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Abstract

Knowledge Graph (KG) inductive reasoning,001
which aims to infer missing facts from new002
KGs that are not seen during training, has been003
widely adopted in various applications. One004
critical challenge of KG inductive reasoning is005
handling low-resource scenarios with scarcity006
in both textual and structural aspects. In this007
paper, we attempt to address this challenge008
with Large Language Models (LLMs). Par-009
ticularly, we utilize the state-of-the-art LLMs010
to generate a graph-structural prompt to en-011
hance the pre-trained Graph Neural Networks012
(GNNs), which brings us new methodolog-013
ical insights into the KG inductive reason-014
ing methods, as well as high generalizabil-015
ity in practice. On the methodological side,016
we introduce a novel pretraining and prompt-017
ing framework PROLINK, designed for low-018
resource inductive reasoning across arbitrary019
KGs without requiring additional training. On020
the practical side, we experimentally evaluate021
our approach on 36 low-resource KG datasets022
and find that PROLINK outperforms previ-023
ous methods in three-shot, one-shot, and zero-024
shot reasoning tasks, exhibiting average per-025
formance improvements by 20%, 45%, and026
147%, respectively. Furthermore, PROLINK027
demonstrates strong robustness for various028
LLM promptings as well as full-shot scenar-029
ios. The anonymous version of our source code030
is available on https://anonymous.4open.031
science/r/ProLINK-069D.032

1 Introduction033

Knowledge Graph (KG) Reasoning, also known034

as KG Link Prediction, aims at inferring new facts035

from existing KGs in the triple format (head entity,036

relation, tail entity)(Wang et al., 2021b; Li et al.,037

2023). This technique has been widely studied and038

applied in various domains, including information039

retrieval, e-commerce recommendations, drug dis-040

covery, and financial prediction (Deng et al., 2019;041

Zeng et al., 2020; Bonner et al., 2022; Ge et al.,042

Figure 1: Illustrations of knowledge graphs and cor-
responding relation graphs. The interaction edge h2t
means the source relation has a head entity in the KG
which is a tail entity of the target relation.

2023). For example, the query (q1) in Figure 1 con- 043

sists of ‘Entity 3’ and a relation type ‘occupation’. 044

Its expected answer for KG reasoning is ‘Entity 6’. 045

The dynamic nature of real-world KGs fosters 046

recent research interest in inductive KG reason- 047

ing—inferring from new KGs which have enti- 048

ties/relations unseen during training (Sadeghian 049

et al., 2019; Teru et al., 2020). In contrast to earlier 050

methods that learn graph-specific embeddings for 051

the training KG (Bordes et al., 2013; Yang et al., 052

2015; Sun et al., 2019), recent inductive reasoning 053

models are trained to address the query (q1) in the 054

training KG, enabling them to answer the query 055

(q2) in a fully new KG (Lee et al., 2023; Galkin 056

et al., 2023). As illustrated in Figure 1, this transfer- 057

ability stems from Graph Neural Networks (GNNs) 058

(Kipf and Welling, 2017) which capture the shared 059

interaction patterns in relation graphs without using 060

entity/relation textual information. 061

One critical challenge of KG inductive reason- 062

ing is handling low-resource scenarios marked by 063

scarcity of both textual and structural information. 064

For the query (q3) in Figure 1, the inference KG 065
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lacks textual context for entities and has no sup-066

port triple for the ‘co-worked’ relation. Such low-067

resource scenarios frequently occur in specialized068

or emerging domains due to long-tail distribution069

and new relation additions (Pei et al., 2023; Wu070

et al., 2023), hindering the wide adoption of KG071

inductive reasoning. Text-based methods, even the072

current powerful Large Language Models (LLMs)073

(Touvron et al., 2023; OpenAI, 2023), are con-074

strained by limited textual data and complicated075

graph structures, while graph-based methods strug-076

gle with few-shot relation types that lack enough077

interaction edges in the relation graph1.078

Human reasoning, however, may address the079

above low-resource queries without expert knowl-080

edge or prior learning. Simply leveraging lim-081

ited relation semantics to understand graph struc-082

tures, humans can successfully deduce that the ‘co-083

worked’ relation should connect two persons, sug-084

gesting the answer entity can be a head entity of085

the ‘job’ relation and near the query entity ‘Entity086

4’. Inspired by the human reasoning process which087

mostly relies on relation semantics, we pose a ques-088

tion: Can LLMs be used to emulate human reason-089

ing for relation semantic understanding, thereby090

enhancing the GNN-based inductive reasoning?091

This work gives a positive answer to the above092

question and presents an approach that leverages093

LLM’s basic language power to improve KG induc-094

tive reasoning in any low-resource scenarios with-095

out additional model training for new KGs. This096

ability is crucial for elevating the generalizability097

of AI technologies to handle data dynamicity in098

the real world. Specifically, we propose a novel099

pretraining and Prompting framework PROLINK100

for Low-resource INductive reasoning across ar-101

bitrary KGs. First, PROLINK pretrains a GNN-102

based KG reasoner with novel techniques enhanc-103

ing few-shot prediction performance. Then, given a104

new inference KG with sparse relation types, PRO-105

LINK employs a pre-trained LLM to construct a106

prompt graph through concise relation descriptions107

(a dozen words per relation). The prompt graph is108

calibrated to eliminate noise and subsequently in-109

jected into the relation graph of the KG to improve110

the performance of the GNN reasoner. In summary,111

this work has four novel contributions:112

• We introduce a new KG reasoning problem, i.e.,113

low-resource inductive reasoning on KGs with114

arbitrary entity and relation vocabularies, which115

1We verified this challenge in preliminaries in Section 2.3.

generalizes most KG link prediction tasks. 116

• To the best of our knowledge, this is the first 117

work leveraging LLMs as the graph prompter 118

for inductive KG reasoning, potentially inspiring 119

further innovation in the research community. 120

• We design a unique pretraining and prompting 121

framework PROLINK, containing several novel 122

techniques for low-resource inductive reasoning 123

and prompt graph generation. 124

• We construct 36 low-resource inductive datasets 125

from real-world KGs, in which PROLINK out- 126

performs previous state-of-the-art methods in 127

both few-shot and zero-shot reasoning tasks. 128

2 Background 129

2.1 Notations and Definitions 130

Let G = {E ,R, T } denote a Knowledge Graph 131

(KG), where E ,R are the sets of entities and rela- 132

tions. T = {(eh, r, et)|eh, et ∈ E , r ∈ R} is the 133

set of factual triples of the KG, where eh, r and et 134

are called a triple’s head entity, relation and tail en- 135

tity, respectively. Given a query (eq, rq) containing 136

a query entity eq ∈ E and a query relation rq ∈ R, 137

the KG reasoning task aims to identify the correct 138

entity ea ∈ E , such that the triple (eq, rq, ea) or 139

(ea, rq, eq) is a valid factual triple of G. 140

KG Inductive Reasoning: Given a model trained 141

on a knowledge graph Gtr = {Etr,Rtr, Ttr}, the 142

KG reasoning task in the fully inductive scenario 143

evaluates the trained model on a new inference 144

graph Ginf = {Einf,Rinf, Tinf}, in which all entities 145

and relations are different from those in Gtr, i.e., 146

Einf ∩ Etr = ∅ and Rinf ∩Rtr = ∅. 147

K-shot Inductive Reasoning: In the inductive 148

scenario with Ginf = {Einf,Rinf, Tinf}, given a 149

new relation type rq /∈ Rinf and support triples 150

Trq = {(eh, rq, et)|eh, et ∈ Einf}(|Trq | = K), the 151

K-shot reasoning task is to predict over a query 152

set {(eq, rq)|eq ∈ Einf} with the augmented KG 153

Grq
inf = {Einf,Rinf ∪ {rq}, Tinf ∪ Trq}. 154

In this work, we focus on the low-resource chal- 155

lenge of KG inductive reasoning, inferring not 156

merely unseen but also few-shot relation types. Ex- 157

isting methods for few-shot link prediction (Chen 158

et al., 2019; Zhang et al., 2020; Huang et al., 2022; 159

Wu et al., 2023) either only work on the training 160

graph structure or have to use graph-specific textual 161

or ontological information to train, therefore can- 162

not achieve inductive reasoning on arbitrary KGs. 163

Other related studies also have difficulty accom- 164

plishing this low-resource task, including entity- 165
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level inductive reasoning (Sadeghian et al., 2019;166

Teru et al., 2020; Zhu et al., 2021; Zhang and Yao,167

2022) and text-based inductive reasoning (Daza168

et al., 2021; Wang et al., 2021c; Markowitz et al.,169

2022; Gesese et al., 2022). Detailed related work170

is introduced in the Appendix D.171

2.2 Baseline: ULTRA172

We first introduce ULTRA (Galkin et al., 2023),173

the state-of-the-art GNN-based model for induc-174

tive reasoning on entirely new KGs. Its core idea175

is leveraging the ‘invariance’ of the KG relational176

structure. With the nature of the triple form, there177

are four basic interaction types when two relations178

are connected, i.e., tail-to-head (t2h), head-to-head179

(h2h), head-to-tail (h2t), and tail-to-tail (t2t). As180

shown in Figure 1, different KGs may have similar181

patterns in the relation interactions. Thereby, the182

pre-trained embeddings of four interaction types183

can be universally shared across KGs to parameter-184

ize any unseen relations.185

Given an inference KG G = {E ,R, T }, ULTRA186

constructs a relation graph Gr = {R,Rfund , Tr}187

from the original triple data T , in which each node188

is a relation type and edges have four interaction189

types Rfund . After adding inverse relations into190

G (Zhu et al., 2021; Zhang and Yao, 2022), Gr191

would contain 2|R| nodes. Then, ULTRA employs192

a graph neural network GNN r(·) over the relation193

graph Gr , and obtains the relative representation of194

each relation conditioned on a query, which then195

can be used by any off-the-shelf entity-level GNN-196

based models GNN e(·) for KG reasoning (Zhu197

et al., 2021; Zhang and Yao, 2022; Wang et al.,198

2023). Specifically, given a query q = (eq, rq),199

the score p(eq, rq, et) of one candidate entity et is200

calculated as follows:201

Rq = GNN r(θr, rq,Gr ), (1)202

Eq = GNN e(θe, eq,Rq,G), (2)203

p(eq, rq, et) = MLP(Eq[et]). (3)204

where θr, θe denote the parameters of two GNN205

modules, and eq, rq are initialized embedding vec-206

tors of eq and rq
2. Because ULTRA does not re-207

quire any input features of entities or relations nor208

learn graph-specific entity or relation embeddings,209

it enables inductive reasoning across arbitrary KGs.210

2In the implementation, they are initialized as all-one vec-
tors whereas other nodes in the graph are initialized with zeros,
which is verified generalizing better to unseen graphs.

