
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAILURE MAKES THE AGENT STRONGER: ENHANCING
ACCURACY THROUGH STRUCTURED REFLECTION FOR
RELIABLE TOOL INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-augmented large language models (LLMs) are typically trained via super-
vised imitation learning or coarse-grained reinforcement learning, approaches that
primarily optimize one-shot tool calls. Existing practices of self-reflection largely
rely on heuristic prompting or unidirectional reasoning traces: the model is en-
couraged to “think more,” rather than to treat error diagnosis and correction as
a learnable capability. This makes them fragile in multi-turn interaction set-
tings—once a call fails, the model tends to repeat the same mistake instead of
recovering. To address this issue, we propose structured reflection, which trans-
forms the “from error to repair” process into a first-class, controllable, and train-
able action. The agent produces a concise yet precise reflection process: specifi-
cally, the model diagnoses the error based on evidence from the previous step and
then proposes a correct and executable follow-up call. During training, we com-
bine DAPO and GSPO’s objective functions and design a more principled reward
mechanism tailored to tool calling, optimizing the stepwise strategy Reflect →
Call → Final. To evaluate this capability, we introduce Tool-Reflection-Bench, a
lightweight benchmark dataset that programmatically verifies structural validity,
executability, parameter correctness, and result consistency. Tasks in the bench-
mark are constructed as miniature trajectories of Erroneous Call → Reflection →
Corrected Call and are split into disjoint training and testing sets. Experiments
on BFCL v3 and Tool-Reflection-Bench show that our method achieves signifi-
cant improvements in multi-turn tool-call success rates and error recovery, while
also reducing redundant calls. These results demonstrate that making reflection
explicit and treating it as an optimization objective can substantially enhance the
reliability of tool interaction, providing a reproducible pathway for agents to grow
stronger by learning from failure. We will release all the code and datasets as open
source once the paper is accepted by the community.

1 INTRODUCTION

The integration of external tools with large language models through tool calling represents a sig-
nificant breakthrough in the development of agents. It transforms large language models from mere
text generators into highly practical tools for interacting with humans WANG et al. (2025); Qu et al.
(2024a), significantly enhancing the ability of AI agents to solve complex real-world tasks Huang
et al. (2024); Qin et al. (2023); Qu et al. (2024b). Tool calling bridges the gap between the vast in-
ternal knowledge of LLMs and external resources, enabling LLMs to access up-to-date information,
perform delicate computations, and more, thereby unlocking their broad potential for applications
across multiple domains Zhong et al. (2023); Theuma & Shareghi (2024); Hao et al. (2024).

Currently, the training of tool-call capabilities in large language models typically relies on super-
vised fine-tuning and reinforcement learning Chen et al. (2025b); Qian et al. (2025), where these
methods optimize the ability for single-turn tool calls through carefully designed reward mecha-
nisms. However, these approaches face several challenges in the context of tool calling. First, the
issue of rewards in tool calling is particularly prominent—small errors in parameter selection or
formatting often render the entire function call invalid, thus limiting the effective learning signal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

5

10

15

20

25

Ov
er

al
l M

ul
ti-

tu
rn

 A
cc

ur
ac

y
(%

)

5.12%

7.12%

11.00%

14.88%
16.25%

20.75%

Llama-3.1-8B-Instruct-FC (Ori)
Llama-3.1-8B-Instruct-FC (Ours)
Qwen2.5-7B-Instruct-FC (Ori)
Qwen2.5-7B-Instruct-FC (Ours)
Qwen3-4B-Instruct (Ori)
Qwen3-4B-Instruct (Ours)

(a) Results on BFCL v3

(a) Results on BFCL v3

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
pa

ir@
1

(%
)

