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ABSTRACT

Tool-augmented large language models (LLMs) are typically trained via super-
vised imitation learning or coarse-grained reinforcement learning, approaches that
primarily optimize one-shot tool calls. Existing practices of self-reflection largely
rely on heuristic prompting or unidirectional reasoning traces: the model is en-
couraged to “think more,” rather than to treat error diagnosis and correction as
a learnable capability. This makes them fragile in multi-turn interaction set-
tings—once a call fails, the model tends to repeat the same mistake instead of
recovering. To address this issue, we propose structured reflection, which trans-
forms the “from error to repair” process into a first-class, controllable, and train-
able action. The agent produces a concise yet precise reflection process: specifi-
cally, the model diagnoses the error based on evidence from the previous step and
then proposes a correct and executable follow-up call. During training, we com-
bine DAPO and GSPO’s objective functions and design a more principled reward
mechanism tailored to tool calling, optimizing the stepwise strategy Reflect →
Call → Final. To evaluate this capability, we introduce Tool-Reflection-Bench, a
lightweight benchmark dataset that programmatically verifies structural validity,
executability, parameter correctness, and result consistency. Tasks in the bench-
mark are constructed as miniature trajectories of Erroneous Call → Reflection →
Corrected Call and are split into disjoint training and testing sets. Experiments
on BFCL v3 and Tool-Reflection-Bench show that our method achieves signifi-
cant improvements in multi-turn tool-call success rates and error recovery, while
also reducing redundant calls. These results demonstrate that making reflection
explicit and treating it as an optimization objective can substantially enhance the
reliability of tool interaction, providing a reproducible pathway for agents to grow
stronger by learning from failure. We will release all the code and datasets as open
source once the paper is accepted by the community.

1 INTRODUCTION

The integration of external tools with large language models through tool calling represents a sig-
nificant breakthrough in the development of agents. It transforms large language models from mere
text generators into highly practical tools for interacting with humans WANG et al. (2025); Qu et al.
(2024a), significantly enhancing the ability of AI agents to solve complex real-world tasks Huang
et al. (2024); Qin et al. (2023); Qu et al. (2024b). Tool calling bridges the gap between the vast in-
ternal knowledge of LLMs and external resources, enabling LLMs to access up-to-date information,
perform delicate computations, and more, thereby unlocking their broad potential for applications
across multiple domains Zhong et al. (2023); Theuma & Shareghi (2024); Hao et al. (2024).

Currently, the training of tool-call capabilities in large language models typically relies on super-
vised fine-tuning and reinforcement learning Chen et al. (2025b); Qian et al. (2025), where these
methods optimize the ability for single-turn tool calls through carefully designed reward mecha-
nisms. However, these approaches face several challenges in the context of tool calling. First, the
issue of rewards in tool calling is particularly prominent—small errors in parameter selection or
formatting often render the entire function call invalid, thus limiting the effective learning signal
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Figure 1: In the experiments on BFCL v3 and Tool-Reflection-Bench, our method significantly
improves the multi-turn tool-calling accuracy of several open-source LLMs on BFCL v3. At the
same time, it substantially enhances the error-repair rate for tool calls on the Tool-Reflection-Bench
test set, achieving performance that even surpasses that of closed-source LLMs with comparable
parameter sizes.

Lattimer et al. (2024). Second, existing methods generally rely on unidirectional reasoning, which,
while sufficient for simpler scenarios, has clear limitations: when LLMs make mistakes during tool
calls, they often struggle to locate the root cause of the error Li et al. (2025). While generating
correct function calls is crucial, it is even more important for LLMs to learn how to identify and
correct their own mistakes Ye et al. (2024).

To address the above-mentioned issues, we propose an innovative reflection process aimed at er-
ror localization and correction through explicit reflection steps, which differs from existing forward
reasoning methods. Specifically, we design a process in which the LLM intentionally makes mis-
takes during tool calls, carefully crafts reflection content based on the errors, and then generates the
correct call. Through this approach, we transform the self-correction ability of large models from
a heuristic process Yang et al. (2024) into a clear, trainable capability. Our training approach is
primarily reinforcement learning–based. During the reinforcement learning process, we specifically
design a customized reward mechanism tailored for tool-calling scenarios, with a particular em-
phasis on multi-turn interactions. Concretely, the reward design encompasses multiple dimensions,
including format reward, tool-name reward, parameter reward, and semantic reward of reflection,
which together provide the model with multi-dimensional feedback and effectively guide its learn-
ing, and we further combine DAPO’s decoupled clipping range and dynamic sampling—expanding
exploration while skipping near-zero-advantage rollouts—with GSPO’s sequence-level importance
sampling and same-granularity clipping, which avoids token/sequence mismatch and stabilizes op-
timization. With this training methodology, our approach equips LLMs with genuine self-reflection
and error-correction capabilities. On the BFCL v3 benchmark, our method yields significant im-
provements in LLM accuracy for multi-turn tool calling, thereby demonstrating its effectiveness in
real-world applications.

We construct a Tool-Reflection-Bench based on the BUTTON dataset Chen et al. (2024) style. First,
we collected tool-call failure cases from real-world scenarios and various benchmarks, analyzing and
summarizing several common failure patterns. Next, We selected several existing tool-call datasets
Qin et al. (2023); Liu et al. (2024b) and randomly combined them according to the call style of the
BUTTON dataset and introduced these failure patterns into the data, disrupting the originally correct
call processes to generate failure cases. Finally, we meticulously designed a reflection process to re-
pair these failures, resulting in successful tool calls. The training set includes the complete process
described above to train LLMs to achieve true self-correction capabilities, while the test set only
contains the first two steps, used to evaluate the self-correction abilities of the LLMs. By construct-
ing the Tool-Reflection-Bench in this manner, combined with our custom reward mechanism for tool
calling, we have made breakthroughs in LLMs’ self-correction abilities during training. Particularly
in multi-turn tool-calling scenarios, we observed significant improvements in accuracy. Through
the reasoning process from failure to correction, LLMs can more effectively identify and learn from
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potential mistakes, thus enhancing the model’s stability and robustness in interactions. This makes
the agent’s behavior more robust and powerful.

In summary, our contributions are as follows:

• We introduce an explicit, trainable reflection process that diagnoses the cause of a failed
tool call using prior evidence and proposes a corrected, executable call. This transforms
the ”from failure to repair” process from a heuristic method into a learnable action strat-
egy, enabling LLMs to genuinely possess self-reflection and error-correction capabilities,
thereby enhancing the agent’s multi-turn interactions with users.

• We design a more effective reward mechanism for tool call, tailored for RL training,
using a GRPO-style objective function. This approach employs multi-dimensional re-
wards—format executability, tool name accuracy, parameter correctness, and semantic con-
sistency—to mitigate sparse rewards and propagate signals across multi-turn trajectories.

• We propose Tool-Reflection-Bench, which collects failure patterns from real interaction
scenarios and benchmark datasets, injects perturbations into correct calls, and attaches a
reflection process to repair the calls. This allows for training LLMs in their Self-Correction
ability in tool-calling scenarios.

• Our method significantly improves the accuracy of multi-turn tool calls and the ability to re-
cover from tool call errors, while maintaining competitive single-turn tool call performance.
We validate this by experiments on BFCL v3 Patil et al. and Tool-Reflection-Bench.

2 RELATED WORKS

2.1 TOOL-AUGMENTED LARGE LANGUAGE MODELS

Integrating external tools into large language models has become a key approach to enhancing their
functionality, surpassing the simple task of text generation. Traditional LLMs are limited by static
knowledge, constrained to the data they were trained on. However, tool-augmented models extend
the capabilities of LLMs by enabling them to interact with external resources Zhang et al. (2024);
Hao et al. (2025) (such as APIs Li et al. (2023), databases, and computational engines) through tool
calls. This extension allows LLMs to access real-time data, perform external computations, and even
interface with external hardware, making them more practical for solving complex real-world tasks
that require dynamic information or specific external operations Chen et al. (2025a). ToolBench
Qin et al. (2023) demonstrates the feasibility of integrating external tool calls into LLMs. Through
such systems, LLMs can handle more specialized tasks. However, one major challenge of tool
augmentation is how to effectively train LLMs to use these tools. Existing training methods, such as
supervised fine-tuning and reinforcement learning, typically focus on optimizing single tool calls.
This type of interaction often does not involve multi-turn tool calls or responses, which makes the
limitations of current methods particularly apparent when errors occur during tool usage. In such
cases, the model’s ability to recover from errors becomes crucial.

