.io/cars2ut/

from modularity, they suffer from error propagation
between components and lack end-to-end optimiza-
tion.

To address these challenges, recent research has
shifted toward end-to-end S2ST models, which di-
rectly map source speech to target speech with-
out relying on intermediate text representations.
Among these, the speech-to-mel paradigm has been
extensively studied. Translatotron introduced the
first direct S2ST model using an attention-based
encoder-decoder architecture to translate source
mel spectrograms into target mel spectrograms,
while jointly predicting phoneme sequences in both
source and target languages to improve translation
quality(Jia et al., 2019). Subsequent improvements,
such as Translatotron 2 and Translatotron 3, fur-
ther refined the modeling of speaker identity and
prosody(Jia et al., 2022a; Nachmani et al., 2024).

In parallel, speech-to-unit translation has
emerged as a promising alternative. These meth-
ods leverage self-supervised pre-trained models to
extract speech representations from the target lan-
guage, followed by clustering (e.g., via k-means)
to obtain discrete acoustic units. The S2ST task is
then reformulated as a two-stage pipeline: translat-
ing source speech into target discrete units, which
are subsequently synthesized into waveforms using
a unit vocoder(Lee et al., 2021a). Variants of this
framework explore different enhancements, such
as normalizing target units or employing stronger
acoustic feature extractors(Lee et al., 2021b).

Despite these advances, both speech-to-mel and
speech-to-unit systems rely heavily on multitask
learning (MTL) with auxiliary tasks such as ASR
and ST to improve performance. This is because di-
rectly learning the mapping from source speech to
target speech is challenging, given the noisy and re-
dundant nature of speech signals, which encode not
only semantic information, but also speaker char-
acteristics, acoustic variations, and environmental
noise. However, existing MTL approaches primar-
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ily leverage auxiliary information from the speech
mode. One notable exception is the UnitY model,
which introduces text as an intermediate modality
by decomposing S2ST into a speech-to-text stage
followed by a text-to-unit translation stage, insert-
ing a dedicated text-to-unit encoder(Inaguma et al.,
2022). Although this approach successfully lever-
ages rich semantic information, it introduces addi-
tional inference complexity, since the text-to-unit
encoder must be executed during decoding.

In this work, we propose a novel multitask learn-
ing framework for S2ST that leverages text-to-unit
translation as an auxiliary task, enabling explicit
semantic-level supervision without introducing ad-
ditional overhead during inference. Specifically,
we integrate a separately pre-trained text-to-unit
(T2U) encoder, whose parameters are frozen dur-
ing joint training, to guide the model toward seman-
tically richer acoustic representations. To further
bridge the representational gap between speech
and text modalities, we introduce a Cross-Attentive
Regularization (CAR) mechanism, a bidirectional
attention-based alignment loss that encourages the
speech encoder to produce representations closely
aligned with their text based counterparts.

The key contributions of this paper are as fol-
lows:

* We propose a novel multitask framework for
end-to-end S2ST that explicitly introduces
semantic-level supervision via text-to-unit
translation, complementing traditional speech-
based auxiliary tasks.

* We utilize CAR, an attention-based regulariza-
tion mechanism designed to explicitly align
hidden representations from the speech and
text encoders, significantly reducing their rep-
resentational discrepancy.

* We demonstrate effective knowledge transfer
from a pretrained text-to-unit model, serving
as a frozen semantic teacher, to the speech en-
coder, improving semantic fidelity without in-
creasing inference-time computational costs.

2 Related Work

Early end to end S2ST systems typically adopted
attention-based encoder decoder architectures,
where the model directly mapped source speech
to target speech. To improve the encoder’s ability
to capture linguistic content, auxiliary tasks such

as source phoneme recognition and source to tar-
get phoneme prediction were incorporated through
multitask learning(Jia et al., 2019).

