Under review as a conference paper at ICLR 2026

FAILURE MAKES THE AGENT STRONGER: ENHANCING
ACCURACY THROUGH STRUCTURED REFLECTION FOR
RELIABLE TOOL INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-augmented large language models (LLMs) are typically trained via super-
vised imitation learning or coarse-grained reinforcement learning, approaches that
primarily optimize one-shot tool calls. Existing practices of self-reflection largely
rely on heuristic prompting or unidirectional reasoning traces: the model is en-
couraged to “think more,” rather than to treat error diagnosis and correction as
a learnable capability. This makes them fragile in multi-turn interaction set-
tings—once a call fails, the model tends to repeat the same mistake instead of
recovering. To address this issue, we propose structured reflection, which trans-
forms the “from error to repair” process into a first-class, controllable, and train-
able action. The agent produces a concise yet precise reflection process: specifi-
cally, the model diagnoses the error based on evidence from the previous step and
then proposes a correct and executable follow-up call. During training, we com-
bine DAPO and GSPO’s objective functions and design a more principled reward
mechanism tailored to tool calling, optimizing the stepwise strategy Reflect —
Call — Final. To evaluate this capability, we introduce Tool-Reflection-Bench, a
lightweight benchmark dataset that programmatically verifies structural validity,
executability, parameter correctness, and result consistency. Tasks in the bench-
mark are constructed as miniature trajectories of Erroneous Call — Reflection —
Corrected Call and are split into disjoint training and testing sets. Experiments
on BFCL v3 and Tool-Reflection-Bench show that our method achieves signifi-
cant improvements in multi-turn tool-call success rates and error recovery, while
also reducing redundant calls. These results demonstrate that making reflection
explicit and treating it as an optimization objective can substantially enhance the
reliability of tool interaction, providing a reproducible pathway for agents to grow
stronger by learning from failure. We will release all the code and datasets as open
source once the paper is accepted by the community.

1 INTRODUCTION

The integration of external tools with large language models through tool calling represents a sig-
nificant breakthrough in the development of agents. It transforms large language models from mere
text generators into highly practical tools for interacting with humans [WANG et al.|(2025); Qu et al.
(20244a), significantly enhancing the ability of Al agents to solve complex real-world tasks |Huang
et al. (2024); |Qin et al.| (2023); |Qu et al.| (2024b). Tool calling bridges the gap between the vast in-
ternal knowledge of LLMs and external resources, enabling LLMs to access up-to-date information,
perform delicate computations, and more, thereby unlocking their broad potential for applications
across multiple domains [Zhong et al.|(2023); Theuma & Shareghi| (2024);|Hao et al.| (2024).

Currently, the training of tool-call capabilities in large language models typically relies on super-
vised fine-tuning and reinforcement learning (Chen et al.| (2025b); |Qian et al.| (2025), where these
methods optimize the ability for single-turn tool calls through carefully designed reward mecha-
nisms. However, these approaches face several challenges in the context of tool calling. First, the
issue of rewards in tool calling is particularly prominent—small errors in parameter selection or
formatting often render the entire function call invalid, thus limiting the effective learning signal

Under review as a conference paper at ICLR 2026

251 17.5
Llama-3.1-8B-Instruct-FC (Ori) - LongCat-Lite-8K-Chat

Llama-3.1-8B-Instruct-FC (Ours) GPT-d0-mini
Qwen2.5-7B-Instruct-FC (Ori) 20.75% 15.04 GPT-4.1-mini 14.90%
Qwen2.5-7B-Instruct-FC (Ours) Llama-3.1-8B-Instruct-FC (Ori)
Qwen3-4B-Instruct (Ori) Llama-3.1-8B-Instruct-FC (Ours)
Qwen3-4B-Instruct (Ours) 12.5 Qwen2.5-7B-Instruct-FC (Ori)

16.25% Qwen2.5-7B-Instruct-FC (Ours)

N
o
L

14.88% Qwen3-4B-Instruct (Ori)

10.0 4 Qwen3-4B-Instruct (Ours) 0.30% 9.60%

o
w
L

11.00%
7.5

Repair@1 (%)

=
15}
L

6.10%

7.12% 5.04 4.70%

5.12%

Overall Multi-turn Accuracy (%)

3.10%
2.30% 2.40%

o
L

2.54
0.70%

0.0

(a) Results on BFCL v3 (b) Results on Tool-Reflection-Bench test set

(a) Results on BFCL v3 (b) Results on Tool-Reflection-Bench test set

Figure 1: In the experiments on BFCL v3 and Tool-Reflection-Bench, our method significantly
improves the multi-turn tool-calling accuracy of several open-source LLMs on BFCL v3. At the
same time, it substantially enhances the error-repair rate for tool calls on the Tool-Reflection-Bench
test set, achieving performance that even surpasses that of closed-source LLMs with comparable
parameter sizes.

Lattimer et al.| (2024). Second, existing methods generally rely on unidirectional reasoning, which,
while sufficient for simpler scenarios, has clear limitations: when LLMs make mistakes during tool
calls, they often struggle to locate the root cause of the error [Li et al|(2025). While generating
correct function calls is crucial, it is even more important for LLMs to learn how to identify and
correct their own mistakes |Ye et al.| (2024).

To address the above-mentioned issues, we propose an innovative reflection process aimed at er-
ror localization and correction through explicit reflection steps, which differs from existing forward
reasoning methods. Specifically, we design a process in which the LLM intentionally makes mis-
takes during tool calls, carefully crafts reflection content based on the errors, and then generates the
correct call. Through this approach, we transform the self-correction ability of large models from
a heuristic process [Yang et al.| (2024) into a clear, trainable capability. Our training approach is
primarily reinforcement learning—based. During the reinforcement learning process, we specifically
design a customized reward mechanism tailored for tool-calling scenarios, with a particular em-
phasis on multi-turn interactions. Concretely, the reward design encompasses multiple dimensions,
including format reward, tool-name reward, parameter reward, and semantic reward of reflection,
which together provide the model with multi-dimensional feedback and effectively guide its learn-
ing, and we further combine DAPQO’s decoupled clipping range and dynamic sampling—expanding
exploration while skipping near-zero-advantage rollouts—with GSPO’s sequence-level importance
sampling and same-granularity clipping, which avoids token/sequence mismatch and stabilizes op-
timization. With this training methodology, our approach equips LLMs with genuine self-reflection
and error-correction capabilities. On the BFCL v3 benchmark, our method yields significant im-
provements in LLM accuracy for multi-turn tool calling, thereby demonstrating its effectiveness in
real-world applications.

We construct a Tool-Reflection-Bench based on the BUTTON dataset|Chen et al.| (2024) style. First,
we collected tool-call failure cases from real-world scenarios and various benchmarks, analyzing and
summarizing several common failure patterns. Next, We selected several existing tool-call datasets
Qin et al.[(2023); [Liu et al.| (2024b)) and randomly combined them according to the call style of the
BUTTON dataset and introduced these failure patterns into the data, disrupting the originally correct
call processes to generate failure cases. Finally, we meticulously designed a reflection process to re-
pair these failures, resulting in successful tool calls. The training set includes the complete process
described above to train LLMs to achieve true self-correction capabilities, while the test set only
contains the first two steps, used to evaluate the self-correction abilities of the LLMs. By construct-
ing the Tool-Reflection-Bench in this manner, combined with our custom reward mechanism for tool
calling, we have made breakthroughs in LLMs’ self-correction abilities during training. Particularly
in multi-turn tool-calling scenarios, we observed significant improvements in accuracy. Through
the reasoning process from failure to correction, LLMs can more effectively identify and learn from

Under review as a conference paper at ICLR 2026

potential mistakes, thus enhancing the model’s stability and robustness in interactions. This makes
the agent’s behavior more robust and powerful.

In summary, our contributions are as follows:

* We introduce an explicit, trainable reflection process that diagnoses the cause of a failed
tool call using prior evidence and proposes a corrected, executable call. This transforms
the “from failure to repair” process from a heuristic method into a learnable action strat-
egy, enabling LLMs to genuinely possess self-reflection and error-correction capabilities,
thereby enhancing the agent’s multi-turn interactions with users.

* We design a more effective reward mechanism for tool call, tailored for RL training,
using a GRPO-style objective function. This approach employs multi-dimensional re-
wards—format executability, tool name accuracy, parameter correctness, and semantic con-
sistency—to mitigate sparse rewards and propagate signals across multi-turn trajectories.

* We propose Tool-Reflection-Bench, which collects failure patterns from real interaction
scenarios and benchmark datasets, injects perturbations into correct calls, and attaches a
reflection process to repair the calls. This allows for training LLMs in their Self-Correction
ability in tool-calling scenarios.

* Our method significantly improves the accuracy of multi-turn tool calls and the ability to re-
cover from tool call errors, while maintaining competitive single-turn tool call performance.
We validate this by experiments on BFCL v3 |Patil et al.| and Tool-Reflection-Bench.