2.2 SELF-CORRECTION IN LLMS

Self-correction in large language models refers to the model’s ability to diagnose its own errors and
correct them based on previous actions Huang et al. (2023); Liu et al. (2024a). However, this area
has not been fully explored. Existing self-correction techniques mostly rely on heuristic methods or
unidirectional reasoning processes Renze & Guven (2024).

Self-Refine framework Madaan et al. (2023), which involves having LLMs provide an initial re-
sponse, followed by a reflection process where the model identifies flaws and makes improvements.
Specifically, the same LLM acts as both the responder and the evaluator: the model first generates an
initial response, then self-reflects and iteratively revises the output. This approach has been shown
to enhance the performance of LLMs in certain domains. However, subsequent studies Wu et al.
(2024); Vladika et al. (2025) have found that relying solely on the model itself often fails to de-
tect subtle errors. Some research Jiang et al. (2025); Zhao et al. (2025a) has introduced auxiliary
verifiers (such as additional models or mechanisms Saveliev & Dendiuk (2024); Feng et al. (2025))
to help check the correctness of the initial response. This external self-checking assistance avoids
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I would like to find the birth 
date of the author of Hamlet.

I should use 
<call>get_birth… <call>

Maybe I should use 
<call>get_date…<call>

<call>get_author…<call> <r>Wait, I should first get the autor 
name of Hamlet, then I can find the 

birth date based on the name.</r>
<call>get_author…<call>

<call>get_birth…<call>
{'name': 'get_author‘, …}

{‘name’: ‘get_birth’, …}

{‘name’: ‘get_time’, …}

…

{‘name’: ‘get_date’, …}

Tools

Maybe I should use 
<call>get_time…<call>

<f>The answer is…<f>

Query

I should use 
<call>get_birth…<call>

Figure 2: We illustrate the effectiveness of our method with an example. As shown in the figure, the
left side presents the tool panel, while the upper-right part depicts industry-standard self-correction
approaches, where models attempt to fix errors through heuristic trial-and-error reasoning or by
relying on external feedback. In contrast, the lower-right part shows our approach: we introduce an
explicit forced reflection process <r>, enabling the model to truly master the ability to repair errors
based on its own failures.

unnecessary repeated revisions, improving efficiency and enhancing the model’s reasoning and ver-
ification capabilities. However, this approach remains highly sensitive to the specific phrasing of the
prompts, with different prompt wordings leading to varying results Liu et al. (2024a).

However, even though these methods have somewhat improved the capabilities of LLMs, their
essence still relies on external feedback to assist in correcting their own errors. In contrast, our
work introduces a reflection method that transforms self-correction into a trainable and controllable
capability. The reflection process is an explicit part of the task, where the model actively evaluates
its previous actions, identifies errors, and generates explicit corrections. This process is achieved
through error localization, diagnosis, and correction, which goes beyond simple unidirectional rea-
soning and can be integrated into the training process. By providing supervisory signals during
training, our approach enables LLMs to truly possess self-correction capabilities, which are then
reflected in tool calling tasks.

3 METHOD

3.1 TOOL-REFLECTION-BENCH

The construction of Tool-Reflection-Bench consists of the following steps: perturbation-based dis-
ruptions, positive samples transformations, and the reflection repair process. The original positive
samples are derived from BUTTON Chen et al. (2024) transformations and self-constructed based
on few-shot prompts. The entire benchmark is divided into a training set and a test set, with approx-
imately 5,000 samples in the training set, in addition to the reflection-augmented data constructed
as described above, the training set also contains a very small portion of original data drawn from
BUTTON Chen et al. (2024) and XLAM Zhang et al. (2024). And around 1,000 samples in the
test set, the test set is exclusively composed of perturbation-derived items and does not include raw,
unperturbed positives from BUTTON or XLAM.

3.1.1 PERTURBATION-BASED DISRUPTIONS

Let the initial correct message sequence be

D+ =
(
msys

0 , musr
1 , mast

2 , mtool
3 , mast

4 , mtool
5 , . . . , mast

2k , m
tool
2k+1, . . . , m

final
n

)
, (1)

where msys
0 is the system prompt, musr

1 the user query, mast
2i the assistant’s i-th tool call in structured

form (e.g., <call>[{. . . },{. . . },...]</call>), mtool
2i+1 the tool return (JSON), and mfinal

n the
final answer.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We define a set of disruption operators

P = {P1, P2, P3, P4}, (2)

each operating on an assistant call mast
2k and instantiating a common failure mode:

1. P1 call-order swap: replace the current tool call with the next-round tool call dialogue and
force an error.

2. P2 redundant call: repeat the same tool at the step (unchanged/irrelevant arguments) and
force an error.

3. P3 missing call: replace the intended tool by another tool and force an error.
4. P4 argument error: randomly corrupt the arguments of a call (missing/typed/alias/bound-

ary) and force an error.

These operators specify how a correct tool call can be broken.

3.1.2 POSITIVE SAMPLES TRANSFORMATIONS

Given a clean trajectory D+ and a chosen operator Pj ∈ P acting on step 2k, we produce the
negative (erroneous) context; no repair is performed in this step. We construct the erroneous call

m̃ast
2k = ApplyPerturbation

(
mast

2k , Pj
)
, (3)

and simulate the tool’s error feedback with a LLM L:

m̃tool
2k+1 = L

(
m̃ast

2k ; L
)
. (4)

This yields the negative trajectory prefix

D− = Perturb
(
D+, Pj

)
=
(
msys

0 , musr
1 , . . . , m̃ast

2k , m̃
tool
2k+1

)
, (5)

which will later serve as evidence of failure. At this stage, the item consists only of the broken call
and its error signal.

3.1.3 REFLECTION REPAIR PROCESS

Given a clean trajectory D+ and its perturbed prefix D−, we present the LLM with a paired view of
the step-2k evidence:

clean: (mast
2k , m

tool
2k+1) vs. broken: (m̃ast

2k , m̃
tool
2k+1). (6)

The model outputs a response.
⟨reflect⟩r⟨/reflect⟩, (7)

where r briefly diagnoses the discrepancy, and c proposes the fixed tool call. We then apply human
supervision to obtain (r⋆, c⋆), with c⋆ set to the original correct call:

(r, c)
post–editing

==========⇒
human supervision

(r⋆, c⋆), (8)

LΣ(c
⋆) = Success Call. (9)

The finalized item is packaged as

x =
(
D−, r⋆, c⋆, D+

>2k+1

)
, (10)

where D+
>2k+1 is the untouched suffix of D+ (including mfinal

n ). We retain x only if: (i) tags/JSON
are well-formed; (ii) c⋆ is executable; (iii) r⋆ correctly cites the clean–broken contrast.

3.2 REWARD DESIGN

Preliminary. Given a model completion C and a ground truth G, we decompose both into three
(possibly empty) parts:

C 7→
(
cref, Ccalls = {ci}mi=1, cfinal

)
, G 7→

(
gref, Gcalls = {gj}nj=1, gfinal

)
. (11)

Here cref (reflection) is the diagnosis text wrapped in <reflect></reflect>, Ccalls is the multiset
of tool calls wrapped in <call></call>s produced by the model, and cfinal is the message wrapped
in <final></final>. The ground truth can alse be decomposed into three parts mentioned above.

5
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Component scores. We compute three component scores:

sref = Sim(cref, gref), scall = I[EqualCalls(Ccalls, Gcalls)] , sfinal = Sim(cfinal, gfinal), (12)

where Sim∈ [0, 1] is a semantic similarity function, and I[·] is the indicator:

I[P ] =

{
1, if P is true,
0, otherwise.

(13)

We say EqualCalls(Ccalls, Gcalls) holds iff the two sets of produced calls can be put in a one-to-one
correspondence such that for every matched pair the tool name is identical and the argument is
identical.

Normalization with presence masks. Our goal is to keep the aggregated score in [0, 1] even when
an instance specifies only a subset of targets (e.g., only <call> without <reflect> or <final>). To
this end we use normalization to renormalize over the parts that actually appear in the ground truth,
so the maximum remains 1 regardless of how many parts are present.

We define
Ir = I[ gref ̸= ∅ ], Ic = I[ |Gcalls| > 0 ], If = I[ gfinal ̸= ∅ ]. (14)

Let (wr, wc, wf)≥0 be normalized base weights (e.g., wr + wc + wf = 1). We renormalize over the
active parts via

Wact = wrIr + wcIc + wfIf. (15)
The aggregated structure/semantics score is then

S =
wrIr sref + wcIc scall + wfIf sfinal

Wact
. (16)

This normalization yields a consistent scoring standard across fully and partially supervised in-
stances, avoiding artificial deflation of scores when some targets are absent.