2.30%

6.10%

3.10%

0.70%

4.70%

2.40%

9.30% 9.60%

14.90%

LongCat-Lite-8K-Chat
GPT-4o-mini
GPT-4.1-mini
Llama-3.1-8B-Instruct-FC (Ori)
Llama-3.1-8B-Instruct-FC (Ours)
Qwen2.5-7B-Instruct-FC (Ori)
Qwen2.5-7B-Instruct-FC (Ours)
Qwen3-4B-Instruct (Ori)
Qwen3-4B-Instruct (Ours)

(b) Results on Tool-Reflection-Bench test set

(b) Results on Tool-Reflection-Bench test set

Figure 1: In the experiments on BFCL v3 and Tool-Reflection-Bench, our method significantly
improves the multi-turn tool-calling accuracy of several open-source LLMs on BFCL v3. At the
same time, it substantially enhances the error-repair rate for tool calls on the Tool-Reflection-Bench
test set, achieving performance that even surpasses that of closed-source LLMs with comparable
parameter sizes.

Lattimer et al. (2024). Second, existing methods generally rely on unidirectional reasoning, which,
while sufficient for simpler scenarios, has clear limitations: when LLMs make mistakes during tool
calls, they often struggle to locate the root cause of the error Li et al. (2025). While generating
correct function calls is crucial, it is even more important for LLMs to learn how to identify and
correct their own mistakes Ye et al. (2024).

To address the above-mentioned issues, we propose an innovative reflection process aimed at er-
ror localization and correction through explicit reflection steps, which differs from existing forward
reasoning methods. Specifically, we design a process in which the LLM intentionally makes mis-
takes during tool calls, carefully crafts reflection content based on the errors, and then generates the
correct call. Through this approach, we transform the self-correction ability of large models from
a heuristic process Yang et al. (2024) into a clear, trainable capability. Our training approach is
primarily reinforcement learning–based. During the reinforcement learning process, we specifically
design a customized reward mechanism tailored for tool-calling scenarios, with a particular em-
phasis on multi-turn interactions. Concretely, the reward design encompasses multiple dimensions,
including format reward, tool-name reward, parameter reward, and semantic reward of reflection,
which together provide the model with multi-dimensional feedback and effectively guide its learn-
ing, and we further combine DAPO’s decoupled clipping range and dynamic sampling—expanding
exploration while skipping near-zero-advantage rollouts—with GSPO’s sequence-level importance
sampling and same-granularity clipping, which avoids token/sequence mismatch and stabilizes op-
timization. With this training methodology, our approach equips LLMs with genuine self-reflection
and error-correction capabilities. On the BFCL v3 benchmark, our method yields significant im-
provements in LLM accuracy for multi-turn tool calling, thereby demonstrating its effectiveness in
real-world applications.

We construct a Tool-Reflection-Bench based on the BUTTON dataset Chen et al. (2024) style. First,
we collected tool-call failure cases from real-world scenarios and various benchmarks, analyzing and
summarizing several common failure patterns. Next, We selected several existing tool-call datasets
Qin et al. (2023); Liu et al. (2024b) and randomly combined them according to the call style of the
BUTTON dataset and introduced these failure patterns into the data, disrupting the originally correct
call processes to generate failure cases. Finally, we meticulously designed a reflection process to re-
pair these failures, resulting in successful tool calls. The training set includes the complete process
described above to train LLMs to achieve true self-correction capabilities, while the test set only
contains the first two steps, used to evaluate the self-correction abilities of the LLMs. By construct-
ing the Tool-Reflection-Bench in this manner, combined with our custom reward mechanism for tool
calling, we have made breakthroughs in LLMs’ self-correction abilities during training. Particularly
in multi-turn tool-calling scenarios, we observed significant improvements in accuracy. Through
the reasoning process from failure to correction, LLMs can more effectively identify and learn from

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

potential mistakes, thus enhancing the model’s stability and robustness in interactions. This makes
the agent’s behavior more robust and powerful.

In summary, our contributions are as follows:

• We introduce an explicit, trainable reflection process that diagnoses the cause of a failed
tool call using prior evidence and proposes a corrected, executable call. This transforms
the ”from failure to repair” process from a heuristic method into a learnable action strat-
egy, enabling LLMs to genuinely possess self-reflection and error-correction capabilities,
thereby enhancing the agent’s multi-turn interactions with users.