2 RELATED WORKS

2.1 TOOL-AUGMENTED LARGE LANGUAGE MODELS

Integrating external tools into large language models has become a key approach to enhancing their
functionality, surpassing the simple task of text generation. Traditional LLMs are limited by static
knowledge, constrained to the data they were trained on. However, tool-augmented models extend
the capabilities of LLMs by enabling them to interact with external resources Zhang et al.| (2024));
Hao et al.| (2025)) (such as APIs|Li et al.|(2023), databases, and computational engines) through tool
calls. This extension allows LLMs to access real-time data, perform external computations, and even
interface with external hardware, making them more practical for solving complex real-world tasks
that require dynamic information or specific external operations |Chen et al.| (2025a)). ToolBench
Qin et al.|(2023)) demonstrates the feasibility of integrating external tool calls into LLMs. Through
such systems, LLMs can handle more specialized tasks. However, one major challenge of tool
augmentation is how to effectively train LLMs to use these tools. Existing training methods, such as
supervised fine-tuning and reinforcement learning, typically focus on optimizing single tool calls.
This type of interaction often does not involve multi-turn tool calls or responses, which makes the
limitations of current methods particularly apparent when errors occur during tool usage. In such
cases, the model’s ability to recover from errors becomes crucial.

2.2 SELF-CORRECTION IN LLMS

Self-correction in large language models refers to the model’s ability to diagnose its own errors and
correct them based on previous actions Huang et al.|(2023); [Liu et al.| (2024a). However, this area
has not been fully explored. Existing self-correction techniques mostly rely on heuristic methods or
unidirectional reasoning processes Renze & Guven| (2024).

Self-Refine framework Madaan et al.| (2023), which involves having LLMs provide an initial re-
sponse, followed by a reflection process where the model identifies flaws and makes improvements.
Specifically, the same LLM acts as both the responder and the evaluator: the model first generates an
initial response, then self-reflects and iteratively revises the output. This approach has been shown
to enhance the performance of LLMs in certain domains. However, subsequent studies Wu et al.
(2024); [Vladika et al.| (2025) have found that relying solely on the model itself often fails to de-
tect subtle errors. Some research Jiang et al.| (2025)); |[Zhao et al.| (2025a)) has introduced auxiliary
verifiers (such as additional models or mechanisms [Saveliev & Dendiuk| (2024); [Feng et al.| (2025))
to help check the correctness of the initial response. This external self-checking assistance avoids

Under review as a conference paper at ICLR 2026

‘
I should use i i Maybe Ishoulduse | " MaybeIshoulduse | @

I
i
i
| <call>get_birth... <call> ! | <call>get_date...<call> | | <call>get_time...<call> |
Query \ |TTTTTTTTTTTTTToToTot fommmmmmmmmeee e Lo
I would like to find the birth

date of the author of Hamlet.

{rame’ go_dac, .} N , e N , e N f e

o

<call>get_aathor...<call> <r>Wait, I should first get the autor <call>get birth.. <call> <f>The answer is...<f>
____________________ name of Hamlet, then I can find the
I should use ' birth date based on the name.</r>
1 <call>get_birth...<call> 1 <call>get_author.. <call>

V/ \f/’ \f/'

Figure 2: We illustrate the effectiveness of our method with an example. As shown in the figure, the
left side presents the tool panel, while the upper-right part depicts industry-standard self-correction
approaches, where models attempt to fix errors through heuristic trial-and-error reasoning or by
relying on external feedback. In contrast, the lower-right part shows our approach: we introduce an
explicit forced reflection process <r>, enabling the model to truly master the ability to repair errors
based on its own failures.

unnecessary repeated revisions, improving efficiency and enhancing the model’s reasoning and ver-
ification capabilities. However, this approach remains highly sensitive to the specific phrasing of the
prompts, with different prompt wordings leading to varying results [Liu et al.|(2024a)).

However, even though these methods have somewhat improved the capabilities of LLMs, their
essence still relies on external feedback to assist in correcting their own errors. In contrast, our
work introduces a reflection method that transforms self-correction into a trainable and controllable
capability. The reflection process is an explicit part of the task, where the model actively evaluates
its previous actions, identifies errors, and generates explicit corrections. This process is achieved
through error localization, diagnosis, and correction, which goes beyond simple unidirectional rea-
soning and can be integrated into the training process. By providing supervisory signals during
training, our approach enables LLMs to truly possess self-correction capabilities, which are then
reflected in tool calling tasks.

3 METHOD

3.1 TOOL-REFLECTION-BENCH

The construction of Tool-Reflection-Bench consists of the following steps: perturbation-based dis-
ruptions, positive samples transformations, and the reflection repair process. The original positive
samples are derived from BUTTON |Chen et al.| (2024) transformations and self-constructed based
on few-shot prompts. The entire benchmark is divided into a training set and a test set, with approx-
imately 5,000 samples in the training set, in addition to the reflection-augmented data constructed
as described above, the training set also contains a very small portion of original data drawn from
BUTTON |Chen et al.| (2024) and XLAM |Zhang et al.| (2024). And around 1,000 samples in the
test set, the test set is exclusively composed of perturbation-derived items and does not include raw,
unperturbed positives from BUTTON or XLAM.

3.1.1 PERTURBATION-BASED DISRUPTIONS
Let the initial correct message sequence be

+ sys usr ast tool ast tool ast tool final
D —(mo , MY Ma Mg, M Mg, e Mgy, Mogq, vy M), (D

where mg’” is the system prompt, m}*" the user query, m3:* the assistant’s i-th tool call in structured
form (e.g., <call>[{. . . },{. . . },...1</call>), m&9} the tool return (JSON), and mfi"®! the
final answer.

Under review as a conference paper at ICLR 2026

We define a set of disruption operators
P:{PI)PQaP37P4}) (2)

each operating on an assistant call m3;" and instantiating a common failure mode:

1. Pj call-order swap: replace the current tool call with the next-round tool call dialogue and
force an error.

2. P, redundant call: repeat the same tool at the step (unchanged/irrelevant arguments) and
force an error.

3. P5; missing call: replace the intended tool by another tool and force an error.

4. P, argument error: randomly corrupt the arguments of a call (missing/typed/alias/bound-
ary) and force an error.

These operators specify how a correct tool call can be broken.

3.1.2 POSITIVE SAMPLES TRANSFORMATIONS

Given a clean trajectory D' and a chosen operator P; € P acting on step 2k, we produce the
negative (erroneous) context; no repair is performed in this step. We construct the erroneous call

m3;’ = ApplyPerturbation(m3;’, P;), 3)
and simulate the tool’s error feedback with a LLM L:
My = L(m3; L) . @)
This yields the negative trajectory prefix
D~ = Perturb(D™, P;) = (mBYS, mus L st mg‘;;il),)

which will later serve as evidence of failure. At this stage, the item consists only of the broken call
and its error signal.

3.1.3 REFLECTION REPAIR PROCESS

Given a clean trajectory D™ and its perturbed prefix D, we present the LLM with a paired view of
the step-2k evidence:

clean: (m3;F, m&°l,) vs. broken: (m3;, m&o). (6)
The model outputs a response.
(reflect)r(/reflect), (7

where r briefly diagnoses the discrepancy, and c proposes the fixed tool call. We then apply human
supervision to obtain (r*, ¢*), with ¢* set to the original correct call:

(’I’, C) post—editing (T*, C*), (8)
human supervision
Lyx(¢*) = Success Call.)
The finalized item is packaged as
r = (D77 r*, c*, DI%_H), (10)

where D4>'2 k1 1s the untouched suffix of D7 (including mgnal). We retain x only if: (i) tags/JSON
are well-formed; (ii) ¢* is executable; (iii) * correctly cites the clean—broken contrast.

3.2 REWARD DESIGN

Preliminary. Given a model completion C' and a ground truth GG, we decompose both into three
(possibly empty) parts:

C— (Cref7 Ceas = {Ci}?;17 Cﬁnal)a G~ (gref7 Geanls = {gj}?:h gﬁnal)- (11)
Here ¢yt (reflection) is the diagnosis text wrapped in <reflect></reflect>, Cgy;s is the multiset

of tool calls wrapped in <call></call>s produced by the model, and cgy, is the message wrapped
in <final></final>. The ground truth can alse be decomposed into three parts mentioned above.

Under review as a conference paper at ICLR 2026

Component scores. We compute three component scores:
Sref = Sim(crefvgref)a Scall = H[Equalcaus(ccaHm Gcalls)] 5 Sfinal = Sim(cﬁnala gﬁnal); (12)

where Sim € [0, 1] is a semantic similarity function, and I[-] is the indicator:

1, if Pis true
I[P =< ’ 13
[Pl { 0, otherwise. (13)

We say EqualCalls(Ceans, Geans) holds iff the two sets of produced calls can be put in a one-to-one
correspondence such that for every matched pair the tool name is identical and the argument is
identical.

Normalization with presence masks. Our goal is to keep the aggregated score in [0, 1] even when
an instance specifies only a subset of targets (e.g., only <call> without <reflect> or <final>). To
this end we use normalization to renormalize over the parts that actually appear in the ground truth,
so the maximum remains 1 regardless of how many parts are present.

We define
Ir:H[gref#g]a Ic:HHGcalls‘ >O]; If:]l[gﬁnal?é@]- (14)
Let (w;, we, wr) > 0 be normalized base weights (e.g., w; + w, + wy = 1). We renormalize over the

active parts via
Wdct = wr-[r + chc + ’UJfIf. (15)

The aggregated structure/semantics score is then

err Sret + chc Scall + wf-[fsﬁnal
Waet

This normalization yields a consistent scoring standard across fully and partially supervised in-
stances, avoiding artificial deflation of scores when some targets are absent.