Format/penalty factor. We designed structural penalties tailored for tool-call data formats.
Specifically, Pmiss accounts for cases where the tool is not invoked at all, while Pextra and Pcount
penalize redundant calls and mismatches in the total number of calls, respectively. Let

n = |Gcalls|, m = |Ccalls|, (17)

Here n and m denote the number of tools invoked in the ground truth and completion calls. Define
the three components:

Pmiss = wref I[ gref ̸=∅ ∧ cref=∅ ] + wfinal I[ gfinal ̸=∅ ∧ cfinal=∅ ] + wcalls I[n > 0 ∧m = 0 ],
(18)

Pextra = wref I[ cref ̸=∅ ∧ gref=∅ ] + wfinal I[ cfinal ̸=∅ ∧ gfinal=∅ ] + wcalls I[m > 0 ∧ n = 0 ],
(19)

Pcount = wcalls I[n > 0 ∧m > 0 ∧ n ̸=m ]
|n−m|

max(n,m)
. (20)

Let EqualCalls be the schema-strict equality on bags of calls. We use a reduction factor

r =

{
rreduce, if EqualCalls(Ccalls, Gcalls),

1, otherwise,
rreduce ∈ (0, 1]. (21)

Aggregate the penalty as

Ptotal = Pmiss + βextra Pextra + γcount Pcount, (22)

and define the instance-wise format factor

FormatFactor(C,G) =

{
1, if Pmiss = 0 ∧ Pextra = 0 ∧ Pcount = 0,

max(0,min(1, 1− λmPtotalr)), otherwise.
(23)

Here βextra, γcount, λm ≥ 0 control the strength of extra-part, count-mismatch, and overall scaling
penalties, respectively; (wref, wcalls, wfinal)≥0 are part weights.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) The reward curve of llama-3.1-8b-Instruct during
RL training

(b) The reward curve of qwen2.5-7b-Instruct during RL
training

Figure 3: The reward curves of llama-3.1-8B and Qwen2.5-7B during training, showing an overall
upward trend.

Core reward and backoff. The core reward is

Rcore = S · F. (24)

Early in training, S contains a binary component (scall ∈{0, 1}) and F applies hard penalties; small
formatting or argument errors can drive Rcore close to zero. This yields sparse or unstable gradients
and large variance across samples. To stabilize learning and provide a dense shaping signal when
the exact-match objective is not yet achieved, we introduce a similarity backoff:

Rtotal =

{
clip[0,1](Rcore), Rcore ≥ ε,

clip[0,1]
(
wb · Sim

(
concat(C), concat(G)

))
, otherwise,

(25)

where wb ∈ (0, 1] and concat(·) linearizes the messages. We use clip[0,1](x) = max(0,min(1, x))
to keep rewards bounded.

3.3 RL FOR TOOL-REFLECTION-BENCH

We adopt a reinforcement-learning objective for tool calling that combines two complementary
ideas: (i) DAPO-style decoupled clipping Yu et al. (2025): we use a decoupled clipping range
with different lower/upper bounds (εlow, εhigh) and a clip-higher policy (a looser upper bound when
r > 1 for positive advantages), and we skip uninformative prompt groups whose rollouts carry neg-
ligible learning signal; (ii) GSPO-style sequence-level importance sampling Zheng et al. (2025):
we compute the importance ratio at the sequence level and apply clipping at the same granularity
as the sequence-level reward, which avoids the mismatch between token-wise importance sampling
and sequence-level rewards and stabilizes optimization.

Objective. Let (q, a) denote the dialog context and the ground-truth targets, and let {oi}Gi=1 be G
candidates sampled from the behavior policy πθold(· | q). Each completion oi is scored by the reward
in Sec. §3.2, yielding Ri ∈ [0, 1]. We maximize a sequence-level, asymmetrically clipped objective
and minimize its negative as the loss:

JRL(θ) = E(q,a)∼D, {oi}∼πθold (· | q)

[
1

G

G∑
i=1

min
(
ri(θ) Âi, clip

(
ri(θ), 1− εlow, 1 + εhigh

)
Âi

)]
,

(26)
where clip(x, a, b) = min{b,max{a, x}} and typically εhigh > εlow (“clip-higher”).

Prompt-group dynamic filtering. DAPO skips prompt groups whose candidates provide almost
no learning signal (e.g., all-correct or all-wrong). Concretely, define batch-normalized advantages
and a group-level acceptance criterion:

Âi =
Ri −mean

(
{Rj}Gj=1

)
std
(
{Rj}Gj=1

) , S(q, a) =
{
i ∈ {1, . . . , G} : |Âi| > τadv

}
, (27)

7
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Table 1: Comparison across dimensions (Base, Miss Func, Miss Param, Long Context, Multi-turn
Overall) on BFCL v3.

Models Method Base Miss Func Miss Param Long Context Multi-turn Overall

Llama-3.1-8B-Instruct-FC Origin 5.0 6.5 4.5 4.5 5.12
Ours 9.5 (↑95%) 7.0 (↑8%) 5.0 (↑11%) 7.0 (↑56%) 7.12 (↑39%)

Qwen2.5-7B-Instruct-FC Origin 16.5 11.0 9.0 7.5 11.00
Ours 22.0 (↑33%) 13.0 (↑18%) 13.5 (↑50%) 11.0 (↑47%) 14.88 (↑35%)

Qwen3-4B-Instruct Origin 18.0 19.0 13.5 14.5 16.25
Ours 25.0 (↑39%) 19.5 (↑3%) 17.0 (↑26%) 21.5 (↑48%) 20.75 (↑28%)

and require sufficient reward dispersion within the group:

Var
(
{Ri}Gi=1

)
> τvar and 0 < |S(q, a)| < G. (28)

If equation 28 fails, we drop the zero-information rollouts and (optionally) draw up to K additional
candidates from πθold , then re-apply the filter. Only indices in S(q, a) contribute to the expectation
in equation 26.

Sequence-level importance ratio. For a completion oi = (oi,1, . . . , oi,|oi|), we use the geometric-
mean, length-normalized importance ratio:

ri(θ) =

|oi|∏
t=1

πθ(oi,t | q, oi,<t)
πθold(oi,t | q, oi,<t)

1/|oi|

, (29)

and perform clipping at the same sequence granularity as the reward (see equation 26), thereby
avoiding token/sequence granularity mismatch.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

In this part, we will detail the experimental setup, including datasets, hyperparameters, base models,
and evaluation metrics.

Datasets. We conduct training on our self-constructed Tool-Reflection-Bench. After human su-
pervision and post-editing, we retained approximately 5k samples in JSONL format to ensure com-
patibility with RL training under the Swift Zhao et al. (2025b) framework.

Implementation Details. We train models for 1 epoch (a total of 1,000 steps) on 5,000 train-
ing samples, using the reward function defined in Sec.3.2. For each training instance, 4 completions
were sampled to form a group. The training parameters were set as follows: temperature = 0.85, rep-
etition penalty = 1.1, epsilon = 0.2, epsilon-high = 0.28, with a dynamic sampling strategy adopted.

Base Models. To verify the generalizability of Tool-Reflection-Bench and our training methodol-
ogy, we conducted experiments using Llama3.1-8B Dubey et al. (2024), Qwen2.5-7B-Instruct Hui
et al. (2024), and Qwen3-4B Yang et al. (2025) as base models.

Evaluation Metrics. We evaluated multi-turn tool-calling performance using the Berkeley Func-
tion Calling Leaderboard (BFCL) v3 Patil et al., with evaluation dimensions covering multi-turn-
base, multi-turn-long-context, multi-turn-miss-func, and multi-turn-miss-param, and the evaluation
metric being accuracy. To assess the model’s repair capability when tool calls fail, we used Tool-
Reflection-Bench, with the evaluation metric being repair rate, Repair@n denotes that for the same
data instance, if at least one out of n trials succeeds, the metric is recorded as 1; otherwise, it is 0.
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4.2 EXPERIMENT RESULTS

4.2.1 RESULT ON BFCL V3

Comparison with base models. We conduct performance evaluation on the multi-turn category of
BFCL v3 to assess the benefits of enhancing the model’s self-reflection capability in multi-turn tool
calling, the detailed results are showed in Table. 1. Compared the results against the corresponding
base models. The most striking lift appears on Llama-3.1-8B: Base rises from 5.0 to 9.5 (+95%)
and Long Context from 4.5 to 7.0 (+56%). Qwen2.5-7B shows the largest Miss Param gain (9.0
→ 13.5, +50%), evidencing stronger parameter repair. Qwen3-4B attains an amazing absolute
Multi-turn Overall (20.75, +28%) with a sizable Long Context improvement (+48%). In contrast,
its Miss Func gain is modest (19.0 → 19.5, +3%), indicating tool selection remains comparatively
harder—consistent with our method’s emphasis on reflection-driven parameter correction and long-
context recovery.