• We design a more effective reward mechanism for tool call, tailored for RL training,
using a GRPO-style objective function. This approach employs multi-dimensional re-
wards—format executability, tool name accuracy, parameter correctness, and semantic con-
sistency—to mitigate sparse rewards and propagate signals across multi-turn trajectories.

• We propose Tool-Reflection-Bench, which collects failure patterns from real interaction
scenarios and benchmark datasets, injects perturbations into correct calls, and attaches a
reflection process to repair the calls. This allows for training LLMs in their Self-Correction
ability in tool-calling scenarios.

• Our method significantly improves the accuracy of multi-turn tool calls and the ability to re-
cover from tool call errors, while maintaining competitive single-turn tool call performance.
We validate this by experiments on BFCL v3 Patil et al. and Tool-Reflection-Bench.

2 RELATED WORKS

2.1 TOOL-AUGMENTED LARGE LANGUAGE MODELS

Integrating external tools into large language models has become a key approach to enhancing their
functionality, surpassing the simple task of text generation. Traditional LLMs are limited by static
knowledge, constrained to the data they were trained on. However, tool-augmented models extend
the capabilities of LLMs by enabling them to interact with external resources Zhang et al. (2024);
Hao et al. (2025) (such as APIs Li et al. (2023), databases, and computational engines) through tool
calls. This extension allows LLMs to access real-time data, perform external computations, and even
interface with external hardware, making them more practical for solving complex real-world tasks
that require dynamic information or specific external operations Chen et al. (2025a). ToolBench
Qin et al. (2023) demonstrates the feasibility of integrating external tool calls into LLMs. Through
such systems, LLMs can handle more specialized tasks. However, one major challenge of tool
augmentation is how to effectively train LLMs to use these tools. Existing training methods, such as
supervised fine-tuning and reinforcement learning, typically focus on optimizing single tool calls.
This type of interaction often does not involve multi-turn tool calls or responses, which makes the
limitations of current methods particularly apparent when errors occur during tool usage. In such
cases, the model’s ability to recover from errors becomes crucial.

2.2 SELF-CORRECTION IN LLMS

Self-correction in large language models refers to the model’s ability to diagnose its own errors and
correct them based on previous actions Huang et al. (2023); Liu et al. (2024a). However, this area
has not been fully explored. Existing self-correction techniques mostly rely on heuristic methods or
unidirectional reasoning processes Renze & Guven (2024).

Self-Refine framework Madaan et al. (2023), which involves having LLMs provide an initial re-
sponse, followed by a reflection process where the model identifies flaws and makes improvements.
Specifically, the same LLM acts as both the responder and the evaluator: the model first generates an
initial response, then self-reflects and iteratively revises the output. This approach has been shown
to enhance the performance of LLMs in certain domains. However, subsequent studies Wu et al.
(2024); Vladika et al. (2025) have found that relying solely on the model itself often fails to de-
tect subtle errors. Some research Jiang et al. (2025); Zhao et al. (2025a) has introduced auxiliary
verifiers (such as additional models or mechanisms Saveliev & Dendiuk (2024); Feng et al. (2025))
to help check the correctness of the initial response. This external self-checking assistance avoids

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

I would like to find the birth
date of the author of Hamlet.