Lee et al. proposed S2UT, a transformer based
encoder decoder model that outputs discrete acous-
tic units instead of mel spectrograms. This design
improves attention learning by providing more sta-
ble and symbolic targets(Lee et al., 2021a). S2UT
also incorporates auxiliary tasks such as source
speech to source character, source speech to target
character, and source speech to target text predic-
tion within a multitask learning framework. To
reduce variability in unit outputs across different
speakers, unit normalization techniques were intro-
duced(Lee et al., 2021b). Separately, Huang et al.
proposed TransSpeech, which addresses input-side
variability by applying bilateral perturbation to ex-
tract more speaker-invariant features(Huang et al.,
2022). In addition, non-autoregressive (NAR) de-
coding methods have been explored to accelerate
inference in S2UT-style models.

Inaguma et al. introduced UnitY, a two-pass
framework combining speech to text and text to
unit translation. By injecting text as an intermedi-
ate representation, it leveraged rich semantic infor-
mation and improved translation accuracy. How-
ever, this also increased inference cost, since the
intermediate text must be generated even when
not part of the final output(Inaguma et al., 2022).
Other approaches replace the speech encoder with
self-supervised models like wav2vec 2.0, yielding
stronger acoustic representations and better overall
performance(Popuri et al., 2022).

Despite these advances, most existing multitask
learning methods rely solely on speech inputs, over-
looking the potential benefits of directly incorporat-
ing textual information. Although text representa-
tions inherently provide cleaner and more explicit
semantic guidance, naively integrating them as aux-
iliary inputs may confuse the model due to modality
differences. UnitY leveraged textual information,
but only as an intermediate representation rather
than a direct semantic learning signal. To more
effectively integrate textual supervision, Tang et al.
proposed Cross-Attentive Regularization, a method
that explicitly aligns hidden representations from
speech and text encoders to bridge the modality
gap and enhance semantic representation learning
and get the state-of-the-art result in speech transla-
tion(Tang et al., 2021).

Inspired by the success of CAR, we propose in-
corporating text-to-unit translation as an explicit



auxiliary task during training, directly injecting
textual semantic knowledge into multitask S2ST.
Unlike UnitY, our method employs text only dur-
ing the training phase, thereby incurring no addi-
tional computational overhead at inference. Fur-
thermore, we utilize CAR to explicitly align speech
and text encoder representations, complemented
by a teacher-student knowledge transfer scheme.
In this scheme, a pre-trained text-to-unit encoder
serves as a semantic teacher, providing effective
guidance for learning speech representations.

3 Methods

3.1 Overview

Figure 1 presents an overview of our proposed
framework for end-to-end speech-to-speech trans-
lation (S2ST), which follows the S2UT framework
proposed in (Lee et al., 2021a), where a speech en-
coder and a unit decoder are trained to map source
speech into discrete target units. On top of this base
structure, we introduce several auxiliary tasks to
support acoustic and semantic learning. Specif-
ically, we add two auxiliary decoders that take
intermediate outputs from the speech encoder to
perform source-to-source and source-to-target char-
acter prediction. In addition, a CTC-based speech-
to-text objective is applied to an intermediate layer
of the unit decoder, these components form the
basic S2UT backbone.

To further incorporate semantic information, we
introduce a T2U translation branch and a CAR
mechanism. The T2U branch supervises the unit
decoder with representations from a pre-trained
text encoder, while CAR explicitly aligns hidden
representations from the speech and text encoders
through attention-based reconstruction. These com-
ponents are designed to encourage the speech en-
coder to learn semantically meaningful represen-
tations. All modules are jointly trained during the
training phase. At inference time, however, only
the speech encoder and unit decoder are used, en-
suring that the proposed enhancements do not in-
troduce any additional computational overhead.

3.2 Text-to-Unit Semantic Supervision

The text encoder and unit decoder are initialized
from a separately pre-trained T2U model, and the
encoder remains trainable to adapt to the multitask
setting. This branch reinforces semantic ground-
ing in the unit decoder by complementing speech-
based inputs with textual representations.

In parallel, we adopt a teacher—student strategy
in which the T2U branch serves as a semantic
teacher for the speech encoder. During Cross-
Attentive Regularization, gradients are blocked
from the text encoder to prevent interference, allow-
ing it to act as a fixed reference. This regularization
encourages the speech encoder to align with the
semantics encoded by the text encoder, without
altering the teacher’s parameters.