4.2.2 RESULT ON TOOL-REFLECTION-BENCH

As shown in Table. 2, across open-source baselines, repair rates are low at one try (Repair@1 ≤
9.6%) and only mildly improve with more tries. Training with our method yields consistent gains
for all bases: Llama-3.1-8B-Instruct jumps from 0.7/5.1/6.8 to 4.7/20.5/26.4 (Repair@1/3/5),
a large improvement especially at higher n; Qwen2.5-7B-Instruct improves from 2.4/6.1/8.0
to 9.3/10.3/11.4; Qwen3-4B-Instruct rises from 9.6/10.6/10.6 to 14.9/18.5/19.5 (best Repair@1
among our models). All finetuned models surpass the closed-source LongCat-Lite-8K-Chat across
n∈{1, 3, 5}, indicating that our reflection-aware reward and RL objective substantially enhance re-
pairability and yield more reliable multi-try recovery. It is also worth noting that when tool calls fail
and require repair, our method achieves superior performance compared to closed-sourced mod-
els of the same scale such as LongCat-Lite-8K-Chat Team et al. (2025), GPT-4o-mini OpenAI
(2024a;b), GPT-4.1-mini OpenAI (2025).

Table 2: Experimental Results of Open-Source and Closed-Source Models on the Tool-Reflection-
Bench Test Set.

Models Repair@1 (%) Repair@3 (%) Repair@5 (%)
Close-Sourced Models

LongCat-Lite-8K-Chat 2.3 3.4 4.9
GPT-4o-mini 6.1 8.7 9.0
GPT-4.1-mini 3.1 4.3 5.1

Open-Sourced Models
Llama-3.1-8B-Instruct 0.7 5.1 6.8
Qwen2.5-7B-Instruct 2.4 6.1 8.0
Qwen3-4B-Instruct 9.6 10.6 10.6

Open-Sourced Models Trained on Our Method
Llama-3.1-8B-Instruct 4.7 20.5 26.4
Qwen2.5-7B-Instruct 9.3 10.3 11.4
Qwen3-4B-Instruct 14.9 18.5 19.5

5 CONCLUSION

This paper proposes a structured reflection method for handling tool call failures, transforming the
“from error to repair” process into an explicit, controllable, and trainable action. Our approach
overcomes the limitations of previous heuristic, feedback-based self-correction methods in terms
of controllability and stability. We further construct Tool-Reflection-Bench for both training and
evaluation, and design a task-specific reward function tailored to the tool-calling scenario. In the
reinforcement learning stage, we combine the strengths of DAPO and GSPO to enhance training
effectiveness. Experimental results show that the proposed method significantly improves multi-
turn tool call accuracy on BFCL v3 as well as error repair performance on Tool-Reflection-Bench.
Overall, our method and dataset effectively enhance the reliability of tool interactions and offer a
new perspective on enabling agents to acquire new capabilities by learning from failure.
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A APPENDIX

A.1 USE OF LLMS

This work leveraged LLMs to verify the mathematical soundness and symbolic accuracy of a few
formulas in Sec.A.5.

A.2 PROMPT FOR PERTURBATION-BASED DISRUPTIONS

In this section, we provide simplified prompts for generating the four types of tool call perturbations,
enabling the community to reproduce our setting. The full prompts and implementation code will
be released upon the paper’s acceptance.

A.2.1 PROMPT FOR CALL-ORDER SWAP

How to construct an error tool call example
System

Goal. Prepend a controlled erroneous <call> and a consistent tool-error message before the
first assistant message, so the model must diagnose and repair.
Procedure.

1. Extract calls: Traverse messages and collect all assistant <call>...</call> blocks
(regex).

2. Choose function name: Parse the last call’s JSON to get "name"; fall back to a regex
if needed.

3. Synthesize wrong call (empty args):

<call>[{"name":"<FUNC_FROM_LAST_CALL>","arguments":{}}]</call>

4. Fabricate tool error (pretty JSON string):

{"tool":"<FUNC_FROM_LAST_CALL>","status":"warning",
"message":"The called function executed but returned partial/mismatched

↪→ data because the arguments did not match the expected schema for
↪→ this call.",

"result": null}

5. Insert pair: Place the wrong assistant call and the tool error before the original first
assistant message.

6. Elicit reflection: Query the LLM with the System/User prompts above to obtain the
reflection text, then prepend <reflect>...</reflect> to the original assistant mes-
sage (the original correct call remains).

Notes. Using the last call’s function ensures schema plausibility; empty arguments induce a
controlled failure; the synthetic tool message supplies concrete evidence for the subsequent
reflection and repair.

How to generate a reflection
System

You are an AI assistant that analyzes failed tool calls and provides reflective summaries. Given
an original tool call and a fabricated error response, generate a brief reflection explaining why
the call likely failed and how to correct it. Be concrete and concise.

User

Fill the placeholders {{...}} exactly.
Original tool call:

13
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{{ORIGINAL_CALL}}

Error response:
{{FAKE_RESPONSE}}

Please provide a short reflection on the failure cause and the corrective action.

An Example
User

Original tool call:
<call>[{"name":"searchArtistsByArtStyle","arguments":{}}]</call>

Error response:
{"tool":"searchArtistsByArtStyle","status":"warning",
"message":"The called function executed but returned partial/mismatched data

↪→ because the arguments did not match the expected schema for this call.",
"result": null}

Please provide a brief reflection on why this tool call failed and what could be improved. Keep
it concise and helpful.

A.2.2 PROMPT FOR REDUNDANT CALL

How to construct a redundant tool call example
System

Goal. Inject a redundant tool call inside an existing <call> list and a matching redundant tool
response, so the agent must identify and remove the duplication.
Procedure.

1. Extract calls: Traverse the dialogue and collect all assistant-side <call>...</call>
blocks (regex).

2. Pick a target (not the first): Uniformly sample an assistant call position from
{2, . . . , |C|}.

3. Duplicate within the list: Parse the target call’s JSON. If it is a list, append a deep-
copied first element; if it is a single dict, make a two-element list by duplicating it.

4. Fabricate a redundant tool response: Parse the following tool message. Duplicate its
first item (or the dict itself) and mark it as redundant, e.g.

{"status":"redundant","message":"This item duplicates a previous result."}

5. Keep the ground-truth call: The correct call is the original (non-duplicated) first ele-
ment of the target call list.

6. Place the repair evidence: After the redundant tool message, insert an assistant
message with <reflect> diagnosing the redundancy and a correct <call> (the non-
duplicated one), followed by a clean tool response (the original, without the redundant
copy).

Notes. This perturbation preserves schema but injects duplication at both call and response
sides, creating a realistic “over-call” pattern for reflection-and-repair.

How to generate a reflection

14
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System

You are an AI assistant that analyzes redundant tool calls and provides reflective summaries.
Given a tool-call list and its redundant tool response, write a brief reflection that (i) identifies
the duplication, and (ii) states the correct next action (use only the necessary call with proper
arguments). Keep the reflection concise and actionable.

User

Fill the placeholders {{...}} exactly.
Tool call list (after duplication):
{{TOOL_CALL_LIST}}

Redundant tool response:
{{REDUNDANT_RESPONSE}}

Please provide a short reflection that points out the redundancy and explains how to proceed
correctly.

An Example
User

Tool call list (after duplication):
<call>[

{"name":"searchArtistsByArtStyle","arguments":{"style":"impressionism"}},
{"name":"searchArtistsByArtStyle","arguments":{"style":"impressionism"}}

]</call>

Redundant tool response:
[

{"tool":"searchArtistsByArtStyle","status":"ok","items":[...]},
{"tool":"searchArtistsByArtStyle","status":"redundant",
"message":"This item duplicates a previous result.","items":[...]}

]

Please provide a brief reflection on why this redundant call occurred and how to proceed. Keep
it concise and helpful.

A.2.3 PROMPT FOR MISSING CALL

How to construct a missing-call perturbation example
System

Goal. Remove a necessary assistant <call> and make the subsequent call fail due to missing
context, so the agent must recover the omitted call and then proceed correctly.
Procedure.