I should use
<call>get_birth… <call>

Maybe I should use
<call>get_date…<call>

<call>get_author…<call> <r>Wait, I should first get the autor
name of Hamlet, then I can find the

birth date based on the name.</r>
<call>get_author…<call>

<call>get_birth…<call>
{'name': 'get_author‘, …}

{‘name’: ‘get_birth’, …}

{‘name’: ‘get_time’, …}

…

{‘name’: ‘get_date’, …}

Tools

Maybe I should use
<call>get_time…<call>

<f>The answer is…<f>

Query

I should use
<call>get_birth…<call>

Figure 2: We illustrate the effectiveness of our method with an example. As shown in the figure, the
left side presents the tool panel, while the upper-right part depicts industry-standard self-correction
approaches, where models attempt to fix errors through heuristic trial-and-error reasoning or by
relying on external feedback. In contrast, the lower-right part shows our approach: we introduce an
explicit forced reflection process <r>, enabling the model to truly master the ability to repair errors
based on its own failures.

unnecessary repeated revisions, improving efficiency and enhancing the model’s reasoning and ver-
ification capabilities. However, this approach remains highly sensitive to the specific phrasing of the
prompts, with different prompt wordings leading to varying results Liu et al. (2024a).

However, even though these methods have somewhat improved the capabilities of LLMs, their
essence still relies on external feedback to assist in correcting their own errors. In contrast, our
work introduces a reflection method that transforms self-correction into a trainable and controllable
capability. The reflection process is an explicit part of the task, where the model actively evaluates
its previous actions, identifies errors, and generates explicit corrections. This process is achieved
through error localization, diagnosis, and correction, which goes beyond simple unidirectional rea-
soning and can be integrated into the training process. By providing supervisory signals during
training, our approach enables LLMs to truly possess self-correction capabilities, which are then
reflected in tool calling tasks.

3 METHOD

3.1 TOOL-REFLECTION-BENCH

The construction of Tool-Reflection-Bench consists of the following steps: perturbation-based dis-
ruptions, positive samples transformations, and the reflection repair process. The original positive
samples are derived from BUTTON Chen et al. (2024) transformations and self-constructed based
on few-shot prompts. The entire benchmark is divided into a training set and a test set, with approx-
imately 5,000 samples in the training set, in addition to the reflection-augmented data constructed
as described above, the training set also contains a very small portion of original data drawn from
BUTTON Chen et al. (2024) and XLAM Zhang et al. (2024). And around 1,000 samples in the
test set, the test set is exclusively composed of perturbation-derived items and does not include raw,
unperturbed positives from BUTTON or XLAM.

3.1.1 PERTURBATION-BASED DISRUPTIONS

Let the initial correct message sequence be

D+ =
(
msys

0 , musr
1 , mast

2 , mtool
3 , mast

4 , mtool
5 , . . . , mast

2k , m
tool
2k+1, . . . , m

final
n

)
, (1)

where msys
0 is the system prompt, musr

1 the user query, mast
2i the assistant’s i-th tool call in structured

form (e.g., <call>[{. . . },{. . . },...]</call>), mtool
2i+1 the tool return (JSON), and mfinal

n the
final answer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We define a set of disruption operators

P = {P1, P2, P3, P4}, (2)

each operating on an assistant call mast
2k and instantiating a common failure mode:

1. P1 call-order swap: replace the current tool call with the next-round tool call dialogue and
force an error.

2. P2 redundant call: repeat the same tool at the step (unchanged/irrelevant arguments) and
force an error.

3. P3 missing call: replace the intended tool by another tool and force an error.
4. P4 argument error: randomly corrupt the arguments of a call (missing/typed/alias/bound-

ary) and force an error.

These operators specify how a correct tool call can be broken.

3.1.2 POSITIVE SAMPLES TRANSFORMATIONS

Given a clean trajectory D+ and a chosen operator Pj ∈ P acting on step 2k, we produce the
negative (erroneous) context; no repair is performed in this step. We construct the erroneous call

m̃ast
2k = ApplyPerturbation

(
mast

2k , Pj
)
, (3)

and simulate the tool’s error feedback with a LLM L:

m̃tool
2k+1 = L

(
m̃ast

2k ; L
)
. (4)

This yields the negative trajectory prefix

D− = Perturb
(
D+, Pj

)
=
(
msys

0 , musr
1 , . . . , m̃ast

2k , m̃
tool
2k+1

)
, (5)

which will later serve as evidence of failure. At this stage, the item consists only of the broken call
and its error signal.