S = (16)

Format/penalty factor. We designed structural penalties tailored for tool-call data formats.
Specifically, P,,;ss accounts for cases where the tool is not invoked at all, while P, ¢rq and Peoynt
penalize redundant calls and mismatches in the total number of calls, respectively. Let

n= |Gcalls‘7 m = |Ccalls|7 o))

Here n and m denote the number of tools invoked in the ground truth and completion calls. Define
the three components:

Pmiss = Wref]I[gref#@/\cref:®] + Wfinal H[gﬁnal#g/\cﬁnzﬂ:@] + Wealls H[n>0/\m:0]a
(18)

Pextra = wrefﬂ[cref#g/\grefzg] + Wfinal H[Cﬁnal#g/\gﬁnalzg] + Wealls H[m>0/\n:O],

(19)
Poount = Weans [[n >0AmM >0An#Em] M (20)
max(n,m)
Let EqualCalls be the schema-strict equality on bags of calls. We use a reduction factor
reduce; 1f EiqualCalls(Ceats, Geatss),
- Treduce, 1 qU&.l Ca S(Ccall Gean) Teoduce € (0, 1]. Q1)
1, otherwise,
Aggregate the penalty as
Rotal - Pmiss + Bextra Pexlra + Yeount Pcount; (22)

and define the instance-wise format factor

Lif P = 0 A Pogra = 0 A Prount = 0,
FormatFaCtor(C, G) _ miss extra count . (23)
max (0, min(1, 1 — A, Pow™)), otherwise.

Here fextra, Yeount; Am > 0 control the strength of extra-part, count-mismatch, and overall scaling
penalties, respectively; (Wref, Weals, Wiinal) > 0 are part weights.

Under review as a conference paper at ICLR 2026

Training reward over time Training reward over time
0.8 raw reward 0.8 raw reward
smoothed (window=21) 0.7 smoothed (window=21)
0.7 .
0.6
] 0.6 o
g g 0.5
g 05 204
g k]
g 0.4 £0.3
= =
0.3 0.2
0.1
0.2
0.0
0 200 400 600 800 1000 0 200 400 600 800 1000
Environment steps Environment steps

(a) The reward curve of llama-3.1-8b-Instruct during (b) The reward curve of qwen2.5-7b-Instruct during RL
RL training training

Figure 3: The reward curves of llama-3.1-8B and Qwen2.5-7B during training, showing an overall
upward trend.

Core reward and backoff. The core reward is
Ree = S F. (24)

Early in training, .S contains a binary component (s¢,y € {0, 1}) and F applies hard penalties; small
formatting or argument errors can drive R.q close to zero. This yields sparse or unstable gradients
and large variance across samples. To stabilize learning and provide a dense shaping signal when
the exact-match objective is not yet achieved, we introduce a similarity backoff:

Chp 0,1 (RCOTC)7 Rcore Z 57
Rtotal = { (0.1

(25)
clipp 1 (wy - Sim(concat(C), concat(G))), otherwise,

where wy, € (0, 1] and concat(-) linearizes the messages. We use clipjg ;1(z) = max(0, min(1,z))
to keep rewards bounded.

3.3 RL FOR TOOL-REFLECTION-BENCH

We adopt a reinforcement-learning objective for tool calling that combines two complementary
ideas: (i) DAPO-style decoupled clipping |Yu et al. (2025): we use a decoupled clipping range
with different lower/upper bounds (€iow, €nign) and a clip-higher policy (a looser upper bound when
r > 1 for positive advantages), and we skip uninformative prompt groups whose rollouts carry neg-
ligible learning signal; (ii) GSPO-style sequence-level importance sampling|Zheng et al.| (2025)):
we compute the importance ratio at the sequence level and apply clipping at the same granularity
as the sequence-level reward, which avoids the mismatch between token-wise importance sampling
and sequence-level rewards and stabilizes optimization.

Objective. Let (g, a) denote the dialog context and the ground-truth targets, and let {0;}$ | be G
candidates sampled from the behavior policy 7y, (- | ¢). Each completion o; is scored by the reward
in Sec. yielding R; € [0, 1]. We maximize a sequence-level, asymmetrically clipped objective
and minimize its negative as the loss:

Y

(26)

G
1 . A . A
TrL(0) = E(ga)~p, oi} vy C1a) | @ > mln(”(@ Aj, clip(ri(6), 1 — €tow, 1+ Enign) Ai)
=1

where clip(z, a,b) = min{b, max{a, z}} and typically enigh > 10w (“‘clip-higher”).

Prompt-group dynamic filtering. DAPO skips prompt groups whose candidates provide almost
no learning signal (e.g., all-correct or all-wrong). Concretely, define batch-normalized advantages
and a group-level acceptance criterion:

i Ri— mean({R;}5_,)
b std({R)L,)

S(q,a):{ie{l,...,G} : |Ai|>vadv}, 27)

Under review as a conference paper at ICLR 2026

Table 1: Comparison across dimensions (Base, Miss_Func, Miss_Param, Long_Context, Multi-turn
Overall) on BFCL v3.

Models Method Base Miss Func Miss Param Long Context Multi-turn Overall
(‘ Origin 5.0 6.5 45 45 5.12
Llama-3.1-8B-Instruct-FC " 95195%) 7.0(18%) 5.0 (111%) 7.0 (156%) 712 (139%)
, Origin 16.5 11.0 9.0 75 11.00
Qwen2.5-7B-Instruct-FC ™ 20 (133%) 13.0 (118%) 13.5(150%) 11.0 (147%) 14.88 (135%)
Origin 18.0 19.0 13.5 14.5 16.25

Qwen3-4B-Instruct Ours 250 (139%) 195(13%) 17.0(126%) 21.5 (148%) 20.75 (128%)

and require sufficient reward dispersion within the group:
Var({Ri}lel) > Ty and 0 < |S(g,a)| < G. (28)

If equation [28] fails, we drop the zero-information rollouts and (optionally) draw up to K additional
candidates from 7g,, then re-apply the filter. Only indices in S(g, a) contribute to the expectation

in equation

old >

Sequence-level importance ratio. For a completion o; = (0;1,. . ., 0i,|0,])» We use the geometric-
mean, length-normalized importance ratio:
1/ 04

TZ(H) — H 71'0(01’,15 | q, 0i,<t) , (29)

i T04a(0it | 4, 0i,<t)

and perform clipping at the same sequence granularity as the reward (see equation [26), thereby
avoiding token/sequence granularity mismatch.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

In this part, we will detail the experimental setup, including datasets, hyperparameters, base models,
and evaluation metrics.

Datasets. We conduct training on our self-constructed Tool-Reflection-Bench. After human su-
pervision and post-editing, we retained approximately 5k samples in JSONL format to ensure com-
patibility with RL training under the Swift|Zhao et al.|(2025b) framework.

Implementation Details. We train models for 1 epoch (a total of 1,000 steps) on 5,000 train-
ing samples, using the reward function defined in Sec[3.2] For each training instance, 4 completions
were sampled to form a group. The training parameters were set as follows: temperature = 0.85, rep-
etition penalty = 1.1, epsilon = 0.2, epsilon-high = 0.28, with a dynamic sampling strategy adopted.

Base Models. To verify the generalizability of Tool-Reflection-Bench and our training methodol-
ogy, we conducted experiments using Llama3.1-8B [Dubey et al.| (2024)), Qwen2.5-7B-Instruct [Hui
et al.|(2024), and Qwen3-4B |Yang et al.| (2025) as base models.

Evaluation Metrics. We evaluated multi-turn tool-calling performance using the Berkeley Func-
tion Calling Leaderboard (BFCL) v3 |Patil et al., with evaluation dimensions covering multi-turn-
base, multi-turn-long-context, multi-turn-miss-func, and multi-turn-miss-param, and the evaluation
metric being accuracy. To assess the model’s repair capability when tool calls fail, we used Tool-
Reflection-Bench, with the evaluation metric being repair rate, Repair@n denotes that for the same
data instance, if at least one out of n trials succeeds, the metric is recorded as 1; otherwise, it is 0.

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENT RESULTS

4.2.1 RESULT ON BFCL v3

Comparison with base models. We conduct performance evaluation on the multi-turn category of
BFCL v3 to assess the benefits of enhancing the model’s self-reflection capability in multi-turn tool
calling, the detailed results are showed in Table. [I| Compared the results against the corresponding
base models. The most striking lift appears on Llama-3.1-8B: Base rises from 5.0 to 9.5 (+95%)
and Long_Context from 4.5 to 7.0 (+56%). Qwen2.5-7B shows the largest Miss_Param gain (9.0
— 13.5, +50%), evidencing stronger parameter repair. Qwen3-4B attains an amazing absolute
Multi-turn Overall (20.75, +28%) with a sizable Long_Context improvement (+48%). In contrast,
its Miss_Func gain is modest (19.0 — 19.5, +3%), indicating tool selection remains comparatively
harder—consistent with our method’s emphasis on reflection-driven parameter correction and long-
context recovery.