3.3 Cross-Attentive Regularization

To promote semantic consistency between modali-
ties, we introduce a CAR loss that encourages the
speech encoder to produce representations aligned
with those of the text encoder. CAR serves to re-
duce the representation gap between speech and
text encoders, enabling more effective cross-modal
supervision. The alignment is achieved by re-
constructing speech representations conditioned
on text features and enforcing similarity to a self-
attentive transformation of the text representations.

Let Hy = (h§,h3,...,hs) € R4 and H; =
(R4, RS, ... kL) € R™*4 denote the sequences
of hidden vectors from the speech and text en-
coders, respectively, where n and m are the se-
quence lengths.

We compute a similarity matrix S € R™*"™,
where each entry measures the cosine similarity
between text and speech hidden vectors:

t\T 18
(hi)  hj

S, . =
YRl RSl

Vie [17m]7 .7 < [LTL]
o))

Row-wise softmax is applied to obtain attention
weights from the text to the speech modality:
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These weights are used to reconstruct speech-
side representations:
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To further enhance semantic guidance, we apply
a self-attention operation over the text representa-
tions. Specifically, we compute:
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This transformation is applied to the text encoder
output to obtain refined representations:
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Figure 1: Overall architecture of the proposed S2ST framework with text-to-unit supervision and cross-attentive

regularization

H, = H,- A e R™*¢ (5)

The CAR loss is then defined as the average L2
distance between the reconstructed speech repre-
sentation and the transformed text representation:

Lcar = % Hﬁs - Sg(ﬁt)Hz (6)

Here, sg(-) denotes the stop-gradient operation,
which prevents gradients from flowing into the text
encoder. This allows the text side to act as a fixed
semantic teacher, guiding the speech encoder with-
out being updated.

3.4 Training Objectives

The model is trained using a combination of the
main speech-to-unit translation loss and several
auxiliary objectives. The overall loss is defined as:

Liotal = M Lsout + A2LsRe-CHAR + A3LTGT-CHAR
+ MLst + AsL1ou + A6 Lcar (7

Here, Lgsyur denotes the cross-entropy loss
for the main speech-to-unit translation task.
Lsrc.cuar and Lrgr.cuar are computed using
two auxiliary decoders, each predicting source
and target language characters from the interme-
diate speech encoder outputs via a standard cross-
entropy objective. Lst is a CTC loss applied to
the intermediate layer of the shared unit decoder to
predict target text. Loy supervises the T2U loss,
and Lcar is the cross attentive regularization loss.

The weights A\; through Ag control the relative
contributions of each objective and are predefined
hyper-parameters.

4 Experimental Setup
4.1 Datasets

All experiments are conducted on the CVSS-C cor-
pus (Jia et al., 2022b), which provides multilin-
gual speech-to-speech translation data. We use
French-English (Fr-En), Spanish-English (Es-En),
and German-English (De-En) as our main eval-
uation language pairs. To evaluate the model’s
generalization in limited resource settings, we also
conduct experiments on Fr-En using 30% and 10%
of the training data, as well as on two additional
language pairs with relatively low-resource condi-
tions: Italian-English (It-En) and Russian-English
(Ru-En). For the T2U pretraining, we only use the
source side text from the corresponding CVSS-C
corpus of each language. No additional data or
multilingual corpus is used. Details of data prepro-
cessing and splits are provided in Appendix A.

4.2 Model Configuration and Training

Our base model follows the S2UT framework (Lee
et al., 2021a), consisting of a Transformer encoder
and a Transformer-based unit decoder. We also
add auxilary speech to character and text transla-
tion tasks. Following Lee et al. (2021a), we use
Pretrained HuBERT-base (6-layer) representations
followed by KMeans clustering (with K = 100) to
extract discrete units from target speech. During
inference, the predicted unit sequences are con-
verted back to waveform audio using a unit-based



Table 1: BLEU and Sentence-BERT scores on Fr-En, Es-En, and De-En. The ground truth BLEU is computed
between the ASR transcription of the reference audio and the reference text. Cascade system uses separate ASR,
MT, and TTS modules. All other systems are end-to-end S2UT-based models.