1. Extract calls: Parse all assistant-side <call>...</call> blocks (regex).
2. Select a removable call (not the last): Uniformly sample an index i ∈ {1, . . . , |C|−1}.
3. Find paired tool messages: Locate the tool reply immediately after call i (the one to

remove), and the tool reply after call i+1 (the “next” call).
4. Delete call i and its tool reply.

5. Degrade the next call: For the assistant <call> at (original) i+1, keep the function
but set "arguments":{} (empty).

6. Return an error for the next tool: Replace that tool reply with an error JSON indicating
“missing required arguments”.
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7. Reflection and repair insertion: After the error tool reply, insert:
(a) an assistant message containing <reflect> that explains the omission and a re-

instated correct <call> (the removed call i);
(b) the original tool reply for the removed call i;
(c) the corrected next assistant call (its original, non-empty arguments);
(d) the corrected next tool reply (its original content).

Notes. This perturbation creates a realistic “missing prerequisite call” failure: the subsequent
step cannot execute without information from the omitted call. The reflection must (i) identify
the omission and (ii) restore the correct call before proceeding.

How to generate a reflection
System

You are an AI assistant that analyzes missing tool calls and provides reflective summaries.
Given the omitted call (that should have been executed) and the resulting error response from
the next step, write a concise reflection that (i) identifies what was missing, and (ii) states how
to proceed: first reinstate the omitted call with correct arguments, then continue.

User

Fill the placeholders {{...}} exactly.
Missing tool call (the one that should have been made):
{{MISSING_CALL}}

Error response (from the next step):
{{ERROR_RESPONSE}}

Please provide a short reflection that explains the omission and the corrective sequence of ac-
tions.

An Example
User

Missing tool call:
<call>[{"name":"fetchUserProfile","arguments":{"user_id":"u_1293"}}]</call>

Error response (from the next step):
[

{"status":"error",
"message":"Missing required arguments. The function call failed because necessary
↪→ parameters were not provided.",

"result": null}
]

Please provide a brief reflection on what was missing and how to proceed. Keep it concise and
helpful.

A.2.4 PROMPT FOR ARGUMENT ERROR

How to construct an argument–error perturbation example
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System

Goal. Corrupt the arguments of an existing assistant <call> so that the paired tool reply returns
a parameter–validation error, forcing the agent to diagnose mismatched/invalid arguments and
repair with the correct call.
Procedure.

1. Extract calls: Parse all assistant-side <call>...</call> blocks via regex.
2. Select a call: Uniformly sample one index i ∈ {1, . . . , |C|} and locate its immediate

tool reply.
3. Corrupt arguments: Keep "name" unchanged; replace "arguments" with perturbed

values (e.g., wrong types, out-of-range numbers, empty strings, unknown keys). The
JSON stays well-formed:

<call>[{"name":"<FUNC_NAME>","arguments":{<WRONG_ARGS>}}]</call>

4. Synthesize error reply: Replace the paired tool message with a structured error indi-
cating invalid parameters (e.g., "error code":"INVALID PARAMETERS" and an infor-
mative message).

5. Reflection and repair insertion: Immediately after the error, insert:
(a) an assistant message with <reflect> that contrasts the wrong vs. correct argu-

ments and states the fix;
(b) the original (correct) call and its original (successful) tool reply.

Notes. Do not alter the function name; only arguments are corrupted. Keep JSON/tags valid to
isolate the failure mode to argument errors.

How to generate a reflection
System

You are an AI assistant that analyzes incorrect tool-call parameters and provides a reflective
summary. Given the correct call, the wrong call (with corrupted arguments), and the error
response, write a brief reflection that (i) pinpoints which arguments are incorrect and why, and
(ii) states the corrected call. Be concrete and concise.

User

Fill the placeholders {{...}} exactly.
Correct tool call (ground truth):
{{CORRECT_CALL}}

Wrong tool call made (arguments corrupted):
{{WRONG_CALL}}

Error response:
{{ERROR_RESPONSE}}

Please provide a short reflection that identifies the parameter issues and the corrective action.

An Example
User

Correct tool call:
<call>[{"name":"bookFlight",

"arguments":{"from":"SFO","to":"JFK","date":"2025-11-02","passengers
↪→ ":1}}]</call>
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Wrong tool call made:
<call>[{"name":"bookFlight",

"arguments":{"from":999999,"to":"","date":null,"passengers":"many"}}]</call
↪→ >

Error response:
[{"status":"error",

"message":"Parameter validation failed for bookFlight. One or more arguments are
↪→ invalid.",

"result": null,
"error_code":"INVALID_PARAMETERS"}]

Please provide a brief reflection on which parameters are incorrect and how to fix them. Keep
it concise and helpful.

A.3 TRAINING DATA CASE STUDY

In this section, we extract one complete sample from each of the four perturbation modes for anal-
ysis. Due to space limitations, these four samples are provided in the supplementary material for
reference, while here we only present a brief analysis of the data.

A.3.1 CASE STUDY OF CALL-ORDER SWAP

Setup. The user requests end–to–end logistics for a 10–person business trip (NYC→MIA): search
and book round–trip flights, search and book hotel rooms, and arrange airport–hotel ground trans-
portation. The toolset exposes search flights, book flight, search hotels, book hotel, and
arrange transportation, where the last function depends on confirmed itinerary details (arrival
time and hotel).

Failure trace (order dependency violated). The agent correctly issues two discovery calls, then
prematurely attempts to arrange transportation before booking:

<tool_call>{"name":"search_flights", ...}</tool_call>
<tool_call>{"name":"search_hotels", ...}</tool_call>

<tool_call>{"name":"arrange_transportation",
"arguments":{"arrival_date":"2023-03-21",

"passenger_count":10,
"pickup_location":"MIA Airport",
"dropoff_location":"(to be decided)"}}</tool_call>

The tool returns a dependency error because dropoff location cannot be finalized prior to
book hotel and pickup timing should be aligned to book flight:

Tool: {"status":"error",
"message":"Transportation requires confirmed flight and hotel details.",
"result": null}

Model reflection and repair. The agent emits a concise <reflect> that identifies the or-
der–dependency (transport must follow booking), then repairs by booking first and only then ar-
ranging transport:

<reflect>
Failure stems from an order dependency: transportation must follow confirmed
flight and hotel, as pickup/dropoff depend on the booked itinerary.
Correct plan: (1) book flight; (2) book hotel; (3) arrange transportation.
</reflect>

<tool_call>{"name":"book_flight", ...}</tool_call>
<tool_call>{"name":"book_hotel", ...}</tool_call>
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<tool_call>{"name":"arrange_transportation",
"arguments":{"arrival_date":"2023-03-21",

"passenger_count":10,
"pickup_location":"MIA",
"dropoff_location":"Oceanview Hotel"}}</tool_call>

Why the reward favors the fix. Under our reward in Sec. §3.2: (i) the reflection receives a high
semantic score sref for explicitly diagnosing the order constraint; (ii) the repaired calls exactly match
schema and parameters, yielding scall = 1 (order–invariant matching across the multiset of calls),
while the format/penalty factor F upweights the repaired trajectory because executability and depen-
dency checks now pass; (iii) the premature arrange transportation in the failed rollout triggers
penalties in F (dependency/executability), so Rcore is suppressed and the dynamic sampling filter
(Sec. §3.3) down–weights such uninformative rollouts. Overall, the corrected plan yields a strictly
larger Rtotal than the erroneous one.

Summary. This example shows that explicit reflection converts a latent, long–range constraint
(“book before transport”) into a short textual diagnosis that the policy can optimize against. Our
order–invariant call equality avoids over–penalizing benign output permutations, while depen-
dency–aware format shaping in F enforces inter–call preconditions. Empirically, such cases account
for a substantial share of multi–turn gains, whereas single–turn metrics remain stable.

A.3.2 CASE STUDY OF REDUNDANT CALL

Setup and failure mode. The user requests the list of services for all NYC banks operating for
> 10 years. The agent first queries the bank roster with get operational banks, then correctly
queries services for B001, but erroneously repeats the same service lookup for B001 instead of
proceeding to unseen banks (B002--B004). This is a canonical redundant call error: wasted tool
budget without adding new information.

...
<tool_call>
{"name":"get_operational_banks",
"arguments":{"city":"New York City","min_years_operational":10}}
</tool_call>

User (tool): [{"name":"get_operational_banks","results":{"banks":[
{"bank_id":"B001"}, {"bank_id":"B002"}, {"bank_id":"B003"}, {"bank_id":"B004"}]}}]

<tool_call>
{"name":"get_bank_services","arguments":{"bank_id":"B001"}}
</tool_call>

User (tool): [{"name":"get_bank_services","arguments":{"bank_id":"B001"},
"results":{"services":[...]} }]

# Redundant (erroneous) repeat:
<tool_call>
{"name":"get_bank_services","arguments":{"bank_id":"B001"}}
</tool_call>

User (tool): [{"name":"get_bank_services","arguments":{"bank_id":"B001"},
"results":{"services":[...], "note":"Duplicate request"}}]
...