Figure 2: Preliminary results on ULTRA and Llama2.

2.3 Preliminaries: Low-resource Challenge 211

To explore the low-resource challenge, we ver- 212

ify the performance of the GNN-based ULTRA 213

(Galkin et al., 2023) and the LLM-based Llama2 214

(Touvron et al., 2023) in zero-shot inductive rea- 215

soning. On three real-world KG benchmarks, the 216

zero-shot condition is created by removing all rq- 217

involved triples in Tinf for each query relation rq. 218

The preliminary results of the two pre-trained mod- 219

els are shown in Figure 2. 220

In Figure 2(a), we observe that the zero-shot per- 221

formance of ULTRA(3g) drops sharply compared 222

to its original version. It indicates the inductive 223

ability of ULTRA highly relies on sufficient sup- 224

port triples in the inference graph. Surprisingly, 225

ULTRA obtains better performance after adding 226

the complete relation graph built on the original 227

Ginf, which motivates us to enhance the relation 228

graph in low-resource scenarios. Following recent 229

work (Ye et al., 2023), we further evaluate the zero- 230

shot graph reasoning performance of Llama2-7B by 231

converting queries and KG subgraphs into textual 232

questions3. Due to the context window limitations 233

of Llama2, we select hundreds of queries whose 234

answers are in the 2-hop neighborhood subgraph 235

of the query entity. Even though, the results are 236

not promising. In Figure 2(b), aside from issues 237

related to excessive length or incorrect formatting, 238

only dozens of requests obtain standard outputs 239

and even fewer include the correct answer in the 240

top ten entities outputted (‘Hits10’). 241

In summary, the above preliminary results ex- 242

pose the challenges faced by existing methods in 243

low-resource scenarios for KG inductive reasoning, 244

highlighting the necessity for innovative solutions 245

to more effectively utilize sparse data. 246

3 Methodology 247

This work presents a novel pre-training and prompt- 248

ing framework, PROLINK, which employs pre- 249

trained language models (LLMs) and graph neural 250

networks (GNNs) to handle semantic and struc- 251

3For a fair comparison, both our methods and here use
only short relation context instead of entity context.
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Figure 3: PROLINK prompting process.

tural information, respectively. As illustrated in252

Fig. 3, for a few-shot query relation in a new infer-253

ring KG, the pre-trained GNN Reasoner (Section254

3.1) infers from KG subgraphs without model fine-255

tuning, guided by a relation-specific prompt graph.256

The prompt graph is constructed by a frozen LLM257

Prompter (Section 3.2) from relation semantics,258

and then calibrated by Prompt Calibrator (Section259

3.3) to mitigate noise.260

3.1 GNN-based Reasoner261

Our GNN-based reasoner follows the basic frame-262

work of ULTRA (Galkin et al., 2023) in Section263

2.2. Given a G = {E ,R, T }, we first construct264

the relation graph Gr = {R,Rfund , Tr}, which is265

efficiently obtained from the original graph G with266

sparse matrix multiplications. After that, given267

a query q = (eq, rq), we generate relative rela-268

tion/entity representations Rq/Eq from the graph269

structure of Gr and G, respectively. Then, calcu-270

lating the triple score p(eq, rq, et) of any candidate271

entity et follows Equation 3. Specifically, the GNN272

architecture follows NBFNet (Zhu et al., 2021)273

with a non-parametric DistMult (Yang et al., 2015)274

message function and sum aggregation. The rela-275

tion encoder GNN r(·) utilizes randomly initialized276

edge embeddings for Rfund . In contrast, GNN e(·)277

initializes the embeddings of edge types using the278

relative relation embeddings Rq. We suggest con-279

sulting the ULTRA paper (Galkin et al., 2023) for280

further details. To improve the pre-training per-281

formance on low-resource inductive reasoning, we282

propose two enhancing techniques:283

Role-aware Relation Encoding: The embed-284

dings generated by GNN r(·) for relative relations285

are currently missing vital information: the spe-286

cific role that each relation type assumes in the287

reasoning process of a query. We delineate three288

unique roles: query relation, inverse query relation, 289

and other relation. As a relation may serve dif- 290

ferent roles across various queries, its embedding 291

vector should reflect the nuances of its designated 292

role. To imbue this role-aware capability, we in- 293

troduce trainable role embeddings Ro ∈ R[3×d] to 294

augment each relation embedding via a two-layer 295

MLP, formulated as: r̂ = δ
(
W2δ

(
W1(Rq[r] : 296

Ro[roleq(r)])
))

, where Rq[r] is the relative rela- 297

tion vector of r, concatenated with its specific role 298

vector as determined by roleq(·). The enhanced re- 299

lation embeddings R̂q are then utilized in Equation 300

2 replacing Rq. This component requires far fewer 301

parameters than the original ULTRA. Therefore, 302

efficiency issues can usually be ignored. 303

Low-resource Pretraining Objective: The orig- 304

inal ULTRA is trained by minimizing the binary 305

cross entropy loss over positive and negative triples. 306

Due to the sufficient support triples in the training 307

KG, the GNN reasoner would prioritize reason- 308

ing patterns related to these triples, which would 309

not present in low-resource scenarios. To prompt 310

GNNs to derive insights from a broader range of 311

relations, we devise an extra pre-training task that 312

operates on ’pseudo’ low-resource KGs. Specifi- 313

cally, for queries whose relation is rq, we construct 314

a specific KG Grq
tr , where support triples containing 315

rq or its inverse relation are randomly masked, us- 316

ing a hyperparameter γ to determine the masking 317

proportion. The total loss pretraining on the origi- 318

nal KG and masked KGs is calculated as follows: 319

320

LG = − log pG(eq, rq, ea)−
1

n

n∑
i=1

log(1− pG(eq, rq, ei)) 321

L = αLGtr + (1− α)LGrq
tr
, (4) 322

where pG(eq, rq, ea) represents the score of a 323

positive triple within the specific KG G. The 324

set {(eq, rq, ei)}ni=1 comprises negative samples, 325

which are generated by corrupting either the head 326

or the tail entity in the positive triple. The hyper- 327

parameter α balances two parts of loss. In prac- 328

tical scenarios, we manage two pre-training tasks 329

through controlled batch sampling. With a proba- 330

bility of (1-α), we sample batches with identical 331

query relations for low-resource pretraining, and 332

otherwise, we sample regular batches for pretrain- 333

ing on the original KG. 334

3.2 LLM-based Prompter 335

To improve the GNN reasoner’s accuracy in low- 336

resource scenarios, we create a prompt graph Gp 337
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connecting few-shot relations with others accord-338

ing to semantic features, thereby filling in the339

gaps of the topological relation graph Gr . This340

is achieved by a frozen Large Language Model341

(LLM) extracting relation semantics from concise342

textual information. This graph prompting process343

requires no model fine-tuning, preserving the gen-344

eralizability across distinct KGs.345

Initial trials showed that asking the LLM for all346

possible relational interactions was inefficient and347

led to inaccuracies, involving too many requests348

and often resulting in flawed outputs. To overcome349

this, we streamlined the process by using the LLM350

to determine potential entity types for the heads and351

tails of relations. When two relations have match-352

ing entity types at their head sides, we assume an353

h2h interaction between them (similarly for other354

interaction types). This strategy cuts down LLM355

queries to a single one for each relation, simplify-356

ing the task and enhancing accuracy.357

Instruction Prompt Design: To obtain entity358

types of two sides per relation, we design a series359

of instruction prompts, ensuring detailed guidance360

for each query relation. The prompt template is361

defined as P(·), and I = P(DRs , Let) is the input362

message to the LLM. Rs is the set of query rela-363

tions with relation information DRs . The list of364

candidate entity types Let is utilized to control the365

range of LLM responses. As shown in Figure 4,366

these prompts are distinct in two aspects:367

(1) Relation Information Form:368

• des: Short textual description of one relation.369

• exp: Textual entity names of one support triple.370

• d&e: Both description and example.371

(2) Output Entity Type:372

• fixed: Limited to predefined entity types.373

• refer: Allow new types besides predefined.374

• free: No constraints on the type range.375

As prompt examples in Table 8 in the Appendix,376

the semantic information required for each relation377

is concise, facilitating user editing or automatic378

generation. The list of candidate entity types is379

domain-dependent; for a general KG, it includes380

types like person, location, and event. When the381

type category is free, LLM would output any rea-382

sonable entity types with no constraints.383

Prompt Graph Construct: Collecting re-384

sponses from the LLM, we obtain the set of entity385

types S(r, ‘h’) and S(r, ‘t’) for the head and tail386

sides of each relation r. Then, we construct the387

prompt graph Gp = {R,Rfund , Tp}, where the re-388

Figure 4: Examples of instruction prompts for LLMs.

lation interactions in Tp obeys the following rules: 389

S(r1, s1) ∩ S(r2, s2) ̸= ∅ =⇒ Tp [r1, r2, s1, s2] = 1; 390

Tp [r1, r2, s1, s2] = Tp [r1, r′2, s1, s′2] = Tp [r′1, r2, s′1, s2]; 391

Tp [r1, r2, s1, s2] = {
Tp [r2, r1, s1, s2] s1 = s2
Tp [r2, r1, s′1, s′2] s1 ̸= s2

; 392

where r1, r2 ∈ R and the side symbol si ∈ 393

{‘h’, ‘t’}. The inverse relation of ri is denoted 394

as r′i, and s′i denotes the opposite side of si. The 395

connection value Tp [r1, r2, ‘h’, ‘t’] is equal to one 396

when there is an h2t edge between r1 and r2, oth- 397

erwise zero. The first rule specifies a sufficient 398

condition for establishing relation interactions via 399

entity types, while the other two rules detail the 400

equivalence of inverse relations and inverse inter- 401

actions. These rules collectively serve to minimize 402

redundant computations in constructing Gp . 403

3.3 Prompt Calibrator 404

This component aims to improve the quality of 405

the LLM-based prompt graph Gp leveraging the 406

ground-true information in the topological relation 407

graph Gr . Due to the natural gap between relation 408

semantics and graph-specific topology, Gp cannot 409

cover all expected interactions inevitably. Besides, 410

mistaken edges would be included due to the rela- 411

tively loose construction rules and the uncertainty 412

of LLM response quality. Therefore, we design a 413

novel calibrating process to extract high-confidence 414

prompting edges that link the query relation with 415

other relations in the KG. As shown in Algorithm 416

1, for each few-shot relation type rq, two learning- 417

free mechanisms are utilized to extract a series of 418

calibrated interaction edges. When inferring rq- 419

invloved queries, these interaction edges would be 420

injected into Gr to form the final rq-specific prompt 421

graph Ĝrq
r . 422

Few-shot Support Expanding: In few-shot sce- 423

narios, support triples of this query relation in Gr 424

are valuable. Therefore, we leverage these triples 425

5



Algorithm 1: Prompt Graph Calibrating
Input :relation graph Gr , prompt graph

Gp , query relation rq, threshold β.
Output :calibrated prompt graph Ĝr .