3.1.3 REFLECTION REPAIR PROCESS

Given a clean trajectory D+ and its perturbed prefix D−, we present the LLM with a paired view of
the step-2k evidence:

clean: (mast
2k , m

tool
2k+1) vs. broken: (m̃ast

2k , m̃
tool
2k+1). (6)

The model outputs a response.
⟨reflect⟩r⟨/reflect⟩, (7)

where r briefly diagnoses the discrepancy, and c proposes the fixed tool call. We then apply human
supervision to obtain (r⋆, c⋆), with c⋆ set to the original correct call:

(r, c)
post–editing

==========⇒
human supervision

(r⋆, c⋆), (8)

LΣ(c
⋆) = Success Call. (9)

The finalized item is packaged as

x =
(
D−, r⋆, c⋆, D+

>2k+1

)
, (10)

where D+
>2k+1 is the untouched suffix of D+ (including mfinal

n). We retain x only if: (i) tags/JSON
are well-formed; (ii) c⋆ is executable; (iii) r⋆ correctly cites the clean–broken contrast.

3.2 REWARD DESIGN

Preliminary. Given a model completion C and a ground truth G, we decompose both into three
(possibly empty) parts:

C 7→
(
cref, Ccalls = {ci}mi=1, cfinal

)
, G 7→

(
gref, Gcalls = {gj}nj=1, gfinal

)
. (11)

Here cref (reflection) is the diagnosis text wrapped in <reflect></reflect>, Ccalls is the multiset
of tool calls wrapped in <call></call>s produced by the model, and cfinal is the message wrapped
in <final></final>. The ground truth can alse be decomposed into three parts mentioned above.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Component scores. We compute three component scores:

sref = Sim(cref, gref), scall = I[EqualCalls(Ccalls, Gcalls)] , sfinal = Sim(cfinal, gfinal), (12)

where Sim∈ [0, 1] is a semantic similarity function, and I[·] is the indicator:

I[P] =

{
1, if P is true,
0, otherwise.

(13)

We say EqualCalls(Ccalls, Gcalls) holds iff the two sets of produced calls can be put in a one-to-one
correspondence such that for every matched pair the tool name is identical and the argument is
identical.

Normalization with presence masks. Our goal is to keep the aggregated score in [0, 1] even when
an instance specifies only a subset of targets (e.g., only <call> without <reflect> or <final>). To
this end we use normalization to renormalize over the parts that actually appear in the ground truth,
so the maximum remains 1 regardless of how many parts are present.

We define
Ir = I[gref ̸= ∅], Ic = I[|Gcalls| > 0], If = I[gfinal ̸= ∅]. (14)

Let (wr, wc, wf)≥0 be normalized base weights (e.g., wr + wc + wf = 1). We renormalize over the
active parts via

Wact = wrIr + wcIc + wfIf. (15)
The aggregated structure/semantics score is then

S =
wrIr sref + wcIc scall + wfIf sfinal

Wact
. (16)

This normalization yields a consistent scoring standard across fully and partially supervised in-
stances, avoiding artificial deflation of scores when some targets are absent.

Format/penalty factor. We designed structural penalties tailored for tool-call data formats.
Specifically, Pmiss accounts for cases where the tool is not invoked at all, while Pextra and Pcount
penalize redundant calls and mismatches in the total number of calls, respectively. Let

n = |Gcalls|, m = |Ccalls|, (17)

Here n and m denote the number of tools invoked in the ground truth and completion calls. Define
the three components:

Pmiss = wref I[gref ̸=∅ ∧ cref=∅] + wfinal I[gfinal ̸=∅ ∧ cfinal=∅] + wcalls I[n > 0 ∧m = 0],
(18)

Pextra = wref I[cref ̸=∅ ∧ gref=∅] + wfinal I[cfinal ̸=∅ ∧ gfinal=∅] + wcalls I[m > 0 ∧ n = 0],
(19)