4.2.2 RESULT ON TOOL-REFLECTION-BENCH

As shown in Table. 2] across open-source baselines, repair rates are low at one try (Repair@1 <
9.6%) and only mildly improve with more tries. Training with our method yields consistent gains
for all bases: Llama-3.1-8B-Instruct jumps from 0.7/5.1/6.8 to 4.7/20.5/26.4 (Repair@ 1/3/5),
a large improvement especially at higher n; Qwen2.5-7B-Instruct improves from 2.4/6.1/8.0
to 9.3/10.3/11.4; Qwen3-4B-Instruct rises from 9.6/10.6/10.6 to 14.9/18.5/19.5 (best Repair@1
among our models). All finetuned models surpass the closed-source LongCat-Lite-8K-Chat across
ne€{l,3,5}, indicating that our reflection-aware reward and RL objective substantially enhance re-
pairability and yield more reliable multi-try recovery. It is also worth noting that when tool calls fail
and require repair, our method achieves superior performance compared to closed-sourced mod-
els of the same scale such as LongCat-Lite-8K-Chat Team et al.| (2025), GPT-40-mini OpenAl
(2024ab), GPT-4.1-mini OpenAl| (2025).

Table 2: Experimental Results of Open-Source and Closed-Source Models on the Tool-Reflection-
Bench Test Set.

Models Repair@1 (%) Repair@3 (%) Repair@S5 (%)
Close-Sourced Models
LongCat-Lite-8K-Chat 2.3 34 4.9
GPT-40-mini 6.1 8.7 9.0
GPT-4.1-mini 3.1 4.3 5.1
Open-Sourced Models
Llama-3.1-8B-Instruct 0.7 5.1 6.8
Qwen?2.5-7B-Instruct 2.4 6.1 8.0
Qwen3-4B-Instruct 9.6 10.6 10.6
Open-Sourced Models Trained on Our Method
Llama-3.1-8B-Instruct 4.7 20.5 26.4
Qwen2.5-7B-Instruct 93 10.3 114
Qwen3-4B-Instruct 14.9 18.5 19.5

5 CONCLUSION

This paper proposes a structured reflection method for handling tool call failures, transforming the
“from error to repair” process into an explicit, controllable, and trainable action. Our approach
overcomes the limitations of previous heuristic, feedback-based self-correction methods in terms
of controllability and stability. We further construct Tool-Reflection-Bench for both training and
evaluation, and design a task-specific reward function tailored to the tool-calling scenario. In the
reinforcement learning stage, we combine the strengths of DAPO and GSPO to enhance training
effectiveness. Experimental results show that the proposed method significantly improves multi-
turn tool call accuracy on BFCL v3 as well as error repair performance on Tool-Reflection-Bench.
Overall, our method and dataset effectively enhance the reliability of tool interactions and offer a
new perspective on enabling agents to acquire new capabilities by learning from failure.

Under review as a conference paper at ICLR 2026

REFERENCES

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv e-prints, pp. arXiv—2501, 2025a.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
Xie. Sft or r1? an early investigation into training r1-like reasoning large vision-language models.
arXiv preprint arXiv:2504.11468, 2025b.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via composi-
tional instruction tuning. arXiv preprint arXiv:2410.12952, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Bingguang Hao, Maolin Wang, Zengzhuang Xu, Cunyin Peng, Yicheng Chen, Xiangyu Zhao, Jinjie
Gu, and Chenyi Zhuang. Funreason: Enhancing large language models’ function calling via
self-refinement multiscale loss and automated data refinement. arXiv preprint arXiv:2505.20192,
2025.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. CoRR, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Shijue Huang, Wanjun Zhong, Jiangiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios. arXiv preprint arXiv:2401.17167,
2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Yuhua Jiang, Yawen Xiong, Yufeng Yuan, Chao Xin, Wenyuan Xu, Yu Yue, Qianchuan Zhao, and
Lin Yan. Pag: Multi-turn reinforced 1lm self-correction with policy as generative verifier. arXiv
preprint arXiv:2506.10406, 2025.

Barrett Martin Lattimer, Varun Gangal, Ryan McDonald, and Yi Yang. Sparse rewards can self-train
dialogue agents. arXiv preprint arXiv:2409.04617, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir Zaki, and Talal Rahwan. Self-reflection
makes large language models safer, less biased, and ideologically neutral. arXiv preprint
arXiv:2406.10400, 2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

10

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

OpenAl. Hello gpt-40. https://openai.com/index/hello-gpt-40/, May 2024a. Accessed:
2025-09-25.

OpenAl. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276, Accessed:
2025-09-25.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, April 2025.
Accessed: 2025-09-25.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tiir, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and
J Wen. Tool learning with large language models: A survey. corr abs/2405.17935(2024). arXiv
preprint arXiv:2405.17935, 2024a.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and
J Wen. Tool learning with large language models: A survey. corr abs/2405.17935(2024). arXiv
preprint arXiv:2405.17935, 2024b.

Matthew Renze and Erhan Guven. Self-reflection in 1lm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

RI Saveliev and MV Dendiuk. Self-reflective retrieval-augmented generation (self-rag) in analytical
systems. In Forestry Education and Science: Current Challenges and Development Prospects.
International Science-Practical Conference, October 23-25, 2024, Lviv, Ukraine, 2024.

Meituan LongCat Team, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang,
Chen Gao, Chen Zhang, Cheng Sun, et al. Longcat-flash technical report. arXiv preprint
arXiv:2509.01322, 2025.

Adrian Theuma and Ehsan Shareghi. Equipping language models with tool use capability for tabular
data analysis in finance. arXiv preprint arXiv:2401.15328, 2024.

Juraj Vladika, Thsan Soydemir, and Florian Matthes. Correcting hallucinations in news sum-
maries: Exploration of self-correcting 1lm methods with external knowledge. arXiv preprint
arXiv:2506.19607, 2025.

MAOLIN WANG, YINGYI ZHANG, CUNYIN PENG, YICHENG CHEN, WEI ZHOU, JINJIE
GU, CHENYI ZHUANG, RUOCHENG GUO, BOWEN YU, WANYU WANG, et al. Function
calling in large language models: Industrial practices, challenges, and future directions. 2025.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large lan-
guage models can self-correct with key condition verification. arXiv preprint arXiv:2405.14092,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,

Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

11

https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2410.21276
https://openai.com/index/gpt-4-1/

Under review as a conference paper at ICLR 2026

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and Shuicheng
Yan. Supercorrect: Supervising and correcting language models with error-driven insights. arXiv
preprint arXiv:2410.09008, 9, 2024.

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui, Qi Zhang, Xuanjing Huang, Peng Wang,
Zhongchao Shi, Jianping Fan, et al. Tl-training: A task-feature-based framework for training
large language models in tool use. arXiv preprint arXiv:2412.15495, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024.

Xutong Zhao, Tengyu Xu, Xuewei Wang, Zhengxing Chen, Di Jin, Liang Tan, Zishun Yu, Zhuokai
Zhao, Yun He, Sinong Wang, et al. Boosting llm reasoning via spontaneous self-correction. arXiv
preprint arXiv:2506.06923, 2025a.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, et al. Swift: a scalable lightweight infrastructure for fine-tuning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 29733-29735,
2025b.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqgiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llmd4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE oF LLMs

This work leveraged LLMs to verify the mathematical soundness and symbolic accuracy of a few
formulas in Sec[A.3l

A.2 PROMPT FOR PERTURBATION-BASED DISRUPTIONS

In this section, we provide simplified prompts for generating the four types of tool call perturbations,
enabling the community to reproduce our setting. The full prompts and implementation code will
be released upon the paper’s acceptance.

A.2.1 PROMPT FOR CALL-ORDER SWAP

How to construct an error tool call examile

Goal. Prepend a controlled erroneous <call> and a consistent tool-error message before the
first assistant message, so the model must diagnose and repair.

Procedure.
1. Extract calls: Traverse messages and collect all assistant <call>...</call> blocks
(regex).
2. Choose function name: Parse the last call’s JSON to get "name”; fall back to a regex
if needed.

3. Synthesize wrong call (empty args):
<call>[{"name":"<FUNC_FROM_LAST_CALL>","arguments":{}}1</call>

4. Fabricate tool error (pretty JSON string):

{"tool":"<FUNC_FROM_LAST_CALL>","status":"warning",

"message”:"The called function executed but returned partial/mismatched
< data because the arguments did not match the expected schema for
— this call.”,

"result”: null}

5. Insert pair: Place the wrong assistant call and the tool error before the original first
assistant message.

6. Elicit reflection: Query the LLM with the System/User prompts above to obtain the
reflection text, then prepend <reflect>...</reflect> to the original assistant mes-
sage (the original correct call remains).

Notes. Using the last call’s function ensures schema plausibility; empty arguments induce a
controlled failure; the synthetic tool message supplies concrete evidence for the subsequent
reflection and repair.

How to ienerate a reflection

You are an Al assistant that analyzes failed tool calls and provides reflective summaries. Given
an original tool call and a fabricated error response, generate a brief reflection explaining why
the call likely failed and how to correct it. Be concrete and concise.

Fill the placeholders {{. . .}} exactly.
Original tool call:

Under review as a conference paper at ICLR 2026

{{ORIGINAL_CALL}}
Error response:

{{FAKE_RESPONSE}}

Please provide a short reflection on the failure cause and the corrective action.

An Examile

Original tool call:
<call>[{"name":"searchArtistsByArtStyle”, "arguments"”:{}}]</call>
Error response:

{"tool":"searchArtistsByArtStyle","status":"warning”,

"message”:"The called function executed but returned partial/mismatched data
< because the arguments did not match the expected schema for this call.”,

"result”: null}

Please provide a brief reflection on why this tool call failed and what could be improved. Keep
it concise and helpful.