1 Gather rq-related edges from two graphs:
T rq
r ← {(ei, r, ej) ∈ Tr | ei = rq ∨ ej = rq}
T rq
p ← {(ei, r, ej) ∈ Tp | ei = rq ∨ ej = rq}

2 Expand potential edges:
T rq
ex ← SupportExpanding(rq, Tr )

3 Identify unmatched edges in Gp :
Tm ← (Tp − T rq

p )− (Tr − T rq
r )

4 Filter prompting edges of rq:
T rq
conf ← ConflictFiltering(T rq

ex ∪ T rq
p , Tm , β)

5 Inject prompting edges into Gr :
Ĝrqr ← {R,Rfund , T rq

conf ∪ Tr}

to find more potential interaction edges via the fol-426

lowing rules:427

∃rj ,(rq, ir, rj) ∈ Gr , ir = [s1, s2] =⇒
S(rq, s1)← S(rq, s1) ∪ S(rj , s2)

428

∃rk,(rq, ir1, rj), (rj , ir2, rk) ∈ Gr , ir1 = [s1, s2],

ir2 = [s2, s2] =⇒ Tp [rq, rk, s1, s2] = 1;
429

where ir = [s1, s2] denotes an interaction edge430

whose type is ‘s1-to-s2’ (e.g., ‘h2t’). Given the431

relations involved by support triples, the first rule432

inserts their entity types into the type set of rq,433

thereby expanding more potential edges. The sec-434

ond rule adds new interaction edges directly by435

finding the 2-hop neighbors of the query relation436

in Gr . These new edges T rq
ex as well as original rq437

related edges T rq
p will be filtered in the next step.438

Type Conflict Filtering: In a specific KG, two439

relations sharing an entity type in semantics may440

link to two disjoint entity sets, thereby the interac-441

tion edge between them is mistaken. Because rq442

lacks support triples, we can only detect whether443

the relations Rs, having the same entity type as444

rq at side s, have conflicts with each other. There-445

fore, we compare the Rs-involved edges in Gr and446

Gp , and extract unmatched edges Tm. If a relation447

has many unmatched edges with other relations in448

Rs, it is less likely connected with rq. The conflict449

determination of each relation is defined as follows:450

C(rj) = |{rj |(rj , i, rk) ∈ Tm, rj , rk ∈ Ep}| ≥ β451

The threshold hyperparameter β determines the452

maximum accepted number of unmatched edges453

for each relation rj . If C(rj) is true, the interaction454

edges connecting rj and rq would be removed.455

4 Experiments 456

We extensively evaluate our method on K-shot in- 457

ductive reasoning of KGs. In particular, we wish to 458

answer the following research questions: Q1: How 459

effective is our method under the low-resource sce- 460

narios of distinct KGs? Q2: How do different LLM 461

prompts impact prompt graphs and KG inductive 462

reasoning? Q3: How do the main components of 463

our method impact the performance? Q4: How 464

does our method perform in full-shot scenarios? 465

Q5: How efficient is our model compared with 466

traditional approaches? Q6: How does GNN rea- 467

soning change before and after injecting the prompt 468

graph in case studies? Due to the space limitation, 469

discussions about Q5 and Q6 are detailed in the 470

Appendix. 471

4.1 Experimental Setup 472

Low-resource Datasets. We conduct K-shot in- 473

ductive reasoning experiments on 108 low-resource 474

datasets, constructed upon the 12 datasets used 475

by the InGram work(Lee et al., 2023). The In- 476

Gram datasets were derived from three real-world 477

KG benchmarks: FB15k237 (Toutanova and Chen, 478

2015), Wikidata68K (Gesese et al., 2022), and 479

NELL-995 (Xiong et al., 2017), abbreviated as 480

FB, WK, and NL. There are four KG datasets (we 481

call v1-v4) for each benchmark. For FB and NL 482

datasets, we utilize the word-segmented relation 483

names as the short description, while extracting of- 484

ficial relation descriptions from WikiData for WK 485

datasets. Both structural and textual statistics for 486

these datasets can be found in Table 6 and Table 7 487

in the Appendix. Based on the InGram datasets, we 488

create K-shot datasets tailored for 3-shot, 1-shot, 489

and 0-shot scenarios. In each InGram dataset, we 490

randomly retain K support triples for each query 491

relation rq and mask others when reasoning from 492

Grq
inf. Ensuring a robust evaluation of our model, we 493

perform this sampling process three times to create 494

three variants for each few-shot dataset. 495

Baselines and Implementation. We compare 496

PROLINK with eight baseline methods. NBFNet 497

(Zhu et al., 2021), RED-GNN (Zhang and Yao, 498

2022), InGram (Lee et al., 2023), DEqInGram 499

(Gao et al., 2023), and ISDEA (Gao et al., 2023) 500

are state-of-the-art GNN-based inductive models. 501

The recent pre-trained model ULTRA(Xg) (Galkin 502

et al., 2023) has three variants (3g, 4g, 50g), of 503

which X denotes the amount of pre-trained KG 504

datasets. Previous few-shot link prediction and 505
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Model FB:v1 FB:v2 FB:v3 FB:v4 WK:v1 WK:v2 WK:v3 WK:v4 NL:v1 NL:v2 NL:v3 NL:v4 AVG
NBFNet 9.2 1.9 1.3 0.0 3.3 0.1 0.0 0.0 0.0 1.4 0.5 0.0 1.5
REDGNN 6.8 6.6 11.0 6.5 0.0 0.3 0.0 0.0 8.1 7.1 3.6 2.5 4.4
DEqInGram 7.6 0.9 7.0 1.1 0.6 0.2 0.5 5.2 6.8 4.6 4.3 7.4 3.9
ISDEA 1.8 1.3 0.9 0.8 1.4 0.3 1.2 0.3 3.5 3.1 3.5 1.9 1.7
InGram 9.8 6.2 11.4 7.0 7.0 0.2 2.2 2.3 12.2 12.4 13.8 14.9 8.3
ULTRA(3g) 35.9 33.4 33.5 31.9 43.0 9.2 17.2 11.4 27.5 29.1 32.4 36.9 28.5
ULTRA(4g) 40.4 35.8 32.7 31.6 13.8 6.3 17.6 9.2 25.8 25.5 26.5 30.0 24.6
ULTRA(50g) 36.8 35.4 32.9 31.0 15.7 5.5 16.6 8.6 22.7 22.0 21.9 26.2 22.9
Our(Llama2-7B) 51.3 48.0 40.8 37.7 46.1 10.8 18.6 11.1 33.5 37.2 33.5 39.4 34.0
Our(Llama2-13B) 49.2 46.8 40.5 35.8 46.3 11.6 18.6 11.0 32.0 36.7 35.4 40.3 33.7
Our(Mistral-7B) 49.4 46.7 40.2 36.7 46.1 11.5 18.8 10.8 32.3 33.3 35.4 39.4 33.4
Our(GPT-3.5) 50.5 47.1 40.8 38.0 45.5 11.5 18.7 11.3 34.2 35.1 35.5 41.1 34.1
Our(GPT-4) 51.7 47.3 40.4 37.5 45.6 11.8 18.8 11.2 33.0 35.2 33.8 39.8 33.8

Table 1: 3-shot inductive reasoning results on three series of datasets, evaluated with Hits@10 (%).

Model FB:v1 FB:v2 FB:v3 FB:v4 WK:v1 WK:v2 WK:v3 WK:v4 NL:v1 NL:v2 NL:v3 NL:v4 AVG
NBFNet 8.7 1.8 1.3 0.0 1.9 0.1 0.0 0.0 0.0 7.1 0.4 0.0 1.8
REDGNN 6.3 6.4 10.3 5.4 0.2 0.1 0.4 0.0 6.3 6.4 1.9 0.9 3.7
DEqInGram 6.3 0.7 5.0 1.3 0.4 0.2 0.4 1.2 9.6 4.3 3.5 6.6 3.3
ISDEA 2.2 0.8 0.7 0.6 1.1 0.2 1.1 0.1 2.6 2.7 2.3 1.8 1.4
InGram 6.9 5.7 6.2 4.9 8.0 0.3 1.4 0.9 9.6 8.2 8.5 11.6 6.0
ULTRA(3g) 27.0 25.6 23.5 20.4 24.9 4.2 10.1 2.9 21.6 19.4 22.3 25.5 19.0
ULTRA(4g) 29.6 27.3 23.0 22.1 4.3 2.5 10.1 2.0 18.3 17.1 15.1 16.0 15.6
ULTRA(50g) 27.5 25.4 23.0 23.5 6.5 2.3 9.6 2.0 18.5 17.6 15.5 18.6 15.8
Our(Llama2-7B) 44.2 41.7 36.3 29.8 37.1 5.6 11.6 2.9 29.5 27.7 24.7 31.1 26.9
Our(Llama2-13B) 44.5 40.4 35.0 28.0 38.4 5.4 11.9 3.4 27.2 27.9 25.6 31.2 26.6
Our(Mistral-7B) 44.1 40.4 35.9 29.5 38.1 6.1 11.9 3.1 27.0 25.9 26.8 28.5 26.4
Our(GPT-3.5) 43.8 41.7 36.9 32.4 38.1 5.8 11.8 3.5 29.2 29.1 26.6 32.2 27.6
Our(GPT-4) 45.1 40.9 37.0 31.9 37.7 6.3 11.8 3.5 29.7 26.7 26.0 30.0 27.2

Table 2: 1-shot inductive reasoning results on three series of datasets, evaluated with Hits@10 (%).