Reflection and repair (ground truth). The reflection diagnoses duplication and prescribes de-
duplication; the corrected plan proceeds with the remaining, unseen IDs:

<reflect>
The last call repeated B001, yielding redundant information.
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Avoid duplicates; continue with B002, B003, B004 exactly once each.
</reflect>

<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B002"}}</tool_call>
<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B003"}}</tool_call>
<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B004"}}</tool_call>

Why the model failed. The failure arises from (i) insufficient state tracking over the set of already-
seen entities (here, bank IDs), and (ii) weak inductive bias against issuing calls whose marginal
information gain is near zero. In multi-turn settings, local myopic policies often re-issue the last
successful pattern without cross-step deduplication.

How the reward steers recovery. Our scoring treats call sets as order-invariant but schema-strict;
redundant calls trigger the count-mismatch component in the format factor F (penalizing |Ccalls| ̸=
|Gcalls|) while EqualCalls fails due to multiset mismatch. The reflection text receives a positive
semantic score if it explicitly identifies the duplication and prescribes the missing IDs, encouraging
concise, actionable self-correction. Together, the structure score S and format factor F downweight
redundant completions and upweight the repaired sequence.

Summary. This case shows that explicit reflection converts a silent efficiency bug into a supervised
correction step: the agent (1) cites the duplicated identifier, (2) enumerates the remaining targets, and
(3) completes them exactly once. Empirically, such reflection-shaped supervision reduces redundant
tool usage and improves multi-turn success without harming single-turn accuracy.

A.3.3 CASE STUDY OF MISSING CALL

Setup. The user asks to register four tax documents: (i) W-2 (ABC Corp), (ii) 1099-INT (First
National Bank), (iii) property tax statement (county assessor), and (iv) Form 1098 (mortgage
lender). The tool schema exposes a single function add tax documents(name, value, category,
priority) with name,value required.

Baseline failure (missing calls). The baseline assistant emits only two <tool call>s (W-2, 1099-
INT) and then stops, yielding a 50% recall on required calls. Formally, let Gcalls contain the four
intended calls and Ccalls the two produced calls. Then |Gcalls| = 4, |Ccalls| = 2, and the call–set
equality test fails: EqualCalls(Ccalls, Gcalls) = 0. This is a typical missing-call error in multi-item
requests: the model recognizes the pattern “one item → one call” but truncates the sequence, leaving
later items unprocessed.

Structured reflection (diagnosis). Our method takes the partially executed trajectory as negative
evidence and the original request as positive intent and generates an explicit reflection:

<reflect> “I missed 2 tool call(s). The user listed multiple items, and each item requires a
separate call. I should enumerate all items and complete the remaining calls.” </reflect>

The reflection correctly localizes the failure (under-counting of required calls), quantifies the deficit
(missed= 2), and states the repair rule (enumerate all items ⇒ one call per item).

Repairs (corrective calls). Conditioned on the reflection, the agent appends the missing tool calls
for the remaining items:

• name: Property tax statement; value: county assessor record; category: personal;

• name: Form 1098; value: mortgage interest statement; category: personal.

The assignments work→W-2,1099-INT and personal→property tax, 1098 are semantically consis-
tent: the former are employment/bank income records; the latter are household liabilities/taxes.(Any
schema-compatible categorization would pass executability; ours also preserves natural semantics.)
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Why this matters. This case highlights a frequent multi-turn brittleness: once the agent produces
a plausible prefix of calls, it prematurely concludes and fails to cover all requested items. By mak-
ing missingness an explicit, trainable concept, structured reflection converts a sparse binary signal
(success/failure) into actionable supervision:

1. Detection: Compare item cardinalities and arguments; compute I[|Ccalls| < |Gcalls|] and
list uncovered entities.

2. Diagnosis: Attribute the error to enumeration/coverage rather than formatting or parame-
ters.

3. Repair: Synthesize the exact missing calls with schema-valid arguments; preserve already-
correct calls.

Summary. Empirically, such instances improve the model’s coverage discipline: after training, we
observe higher multi-item completion rates with negligible increase in redundant calls, indicating
that the model learned “one-mentioned-item ⇒ one-call” as a robust policy rather than overcalling.

A.3.4 CASE STUDY OF ARGUMENT ERROR

Setup. The tool schema exposes multiple functions with schema–strict
parameters (e.g., check plant water level(plant location:string),
start watering(plant location:string, duration:number),
start trimming(hedge location:string), . . . ). The user requests two primary actions in
the backyard: (i) trim hedges and (ii) water all potted plants for about 10 minutes; afterwards ensure
plants have enough water and dispose clippings.

Baseline failure (argument error). The assistant issues
<call>[{"name":"check plant water level","arguments":{}}]</call>

omitting the required key plant location. The tool returns a schema warning that the arguments
“did not match expected schema.” Under our reward, the call-level indicator scall is 0 because the
produced call fails schema equality (tool name matches, but the argument map does not).

Structured reflection (diagnosis). The reflection generated by our process states that the call
“failed because it did not include the required arguments needed by the function’s schema,” and pre-
scribes: “ensure all necessary parameters are provided according to the function’s documentation.”
This localizes the error to parameter mis-specification (not tool selection or ordering), and points
to the concrete fix—satisfy the schema.

Repairs (efficient plan consistent with the request). Given the user’s 10-minute target and the
backyard scope, the corrected action set executes the two core operations with schema-valid argu-
ments:

• start watering(plant location="backyard", duration=10)

• start trimming(hedge location="backyard")

These can be dispatched in parallel (independent resources), achieving the requested time budget
while ensuring plants receive sufficient water and hedges are trimmed. This replaces the invalid
pre-check with a direct, time-bounded watering call that already satisfies the user’s constraint.

Why this matters. Argument errors are common in tool use and typically yield sparse feedback
(“schema mismatch”). By forcing the model to (i) recognize the missing required field and (ii) re-
state the schema-conformant fix, the reflection step converts a low-information error into actionable
supervision. In our benchmark, such instances consistently improve:

1. Schema adherence: higher exact-match rate on name/arguments.
2. Planning under constraints: selection of parameterized calls (duration=10) aligned with

user constraints instead of brittle pre-checks with empty arguments.
3. Stability: fewer retries and warnings downstream because calls are executable on the first

attempt.
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Summary. This case illustrates how reflection-guided repair turns a malformed <call> into a
compact, correct, and time-efficient action plan.

A.4 TEST DATA CASE STUDY

In this section, we present two representative test cases and their corresponding evaluation results as
a case study, providing an intuitive demonstration of the effectiveness of our method and the model’s
self-reflection capability for tool-call repair. Since the original cases are relatively long, we include
their full content in the supplementary material for reference and provide only the analysis here.

A.4.1 CASE I

Setting. The tool set exposes three functions: getRecipes(max time, meal type),
getSmoothieIngredients(max time), and findComplementaryRecipes(recipes,
ingredients). The user asks for breakfast recipes under 15 minutes and smoothie pairings
under 5 minutes.

Failure mode (pre-training). The baseline model immediately issues

[{"name":"findComplementaryRecipes","parameters":{}}]

which violates the function schema (both recipes and ingredients are required). The tool returns
a schema-warning. Under our reward, this yields scall = 0 and triggers format penalties F < 1 due
to missing required parameters.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that the failure arises from absent inputs, then correctly decomposes the task into produce
inputs → compose:

[{"name":"getRecipes","parameters":{"max_time":15,"meal_type":"breakfast"}}]
[{"name":"getSmoothieIngredients","parameters":{"max_time":5}}]
[{"name":"findComplementaryRecipes",
"parameters":{"recipes": <from getRecipes>, "ingredients": <from

↪→ getSmoothieIngredients>}}]

This satisfies the schema strictly (tool names and parameter maps match), making the call set correct
and executable.

Why our method helps. (i) Reward shaping: The instance accrues a hard penalty when re-
quired fields are absent; after repair, scall flips to 1 and F → 1, raising Rcore = S · F substantially.
(ii) Sequence-level RL: The GSPO-style sequence-ratio with dual clipping aligns the optimiza-
tion granularity with the sequence reward, while DAPO-style dynamic filtering removes near-zero-
advantage rollouts (all-wrong/all-correct), sharpening learning signals for this failure mode.