Method BLEU-FR BLEU-ES BLEU-DE SBERT-FR SBERT-ES SBERT-DE
S2UT Baseline(Lee et al., 2021a) 23.09 14.43 13.11 0.659 0.566 0.516

+ T2U 22.16 13.99 12.55 0.654 0.540 0.512

+ Pretrained T2U 23.86 16.04 13.80 0.672 0.613 0.548
+T2U + CAR 23.51 14.07 12.67 0.644 0.548 0.510

+ Pretrained T2U + CAR 25.11 18.22 15.51 0.699 0.634 0.575
Cascade (ASR+MT+TTS) 33.36 31.21 32.45 0.768 0.744 0.775
Ground Truth 84.60 88.60 88.40 - - -

HiFi-GAN vocoder(Polyak et al., 2021).

We conduct three groups of experiments to eval-
uate the effectiveness and generality of our pro-
posed method. First, we investigate the contribu-
tion of each component: T2U multitask learning,
CAR, and T2U pretraining through ablation com-
parisons. Second, we evaluate the model under
limited resource settings, using only 30% and 10%
of the Fr-En training data, as well as two additional
language pairs (It-En and Ru-En) with relatively
scarce paired speech. Lastly, we test the general-
ization of our method across architectures by re-
placing the Transformer encoder with a Branch-
former (Peng et al., 2022) and observing perfor-
mance changes with and without CAR. Model hy-
perparameters, layer configurations, and loss co-
efficients are summarized in the Appendix A. All
our experiments were conducted using the Speech-
Brain framework(Ravanelli et al., 2024).

4.3 Evaluation Metrics

We evaluate translation quality by following the
procedure introduced in Lee et al. (2021a), where
an automatic speech recognition (ASR) model is ap-
plied to the generated speech output. BLEU scores
are then computed between the ASR-transcribed
text and the corresponding reference translations.
We report corpus-level BLEU using the sacreBLEU
toolkit with default settings to ensure reproducibil-
ity (Post, 2018). For ASR, we adopt a publicly
available English Transformer-based model that
achieves a word error rate of 2.27% on the Lib-
riSpeech test-clean set.

To assess semantic preservation beyond surface-
level lexical similarity, we also report Sentence-
BERT similarity (Reimers and Gurevych, 2019) be-
tween the transcribed hypothesis and the reference.
This embedding-based metric provides a more ro-
bust measure of semantic fidelity in generation.

We compare our approach against basic direct
S2UT baseline without text-based supervision pro-
posed by (Lee et al., 2021a) and a ASR (Conneau
et al.,, 2021) + MT (Devlin et al., 2019) + TTS
(Pratap et al., 2024) cascade system.

5 Results

5.1 Effectiveness of Text-to-Unit and CAR
Supervision

Table 1 presents the BLEU and Sentence-BERT
scores for three language pairs (Fr-En, Es-En, and
De-En). We can find that our best configuration
combining pre-trained T2U translation with CAR
achieves consistent improvements across all lan-
guages. Compared to the S2UT baseline, this setup
yields gains of up to +4.1 BLEU (on Es-En) and
improves semantic similarity by +0.06 to +0.08 on
Sentence-BERT, demonstrating the effectiveness
of incorporating stable semantic supervision.

However, these gains are not observed uniformly
across configurations. Simply adding the T2U
task without pretraining slightly degrades BLEU
while offering only marginal improvement in se-
mantic similarity. This is likely due to decoder
over-reliance on the text encoder, which shares pa-
rameters with the speech-to-unit decoder. Since
the text encoder provides easier input during early
training, the decoder may prioritize this path to
minimize loss, while under-utilizing the speech en-
coder. At inference time, when the text encoder
is not present, this discrepancy results in degraded
generation quality.

Pretraining the T2U branch mitigates this issue
by providing a more stable decoder initialization
and better text—unit alignment. In this case, the de-
coder is less incentivized to overfit to the text path,
and begins to learn more effectively from speech
inputs. The result is a small BLEU improvement



Table 2: Qualitative examples comparing model outputs. Errors such as repetition and malformed expressions are

shown in bold.