text-based methods are neglected because they can-506

not perform on our task settings. For PROLINK,507

we train the GNN reasoner following the settings508

of ULTRA(3g) and employ five LLMs in the LLM509

prompter, including Llama2-7B, Llama2-13B (Tou-510

vron et al., 2023), Mistral-7B (Das et al., 2017),511

GPT-3.5 (Brown et al., 2020), and GPT-4 (OpenAI,512

2023). We utilize two evaluation metrics, MRR513

(Mean Reciprocal Rank) and Hits@N. Hyperpa-514

rameters are selected via grid search according to515

the metrics on the validation set. All experiments516

are performed on Intel Xeon Gold 6238R CPU @517

2.20GHz and 4× NVIDIA RTX A30 GPUs. Im-518

plementation details and hyperparameter configu-519

rations are shown in Appendix A.520

4.2 Main Experimental Results (RQ1)521

We compare PROLINK with baselines on inductive522

reasoning tasks under the 3-shot, 1-shot, and 0-shot523

settings. We report the average Hits@10 results524

over three variants of each K-shot InGram dataset525

in Table 1, Table 2, and Table 3. More detailed526

results on other metrics can be found in the Ap-527

pendix. We observe that the first four GNN-based528

methods underperform pre-trained ULTRA and our529

method. NBFNet and REDGNN struggle with un-530

seen relations, while InGram, ISDEA, and DEqIn-531

Gram rely on sufficient support triples to form a532

similar distribution of node degrees. Conversely,533

ULTRA excels in low-resource settings due to its534

pre-training on multiple KGs, especially in the 3-535

shot scenario, though more KG pre-training in UL-536

TRA(50g) doesn’t markedly boost performance. 537

Pre-trained on three KGs like ULTRA(3g), PRO- 538

LINK significantly outperforms previous methods 539

by a wide margin on average. Notably, in the 0- 540

shot setting, the average Hits@10 for Our(GPT- 541

4) method is twice as high as that of ULTRA, 542

highlighting the effectiveness of our prompting 543

paradigm. In the comparison of different LLMs, 544

GPT-3.5 and GPT-4 exhibit superior performance 545

in the 0-shot setting. Due to our simplification for 546

LLM requests, the lightweight Llama2-7B already 547

performs well in few-shot scenarios, which indi- 548

cates the robustness of our method. 549

4.3 Performance of Different Prompts (RQ2) 550

To generate the prompt graph, we employ a series 551

of textual prompts to guide the LLM prompter. As 552

shown in Figure 5, we compare the performance 553

of Our(GPT-4) on the three v4 datasets by varying 554

the Relation Information Form and Output Entity 555

Type, respectively. In Figure 5(a), we observe that 556

the ‘d&e’ form outperforms the other two in most 557

scenarios, because textual descriptions reflect the 558

core features while two entity names indicate the 559

direction of the relation. Regarding entity types, the 560

‘free’ setting works better in few-shot scenarios. In 561

zero-shot datasets, prompts using (‘d&e’, ‘fixed’) 562

outperform the others. 563

In Figure 5(b), we analyse the effectiveness of 564

the prompt graph by calculating the F1 metric be- 565

tween the prompt interaction edges and ground- 566

truth edges in the full-shot KGs. The trend of F1 567
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Model FB:v1 FB:v2 FB:v3 FB:v4 WK:v1 WK:v2 WK:v3 WK:v4 NL:v1 NL:v2 NL:v3 NL:v4 AVG
NBFNet 8.7 1.8 1.3 0.0 1.9 0.1 0.0 0.0 0.0 7.1 0.4 0.0 1.8
REDGNN 6.3 6.4 10.3 5.4 0.2 0.1 0.0 0.0 6.0 6.4 0.8 2.9 3.7
DEqInGram 0.3 0.4 1.3 0.7 2.3 0.1 0.0 0.1 4.0 3.2 2.2 2.0 1.4
ISDEA 1.7 0.1 0.2 0.2 0.2 0.0 0.4 0.0 0.9 1.4 0.3 1.2 0.6
InGram 1.7 4.3 5.8 2.7 5.4 0.1 0.2 0.2 7.0 7.0 2.9 8.1 3.8
ULTRA(3g) 14.5 12.8 10.1 9.8 1.9 0.8 1.3 0.4 11.3 6.8 6.1 6.0 6.8
ULTRA(4g) 15.5 14.8 10.1 10.7 1.8 1.0 1.3 0.4 9.6 7.1 5.9 6.1 7.0
ULTRA(50g) 10.3 10.0 6.3 10.0 2.3 1.2 1.3 0.4 8.9 7.7 5.8 4.6 5.7
Our(Llama2-7B) 19.3 20.3 13.3 15.3 2.9 1.0 1.6 0.7 18.0 19.0 9.5 16.1 11.4
Our(Llama2-13B) 20.9 17.9 13.6 12.1 7.8 1.1 1.6 1.6 19.1 18.4 15.5 14.8 12.0
Our(Mistral-7B) 25.4 25.4 22.2 19.5 4.3 1.2 1.7 1.1 17.2 15.6 14.3 11.9 13.3
Our(GPT-3.5) 30.0 26.7 24.0 22.5 30.4 2.0 3.0 1.4 17.8 17.8 15.3 17.7 17.4
Our(GPT-4) 28.4 25.1 25.6 21.3 35.0 2.4 3.1 1.8 18.3 14.0 14.7 19.1 17.4

Table 3: 0-shot inductive reasoning results on three series of datasets, evaluated with Hits@10 (%).

Figure 5: Performance of different prompt settings in
GPT-4. Darker colors indicate higher values.

metrics across different prompts is similar to that568

of Hits@10, it shows that a prompt graph closer to569

ground truth leads to better performance. The re-570

sults indicate the importance of prompt settings and571

more refined prompts would be our future work.572

4.4 Ablation Studies (RQ3, RQ4)573

To validate the impact of the three components on574

model performance, we conduct ablation exper-575

iments on PROLINK with GPT-4, as shown in576

Table 4. The variant ‘with ULTRA’ employs UL-577

TRA(3g) to replace our pre-trained GNN reasoner578

and the performance decline indicates the effect of579

our enhancing techniques. ‘w/o Prompt’ denotes580

utilizing the pre-trained KG reasoner directly with-581

out prompt graphs, which performs well in 3-shot582

scenarios but struggles with fewer-shot ones. The583

next two variants prove that the LLM prompter and584

the prompt calibrator both enhance the model’s per-585

formance. ‘with OODKG’ denotes pre-training586

the GNN reasoner with three KGs out of the evalu-587

ation KG distribution, including YAGO3-10, DB-588

Model FB:v4 WK:v4 NL:v4

3-shot

Our(GPT-4) 37.5 11.2 38.8
with ULTRA 34.6 11.0 37.1
with OODKG 36.8 10.6 35.9
w/o Prompt 37.7 11.1 37.7
w/o Calibrator 37.5 10.6 37.4
w/o LLM 30.9 10.1 33.4

1-shot

Our(GPT-4) 31.9 3.5 29.3
with ULTRA 28.1 3.5 27.0
with OODKG 32.3 3.2 26.6
w/o Prompt 28.0 2.6 25.9
w/o Calibrator 31.1 2.8 29.3
w/o LLM 23.8 2.6 25.7

0-shot

Our(GPT-4) 21.3 1.8 18.5
with ULTRA 18.2 1.4 15.5
with OODKG 21.2 1.3 18.3
w/o Prompt 8.9 0.4 3.1
w/o Calibrator 20.2 1.4 18.5
w/o LLM 8.9 0.4 3.1

full-shot

Our(GPT-4) 63.1 28.5 67.7
with Llama2-7B 63.3 27.8 67.7
w/o Prompt 63.1 26.9 67.1
InGram 37.1 16.9 50.6
ULTRA(3g) 62.9 28.9 63.2

Table 4: Ablation studies evaluated with Hits@10 (%).

Pedia100k, and WN18RR. Its competitive perfor- 589

mance indicates the robustness of our pre-training 590

strategy. We also verify PROLINK in the full-shot 591

scenarios. Our(GPT-4) and Our(Llama2-7b) out- 592

perform ULTRA(3g) and InGram on FB:v4 and 593

NL:v4 datasets. The results prove the good appli- 594

cability of our method in practice. 595

5 Conclusions 596

We propose a novel pre-training and prompting 597

framework, PROLINK, for low-resource induc- 598

tive reasoning across arbitrary KGs. To gener- 599

ate an effective prompt graph for few-shot rela- 600

tion types, we design enhancing techniques for the 601

GNN reasoner and instruction prompts for the LLM 602

prompter. Besides, a novel prompt calibrator is pro- 603

posed to mitigate the potential noise and achieve 604

the information alignment of the above two com- 605

ponents. Extensive Experiments have verified that 606

the PROLINK achieves significant performance in 607

both few-shot and zero-shot scenarios. Besides, our 608

PROLINK requires no model fine-tuning, thereby 609

having advantages of better efficiency and scalabil- 610

ity than previous GNN-based methods. 611
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6 Limitations.612

Here, we discuss two potential limitations of PRO-613

LINK. First, unlike recent GNN-based fully induc-614

tive methods, our method requires a brief relational615

context for each relation type. Despite our efforts to616

minimize text requirements, it may be unavailable617

in certain scenarios without manual inputs from618

users. Second, the usage of textual context in our619

method is not sufficient enough. To circumvent the620

need for additional model training, we streamline621

the LLM queries by only asking for entity types.622

Incorporating semantic embeddings into GNNs or623

fine-tuning the LLM prompter to leverage relation624

semantics could further enhance performance. Ex-625

ploring this avenue will constitute a primary focus626

of our future work. The potential risks of our work627

may include generating factual triples about pri-628

vacy or fake information, depending on the legality629

and reliability of the input data. In addition, we630

utilize the ChatGPT AI assistant when polishing631

some paragraphs of the paper draft.632
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A Implementation Details and951

Hyperparameters952

We introduce the statistics of pre-training and eval-953

uation datasets in Table 5, Table 6. Following previ-954

ous work (Zhang and Yao, 2022; Zhu et al., 2021),955

we augment the triples in each G with reverse and956

identity relations. The augmented triple set T + is957

defined as: T + = T ∪ {(et, r−1, eh)|(eh, r, et) ∈958

T } ∪ {(e, ri, e)|e ∈ E}, where the relation r−1 is959

the reverse relation of a relation r, the relation ri960

refers to the identity relation, and the number of961

augmented triples is |T +| = 2|T |+ |E|.962

Baseline Implementation Details. We train963

NBFNet, RED-GNN, and ISDEA using the train-964

ing graph of InGram datasets (Lee et al., 2023) and965

evaluate the low-resource datasets. When evaluat-966

ing InGram, DEqInGram, and ULTRA, we utilize967

their officially provided checkpoints directly. Al-968

though there are some previous baselines (Galkin969

et al., 2022; Sadeghian et al., 2019; Teru et al.,970

2020), they exhibit near-zero performance in orig-971

inal full-shot inductive tasks reported by InGram972

(Lee et al., 2023). Therefore, we ignore them in973

this more challenging low-resource reasoning task.974

PROLINK Implementation Details. We975

train our KG reasoner with three commonly-used976

KG datasets, WN18RR (Bordes et al., 2014),977

FB15k237 (Toutanova and Chen, 2015), and978

CodexM (Safavi and Koutra, 2020), following the979

settings of ULTRA(3g). Concerns about poten-980

tial relation leakage during pre-training can be981

ignored because neither our method nor ULTRA982

learns relation-specific parameters. Moreover, in983

low-resource settings, the available relational infor-984

mation is limited, and markedly distinct from the985

original data. We employ five popular LLMs as986

the LLM prompter, including Llama2-7B, Llama2-987

13B (Touvron et al., 2023), Mistral-7B (Das et al.,988

2017), GPT-3.5 (Brown et al., 2020), and GPT-4989

(OpenAI, 2023). Llama2 and Mistral-7B are hosted990

directly on our servers, while the GPT-3.5 and GPT-991

4 models are accessed through the OpenAI API.992

For Prompt Calibrater, we set the loss balancing993

ratio α to 0.5, and the low-resource masking ratio994

γ to 0.1. The filtering threshold β is selected from995

{1, 3, 5,Mean,Max}, in which the latter two are996

calculated from values of all relation conflicts.997

All experiments are performed on Intel Xeon998

Gold 6238R CPU @ 2.20GHz and NVIDIA RTX999

A30 GPUs (four for pretraining and one for eval-1000

uation), and are implemented in Python using the1001

PyTorch framework. Our source code is imple- 1002

mented based on ULTRA4, which is available un- 1003

der the MIT License. We utilize the Llama2 and 1004

Mistral models under the corresponding licenses 1005

and call the GPT-3.5 and GPT-4 APIs obeying Ope- 1006

nAI terms. All employed KG datasets are open and 1007

commonly used. 1008

Dataset |Etr| |Rtr|
|Ttr|

#Train #Validation #Test
WN18RR 40.9k 11 86.8k 3.0k 3.1k
FB15k-237 14.5k 237 272.1k 17.5k 20.4k
CodexMedium 17.0k 51 185.5k 10.3k 10.3k

Table 5: Statistics of pre-training KG datasets.