A.2.2 PROMPT FOR REDUNDANT CALL

How to construct a redundant tool call examile

Goal. Inject a redundant tool call inside an existing <call> list and a matching redundant tool
response, so the agent must identify and remove the duplication.
Procedure.

1. Extract calls: Traverse the dialogue and collect all assistant-side <call>...</call>
blocks (regex).

2. Pick a target (not the first): Uniformly sample an assistant call position from
{2,...,]C|}.

3. Duplicate within the list: Parse the target call’s JSON. If it is a list, append a deep-
copied first element; if it is a single dict, make a two-element list by duplicating it.

4. Fabricate a redundant tool response: Parse the following tool message. Duplicate its
first item (or the dict itself) and mark it as redundant, e.g.

{"status":"redundant”, "message”:"This item duplicates a previous result.”}

5. Keep the ground-truth call: The correct call is the original (non-duplicated) first ele-
ment of the target call list.

6. Place the repair evidence: After the redundant tool message, insert an assistant
message with <reflect> diagnosing the redundancy and a correct <call> (the non-
duplicated one), followed by a clean tool response (the original, without the redundant
copy).

Notes. This perturbation preserves schema but injects duplication at both call and response
sides, creating a realistic “over-call” pattern for reflection-and-repair.

How to generate a reflection

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are an Al assistant that analyzes redundant tool calls and provides reflective summaries.
Given a tool-call list and its redundant tool response, write a brief reflection that (i) identifies
the duplication, and (ii) states the correct next action (use only the necessary call with proper
arguments). Keep the reflection concise and actionable.

Fill the placeholders {{. . .}} exactly.
Tool call list (after duplication):

{{TOOL_CALL_LIST}}
Redundant tool response:
{{REDUNDANT_RESPONSE } }

Please provide a short reflection that points out the redundancy and explains how to proceed
correctly.

An Example

Tool call list (after duplication):

<call>[
{"name": "searchArtistsByArtStyle", "arguments”:{"style":"impressionism”}},

{"name" : "searchArtistsByArtStyle", "arguments”:{"style":"impressionism”}}
1</call>

Redundant tool response:

L
{"tool":"searchArtistsByArtStyle", "status":"ok","items":[...]},
{"tool":"searchArtistsByArtStyle", "status":"redundant”,
"message"”:"This item duplicates a previous result.”,”items”:[...]}

]

Please provide a brief reflection on why this redundant call occurred and how to proceed. Keep
it concise and helpful.

A
H

.2.3 PROMPT FOR MISSING CALL

ow to construct a missing-call perturbation example

Goal. Remove a necessary assistant <call> and make the subsequent call fail due to missing
context, so the agent must recover the omitted call and then proceed correctly.
Procedure.

1. Extract calls: Parse all assistant-side <call>. ..</call> blocks (regex).
2. Select a removable call (not the last): Uniformly sample an index ¢ € {1,...,|C|—1}.

3. Find paired tool messages: Locate the tool reply immediately after call ¢ (the one to
remove), and the tool reply after call i+1 (the “next” call).

4. Delete call i and its tool reply.

5. Degrade the next call: For the assistant <call> at (original) i+1, keep the function
but set "arguments”:{} (empty).

6. Return an error for the next tool: Replace that tool reply with an error JSON indicating
“missing required arguments”.

15

Under review as a conference paper at ICLR 2026

7. Reflection and repair insertion: After the error tool reply, insert:
(a) an assistant message containing <reflect> that explains the omission and a re-
instated correct <call> (the removed call 7);
(b) the original tool reply for the removed call ¢;
(c) the corrected next assistant call (its original, non-empty arguments);
(d) the corrected next tool reply (its original content).
Notes. This perturbation creates a realistic “missing prerequisite call” failure: the subsequent

step cannot execute without information from the omitted call. The reflection must (i) identify
the omission and (ii) restore the correct call before proceeding.

How to ienerate a reflection

You are an Al assistant that analyzes missing tool calls and provides reflective summaries.
Given the omitted call (that should have been executed) and the resulting error response from
the next step, write a concise reflection that (i) identifies what was missing, and (ii) states how
to proceed: first reinstate the omitted call with correct arguments, then continue.

Fill the placeholders {{. . .}} exactly.
Missing tool call (the one that should have been made):

{{MISSING_CALL}}
Error response (from the next step):
{{ERROR_RESPONSE } }

Please provide a short reflection that explains the omission and the corrective sequence of ac-
tions.

An Example

Missing tool call:
<call>[{"name":"fetchUserProfile"”,"arguments”:{"user_id":"u_1293"}}1</call>

Error response (from the next step):

L
{"status":"error"”,
"message”:"Missing required arguments. The function call failed because necessary
<> parameters were not provided."”,
"result”: null}
]

Please provide a brief reflection on what was missing and how to proceed. Keep it concise and
helpful.

A.2.4 PROMPT FOR ARGUMENT ERROR

How to construct an argument—error perturbation example

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Goal. Corrupt the arguments of an existing assistant <call> so that the paired tool reply returns
a parameter—validation error, forcing the agent to diagnose mismatched/invalid arguments and
repair with the correct call.

Procedure.

1. Extract calls: Parse all assistant-side <call>...</call> blocks via regex.

2. Select a call: Uniformly sample one index ¢ € {1,...,|C|} and locate its immediate
tool reply.

3. Corrupt arguments: Keep "name” unchanged; replace "arguments” with perturbed
values (e.g., wrong types, out-of-range numbers, empty strings, unknown keys). The
JSON stays well-formed:

<call>[{"name":"<FUNC_NAME>", "arguments":{<WRONG_ARGS>}}]</call>

4. Synthesize error reply: Replace the paired tool message with a structured error indi-
cating invalid parameters (e.g., "error_code”: "INVALID_PARAMETERS" and an infor-
mative message).

5. Reflection and repair insertion: Immediately after the error, insert:

(a) an assistant message with <reflect> that contrasts the wrong vs. correct argu-
ments and states the fix;
(b) the original (correct) call and its original (successful) tool reply.

Notes. Do not alter the function name; only arguments are corrupted. Keep JSON/tags valid to
isolate the failure mode to argument errors.

How to ienerate a reflection

You are an Al assistant that analyzes incorrect tool-call parameters and provides a reflective
summary. Given the correct call, the wrong call (with corrupted arguments), and the error
response, write a brief reflection that (i) pinpoints which arguments are incorrect and why, and
(ii) states the corrected call. Be concrete and concise.

L

Fill the placeholders {{. . .}} exactly.
Correct tool call (ground truth):

{{CORRECT_CALL}}
Wrong tool call made (arguments corrupted):
{{WRONG_CALL}}

Error response:

{{ERROR_RESPONSE } }

Please provide a short reflection that identifies the parameter issues and the corrective action.

L

An Example

Correct tool call:

<call>[{"name":"bookFlight",
"arguments”:{"from":"SFQ","to":"JFK","date":"2025-11-02", "passengers
< ":1}}1</call>

17

Under review as a conference paper at ICLR 2026

Wrong tool call made:

<call>[{"name":"bookFlight",
"arguments”:{"from":999999,"to":"","date" :null, "passengers”: "many"}}1</call
>

Error response:

[{"status":"error",
"message”: "Parameter validation failed for bookFlight. One or more arguments are
invalid.",
"result”: null,
"error_code" : "INVALID_PARAMETERS"}]

Please provide a brief reflection on which parameters are incorrect and how to fix them. Keep
it concise and helpful.

A.3 TRAINING DATA CASE STUDY

In this section, we extract one complete sample from each of the four perturbation modes for anal-
ysis. Due to space limitations, these four samples are provided in the supplementary material for
reference, while here we only present a brief analysis of the data.

A.3.1 CASE STUDY OF CALL-ORDER SWAP

Setup. The user requests end—to—end logistics for a 10—person business trip (NYC — MIA): search
and book round—trip flights, search and book hotel rooms, and arrange airport—hotel ground trans-
portation. The toolset exposes search_flights, book_flight, search_hotels, book_hotel, and
arrange_transportation, where the last function depends on confirmed itinerary details (arrival
time and hotel).

Failure trace (order dependency violated). The agent correctly issues two discovery calls, then
prematurely attempts to arrange transportation before booking:

<tool_call>{"name":"search_flights", ...}</tool_call>
<tool_call>{"name":"search_hotels”, ...}</tool_call>

<tool_call>{"name":"arrange_transportation”,
"arguments”:{"arrival_date":"2023-03-21",
"passenger_count":10,
"pickup_location”:"MIA Airport”,
"dropoff_location”:"(to be decided)"}}</tool_call>

The tool returns a dependency error because dropoff_location cannot be finalized prior to
book_hotel and pickup timing should be aligned to book_flight:

Tool: {"status"”:"error”,
"message”:"Transportation requires confirmed flight and hotel details.”,
"result”: null}

Model reflection and repair. The agent emits a concise <reflect> that identifies the or-
der—dependency (transport must follow booking), then repairs by booking first and only then ar-
ranging transport:

<reflect>

Failure stems from an order dependency: transportation must follow confirmed
flight and hotel, as pickup/dropoff depend on the booked itinerary.