Source: | Esla mdxima autoridad administrativa en la materia electoral en la Republica de Chile
Target: | In the Republic of Chile it is the highest administrative authority in electoral matters
S2UT: | She is the adominization material and the electoral material at the Chile
+ T2U: | Itis the dynast rate of administrative in the material of Chile
+ Pretrained T2U: | Itis the dominated material and the electoral material at the Chile
+ CAR: | Itis the dominant territory in the electoral matter of Chile
+ PreT2U + CAR: | Itis the largest administrative authority in the electoral material at the Chile
Source: | Durante este tiempo su principal objetivo era informar de las actividades eclesidsticas del reino
Target: | During this time the main goal was to inform all the ecclesiastical activities of the kingdom
S2UT: | During this time their main ejective was inform all the reign attivities of the kingdoms
+ T2U: | During this time his main ejective mane was an ecclesiasticities of the kingdom
+ Pretrained T2U: | During this time his main goal was informed of the equipment of the kingdom of the kingdom
+ CAR: | During this time their main objective was the informal activities of the kingdom of the kingdom
+ PreT2U + CAR: | During this time his main objective was informed the ecclesiastical activities of the kingdom

(approximately +1 point on average) and a clearer
gain in semantic similarity. These findings sug-
gest that even without structural changes, semantic
pretraining can guide the decoder toward more se-
mantically meaningful representations.

When applying CAR without pretraining, perfor-
mance declines further. Although CAR is designed
to align speech and text encoder representations,
its effectiveness depends on the quality of the text
encoder as a semantic reference. If the text en-
coder is not well-trained, it may serve as a poor
teacher and introduce noise into the alignment ob-
jective. In contrast, combining CAR with a pre-
trained text encoder significantly improves both
BLEU and semantic similarity. The speech en-
coder benefits from the additional regularization,
learning to produce representations more consistent
with semantically grounded text features.

Qualitative Examples. To further validate the
semantic improvements of our method, we present
several translation examples from the Es-En test
set in Table 2. The first example presents a case
where the output yields a low BLEU score yet pre-
serves the full semantic content of the reference.
This highlights our method’s capacity to recover
meaning even when surface forms diverge. The
second example involves lexical errors in baseline
outputs, such as repeat or misinterpreted terms. In
contrast, our approach generates fluent and seman-
tically faithful translations that more accurately
reflect the source.

5.2 Low-Resource Generalization

To assess the effectiveness of our method in
data-scarce scenarios, we conduct experiments on
limited-resource conditions using (i) 30% and 10%

Table 3: BLEU and Sentence-BERT scores under low-
resource settings. PreT2U is pretrained using the full
text available in CVSS-C for each language.

Language Pair Method BLEU / SBERT
S2UT 1242 /0.482
Fr-En30%) | preToU+ CAR  13.35/0.505
S2UT 3.14/0.243
Fr-En (10%) | preToU+CAR  5.66/0.266
RwEn S2UT 261/0211
u +PreT2U + CAR  2.81/0.215
CEn S2UT 7.28/0.377
- +PreT2U + CAR  8.43/0.411

of the Fr-En training data, and (ii) two additional
low-resource language pairs: It-En and Ru-En. No-
tably, the T2U pretraining for all settings is per-
formed using the full available text data in CVSS-
C. Table 3 reports BLEU and Sentence-BERT
scores for the S2UT baseline and our proposed
PreT2U+CAR configuration. In the Fr-En setting,
where the T2U model is pretrained on the full cor-
pus, we observe consistent improvements under
both the 30% and 10% speech training conditions.
BLEU increases by +0.93 and +2.52 respectively,
while semantic similarity also improves.

For It-En, our method yields modest gains in
both BLEU and semantic similarity, indicating that
even limited in-domain text can provide useful su-
pervision. In contrast, Ru-En shows little improve-
ment, which we attribute to the extremely limited
availability of both paired and monolingual data,
leading to an undertrained T2U module that offers
insufficient guidance for CAR.

Beyond aggregated scores, we observe that CAR
contributes positively to semantic alignment at the
sentence level, particularly for shorter or moder-



Table 4: Performance on Es-En using a Branchformer
encoder and Transformer decoder.