FB WK NL
|Einf| |Rinf| |Tinf| |Einf| |Rinf| |Tinf| |Einf| |Rinf| |Tinf|

v1 2146 120 3717 3228 74 5652 4097 216 28579
v2 2335 119 4294 9328 93 16121 4445 205 19394
v3 1578 116 3031 2722 65 5717 2792 186 15528
v4 1709 53 3964 12136 37 22479 2624 77 11645

Table 6: Statistics of evaluating InGram datasets.

Dataset Textual Form Details

FB

Description Average Words: 4.53
Average Tokens: 61.56

(Example) "/people/person/profession"

Entity Name Average Words: 2.30
Average Tokens: 15.21

(Example) "Stan Lee"

WK

Description Average Words: 15.93
Average Tokens: 103.42

(Example) "residence: the place where the person is
or has been, resident"

Entity Name Average Words: 2.57
Average Tokens: 17.68

(Example) "coquette (film)"

NL

Description Average Words: 3.86
Average Tokens: 24.46

(Example) "person graduated from university"

Entity Name Average Words: 2.98
Average Tokens: 20.91

(Example) "city: portland"

Table 7: Statistics of KG textual data.

B Efficiency Analysis (RQ5) 1009

The primary benefit of PROLINK lies in its ability 1010

to infer new, arbitrary Knowledge Graphs (KGs) 1011

without the need for training. It stems from the fact 1012

that both the GNN reasoner and the LLM prompter 1013

remain parameter-frozen during the prompting pro- 1014

cess. As a result, the only computational overhead 1015

introduced is associated with the prompt graphs. 1016

Except for the LLM requests for each relation in the 1017

KG, the prompt graph is generated only once for 1018

each few-shot relation type, whose computational 1019

complexity would not exceed O(|Rinf|2). Given 1020

that the quantity of relations in most KGs is signifi- 1021

cantly lower than that of entities, the time and space 1022

costs in this process are negligible. Specifically, 1023

the checkpoint file size of our KG reasoner is only 1024

2.18 MB, which is similar to that of ULTRA (2.03 1025

MB). The total pretraining time is around eight 1026

4https://github.com/DeepGraphLearning/ULTRA
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Prompt Setting (FB, des, fixed)
Task Description The dictionary rel_dict includes brief information of

partial relationships in a knowledge graph. Please
analyze the possible entity types of each relation-
ship’s head and tail entities.

EntType The candidate entity types are strictly fixed in
["genre/type", "person", "animal", "location/place",
"organization", "creative work", "time", "profes-
sion", "event", "actual item", "language"].

RelInfo rel_dict = {"rel0": "music artist origin", "rel1":
"film actor film. film performance film"}

Output Here are the results: { rel0: {"head": ["person"],
"tail": ["location/place"]}, rel1: {"head": ["per-
son"], "tail": ["creative work"]} }

Prompt Setting (WK, exp, refer)
Task Description The dictionary rel_dict includes brief information of

partial relationships in a knowledge graph. Please
analyze the possible entity types of each relation-
ship’s head and tail entities.

EntType The candidate entity types are not limited to
["genre/type", "person", "animal", "location/place",
"organization", "creative work", "time", "profes-
sion", "event", "actual item", "language"].

RelInfo rel_dict = {"rel6": {"head entity": "lesser asiatic
yellow bat", "tail entity": "morphospecies"}, "rel8":
{"head entity": "hexacinia", "tail entity": "peacock
flies"}}

Output Here are the results: { rel6: {"head": ["animal"],
"tail": ["morphospecies"]}, rel8: {"head": ["cre-
ative work"], "tail": ["genre/type"]} }

Prompt Setting (NL, d&e, free)
Task Description The dictionary rel_dict includes brief information of

partial relationships in a knowledge graph. Please
analyze the possible entity types of each relation-
ship’s head and tail entities.

EntType None
RelInfo rel_dict = { "rel0": {"description": "sport fans in

country", "head entity": "sport: skiing", "tail entity":
"country: america"}, "rel1": {"description": "ani-
mal eat vegetable", "head entity": "bird: chickens",
"tail entity": "vegetable: corn"}}

Output Here are the results: { rel0: {"head": ["sport"],
"tail": ["country"]}, rel1: {"head": ["animal"],
"tail": ["vegetable"]} }

Table 8: Examples of textual prompts on three KGs.

GPU hours for ten training epochs. The evaluation1027

time on each dataset only costs several minutes.1028

Regarding the model scalability, PROLINK can1029

be applied in large-scale KGs the same as ULTRA1030

(Galkin et al., 2023). This work focuses on low-1031

resource challenges, more experiments on large-1032

scale datasets will be our future work.1033

C Case Studies (RQ6)1034

We select several queries from the zero-shot NL:v41035

dataset and compare the outputs of Our(GPT-4)1036

with and without the prompt graph. The final re-1037

lation graphs and top five outputted entities are1038

shown in Figure 6. Generally, we observe that1039

PROLINK injects multiple prompt edges into the1040

relation graph which directly changes the outputted1041

entity ranking. Most linked relations by prompt1042

edges are reasonable, thereby improving the rela-1043

tive relation embedding for the query relation.1044

D Detailed Related Work1045

KG Inductive Reasoning: Traditional transduc-1046

tive KG embedding models, represented by TransE1047

(Bordes et al., 2013), DistMult (Yang et al., 2015)1048

Dataset K LLM Input Output β
FB:v1 3 gpt4 des refer 1
FB:v1 1 gpt4 des refer 1
FB:v1 0 gpt3.5 exp free max
FB:v2 3 gpt4 des refer 1
FB:v2 1 llama7b des fixed 5
FB:v2 0 gpt3.5 exp free max
FB:v3 3 llama7b d&e fixed 5
FB:v3 1 gpt4 exp free 5
FB:v3 0 gpt4 exp fixed max
FB:v4 3 gpt3.5 d&e free max
FB:v4 1 gpt3.5 d&e free max
FB:v4 0 gpt3.5 d&e refer max
NL:v1 3 gpt3.5 des free max
NL:v1 1 gpt4 d&e free max
NL:v1 0 llama13b d&e free max
NL:v2 3 llama7b des free 3
NL:v2 1 gpt3.5 des free 5
NL:v2 0 llama7b d&e free max
NL:v3 3 gpt3.5 des free max
NL:v3 1 mistral7b des refer max
NL:v3 0 llama13b exp refer max
NL:v4 3 gpt3.5 des free max
NL:v4 1 gpt3.5 des free max
NL:v4 0 gpt4 d&e refer max
WK:v1 3 llama13b exp free max
WK:v1 1 llama13b exp free max
WK:v1 0 gpt4 d&e free 3
WK:v2 3 gpt4 exp free 1
WK:v2 1 gpt4 d&e free 3
WK:v2 0 gpt4 d&e refer mean
WK:v3 3 gpt4 d&e free 3
WK:v3 1 mistral7b d&e free 1
WK:v3 0 gpt4 d&e fixed max
WK:v4 3 gpt3.5 des free max
WK:v4 1 gpt4 d&e refer 1
WK:v4 0 gpt4 d&e fixed 5

Table 9: Hyperparameter settings of best Hits@10.

and RotatE (Sun et al., 2019), learn continuous vec- 1049

tors in the embedding space to represent each entity 1050

and relation in the knowledge graph. In contrast, 1051

inductive KG reasoning methods (Zhu et al., 2021) 1052

overcome this limitation by generalizing to KGs 1053

with unseen entities or relations. Most existing 1054

inductive methods (Yan et al., 2022; Wang et al., 1055

2021a; Liu et al., 2023; Chen et al., 2021) lever- 1056

age Graph Neural Networks (GNN) to generate 1057

“relative” entity embeddings, by extracting local 1058

structural features from an induced graph of the 1059

query entity. GraIL (Teru et al., 2020) extracts an 1060

enclosing subgraph between the query entity and 1061

each candidate entity, but suffers from high compu- 1062

tational complexity. NBFNet (Zhu et al., 2021) and 1063

RED-GNN (Zhang and Yao, 2022) propagate query 1064

features through the L-hop neighborhood subgraph 1065

of the query entity. These inductive methods strug- 1066

gle to generalize to KGs with new relation types, 1067

as the entity embeddings are still a function of a 1068

predetermined relation vocabulary. 1069

Few-shot and Unseen Relation Reasoning: To 1070

generalize to unseen relations, early efforts have ex- 1071

plored meta-learning for few-shot link prediction, 1072

which predicts KG facts of unseen relations using a 1073

limited number of support triples (Chen et al., 2019; 1074

Zhang et al., 2020; Huang et al., 2022; Pei et al., 1075

2023; Wu et al., 2023). However, those methods 1076
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Figure 6: Case studies on the one-shot NL:v4 dataset.