Correct plan: (1) book flight; (2) book hotel; (3) arrange transportation.
</reflect>

<tool_call>{"name":"book_flight"”, ...}</tool_call>
<tool_call>{"name"”:"book_hotel”, ...3}</tool_call>

18

Under review as a conference paper at ICLR 2026

<tool_call>{"name":"arrange_transportation”,
"arguments”:{"arrival_date":"2023-03-21",
"passenger_count":10,
"pickup_location"”:"MIA",
"dropoff_location”:"Oceanview Hotel"”}}</tool_call>

Why the reward favors the fix. Under our reward in Sec. (i) the reflection receives a high
semantic score St for explicitly diagnosing the order constraint; (ii) the repaired calls exactly match
schema and parameters, yielding s.,; = 1 (order—invariant matching across the multiset of calls),
while the format/penalty factor F upweights the repaired trajectory because executability and depen-
dency checks now pass; (iii) the premature arrange_transportation in the failed rollout triggers
penalties in F' (dependency/executability), so Rcore is suppressed and the dynamic sampling filter
(Sec. down—weights such uninformative rollouts. Overall, the corrected plan yields a strictly
larger Ry than the erroneous one.

Summary. This example shows that explicit reflection converts a latent, long—range constraint
(“book before transport”) into a short textual diagnosis that the policy can optimize against. Our
order—invariant call equality avoids over—penalizing benign output permutations, while depen-
dency—aware format shaping in F' enforces inter—call preconditions. Empirically, such cases account
for a substantial share of multi—turn gains, whereas single—turn metrics remain stable.

A.3.2 CASE STUDY OF REDUNDANT CALL

Setup and failure mode. The user requests the list of services for all NYC banks operating for
> 10 years. The agent first queries the bank roster with get_operational_banks, then correctly
queries services for BO@1, but erroneously repeats the same service lookup for Be@1 instead of
proceeding to unseen banks (B@@2--B@04). This is a canonical redundant call error: wasted tool
budget without adding new information.

<tool_call>
{"name"”: "get_operational_banks",

"arguments”:{"city":"New York City"”,"min_years_operational”:10}}
</tool_call>

User (tool): [{"name":"get_operational_banks","results”:{"banks":[
{"bank_id":"B@@1"}, {"bank_id":"B002"}, {"bank_id":"B0@3"}, {"bank_id":"B@04"}]13}}]

<tool_call>

{"name":"get_bank_services"”,"arguments”:{"bank_id":"B001"}}
</tool_call>

User (tool): [{"name":"get_bank_services”,"arguments"”:{"bank_id":"B0@1"},
"results”:{"services":[...1} }]

Redundant (erroneous) repeat:
<tool_call>

{"name":"get_bank_services"”,"arguments"”:{"bank_id":"B00@1"}}
</tool_call>

User (tool): [{"name":"get_bank_services”,"arguments"”:{"bank_id":"B0@1"},
"results”:{"services":[...], "note”:"Duplicate request”}}]

Reflection and repair (ground truth). The reflection diagnoses duplication and prescribes de-
duplication; the corrected plan proceeds with the remaining, unseen IDs:

<reflect>
The last call repeated B0@1, yielding redundant information.

19

Under review as a conference paper at ICLR 2026

Avoid duplicates; continue with B@02, B0@3, B004 exactly once each.
</reflect>

<tool_call>{"name":"get_bank_services"”,"arguments”:{"bank_id":"B0@2"}}</tool_call>
<tool_call>{"name":"get_bank_services”, "arguments”:{"bank_id":"B0@3"}}</tool_call>
<tool_call>{"name":"get_bank_services"”,"arguments”:{"bank_id":"B004"}}</tool_call>

Why the model failed. The failure arises from (i) insufficient state tracking over the set of already-
seen entities (here, bank IDs), and (ii) weak inductive bias against issuing calls whose marginal
information gain is near zero. In multi-turn settings, local myopic policies often re-issue the last
successful pattern without cross-step deduplication.

How the reward steers recovery. Our scoring treats call sets as order-invariant but schema-strict;
redundant calls trigger the count-mismatch component in the format factor F' (penalizing |Ceays| #
|Gcans|) while EqualCalls fails due to multiset mismatch. The reflection text receives a positive
semantic score if it explicitly identifies the duplication and prescribes the missing IDs, encouraging
concise, actionable self-correction. Together, the structure score S and format factor F' downweight
redundant completions and upweight the repaired sequence.

Summary. This case shows that explicit reflection converts a silent efficiency bug into a supervised
correction step: the agent (1) cites the duplicated identifier, (2) enumerates the remaining targets, and
(3) completes them exactly once. Empirically, such reflection-shaped supervision reduces redundant
tool usage and improves multi-turn success without harming single-turn accuracy.

A.3.3 CASE STUDY OF MISSING CALL

Setup. The user asks to register four tax documents: (i) W-2 (ABC Corp), (ii) 1099-INT (First
National Bank), (iii) property tax statement (county assessor), and (iv) Form 1098 (mortgage
lender). The tool schema exposes a single function add_tax_documents(name, value, category,
priority) with name,value required.

Baseline failure (missing calls). The baseline assistant emits only two <tool_call>s (W-2, 1099-
INT) and then stops, yielding a 50% recall on required calls. Formally, let G,ys contain the four
intended calls and Cys the two produced calls. Then |Geais| = 4, |Ceans] = 2, and the call-set
equality test fails: EqualCalls(Ceans, Geans) = 0. This is a typical missing-call error in multi-item
requests: the model recognizes the pattern “one item — one call” but truncates the sequence, leaving
later items unprocessed.

Structured reflection (diagnosis). Our method takes the partially executed trajectory as negative
evidence and the original request as positive intent and generates an explicit reflection:

<reflect>“I missed 2 tool call(s). The user listed multiple items, and each item requires a
separate call. I should enumerate all items and complete the remaining calls.” </reflect>

The reflection correctly localizes the failure (under-counting of required calls), quantifies the deficit
(missed= 2), and states the repair rule (enumerate all items = one call per item).

Repairs (corrective calls). Conditioned on the reflection, the agent appends the missing tool calls
for the remaining items:

* name: Property tax statement; value: county assessor record; category: personal;
* name: Form 1098; value: mortgage interest statement; category: personal.
The assignments work—W-2,1099-INT and personal—property tax, 1098 are semantically consis-

tent: the former are employment/bank income records; the latter are household liabilities/taxes.(Any
schema-compatible categorization would pass executability; ours also preserves natural semantics.)

20

Under review as a conference paper at ICLR 2026

Why this matters. This case highlights a frequent multi-turn brittleness: once the agent produces
a plausible prefix of calls, it prematurely concludes and fails to cover all requested items. By mak-
ing missingness an explicit, trainable concept, structured reflection converts a sparse binary signal
(success/failure) into actionable supervision:

1. Detection: Compare item cardinalities and arguments; compute I[|Ceans| < |Geans|] and
list uncovered entities.

2. Diagnosis: Attribute the error to enumeration/coverage rather than formatting or parame-
ters.

3. Repair: Synthesize the exact missing calls with schema-valid arguments; preserve already-
correct calls.

Summary. Empirically, such instances improve the model’s coverage discipline: after training, we
observe higher multi-item completion rates with negligible increase in redundant calls, indicating
that the model learned “one-mentioned-item =- one-call” as a robust policy rather than overcalling.

A.3.4 CASE STUDY OF ARGUMENT ERROR

Setup. The tool schema exposes multiple functions with schema—strict

parameters (e.g., check_plant_water_level(plant_location:string),
start_watering(plant_location:string, duration:number),
start_trimming(hedge_location:string), ...). The user requests two primary actions in

the backyard: (i) trim hedges and (ii) water all potted plants for about 10 minutes; afterwards ensure
plants have enough water and dispose clippings.

Baseline failure (argument error). The assistant issues
<call>[{"name":"check_plant_water_level”, "arguments”:{}}]</call>

omitting the required key plant_location. The tool returns a schema warning that the arguments
“did not match expected schema.” Under our reward, the call-level indicator s.,; is 0 because the
produced call fails schema equality (tool name matches, but the argument map does not).

Structured reflection (diagnosis). The reflection generated by our process states that the call
“failed because it did not include the required arguments needed by the function’s schema,” and pre-
scribes: “ensure all necessary parameters are provided according to the function’s documentation.”
This localizes the error to parameter mis-specification (not tool selection or ordering), and points
to the concrete fix—satisfy the schema.

Repairs (efficient plan consistent with the request). Given the user’s 10-minute target and the
backyard scope, the corrected action set executes the two core operations with schema-valid argu-
ments:

e start_watering(plant_location="backyard”, duration=10)
e start_trimming(hedge_location="backyard")

These can be dispatched in parallel (independent resources), achieving the requested time budget
while ensuring plants receive sufficient water and hedges are trimmed. This replaces the invalid
pre-check with a direct, time-bounded watering call that already satisfies the user’s constraint.

Why this matters. Argument errors are common in tool use and typically yield sparse feedback
(“schema mismatch”). By forcing the model to (i) recognize the missing required field and (ii) re-
state the schema-conformant fix, the reflection step converts a low-information error into actionable
supervision. In our benchmark, such instances consistently improve:

1. Schema adherence: higher exact-match rate on name/arguments.

2. Planning under constraints: selection of parameterized calls (duration=10) aligned with
user constraints instead of brittle pre-checks with empty arguments.

3. Stability: fewer retries and warnings downstream because calls are executable on the first
attempt.

21

Under review as a conference paper at ICLR 2026

Summary. This case illustrates how reflection-guided repair turns a malformed <call> into a
compact, correct, and time-efficient action plan.