Encoder BLEU-ES SBERT-ES
Branchformer 14.73 0.565
+ PreT2U + CAR 17.67 0.620

ately long inputs. However, its effectiveness di-
minishes for longer sentences: while the initial
segments are often translated correctly, semantic
content tends to degrade toward the middle or end.
This suggests that CAR helps the model capture
local semantic structure but may struggle with long-
range dependencies due to limited contextual mod-
eling. Representative cases illustrating this pattern
are available on our demo page.

5.3 Encoder Robustness

To assess the generalizability of our method across
different encoder architectures, we replace the
Transformer encoder with a Branchformer en-
coder (Peng et al., 2022), while keeping the
Transformer-based unit decoder unchanged. This
configuration allows us to isolate the impact of
CAR on the encoder side, and verify whether the
observed gains are architecture-agnostic.

We conduct this experiment on the Es-En lan-
guage pair. As shown in Table 4, the baseline
Branchformer model achieves 14.73 BLEU and a
Sentence-BERT similarity of 0.565. When CAR is
applied in conjunction with a pretrained T2U mod-
ule, performance improves significantly to 17.67
BLEU and 0.620 in semantic similarity.

These results confirm that CAR provides consis-
tent benefits even when the encoder architecture
changes, and does not rely on the inductive biases
of a specific model.

6 Conclusion

In this work, we proposed a semantically guided
multitask framework for speech-to-speech trans-
lation by introducing a text-to-unit auxiliary task
and a Cross-Attentive Regularization mechanism.
Our approach leverages pretrained text encoders
to provide stable semantic supervision and encour-
ages alignment between speech and text representa-
tions during training. Experiments on the CVSS-C
corpus demonstrate consistent improvements over
strong multitask baselines in both lexical accuracy
and semantic similarity. Further evaluations under
low-resource conditions and with alternative en-

coders confirm the robustness and generalizability
of our method. These findings highlight the impor-
tance of semantic-level supervision in improving
the quality and stability of direct speech-to-speech
translation systems.

Limitations

While our proposed framework achieves consistent
improvements in both lexical and semantic metrics,
several limitations remain. First, the effectiveness
of our method in extremely low-resource settings is
limited. When the available text data is insufficient,
the pretrained T2U model fails to provide reliable
semantic supervision, thereby diminishing the ben-
efit of CAR. Second, the success of cross-attentive
regularization depends heavily on the quality of the
pretrained text encoder. In scenarios where the text
encoder is not well trained, CAR may misguide
the speech encoder and harm performance. Finally,
the multitask training setup introduces additional
model complexity and requires careful balancing of
multiple loss components. This increases the cost
of hyperparameter tuning and may limit scalability
in practical deployments.

References

Alexis Conneau, Alexei Baevski, Ronan Collobert, Ab-
delrahman Mohamed, and Michael Auli. 2021. Un-
supervised cross-lingual representation learning for
speech recognition. In Proc. Interspeech 2021, pages
2426-2430.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kiristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 conference of the
North American chapter of the association for com-
putational linguistics: human language technologies,
volume 1 (long and short papers), pages 4171-4186.

Rongjie Huang, Jinglin Liu, Huadai Liu, Yi Ren,
Lichao Zhang, Jinzheng He, and Zhou Zhao. 2022.
Transpeech: Speech-to-speech translation with bilat-
eral perturbation. arXiv preprint arXiv:2205.12523.

Hirofumi Inaguma, Sravya Popuri, Ilia Kulikov, Peng-
Jen Chen, Changhan Wang, Yu-An Chung, Yun Tang,
Ann Lee, Shinji Watanabe, and Juan Pino. 2022.
Unity: Two-pass direct speech-to-speech translation
with discrete units. arXiv preprint arXiv:2212.08055.

Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, and
Roi Pomerantz. 2022a. Translatotron 2: High-quality
direct speech-to-speech translation with voice preser-
vation. In International Conference on Machine
Learning, pages 10120-10134. PMLR.