cannot work on an entire unseen inference graph.1077

Recent approaches focus on constructing graphs of1078

relations to generalize to unseen relations (Geng1079

et al., 2023a; Zhou et al., 2023). InGram (Lee et al.,1080

2023) relies on a featurization strategy based on the1081

discretization of node degrees, which is effective1082

only for KGs with a similar relational distribution1083

and falls short in transferring to arbitrary KGs. IS-1084

DEA (Gao et al., 2023) utilizes relation exchange-1085

ability in multi-relational graphs, which imposes1086

stringent assumptions on the class of transferable1087

relations coming from the same distribution. UL-1088

TRA (Galkin et al., 2023) employs a pre-training1089

and fine-tuning framework, with a global relation1090

graph extracted from the entire set of KG triples.1091

However, the effectiveness of the above methods is1092

contingent on sufficient support triples for the un-1093

seen relations in the inference KG, struggling with1094

few-shot relation types in low-resource scenarios1095

that limit their applicability.1096

Text-based methods via Language Models: A1097

line of text-based KG inductive reasoning meth-1098

ods like BLP (Daza et al., 2021), KEPLER (Wang1099

et al., 2021c), StATIK (Markowitz et al., 2022), 1100

RAILD (Gesese et al., 2022) rely on textual de- 1101

scriptions of entities and relations and use pre- 1102

trained language models (PLMs) like BERT (De- 1103

vlin et al., 2019) to encode them. To seek higher 1104

prediction performance, current methods mostly 1105

prefer to fine-tune PLMs which requires high com- 1106

putational complexity and limits its generalizability 1107

to other KGs with different formats of textual de- 1108

scriptions. CSProm-KG (Chen et al., 2023) and 1109

PDKGC (Geng et al., 2023b) perform KG link pre- 1110

diction via a frozen PLM with only the prompts 1111

trained. However, the trainable prompts are tuned 1112

for a fixed relation vocabulary and cannot be gen- 1113

eralized to inductive reasoning. Recent work (Zhu 1114

et al., 2023) verifies the reasoning performance of 1115

large language models by converting a query into 1116

textual names of the query entity and relation. We 1117

consider this family of methods to be orthogonal 1118

to our work. Our approach operates under the low- 1119

resource assumption that the graphs lack explicit 1120

entity descriptions. 1121
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K-shot Model FB:v1 FB:v2 FB:v3 FB:v4 WK:v1 WK:v2
3shot NBFNet 0.084 (±0.000) 0.016 (±0.000) 0.012 (±0.000) 0.001 (±0.000) 0.011 (±0.000) 0.002 (±0.000)
3shot REDGNN 0.041 (±0.000) 0.035 (±0.001) 0.056 (±0.001) 0.025 (±0.001) 0.001 (±0.000) 0.003 (±0.001)
3shot InGram 0.071 (±0.006) 0.029 (±0.002) 0.062 (±0.007) 0.035 (±0.005) 0.051 (±0.013) 0.001 (±0.001)
3shot DEqInGram 0.102 (±0.004) 0.035 (±0.005) 0.108 (±0.010) 0.038 (±0.006) 0.021 (±0.008) 0.009 (±0.001)
3shot ISDEA 0.009 (±0.001) 0.005 (±0.001) 0.005 (±0.000) 0.005 (±0.000) 0.008 (±0.001) 0.003 (±0.000)
3shot ULTRA(3g) 0.241 (±0.007) 0.212 (±0.004) 0.228 (±0.012) 0.186 (±0.009) 0.298 (±0.017) 0.050 (±0.010)
3shot ULTRA(4g) 0.268 (±0.007) 0.211 (±0.008) 0.218 (±0.009) 0.196 (±0.010) 0.123 (±0.028) 0.041 (±0.010)
3shot ULTRA(50g) 0.248 (±0.004) 0.209 (±0.007) 0.215 (±0.015) 0.197 (±0.005) 0.129 (±0.008) 0.037 (±0.012)
3shot Our(Llama2-7B) 0.331 (±0.006) 0.290 (±0.017) 0.260 (±0.008) 0.232 (±0.008) 0.321 (±0.024) 0.052 (±0.008)
3shot Our(Llama2-13B) 0.313 (±0.006) 0.289 (±0.013) 0.253 (±0.005) 0.225 (±0.009) 0.333 (±0.010) 0.053 (±0.007)
3shot Our(Mistral-7B) 0.316 (±0.003) 0.294 (±0.012) 0.253 (±0.011) 0.231 (±0.005) 0.325 (±0.018) 0.053 (±0.008)
3shot Our(GPT-3.5) 0.325 (±0.002) 0.286 (±0.011) 0.256 (±0.011) 0.230 (±0.008) 0.331 (±0.011) 0.054 (±0.009)
3shot Our(GPT-4) 0.332 (±0.004) 0.290 (±0.011) 0.256 (±0.013) 0.237 (±0.004) 0.326 (±0.013) 0.058 (±0.008)
1shot NBFNet 0.079 (±0.000) 0.015 (±0.000) 0.012 (±0.000) 0.001 (±0.000) 0.008 (±0.000) 0.002 (±0.000)
1shot REDGNN 0.038 (±0.000) 0.034 (±0.001) 0.055 (±0.001) 0.020 (±0.001) 0.001 (±0.000) 0.002 (±0.000)
1shot InGram 0.050 (±0.007) 0.032 (±0.003) 0.035 (±0.011) 0.025 (±0.006) 0.060 (±0.010) 0.001 (±0.001)
1shot DEqInGram 0.078 (±0.011) 0.029 (±0.004) 0.082 (±0.009) 0.034 (±0.004) 0.019 (±0.003) 0.008 (±0.002)
1shot ISDEA 0.008 (±0.001) 0.004 (±0.001) 0.004 (±0.001) 0.004 (±0.000) 0.007 (±0.002) 0.002 (±0.001)
1shot ULTRA(3g) 0.182 (±0.011) 0.153 (±0.004) 0.159 (±0.009) 0.108 (±0.010) 0.221 (±0.020) 0.030 (±0.001)
1shot ULTRA(4g) 0.190 (±0.008) 0.149 (±0.008) 0.156 (±0.012) 0.132 (±0.013) 0.051 (±0.009) 0.023 (±0.003)
1shot ULTRA(50g) 0.180 (±0.010) 0.142 (±0.005) 0.148 (±0.016) 0.141 (±0.011) 0.062 (±0.029) 0.020 (±0.002)
1shot Our(Llama2-7B) 0.280 (±0.013) 0.250 (±0.003) 0.228 (±0.013) 0.185 (±0.006) 0.259 (±0.029) 0.031 (±0.004)
1shot Our(Llama2-13B) 0.270 (±0.008) 0.249 (±0.010) 0.221 (±0.010) 0.174 (±0.011) 0.275 (±0.027) 0.030 (±0.004)
1shot Our(Mistral-7B) 0.281 (±0.012) 0.251 (±0.001) 0.224 (±0.008) 0.179 (±0.011) 0.267 (±0.023) 0.035 (±0.004)
1shot Our(GPT-3.5) 0.273 (±0.008) 0.246 (±0.009) 0.228 (±0.004) 0.190 (±0.007) 0.259 (±0.023) 0.034 (±0.005)
1shot Our(GPT-4) 0.281 (±0.011) 0.248 (±0.009) 0.226 (±0.005) 0.194 (±0.008) 0.262 (±0.029) 0.035 (±0.006)
0shot NBFNet 0.079 (±0.000) 0.015 (±0.000) 0.012 (±0.000) 0.001 (±0.000) 0.008 (±0.000) 0.002 (±0.000)
0shot REDGNN 0.038 (±0.000) 0.033 (±0.000) 0.054 (±0.000) 0.020 (±0.000) 0.001 (±0.000) 0.002 (±0.000)
0shot InGram 0.009 (±0.000) 0.021 (±0.000) 0.025 (±0.000) 0.014 (±0.000) 0.041 (±0.000) 0.001 (±0.000)
0shot DEqInGram 0.015 (±0.001) 0.020 (±0.001) 0.037 (±0.005) 0.024 (±0.003) 0.053 (±0.029) 0.009 (±0.001)
0shot ISDEA 0.007 (±0.000) 0.001 (±0.000) 0.002 (±0.000) 0.003 (±0.000) 0.003 (±0.001) 0.001 (±0.001)
0shot ULTRA(3g) 0.048 (±0.000) 0.035 (±0.000) 0.034 (±0.000) 0.028 (±0.000) 0.019 (±0.000) 0.006 (±0.000)
0shot ULTRA(4g) 0.053 (±0.000) 0.041 (±0.000) 0.033 (±0.000) 0.030 (±0.000) 0.020 (±0.000) 0.006 (±0.000)
0shot ULTRA(50g) 0.035 (±0.000) 0.024 (±0.000) 0.023 (±0.000) 0.029 (±0.000) 0.019 (±0.000) 0.006 (±0.000)
0shot Our(Llama2-7B) 0.092 (±0.000) 0.099 (±0.000) 0.064 (±0.000) 0.067 (±0.000) 0.016 (±0.000) 0.008 (±0.000)
0shot Our(Llama2-13B) 0.110 (±0.000) 0.097 (±0.000) 0.067 (±0.000) 0.059 (±0.000) 0.036 (±0.000) 0.008 (±0.000)
0shot Our(Mistral-7B) 0.152 (±0.000) 0.139 (±0.000) 0.131 (±0.000) 0.097 (±0.000) 0.018 (±0.000) 0.007 (±0.000)
0shot Our(GPT-3.5) 0.181 (±0.000) 0.166 (±0.000) 0.134 (±0.000) 0.120 (±0.000) 0.191 (±0.000) 0.011 (±0.000)
0shot Our(GPT-4) 0.186 (±0.000) 0.168 (±0.000) 0.141 (±0.000) 0.108 (±0.000) 0.235 (±0.000) 0.013 (±0.000)

Table 10: Detailed inductive reasoning results (1), evaluated with MRR.