A.4 TEST DATA CASE STUDY

In this section, we present two representative test cases and their corresponding evaluation results as
a case study, providing an intuitive demonstration of the effectiveness of our method and the model’s
self-reflection capability for tool-call repair. Since the original cases are relatively long, we include
their full content in the supplementary material for reference and provide only the analysis here.

A.4.1 CASEI
Setting. The tool set exposes three functions: getRecipes(max_time, meal_type),
getSmoothielngredients(max_time), and findComplementaryRecipes(recipes,

ingredients). The user asks for breakfast recipes under 15 minutes and smoothie pairings
under 5 minutes.

Failure mode (pre-training). The baseline model immediately issues

[{"name":"findComplementaryRecipes"”, "parameters"”:{}}]

which violates the function schema (both recipes and ingredients are required). The tool returns
a schema-warning. Under our reward, this yields sc,y = 0 and triggers format penalties F' < 1 due
to missing required parameters.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that the failure arises from absent inputs, then correctly decomposes the task into produce
inputs — compose:

n,on non

[{"name":"getRecipes”, "parameters”:{"max_time":15, "meal_type":"breakfast”"}}]
[{"name":"getSmoothielngredients”, "parameters”:{"max_time":5}}]
[{"name":"findComplementaryRecipes”,

"parameters”:{"recipes”: <from getRecipes>, "ingredients"”: <from

getSmoothielngredients>}}]

This satisfies the schema strictly (tool names and parameter maps match), making the call set correct
and executable.

Why our method helps. (i) Reward shaping: The instance accrues a hard penalty when re-
quired fields are absent; after repair, s¢y flips to 1 and F' — 1, raising Rcye = S - F' substantially.
(i) Sequence-level RL: The GSPO-style sequence-ratio with dual clipping aligns the optimiza-
tion granularity with the sequence reward, while DAPO-style dynamic filtering removes near-zero-
advantage rollouts (all-wrong/all-correct), sharpening learning signals for this failure mode.

Takeaway. Compared to the baseline that jumps to composition with empty inputs, the trained
policy learns to (a) diagnose the schema error, (b) stage prerequisite calls to produce the missing
inputs, and (c) complete the composition with a schema-valid call set. This precisely matches our
benchmark’s objective: enable robust, multi-turn tool use via reflection and repair.

A.4.2 CASEII

Setting. Available tools include get_current_season(), get_seeds_by_season(season),
filter_seeds_by availability(seeds), purchase_seeds(seeds, quantity), and
calculate_total_cost(purchased_seeds). The user asks to buy 10 packets of seasonal
vegetable seeds and report the total cost.

Failure mode (pre-training). The baseline calls the aggregator first, with no inputs:

n.on

[{"name":"calculate_total_cost"”,"parameters”:{}}]

22

Under review as a conference paper at ICLR 2026

This violates the required schema (purchased_seeds missing), producing a warning and yielding
Scall = 0 and a strong format penalty F' < 1 in our reward.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that costing requires purchased items, then executes a staged pipeline to materialize prereq-
uisites before aggregation:

n,.n non

[{"name":"get_current_season”, "parameters”:{}}]

non

[{"name":"get_seeds_by_season”, "parameters”:{"season”:"<CUR_SEASON>"}}]
[{"name":"filter_seeds_by_availability", "parameters”:{"seeds":<SEASONAL_SEEDS>}}]
[{"name": "purchase_seeds", "parameters”:{"seeds" :<AVAILABLE_SEEDS>, "quantity":103}}]
[{"name":"calculate_total_cost"”,"parameters”:{"purchased_seeds":<PURCHASED>}}]

Each call now matches tool name and parameter map exactly (schema-strict), so Sc;y = 1 and
F— 1.

Why it works. Reward design penalizes missing required fields and redundant structure, while
granting full credit only when the <call> set exactly matches the ground truth (schema-strict,
order-invariant). The sequence-level RL objective (GSPO-style ratio, dual clipping) aligns opti-
mization with sequence rewards, and DAPO-style dynamic filtering removes near-zero-advantage
groups, concentrating updates on informative failures. Together these guide the policy to diagnose
schema errors, stage prerequisite calls, and complete the costing correctly.

Takeaway. The trained policy no longer “guesses” totals from empty inputs. Instead, it plans —
acquires data — purchases — aggregates, a behavior precisely targeted by our reflection-and-repair
rewards.

A.5 THEORETICAL ANALYSIS

We analyze the main design choices of our reward in Sec. §3.2]and the RL objective in Sec. §3.3]
Throughout, Sim € [0,1], all weights are nonnegative, presence masks are indicators, and
clip(z,a,b) = min{b, max{a,z}}. To avoid symbol overloading, we denote by ey, the format-
penalty attenuation scalar used in Sec. @ (called r there), and by rseq the sequence-level impor-
tance ratio in Sec. §3.3]

A.5.1 CONSISTENCY OF PRESENCE-MASK NORMALIZATION

Recall

Wely Spef + Wele Scal + Wil Sfinal
Wact ’

where we > 0, I, € {0, 1}, at least one Iy = 1, Sref, Sfinat € [0, 1], and seur € {0, 1}

S:

Waet = wily + wede + wely, (30)

Lemma 1 (Convex-combination form). Let A = {k € {r,c,f} : I[;, = 1} and define

ap = <2k forke A G1)
ZjEij

Then ax >0, Y . 4o = 1, and

S = 5 o S, With 8¢ = Spef, S¢ = Scall, St = Sfinal- (32)
ke A

Proof. Since I, = 1iff k € A, the numerator equals), . , wgsg and Wee = >, c 4 wi > 0.
Divide both to obtain the stated form.

23

Under review as a conference paper at ICLR 2026

Proposition 1 (Boundedness, stability, and scale invariance). With W, > 0:

(a) S €0, 1] and, more sharply, S € [minge 4 S, maxyec 4 Sk|.
(b) If one only toggles absent parts (keeps A and {wy, }r.c 4 unchanged), then S is unchanged.
(c) For any A > 0, replacing each active weight by Awy, leaves S unchanged.

Proof. (a) By Lemma 1, S is a convex combination of {s}xe.4; the interval bound follows from
s € [0, 1]. (b) Absent-part toggles do not change .4 nor the active wy,. (¢) Common scaling cancels
in numerator/denominator.

Corollary 1 (Continuity and Lipschitzness). Fix A and wy, for k € A. Then S is an affine (hence
continuous) map of (si)re.a With
(S =8 < > onlsk—sil < max|se — i, (33)
ke A
so S is 1-Lipschitz w.r.t. the {,,-norm on the active scores.

Remark. The definition via clip[oﬂ(-) in equation is not needed for .S since the convex-
combination form already implies S € [0, 1].

A.5.2 FORMAT FACTOR: BOUNDEDNESS, MONOTONICITY, AND EQUALCALLS
ATTENUATION

Let
]Dtotal - Pmiss + Bextra PCXU‘& + 7count PCOUTI[? /BCXU‘ZU ’}/count Z 07 P. Z 07 (34)
and define the attenuation scalar

rre uce » E ua’lca’lls Cca Sy GCH S/
Ttmt = ¢ d . (! !) T'reduce € (07]-] (35)
1, otherwise,
Consider
F = Clip[ovl] (1 — Am Protal rfmt) s Am > 0. (36)

This is equivalent to the piecewise definition in equationsince Priss= Pextra=FPeount=0 implies the
inner value equals 1.

Proposition 2 (Core properties of F').

(a) Boundedness and regularity. F' € [0, 1] for all inputs; F is continuous, piecewise affine in
(Phisss Pextra; Peount) and 1-Lipschitz w.r.t. its scalar argument before clipping.

(b) Monotonicity. For fixed (A, 7tmt), F' is nonincreasing in Priss, Pextray Peount @nd nonin-
creasing in A\, and in rgye.

(c) EqualCalls attenuation improves F. 1If EqualCalls holds so that rgy is replaced by
Treduce < 1, then F' weakly increases.

(d) Plateau characterization. F = 1 iff A\, Powai"tmt = 0 (€.2., Powr = 0 or A\, = 0). If
Am > 0 and 7gy > 0, then F' = 0 iff Por > 1/ (A Ttmt)-

Corollary 2 (Sensitivity bound). Off the plateaus (1 — A\, Pow7tmt € (0, 1)),
| AF | <)\mrfmt (|APmiss| + Bexlra‘APexlra| + 'Ycounl|APcount|) (37)

A.5.3 CORE REWARD WITH SIMILARITY BACKOFF: SIGNAL AND VARIANCE CONTROL

Let Reore = S - F'as in equation@ The total reward uses a backoff when R is very small:
Rt — {Chp[o,l](Rcore)a Reore 2 €, (38)
clipjo,q (wy - Sim(concat(C), concat(G))), otherwise,
with wyp € (0,1] and € > 0. Note Reore € [0, 1] already, hence clipping is redundant but harmless
and keeps the two branches notationally symmetric.

We analyze its effect under a standard policy-gradient estimator VyE[Roal] =
]E[Rtotal VG IOg WG(')]'

24

Under review as a conference paper at ICLR 2026

Lemma 3 (Uniform bounded variance of the reward). Since Ry € [0,1], we have
Var(Rioa) < 1 for any data distribution.