Pcount = wcalls I[n > 0 ∧m > 0 ∧ n ̸=m]
|n−m|

max(n,m)
. (20)

Let EqualCalls be the schema-strict equality on bags of calls. We use a reduction factor

r =

{
rreduce, if EqualCalls(Ccalls, Gcalls),

1, otherwise,
rreduce ∈ (0, 1]. (21)

Aggregate the penalty as

Ptotal = Pmiss + βextra Pextra + γcount Pcount, (22)

and define the instance-wise format factor

FormatFactor(C,G) =

{
1, if Pmiss = 0 ∧ Pextra = 0 ∧ Pcount = 0,

max(0,min(1, 1− λmPtotalr)), otherwise.
(23)

Here βextra, γcount, λm ≥ 0 control the strength of extra-part, count-mismatch, and overall scaling
penalties, respectively; (wref, wcalls, wfinal)≥0 are part weights.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) The reward curve of llama-3.1-8b-Instruct during
RL training

(b) The reward curve of qwen2.5-7b-Instruct during RL
training

Figure 3: The reward curves of llama-3.1-8B and Qwen2.5-7B during training, showing an overall
upward trend.

Core reward and backoff. The core reward is

Rcore = S · F. (24)

Early in training, S contains a binary component (scall ∈{0, 1}) and F applies hard penalties; small
formatting or argument errors can drive Rcore close to zero. This yields sparse or unstable gradients
and large variance across samples. To stabilize learning and provide a dense shaping signal when
the exact-match objective is not yet achieved, we introduce a similarity backoff:

Rtotal =

{
clip[0,1](Rcore), Rcore ≥ ε,

clip[0,1]
(
wb · Sim

(
concat(C), concat(G)

))
, otherwise,

(25)

where wb ∈ (0, 1] and concat(·) linearizes the messages. We use clip[0,1](x) = max(0,min(1, x))
to keep rewards bounded.

3.3 RL FOR TOOL-REFLECTION-BENCH

We adopt a reinforcement-learning objective for tool calling that combines two complementary
ideas: (i) DAPO-style decoupled clipping Yu et al. (2025): we use a decoupled clipping range
with different lower/upper bounds (εlow, εhigh) and a clip-higher policy (a looser upper bound when
r > 1 for positive advantages), and we skip uninformative prompt groups whose rollouts carry neg-
ligible learning signal; (ii) GSPO-style sequence-level importance sampling Zheng et al. (2025):
we compute the importance ratio at the sequence level and apply clipping at the same granularity
as the sequence-level reward, which avoids the mismatch between token-wise importance sampling
and sequence-level rewards and stabilizes optimization.

Objective. Let (q, a) denote the dialog context and the ground-truth targets, and let {oi}Gi=1 be G
candidates sampled from the behavior policy πθold(· | q). Each completion oi is scored by the reward
in Sec. §3.2, yielding Ri ∈ [0, 1]. We maximize a sequence-level, asymmetrically clipped objective
and minimize its negative as the loss:

JRL(θ) = E(q,a)∼D, {oi}∼πθold (· | q)

[
1

G

G∑
i=1

min
(
ri(θ) Âi, clip

(
ri(θ), 1− εlow, 1 + εhigh

)
Âi

)]
,

(26)
where clip(x, a, b) = min{b,max{a, x}} and typically εhigh > εlow (“clip-higher”).

Prompt-group dynamic filtering. DAPO skips prompt groups whose candidates provide almost
no learning signal (e.g., all-correct or all-wrong). Concretely, define batch-normalized advantages
and a group-level acceptance criterion:

Âi =
Ri −mean

(
{Rj}Gj=1

)
std
(
{Rj}Gj=1

) , S(q, a) =
{
i ∈ {1, . . . , G} : |Âi| > τadv

}
, (27)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison across dimensions (Base, Miss Func, Miss Param, Long Context, Multi-turn
Overall) on BFCL v3.