K-shot Model WK:v3 WK:v4 NL:v1 NL:v2 NL:v3 NL:v4
3shot NBFNet 0.005 (±0.000) 0.002 (±0.000) 0.003 (±0.000) 0.019 (±0.000) 0.009 (±0.000) 0.002 (±0.000)
3shot REDGNN 0.001 (±0.000) 0.001 (±0.000) 0.063 (±0.000) 0.106 (±0.000) 0.092 (±0.003) 0.014 (±0.000)
3shot InGram 0.015 (±0.008) 0.016 (±0.005) 0.060 (±0.007) 0.071 (±0.014) 0.063 (±0.003) 0.075 (±0.009)
3shot DEqInGram 0.012 (±0.007) 0.068 (±0.007) 0.120 (±0.014) 0.083 (±0.014) 0.103 (±0.010) 0.133 (±0.017)
3shot ISDEA 0.008 (±0.001) 0.002 (±0.000) 0.019 (±0.005) 0.017 (±0.003) 0.017 (±0.005) 0.009 (±0.000)
3shot ULTRA(3g) 0.135 (±0.018) 0.078 (±0.013) 0.197 (±0.028) 0.211 (±0.033) 0.209 (±0.010) 0.245 (±0.027)
3shot ULTRA(4g) 0.137 (±0.020) 0.072 (±0.014) 0.192 (±0.022) 0.192 (±0.033) 0.181 (±0.021) 0.216 (±0.025)
3shot ULTRA(50g) 0.139 (±0.023) 0.068 (±0.011) 0.169 (±0.029) 0.180 (±0.040) 0.150 (±0.031) 0.184 (±0.028)
3shot Our(Llama2-7B) 0.137 (±0.024) 0.076 (±0.012) 0.225 (±0.023) 0.243 (±0.020) 0.215 (±0.011) 0.261 (±0.019)
3shot Our(Llama2-13B) 0.137 (±0.022) 0.076 (±0.013) 0.217 (±0.021) 0.232 (±0.014) 0.223 (±0.013) 0.264 (±0.026)
3shot Our(Mistral-7B) 0.139 (±0.025) 0.076 (±0.012) 0.223 (±0.027) 0.222 (±0.041) 0.229 (±0.017) 0.261 (±0.021)
3shot Our(GPT-3.5) 0.140 (±0.023) 0.078 (±0.013) 0.219 (±0.012) 0.235 (±0.012) 0.233 (±0.014) 0.261 (±0.021)
3shot Our(GPT-4) 0.141 (±0.020) 0.077 (±0.013) 0.229 (±0.021) 0.239 (±0.020) 0.230 (±0.012) 0.249 (±0.025)
1shot NBFNet 0.002 (±0.000) 0.002 (±0.000) 0.004 (±0.000) 0.076 (±0.000) 0.007 (±0.000) 0.002 (±0.000)
1shot REDGNN 0.001 (±0.000) 0.001 (±0.000) 0.047 (±0.001) 0.102 (±0.000) 0.071 (±0.002) 0.015 (±0.000)
1shot InGram 0.006 (±0.002) 0.007 (±0.001) 0.060 (±0.006) 0.050 (±0.002) 0.047 (±0.002) 0.062 (±0.002)
1shot DEqInGram 0.012 (±0.002) 0.019 (±0.003) 0.135 (±0.028) 0.073 (±0.022) 0.084 (±0.004) 0.120 (±0.012)
1shot ISDEA 0.008 (±0.002) 0.001 (±0.000) 0.020 (±0.003) 0.015 (±0.004) 0.016 (±0.005) 0.009 (±0.000)
1shot ULTRA(3g) 0.100 (±0.018) 0.023 (±0.001) 0.150 (±0.018) 0.155 (±0.035) 0.153 (±0.016) 0.199 (±0.017)
1shot ULTRA(4g) 0.100 (±0.020) 0.020 (±0.002) 0.160 (±0.012) 0.137 (±0.031) 0.100 (±0.011) 0.118 (±0.011)
1shot ULTRA(50g) 0.099 (±0.023) 0.020 (±0.002) 0.137 (±0.014) 0.113 (±0.009) 0.093 (±0.003) 0.140 (±0.022)
1shot Our(Llama2-7B) 0.103 (±0.024) 0.023 (±0.003) 0.207 (±0.030) 0.189 (±0.016) 0.174 (±0.004) 0.222 (±0.027)
1shot Our(Llama2-13B) 0.100 (±0.024) 0.026 (±0.002) 0.196 (±0.005) 0.192 (±0.022) 0.176 (±0.003) 0.215 (±0.015)
1shot Our(Mistral-7B) 0.104 (±0.025) 0.023 (±0.001) 0.193 (±0.014) 0.184 (±0.037) 0.171 (±0.003) 0.206 (±0.028)
1shot Our(GPT-3.5) 0.103 (±0.023) 0.025 (±0.003) 0.196 (±0.017) 0.193 (±0.018) 0.169 (±0.005) 0.223 (±0.014)
1shot Our(GPT-4) 0.104 (±0.023) 0.024 (±0.002) 0.203 (±0.021) 0.193 (±0.042) 0.171 (±0.004) 0.200 (±0.028)
0shot NBFNet 0.002 (±0.000) 0.002 (±0.000) 0.004 (±0.000) 0.076 (±0.000) 0.007 (±0.000) 0.002 (±0.000)
0shot REDGNN 0.001 (±0.000) 0.001 (±0.000) 0.046 (±0.000) 0.102 (±0.000) 0.062 (±0.000) 0.015 (±0.000)
0shot InGram 0.001 (±0.000) 0.001 (±0.000) 0.032 (±0.000) 0.042 (±0.000) 0.015 (±0.000) 0.055 (±0.000)
0shot DEqInGram 0.004 (±0.001) 0.009 (±0.001) 0.083 (±0.007) 0.067 (±0.006) 0.055 (±0.006) 0.049 (±0.001)
0shot ISDEA 0.003 (±0.000) 0.000 (±0.000) 0.006 (±0.000) 0.008 (±0.001) 0.003 (±0.000) 0.006 (±0.002)
0shot ULTRA(3g) 0.013 (±0.000) 0.004 (±0.000) 0.037 (±0.000) 0.021 (±0.000) 0.024 (±0.000) 0.022 (±0.000)
0shot ULTRA(4g) 0.013 (±0.000) 0.003 (±0.000) 0.034 (±0.000) 0.024 (±0.000) 0.024 (±0.000) 0.022 (±0.000)
0shot ULTRA(50g) 0.013 (±0.000) 0.003 (±0.000) 0.033 (±0.000) 0.027 (±0.000) 0.024 (±0.000) 0.017 (±0.000)
0shot Our(Llama2-7B) 0.013 (±0.000) 0.006 (±0.000) 0.103 (±0.000) 0.125 (±0.000) 0.058 (±0.000) 0.102 (±0.000)
0shot Our(Llama2-13B) 0.015 (±0.000) 0.011 (±0.000) 0.113 (±0.000) 0.128 (±0.000) 0.094 (±0.000) 0.100 (±0.000)
0shot Our(Mistral-7B) 0.014 (±0.000) 0.009 (±0.000) 0.101 (±0.000) 0.082 (±0.000) 0.082 (±0.000) 0.067 (±0.000)
0shot Our(GPT-3.5) 0.017 (±0.000) 0.009 (±0.000) 0.114 (±0.000) 0.125 (±0.000) 0.085 (±0.000) 0.110 (±0.000)
0shot Our(GPT-4) 0.017 (±0.000) 0.009 (±0.000) 0.091 (±0.000) 0.095 (±0.000) 0.089 (±0.000) 0.116 (±0.000)

Table 11: Detailed inductive reasoning results (2), evaluated with MRR.
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K-shot Model FB:v1 FB:v2 FB:v3 FB:v4 WK:v1 WK:v2
3shot NBFNet 0.092 (±0.000) 0.019 (±0.000) 0.013 (±0.000) 0.000 (±0.000) 0.033 (±0.000) 0.001 (±0.000)
3shot REDGNN 0.068 (±0.001) 0.066 (±0.001) 0.110 (±0.001) 0.065 (±0.001) 0.000 (±0.000) 0.003 (±0.002)
3shot InGram 0.098 (±0.007) 0.062 (±0.005) 0.114 (±0.004) 0.070 (±0.007) 0.070 (±0.008) 0.002 (±0.001)
3shot DEqInGram 0.076 (±0.006) 0.009 (±0.002) 0.070 (±0.012) 0.011 (±0.004) 0.006 (±0.005) 0.002 (±0.001)
3shot ISDEA 0.018 (±0.001) 0.013 (±0.000) 0.009 (±0.001) 0.008 (±0.001) 0.014 (±0.002) 0.003 (±0.001)
3shot ULTRA(3g) 0.359 (±0.008) 0.334 (±0.009) 0.335 (±0.015) 0.319 (±0.017) 0.430 (±0.004) 0.092 (±0.031)
3shot ULTRA(4g) 0.404 (±0.023) 0.358 (±0.018) 0.327 (±0.011) 0.316 (±0.019) 0.138 (±0.031) 0.063 (±0.025)
3shot ULTRA(50g) 0.368 (±0.016) 0.354 (±0.008) 0.329 (±0.015) 0.310 (±0.015) 0.157 (±0.010) 0.055 (±0.026)
3shot Our(Llama2-7B) 0.513 (±0.012) 0.480 (±0.014) 0.408 (±0.017) 0.377 (±0.023) 0.461 (±0.016) 0.108 (±0.021)
3shot Our(Llama2-13B) 0.492 (±0.008) 0.468 (±0.015) 0.405 (±0.019) 0.358 (±0.022) 0.463 (±0.021) 0.116 (±0.020)
3shot Our(Mistral-7B) 0.494 (±0.005) 0.467 (±0.017) 0.402 (±0.019) 0.367 (±0.023) 0.461 (±0.007) 0.115 (±0.020)
3shot Our(GPT-3.5) 0.505 (±0.005) 0.471 (±0.014) 0.408 (±0.016) 0.380 (±0.019) 0.455 (±0.002) 0.115 (±0.018)
3shot Our(GPT-4) 0.517 (±0.012) 0.473 (±0.014) 0.404 (±0.014) 0.375 (±0.023) 0.456 (±0.001) 0.118 (±0.028)
1shot NBFNet 0.087 (±0.000) 0.018 (±0.000) 0.013 (±0.000) 0.000 (±0.000) 0.019 (±0.000) 0.001 (±0.000)
1shot REDGNN 0.063 (±0.000) 0.064 (±0.000) 0.103 (±0.000) 0.054 (±0.001) 0.002 (±0.000) 0.001 (±0.000)
1shot InGram 0.069 (±0.008) 0.057 (±0.003) 0.062 (±0.022) 0.049 (±0.010) 0.080 (±0.023) 0.003 (±0.002)
1shot DEqInGram 0.063 (±0.011) 0.007 (±0.002) 0.050 (±0.010) 0.013 (±0.003) 0.004 (±0.002) 0.002 (±0.001)
1shot ISDEA 0.022 (±0.002) 0.008 (±0.001) 0.007 (±0.001) 0.006 (±0.000) 0.011 (±0.004) 0.002 (±0.001)
1shot ULTRA(3g) 0.270 (±0.010) 0.256 (±0.010) 0.235 (±0.014) 0.204 (±0.020) 0.249 (±0.031) 0.042 (±0.003)
1shot ULTRA(4g) 0.296 (±0.011) 0.273 (±0.016) 0.230 (±0.013) 0.221 (±0.011) 0.043 (±0.020) 0.025 (±0.002)
1shot ULTRA(50g) 0.275 (±0.009) 0.254 (±0.012) 0.230 (±0.025) 0.235 (±0.013) 0.065 (±0.035) 0.023 (±0.004)
1shot Our(Llama2-7B) 0.442 (±0.022) 0.417 (±0.013) 0.363 (±0.023) 0.298 (±0.005) 0.371 (±0.033) 0.056 (±0.017)
1shot Our(Llama2-13B) 0.445 (±0.011) 0.404 (±0.010) 0.350 (±0.014) 0.280 (±0.021) 0.384 (±0.037) 0.054 (±0.012)
1shot Our(Mistral-7B) 0.441 (±0.013) 0.404 (±0.004) 0.359 (±0.006) 0.295 (±0.013) 0.381 (±0.029) 0.061 (±0.019)
1shot Our(GPT-3.5) 0.438 (±0.022) 0.417 (±0.011) 0.369 (±0.005) 0.324 (±0.007) 0.381 (±0.029) 0.058 (±0.017)
1shot Our(GPT-4) 0.451 (±0.012) 0.409 (±0.018) 0.370 (±0.007) 0.319 (±0.006) 0.377 (±0.040) 0.063 (±0.021)
0shot NBFNet 0.087 (±0.000) 0.018 (±0.000) 0.013 (±0.000) 0.000 (±0.000) 0.019 (±0.000) 0.001 (±0.000)
0shot REDGNN 0.063 (±0.000) 0.064 (±0.000) 0.103 (±0.000) 0.054 (±0.000) 0.002 (±0.000) 0.001 (±0.000)
0shot InGram 0.017 (±0.000) 0.043 (±0.000) 0.058 (±0.000) 0.027 (±0.000) 0.054 (±0.000) 0.001 (±0.000)
0shot DEqInGram 0.003 (±0.002) 0.004 (±0.001) 0.013 (±0.005) 0.007 (±0.001) 0.023 (±0.031) 0.001 (±0.001)
0shot ISDEA 0.017 (±0.000) 0.001 (±0.000) 0.002 (±0.000) 0.002 (±0.000) 0.002 (±0.002) 0.000 (±0.001)
0shot ULTRA(3g) 0.145 (±0.000) 0.128 (±0.000) 0.101 (±0.000) 0.098 (±0.000) 0.019 (±0.000) 0.008 (±0.000)
0shot ULTRA(4g) 0.155 (±0.000) 0.148 (±0.000) 0.101 (±0.000) 0.107 (±0.000) 0.018 (±0.000) 0.010 (±0.000)
0shot ULTRA(50g) 0.103 (±0.000) 0.100 (±0.000) 0.063 (±0.000) 0.100 (±0.000) 0.023 (±0.000) 0.012 (±0.000)
0shot Our(Llama2-7B) 0.193 (±0.000) 0.203 (±0.000) 0.133 (±0.000) 0.153 (±0.000) 0.029 (±0.000) 0.010 (±0.000)
0shot Our(Llama2-13B) 0.209 (±0.000) 0.179 (±0.000) 0.136 (±0.000) 0.121 (±0.000) 0.078 (±0.000) 0.011 (±0.000)
0shot Our(Mistral-7B) 0.254 (±0.000) 0.254 (±0.000) 0.222 (±0.000) 0.195 (±0.000) 0.043 (±0.000) 0.012 (±0.000)
0shot Our(GPT-3.5) 0.300 (±0.000) 0.267 (±0.000) 0.240 (±0.000) 0.225 (±0.000) 0.304 (±0.000) 0.020 (±0.000)
0shot Our(GPT-4) 0.284 (±0.000) 0.251 (±0.000) 0.256 (±0.000) 0.213 (±0.000) 0.350 (±0.000) 0.024 (±0.000)