Lemma 4 (Non-degenerate gradient second moment on the backoff branch). Let B =
{Rcore < €} with P(B) = p > 0. Assume Sim(concat(C), concat(G)) > o a.s. on B for some
o > 0,and E[||Vglog mo(-)||* 1] > 0. Then

2 2
E[|| Row Vologmo()[|* | = (wno)? B[[Vologmo()||* 18] > 0. (39)
Implication. When R requently approaches 0 (in the early stages of training), the backoff branch
ensures that the second moment of the gradients does not degenerate; combined with the variance

upper bound from Lemma 3, this helps stabilize the optimization updates.

A.5.4 SEQUENCE-LEVEL IMPORTANCE SAMPLING AND CLIPPING

Let the sampled completion be 0 = (o1, ...,o0r), and define the sequence-level (geometric-mean,
length-normalized) ratio
" oo g 0c) | d (001)
790t | 4, O<t 1 7Ot | -
Feea (0) = = exp(f log p), pr = . (40)
) (U o o0 | 0)) P2 logn) = o

Proposition 3 (Length-independent ratio range under bounded log-ratios). Iflog p; € [—L, L]
a.s. for some L > 0, then

el < reeq(0) < b forallT > 1, 41)
whereas the unnormalized product ratio ranges in [e L7 271

Implication. The geometric mean aligns the ratio granularity with the sequence-level reward in
equation[26] prevents exponential blow-up with 7', and—together with dual clipping—reduces vari-
ance at the sequence level.

A.5.5 DyNAMIC FILTERING OF PROMPT GROUPS (DAPO-STYLE)

Let a prompt group produce G rollouts {o;}$; with rewards R; € [0, 1] and batch z-scored advan-
tages

= G
R R, —R —_—) _
A, = — Rzazgj, sp = EZ(Rj—R)Q > 0. (42)
Jj=1 j=1
Define the accepted set
S={i:|A|>nw}, 0<|S|<G, Var({Ri}E,) > 7 > 0. (43)

Write the per-sample (sequence-level, dual-clipped) PPO-like term as
‘ei (9) = min { rscq,i (0) Ai; Chp(rscq,i (0)7 1-— Elows 1 + Ehigh) A’L }» (44)

and denote its gradient by g;(0) = V¢;(0). Assume the usual score-function bound and clipped
ratio range:

Hve log 74(04,¢ q,Oi,<t)H < Br, Tseq,i(0) € [1— €lows 1+ €nign |- (*)

A uniform bound on per-rollout gradients. Since rg.q ; (6) is the geometric mean of token ratios,

o]
1
VQTseq,i(e) = Tseq,i(e) T Z Vi IOg e (Oi,t | q, 071,<t)- (45)

loil =

Using () and that the clipped branch is constant on plateaus, there exists a finite Cy, = (1+4¢high) Bx
such that A
llgi(@)|] < Cy Al for all 4, 6. (46)

25

Under review as a conference paper at ICLR 2026

Lemma 5 (Zero or near-zero advantages). (a) If /L- = 0, removing o; leaves the group-wise
expected gradient unchanged.

(b) If \AZ| < Tadv, then, for any 6,
[E[gi(0)]] < Cymav, E[lg:()?] < C) iy (47)

Proof. (a) The contribution is proportional to A;. (b) Apply equationand take expectations.

Bias and variance effects with é normalization. Let the filtered group gradient be

1 1 &
g9(0) = rel > a0), g0) = rel > 9:(6) (unfiltered). (48)
ies i=1
Define the discarded set S¢ = {1,...,G} \ S. Then
1
E[g(0)] - Elg(0)) = — 5 >_ El9:(0)); (49)
i€S¢e

5]

H]E[g(@)]fE[g(F))] H < ‘Z Cymaav < Cy Taavs

using Lemma 5(b). Moreover,

E

1 ? ST 22

|z 0| | < ot (50)
iese

thus, discarding near-zero advantageous terms induces at most an O(7,2)-level change in the second

moment; with respect to the é normalization, it does not introduce any additional scaling bias.

Acceptance constraints avoid degeneracy. The constraints 0 < |S| < G and Var({R;}) > 7Tvar
ensure: (i) the batch standardization sg is well-defined; (ii) both positive and negative (or at least

non-identical) signals are present, preventing the trivial zero-gradient case where all A; are identical.
Consequently, §(0) is a non-degenerate direction whenever useful learning signal exists.

Asymptotic unbiasedness with vanishing threshold. If the threshold decays 7.") | 0 and the law
of A; has a continuous density at 0, then the discard probability P(| A;| < T(t)) — 0, and

adv

lim | El3.(9)] - El®)] || = o. (51)

t—o00

i.e., the dynamic filtering becomes asymptotically unbiased while retaining finite-time variance-
reduction benefits.

Summary. Dynamic filtering deletes rollouts whose contributions are provably negligible (zero or
O(Tagy)), thereby reducing variance and compute without altering the expected update in the limit
Tady — 0; using the same 1/G normalization as equationavoids spurious scaling bias.

A.5.6 CONVERGENCE CONSIDERATIONS FOR THE CLIPPED SEQUENCE-LEVEL OBJECTIVE

Consider the surrogate objective Jry(6) in equation 26} where rewards are bounded in [0, 1] and the
sequence-level importance ratios are dual-clipped to [1 — €iow, 1 + Ehigh |-

Assumptions.

(A1) Bounded scores. There exists B, < oo such that for all histories (g, o) and tokens o,
[Volog (ot |q. 0<1)|| < B

(A2) Bounded rewards & finite clipping. For each rollout o;, R; € [0,1] and 7geq,:(0) €
[1 — Elow, 1+ 5high] with 0 < g1ow, €high < OO.

26

Under review as a conference paper at ICLR 2026

(A3) Non-degenerate batch dispersion. On accepted groups, Var({R;}%.,) > 7var > 0, so
A; = (R; — R)/std(R) are well-defined.

(A4) Vanishing filtering. 7
{)) — 0.

Tadv

(AS) Stepsizes. Robbins—-Monro conditions: Y, 7; = oc and Y, n? < oc.

)1 0 and the law of A; has a continuous density at 0, so P(| 4] <

adv

Lemma 6 (Bounds on per-sample gradients and second moments). Leto = (o, ... ,o‘o|) and
Tseq(0) denote the (clipped) sequence ratio. Then

lol

1
VGrseq(a) = Tseq(e) H Z V@ IOg Uy (Ot ‘q; 0<t)7 Hv()rseq ||]- + 5h1gh B . (52)
t=1

Moreover, the PPO-style term is piecewise smooth and its gradient magnitude is bounded by
Cy = (1 + enign) Bx | Al; together with (A3), |A] < \/% yields a uniform second-moment bound

E[|Voli(0)]?] < Ca < .

Lemma 7 (Asymptotic unbiasedness under vanishing filtering). Let g(6) denote the full (unfil-
tered) stochastic gradient and g (6) = & 3., A,|> 9i(0) the filtered version with & normalization.

Under (A4) and the bounded second moments above,

171?01 | E[g-(0)] —E[g(0)] || = 0 forall6. (53)

Theorem 1 (Convergence to a stationary point of the surrogate). Suppose (Al)-(AS) hold.
Then the iterates of stochastic gradient ascent on Jg(#) with the dynamic filtering scheme converge
almost surely to the set of stationary points of the surrogate objective.

Proof sketch. By Lemma 6 and the reward boundedness (Lemma 3), the stochastic gradients have

uniformly bounded second moments; the objective is bounded and piecewise smooth (kinks of mea-

sure zero). Lemma 7 guarantees that the bias due to filtering vanishes as Td(d) — 0. Therefore the

noisy gradient process forms a Robbins—Monro stochastic approximation with asymptotically un-
biased gradients and square-summable noise, yielding a.s. convergence to stationary points of Jrr
(e.g., Kushner—Yin/Bottou).

Remarks. (i) The min-with-clipping introduces bias w.r.t. the true off-policy objective, but ensures
variance control and stability; the theorem concerns the surrogate we optimize. (ii) Sequence-level
ratios and sequence-level clipping align the gradient scale with the sequence reward, avoiding to-
ken/sequence granularity mismatch and contributing to the boundedness needed above. (iii) In prac-
tice, we keep Ty, and the clip window fixed and decay T,4v, Which satisfies the lemmas’ conditions
and matches our training protocol.

27

	Introduction
	Related Works
	Tool-augmented Large Language Models
	Self-Correction in LLMs

	Method
	Tool-Reflection-Bench
	Perturbation-based Disruptions
	Positive Samples Transformations
	Reflection Repair Process

	Reward Design
	RL for Tool-Reflection-Bench

	Experiments
	Experiment Settings
	Experiment Results
	Result on BFCL v3
	Result on Tool-Reflection-Bench

	Conclusion
	Appendix
	Use of LLMs
	Prompt for Perturbation-based Disruptions
	Prompt for Call-Order Swap
	Prompt for Redundant Call
	Prompt for Missing Call
	Prompt for Argument Error

	Training Data Case Study
	Case Study of Call-Order Swap
	Case Study of Redundant Call
	Case Study of Missing Call
	Case Study of Argument Error

	Test Data Case Study
	Case I
	Case II

	Theoretical Analysis
	Consistency of Presence-Mask Normalization
	Format Factor: Boundedness, Monotonicity, and EqualCalls Attenuation
	Core Reward with Similarity Backoff: Signal and Variance Control
	Sequence-Level Importance Sampling and Clipping
	Dynamic Filtering of Prompt Groups (DAPO-style)
	Convergence Considerations for the Clipped Sequence-Level Objective