Ye Jia, Michelle Tadmor Ramanovich, Quan Wang, and
Heiga Zen. 2022b. Cvss corpus and massively multi-
lingual speech-to-speech translation. In Proceedings
of the Thirteenth Language Resources and Evalua-
tion Conference, pages 6691-6703.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019. Direct speech-to-speech translation with
a sequence-to-sequence model. arXiv preprint
arXiv:1904.06037.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao
Gu, Sravya Popuri, Xutai Ma, Adam Polyak, Yossi
Adi, Qing He, Yun Tang, and 1 others. 2021a. Di-
rect speech-to-speech translation with discrete units.
arXiv preprint arXiv:2107.05604.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne,
Holger Schwenk, Peng-Jen Chen, Changhan Wang,
Sravya Popuri, Yossi Adi, Juan Pino, Jiatao Gu, and 1
others. 2021b. Textless speech-to-speech translation
on real data. arXiv preprint arXiv:2112.08352.

Eliya Nachmani, Alon Levkovitch, Yifan Ding,
Chulayuth Asawaroengchai, Heiga Zen, and
Michelle Tadmor Ramanovich. 2024. Translatotron
3: Speech to speech translation with monolingual
data. In ICASSP 2024-2024 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 10686—-10690. IEEE.

Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji
Watanabe. 2022. Branchformer: Parallel mlp-
attention architectures to capture local and global
context for speech recognition and understanding.

In International Conference on Machine Learning,
pages 17627-17643. PMLR.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux. 2021.
Speech resynthesis from discrete disentangled self-
supervised representations. In INTERSPEECH 2021-
Annual Conference of the International Speech Com-
munication Association.

Sravya Popuri, Peng-Jen Chen, Changhan Wang, Juan
Pino, Yossi Adi, Jiatao Gu, Wei-Ning Hsu, and Ann
Lee. 2022. Enhanced direct speech-to-speech transla-
tion using self-supervised pre-training and data aug-
mentation. arXiv preprint arXiv:2204.02967.

Matt Post. 2018. A call for clarity in reporting bleu
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186—
191.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
and 1 others. 2024. Scaling speech technology to
1,000+ languages. Journal of Machine Learning Re-
search, 25(97):1-52.

Mirco Ravanelli, Titouan Parcollet, Adel Moumen,

Sylvain de Langen, Cem Subakan, Peter Plantinga,
Yingzhi Wang, Pooneh Mousavi, Luca Della Libera,
Artem Ploujnikov, Francesco Paissan, Davide Borra,
Salah Zaiem, Zeyu Zhao, Shucong Zhang, Georgios
Karakasidis, Sung-Lin Yeh, Pierre Champion, Aku
Rouhe, and 14 others. 2024. Open-source conversa-
tional ai with speechbrain 1.0. Journal of Machine
Learning Research, 25(333).

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:

Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3982—-3992.

Yun Tang, Juan Pino, Xian Li, Changhan Wang, and

Dmitriy Genzel. 2021. Improving speech translation
by understanding and learning from the auxiliary text
translation task. arXiv preprint arXiv:2107.05782.

A Appendix

Table 5: Training data statistics for each language pair

Language Pair  Source (h) Target (h) Utterances

Fr-En 264.3 174.0 207,364
Es-En 113.1 69.5 79,012
De-En 184.3 112.4 127,822
Fr-En (30%) 79.9 52.8 62,209
Fr—En (10%) 26.1 17.2 20,736
It-En 442 29.4 31,698
Ru-En 18.2 13.3 12,122

Table 6: Model architecture, training hyperparameters,
and loss weighting coefficients.

Module Setting
Speech Encoder layers 12
Aux. Src Char Encoder layers 6
Aux. Tgt Char Encoder layers 8
Aux. Char Decoder layers 2
Text Encoder layers 6
Unit Decoder layers 12
Aux. ST Decoder layers 3
Attention Heads 8
Hidden Size (dmodel) 512
Dropout 0.1
Learning Rate 0.0005
Optimizer AdamW
A1 =1.0,A2 =0.2
Loss Coefficients A3 =0.2, 4 =0.2

As = 0.1, \¢ = 0.1
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