Table 12: Detailed inductive reasoning results (1), evaluated with Hits@10.

K-shot Model WK:v3 WK:v4 NL:v1 NL:v2 NL:v3 NL:v4
3shot NBFNet 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.014 (±0.000) 0.005 (±0.000) 0.000 (±0.000)
3shot REDGNN 0.000 (±0.000) 0.000 (±0.000) 0.081 (±0.000) 0.171 (±0.000) 0.136 (±0.007) 0.025 (±0.000)
3shot InGram 0.022 (±0.011) 0.023 (±0.004) 0.122 (±0.029) 0.124 (±0.007) 0.138 (±0.014) 0.149 (±0.014)
3shot DEqInGram 0.005 (±0.003) 0.052 (±0.006) 0.068 (±0.009) 0.046 (±0.017) 0.043 (±0.007) 0.074 (±0.013)
3shot ISDEA 0.012 (±0.004) 0.003 (±0.000) 0.035 (±0.009) 0.031 (±0.006) 0.035 (±0.004) 0.019 (±0.001)
3shot ULTRA(3g) 0.172 (±0.031) 0.114 (±0.007) 0.275 (±0.058) 0.291 (±0.048) 0.324 (±0.046) 0.369 (±0.018)
3shot ULTRA(4g) 0.176 (±0.032) 0.092 (±0.010) 0.258 (±0.043) 0.255 (±0.020) 0.265 (±0.027) 0.300 (±0.017)
3shot ULTRA(50g) 0.166 (±0.033) 0.086 (±0.009) 0.227 (±0.040) 0.220 (±0.037) 0.219 (±0.041) 0.262 (±0.025)
3shot Our(Llama2-7B) 0.186 (±0.029) 0.111 (±0.007) 0.335 (±0.063) 0.372 (±0.031) 0.335 (±0.041) 0.394 (±0.001)
3shot Our(Llama2-13B) 0.186 (±0.032) 0.110 (±0.008) 0.320 (±0.056) 0.367 (±0.029) 0.354 (±0.042) 0.403 (±0.017)
3shot Our(Mistral-7B) 0.188 (±0.030) 0.108 (±0.006) 0.323 (±0.049) 0.333 (±0.062) 0.354 (±0.030) 0.394 (±0.007)
3shot Our(GPT-3.5) 0.187 (±0.032) 0.113 (±0.009) 0.342 (±0.027) 0.351 (±0.066) 0.355 (±0.049) 0.411 (±0.001)
3shot Our(GPT-4) 0.188 (±0.036) 0.112 (±0.011) 0.330 (±0.062) 0.352 (±0.045) 0.338 (±0.060) 0.398 (±0.017)
1shot NBFNet 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.071 (±0.000) 0.004 (±0.000) 0.000 (±0.000)
1shot REDGNN 0.004 (±0.000) 0.000 (±0.000) 0.063 (±0.003) 0.164 (±0.000) 0.099 (±0.004) 0.029 (±0.000)
1shot InGram 0.014 (±0.005) 0.009 (±0.001) 0.096 (±0.013) 0.082 (±0.006) 0.085 (±0.007) 0.116 (±0.015)
1shot DEqInGram 0.004 (±0.004) 0.012 (±0.003) 0.096 (±0.031) 0.043 (±0.024) 0.035 (±0.005) 0.066 (±0.005)
1shot ISDEA 0.011 (±0.002) 0.001 (±0.000) 0.026 (±0.005) 0.027 (±0.007) 0.023 (±0.012) 0.018 (±0.002)
1shot ULTRA(3g) 0.101 (±0.026) 0.029 (±0.003) 0.216 (±0.031) 0.194 (±0.033) 0.223 (±0.016) 0.255 (±0.024)
1shot ULTRA(4g) 0.101 (±0.026) 0.020 (±0.002) 0.183 (±0.010) 0.171 (±0.036) 0.151 (±0.003) 0.160 (±0.012)
1shot ULTRA(50g) 0.096 (±0.025) 0.020 (±0.002) 0.185 (±0.032) 0.176 (±0.033) 0.155 (±0.003) 0.186 (±0.018)
1shot Our(Llama2-7B) 0.116 (±0.030) 0.029 (±0.004) 0.295 (±0.022) 0.277 (±0.033) 0.247 (±0.014) 0.311 (±0.028)
1shot Our(Llama2-13B) 0.119 (±0.030) 0.034 (±0.002) 0.272 (±0.011) 0.279 (±0.031) 0.256 (±0.009) 0.312 (±0.015)
1shot Our(Mistral-7B) 0.119 (±0.032) 0.031 (±0.001) 0.270 (±0.012) 0.259 (±0.049) 0.268 (±0.009) 0.285 (±0.027)
1shot Our(GPT-3.5) 0.118 (±0.029) 0.035 (±0.003) 0.292 (±0.029) 0.291 (±0.050) 0.266 (±0.018) 0.322 (±0.025)
1shot Our(GPT-4) 0.118 (±0.022) 0.035 (±0.004) 0.297 (±0.033) 0.267 (±0.026) 0.260 (±0.009) 0.300 (±0.015)
0shot NBFNet 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.071 (±0.000) 0.004 (±0.000) 0.000 (±0.000)
0shot REDGNN 0.000 (±0.000) 0.000 (±0.000) 0.060 (±0.000) 0.164 (±0.000) 0.088 (±0.000) 0.029 (±0.000)
0shot InGram 0.002 (±0.000) 0.002 (±0.000) 0.070 (±0.000) 0.070 (±0.000) 0.029 (±0.000) 0.081 (±0.000)
0shot DEqInGram 0.000 (±0.001) 0.001 (±0.001) 0.040 (±0.018) 0.032 (±0.002) 0.022 (±0.005) 0.020 (±0.001)
0shot ISDEA 0.004 (±0.001) 0.000 (±0.000) 0.009 (±0.003) 0.014 (±0.004) 0.003 (±0.002) 0.012 (±0.005)
0shot ULTRA(3g) 0.013 (±0.000) 0.004 (±0.000) 0.113 (±0.000) 0.068 (±0.000) 0.061 (±0.000) 0.060 (±0.000)
0shot ULTRA(4g) 0.013 (±0.000) 0.004 (±0.000) 0.096 (±0.000) 0.071 (±0.000) 0.059 (±0.000) 0.061 (±0.000)
0shot ULTRA(50g) 0.013 (±0.000) 0.004 (±0.000) 0.089 (±0.000) 0.077 (±0.000) 0.058 (±0.000) 0.046 (±0.000)
0shot Our(Llama2-7B) 0.016 (±0.000) 0.007 (±0.000) 0.180 (±0.000) 0.190 (±0.000) 0.095 (±0.000) 0.161 (±0.000)
0shot Our(Llama2-13B) 0.016 (±0.000) 0.016 (±0.000) 0.191 (±0.000) 0.184 (±0.000) 0.155 (±0.000) 0.148 (±0.000)
0shot Our(Mistral-7B) 0.017 (±0.000) 0.011 (±0.000) 0.172 (±0.000) 0.156 (±0.000) 0.143 (±0.000) 0.119 (±0.000)
0shot Our(GPT-3.5) 0.030 (±0.000) 0.014 (±0.000) 0.178 (±0.000) 0.178 (±0.000) 0.153 (±0.000) 0.177 (±0.000)
0shot Our(GPT-4) 0.031 (±0.000) 0.018 (±0.000) 0.183 (±0.000) 0.140 (±0.000) 0.147 (±0.000) 0.191 (±0.000)

Table 13: Detailed inductive reasoning results (2), evaluated with Hits@10.
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