Takeaway. Compared to the baseline that jumps to composition with empty inputs, the trained
policy learns to (a) diagnose the schema error, (b) stage prerequisite calls to produce the missing
inputs, and (c) complete the composition with a schema-valid call set. This precisely matches our
benchmark’s objective: enable robust, multi-turn tool use via reflection and repair.

A.4.2 CASE II

Setting. Available tools include get current season(), get seeds by season(season),
filter seeds by availability(seeds), purchase seeds(seeds, quantity), and
calculate total cost(purchased seeds). The user asks to buy 10 packets of seasonal
vegetable seeds and report the total cost.

Failure mode (pre-training). The baseline calls the aggregator first, with no inputs:

[{"name":"calculate_total_cost","parameters":{}}]
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This violates the required schema (purchased seeds missing), producing a warning and yielding
scall = 0 and a strong format penalty F < 1 in our reward.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that costing requires purchased items, then executes a staged pipeline to materialize prereq-
uisites before aggregation:

[{"name":"get_current_season","parameters":{}}]

[{"name":"get_seeds_by_season","parameters":{"season":"<CUR_SEASON>"}}]

[{"name":"filter_seeds_by_availability","parameters":{"seeds":<SEASONAL_SEEDS>}}]

[{"name":"purchase_seeds","parameters":{"seeds":<AVAILABLE_SEEDS>,"quantity":10}}]

[{"name":"calculate_total_cost","parameters":{"purchased_seeds":<PURCHASED>}}]

Each call now matches tool name and parameter map exactly (schema-strict), so scall = 1 and
F → 1.

Why it works. Reward design penalizes missing required fields and redundant structure, while
granting full credit only when the <call> set exactly matches the ground truth (schema-strict,
order-invariant). The sequence-level RL objective (GSPO-style ratio, dual clipping) aligns opti-
mization with sequence rewards, and DAPO-style dynamic filtering removes near-zero-advantage
groups, concentrating updates on informative failures. Together these guide the policy to diagnose
schema errors, stage prerequisite calls, and complete the costing correctly.

Takeaway. The trained policy no longer “guesses” totals from empty inputs. Instead, it plans →
acquires data → purchases → aggregates, a behavior precisely targeted by our reflection-and-repair
rewards.

A.5 THEORETICAL ANALYSIS

We analyze the main design choices of our reward in Sec. §3.2 and the RL objective in Sec. §3.3.
Throughout, Sim ∈ [0, 1], all weights are nonnegative, presence masks are indicators, and
clip(x, a, b) = min{b,max{a, x}}. To avoid symbol overloading, we denote by rfmt the format-
penalty attenuation scalar used in Sec. §3.2 (called r there), and by rseq the sequence-level impor-
tance ratio in Sec. §3.3.

A.5.1 CONSISTENCY OF PRESENCE-MASK NORMALIZATION

Recall

S =
wrIr sref + wcIc scall + wfIf sfinal

Wact
, Wact = wrIr + wcIc + wfIf, (30)

where w•≥ 0, I•∈ {0, 1}, at least one I• = 1, sref, sfinal∈ [0, 1], and scall∈ {0, 1}.

Lemma 1 (Convex-combination form). Let A = {k ∈ {r,c,f} : Ik = 1} and define

αk =
wk∑
j∈A wj

for k ∈ A. (31)

Then αk≥ 0,
∑
k∈A αk = 1, and

S =
∑
k∈A

αk sk with sr = sref, sc = scall, sf = sfinal. (32)

Proof. Since Ik = 1 iff k ∈ A, the numerator equals
∑
k∈A wksk and Wact =

∑
k∈A wk > 0.

Divide both to obtain the stated form.
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Proposition 1 (Boundedness, stability, and scale invariance). With Wact > 0:

(a) S ∈ [0, 1] and, more sharply, S ∈ [mink∈A sk, maxk∈A sk].
(b) If one only toggles absent parts (keeps A and {wk}k∈A unchanged), then S is unchanged.
(c) For any λ > 0, replacing each active weight by λwk leaves S unchanged.

Proof. (a) By Lemma 1, S is a convex combination of {sk}k∈A; the interval bound follows from
sk ∈ [0, 1]. (b) Absent-part toggles do not change A nor the active wk. (c) Common scaling cancels
in numerator/denominator.

Corollary 1 (Continuity and Lipschitzness). Fix A and wk for k ∈ A. Then S is an affine (hence
continuous) map of (sk)k∈A with

|S − S′| ≤
∑
k∈A

αk |sk − s′k| ≤ max
k∈A

|sk − s′k|, (33)

so S is 1-Lipschitz w.r.t. the ℓ∞-norm on the active scores.

Remark. The definition via clip[0,1](·) in equation 25 is not needed for S since the convex-
combination form already implies S ∈ [0, 1].

A.5.2 FORMAT FACTOR: BOUNDEDNESS, MONOTONICITY, AND EQUALCALLS
ATTENUATION

Let
Ptotal = Pmiss + βextra Pextra + γcount Pcount, βextra, γcount ≥ 0, P• ≥ 0, (34)

and define the attenuation scalar

rfmt =

{
rreduce, EqualCalls

(
Ccalls, Gcalls

)
,

1, otherwise,
rreduce ∈ (0, 1]. (35)

Consider
F = clip[0,1](1− λm Ptotal rfmt) , λm ≥ 0. (36)

This is equivalent to the piecewise definition in equation 23 since Pmiss=Pextra=Pcount=0 implies the
inner value equals 1.

Proposition 2 (Core properties of F ).

(a) Boundedness and regularity. F ∈ [0, 1] for all inputs; F is continuous, piecewise affine in
(Pmiss, Pextra, Pcount) and 1-Lipschitz w.r.t. its scalar argument before clipping.

(b) Monotonicity. For fixed (λm, rfmt), F is nonincreasing in Pmiss, Pextra, Pcount and nonin-
creasing in λm and in rfmt.

(c) EqualCalls attenuation improves F . If EqualCalls holds so that rfmt is replaced by
rreduce ≤ 1, then F weakly increases.

(d) Plateau characterization. F = 1 iff λmPtotalrfmt = 0 (e.g., Ptotal = 0 or λm = 0). If
λm > 0 and rfmt > 0, then F = 0 iff Ptotal ≥ 1/(λmrfmt).

Corollary 2 (Sensitivity bound). Off the plateaus (1− λmPtotalrfmt ∈ (0, 1)),
|∆F | ≤ λmrfmt

(
|∆Pmiss|+ βextra|∆Pextra|+ γcount|∆Pcount|

)
. (37)

A.5.3 CORE REWARD WITH SIMILARITY BACKOFF: SIGNAL AND VARIANCE CONTROL

Let Rcore = S · F as in equation 24. The total reward uses a backoff when Rcore is very small:

Rtotal =

{
clip[0,1](Rcore), Rcore ≥ ε,

clip[0,1]
(
wb · Sim

(
concat(C), concat(G)

))
, otherwise,

(38)

with wb ∈ (0, 1] and ε > 0. Note Rcore ∈ [0, 1] already, hence clipping is redundant but harmless
and keeps the two branches notationally symmetric.

We analyze its effect under a standard policy-gradient estimator ∇θE[Rtotal] =
E[Rtotal ∇θ log πθ(·)].
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Lemma 3 (Uniform bounded variance of the reward). Since Rtotal ∈ [0, 1], we have
Var(Rtotal) ≤ 1

4 for any data distribution.

Lemma 4 (Non-degenerate gradient second moment on the backoff branch). Let B =
{Rcore < ε} with P(B) = p > 0. Assume Sim(concat(C), concat(G)) ≥ σ a.s. on B for some
σ > 0, and E

[
∥∇θ log πθ(·)∥2 1B

]
> 0. Then

E
[ ∥∥Rtotal ∇θ log πθ(·)

∥∥2 ] ≥ (wbσ)
2 E
[ ∥∥∇θ log πθ(·)

∥∥2 1B

]
> 0. (39)

Implication. When Rcore requently approaches 0 (in the early stages of training), the backoff branch
ensures that the second moment of the gradients does not degenerate; combined with the variance
upper bound from Lemma 3, this helps stabilize the optimization updates.

A.5.4 SEQUENCE-LEVEL IMPORTANCE SAMPLING AND CLIPPING

Let the sampled completion be o = (o1, . . . , oT ), and define the sequence-level (geometric-mean,
length-normalized) ratio

rseq(θ) =

(
T∏
t=1

πθ(ot | q, o<t)
πθold(ot | q, o<t)

)1/T

= exp
(

1
T

T∑
t=1

log ρt

)
, ρt =

πθ(ot | ·)
πθold(ot | ·)

. (40)

Proposition 3 (Length-independent ratio range under bounded log-ratios). If log ρt ∈ [−L,L]
a.s. for some L > 0, then

e−L ≤ rseq(θ) ≤ eL for all T ≥ 1, (41)

whereas the unnormalized product ratio ranges in [e−LT , eLT ].

Implication. The geometric mean aligns the ratio granularity with the sequence-level reward in
equation 26, prevents exponential blow-up with T , and—together with dual clipping—reduces vari-
ance at the sequence level.

A.5.5 DYNAMIC FILTERING OF PROMPT GROUPS (DAPO-STYLE)

Let a prompt group produce G rollouts {oi}Gi=1 with rewards Ri∈ [0, 1] and batch z-scored advan-
tages

Âi =
Ri − R̄

sR
, R̄ = 1

G

G∑
j=1

Rj , sR =

√√√√ 1
G

G∑
j=1

(Rj − R̄)2 > 0. (42)

Define the accepted set

S =
{
i : |Âi| > τadv

}
, 0 < |S| < G, Var({Ri}Gi=1) > τvar > 0. (43)

Write the per-sample (sequence-level, dual-clipped) PPO-like term as

ℓi(θ) = min
{
rseq,i(θ) Âi, clip

(
rseq,i(θ), 1− εlow, 1 + εhigh

)
Âi

}
, (44)

and denote its gradient by gi(θ) = ∇θℓi(θ). Assume the usual score-function bound and clipped
ratio range: ∥∥∇θ log πθ(oi,t | q, oi,<t)

∥∥ ≤ Bπ, rseq,i(θ) ∈ [ 1− εlow, 1 + εhigh ]. (⋆)

A uniform bound on per-rollout gradients. Since rseq,i(θ) is the geometric mean of token ratios,

∇θrseq,i(θ) = rseq,i(θ)
1

|oi|

|oi|∑
t=1

∇θ log πθ(oi,t | q, oi,<t). (45)

Using (⋆) and that the clipped branch is constant on plateaus, there exists a finite Cψ = (1+εhigh)Bπ
such that

∥gi(θ)∥ ≤ Cψ |Âi| for all i, θ. (46)
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Lemma 5 (Zero or near-zero advantages). (a) If Âi = 0, removing oi leaves the group-wise
expected gradient unchanged.
(b) If |Âi| ≤ τadv, then, for any θ,∥∥ E [ gi(θ) ]

∥∥ ≤ Cψ τadv, E
[
∥gi(θ)∥2

]
≤ C2

ψ τ 2
adv. (47)

Proof. (a) The contribution is proportional to Âi. (b) Apply equation 46 and take expectations.

Bias and variance effects with 1
G normalization. Let the filtered group gradient be

g̃(θ) =
1

G

∑
i∈S

gi(θ), g(θ) =
1

G

G∑
i=1

gi(θ) (unfiltered). (48)

Define the discarded set Sc = {1, . . . , G} \ S . Then

E[g̃(θ)]− E[g(θ)] = − 1

G

∑
i∈Sc

E[ gi(θ) ], (49)

∥∥∥ E[g̃(θ)]− E[g(θ)]
∥∥∥ ≤ |Sc|

G
Cψ τadv ≤ Cψ τadv,

using Lemma 5(b). Moreover,

E

[ ∥∥∥ 1
G

∑
i∈Sc

gi(θ)
∥∥∥2 ] ≤ |Sc|

G2
C 2
ψ τ 2

adv, (50)

thus, discarding near-zero advantageous terms induces at most an O(τ 2
adv)-level change in the second

moment; with respect to the 1
G normalization, it does not introduce any additional scaling bias.

Acceptance constraints avoid degeneracy. The constraints 0 < |S| < G and Var({Ri}) > τvar
ensure: (i) the batch standardization sR is well-defined; (ii) both positive and negative (or at least
non-identical) signals are present, preventing the trivial zero-gradient case where all Âi are identical.
Consequently, g̃(θ) is a non-degenerate direction whenever useful learning signal exists.

Asymptotic unbiasedness with vanishing threshold. If the threshold decays τ (t)adv ↓ 0 and the law
of Âi has a continuous density at 0, then the discard probability P(|Âi| ≤ τ

(t)
adv) → 0, and

lim
t→∞

∥∥∥ E[g̃ t(θ)]− E[g(θ)]
∥∥∥ = 0, (51)

i.e., the dynamic filtering becomes asymptotically unbiased while retaining finite-time variance-
reduction benefits.

Summary. Dynamic filtering deletes rollouts whose contributions are provably negligible (zero or
O(τadv)), thereby reducing variance and compute without altering the expected update in the limit
τadv→0; using the same 1/G normalization as equation 26 avoids spurious scaling bias.

A.5.6 CONVERGENCE CONSIDERATIONS FOR THE CLIPPED SEQUENCE-LEVEL OBJECTIVE

Consider the surrogate objective JRL(θ) in equation 26, where rewards are bounded in [0, 1] and the
sequence-level importance ratios are dual-clipped to [ 1− εlow, 1 + εhigh ].

Assumptions.

(A1) Bounded scores. There exists Bπ < ∞ such that for all histories (q, o<t) and tokens ot,∥∥∇θ log πθ(ot |q, o<t)
∥∥ ≤ Bπ .

(A2) Bounded rewards & finite clipping. For each rollout oi, Ri ∈ [0, 1] and rseq,i(θ) ∈
[ 1− εlow, 1 + εhigh ] with 0 < εlow, εhigh < ∞.
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(A3) Non-degenerate batch dispersion. On accepted groups, Var({Ri}Gi=1) ≥ τvar > 0, so
Âi = (Ri − R̄)/std(R) are well-defined.

(A4) Vanishing filtering. τ (t)adv ↓ 0 and the law of Âi has a continuous density at 0, so P(|Âi| ≤
τ
(t)
adv) → 0.

(A5) Stepsizes. Robbins–Monro conditions:
∑
t ηt = ∞ and

∑
t η

2
t < ∞.

Lemma 6 (Bounds on per-sample gradients and second moments). Let o = (o1, . . . , o|o|) and
rseq(θ) denote the (clipped) sequence ratio. Then

∇θrseq(θ) = rseq(θ)
1

|o|

|o|∑
t=1

∇θ log πθ(ot |q, o<t),
∥∥∇θrseq(θ)

∥∥ ≤ (1 + εhigh)Bπ. (52)

Moreover, the PPO-style term is piecewise smooth and its gradient magnitude is bounded by
C1 := (1 + εhigh)Bπ |Â|; together with (A3), |Â| ≤ 1√

τvar
yields a uniform second-moment bound

E
[
∥∇θℓi(θ)∥2

]
≤ C2 < ∞.

Lemma 7 (Asymptotic unbiasedness under vanishing filtering). Let g(θ) denote the full (unfil-
tered) stochastic gradient and g̃τ (θ) =

1
G

∑
i: |Âi|>τ gi(θ) the filtered version with 1

G normalization.
Under (A4) and the bounded second moments above,

lim
τ↓0

∥∥E[g̃τ (θ)]− E[g(θ)]
∥∥ = 0 for all θ. (53)

Theorem 1 (Convergence to a stationary point of the surrogate). Suppose (A1)–(A5) hold.
Then the iterates of stochastic gradient ascent on JRL(θ) with the dynamic filtering scheme converge
almost surely to the set of stationary points of the surrogate objective.

Proof sketch. By Lemma 6 and the reward boundedness (Lemma 3), the stochastic gradients have
uniformly bounded second moments; the objective is bounded and piecewise smooth (kinks of mea-
sure zero). Lemma 7 guarantees that the bias due to filtering vanishes as τ

(t)
adv → 0. Therefore the

noisy gradient process forms a Robbins–Monro stochastic approximation with asymptotically un-
biased gradients and square-summable noise, yielding a.s. convergence to stationary points of JRL
(e.g., Kushner–Yin/Bottou).

Remarks. (i) The min-with-clipping introduces bias w.r.t. the true off-policy objective, but ensures
variance control and stability; the theorem concerns the surrogate we optimize. (ii) Sequence-level
ratios and sequence-level clipping align the gradient scale with the sequence reward, avoiding to-
ken/sequence granularity mismatch and contributing to the boundedness needed above. (iii) In prac-
tice, we keep τvar and the clip window fixed and decay τadv, which satisfies the lemmas’ conditions
and matches our training protocol.
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