Models Method Base Miss Func Miss Param Long Context Multi-turn Overall

Llama-3.1-8B-Instruct-FC Origin 5.0 6.5 4.5 4.5 5.12
Ours 9.5 (↑95%) 7.0 (↑8%) 5.0 (↑11%) 7.0 (↑56%) 7.12 (↑39%)

Qwen2.5-7B-Instruct-FC Origin 16.5 11.0 9.0 7.5 11.00
Ours 22.0 (↑33%) 13.0 (↑18%) 13.5 (↑50%) 11.0 (↑47%) 14.88 (↑35%)

Qwen3-4B-Instruct Origin 18.0 19.0 13.5 14.5 16.25
Ours 25.0 (↑39%) 19.5 (↑3%) 17.0 (↑26%) 21.5 (↑48%) 20.75 (↑28%)

and require sufficient reward dispersion within the group:

Var
(
{Ri}Gi=1

)
> τvar and 0 < |S(q, a)| < G. (28)

If equation 28 fails, we drop the zero-information rollouts and (optionally) draw up to K additional
candidates from πθold , then re-apply the filter. Only indices in S(q, a) contribute to the expectation
in equation 26.

Sequence-level importance ratio. For a completion oi = (oi,1, . . . , oi,|oi|), we use the geometric-
mean, length-normalized importance ratio:

ri(θ) =

|oi|∏
t=1

πθ(oi,t | q, oi,<t)
πθold(oi,t | q, oi,<t)

1/|oi|

, (29)

and perform clipping at the same sequence granularity as the reward (see equation 26), thereby
avoiding token/sequence granularity mismatch.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

In this part, we will detail the experimental setup, including datasets, hyperparameters, base models,
and evaluation metrics.

Datasets. We conduct training on our self-constructed Tool-Reflection-Bench. After human su-
pervision and post-editing, we retained approximately 5k samples in JSONL format to ensure com-
patibility with RL training under the Swift Zhao et al. (2025b) framework.

Implementation Details. We train models for 1 epoch (a total of 1,000 steps) on 5,000 train-
ing samples, using the reward function defined in Sec.3.2. For each training instance, 4 completions
were sampled to form a group. The training parameters were set as follows: temperature = 0.85, rep-
etition penalty = 1.1, epsilon = 0.2, epsilon-high = 0.28, with a dynamic sampling strategy adopted.

Base Models. To verify the generalizability of Tool-Reflection-Bench and our training methodol-
ogy, we conducted experiments using Llama3.1-8B Dubey et al. (2024), Qwen2.5-7B-Instruct Hui
et al. (2024), and Qwen3-4B Yang et al. (2025) as base models.

Evaluation Metrics. We evaluated multi-turn tool-calling performance using the Berkeley Func-
tion Calling Leaderboard (BFCL) v3 Patil et al., with evaluation dimensions covering multi-turn-
base, multi-turn-long-context, multi-turn-miss-func, and multi-turn-miss-param, and the evaluation
metric being accuracy. To assess the model’s repair capability when tool calls fail, we used Tool-
Reflection-Bench, with the evaluation metric being repair rate, Repair@n denotes that for the same
data instance, if at least one out of n trials succeeds, the metric is recorded as 1; otherwise, it is 0.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENT RESULTS

4.2.1 RESULT ON BFCL V3

Comparison with base models. We conduct performance evaluation on the multi-turn category of
BFCL v3 to assess the benefits of enhancing the model’s self-reflection capability in multi-turn tool
calling, the detailed results are showed in Table. 1. Compared the results against the corresponding
base models. The most striking lift appears on Llama-3.1-8B: Base rises from 5.0 to 9.5 (+95%)
and Long Context from 4.5 to 7.0 (+56%). Qwen2.5-7B shows the largest Miss Param gain (9.0
→ 13.5, +50%), evidencing stronger parameter repair. Qwen3-4B attains an amazing absolute
Multi-turn Overall (20.75, +28%) with a sizable Long Context improvement (+48%). In contrast,
its Miss Func gain is modest (19.0 → 19.5, +3%), indicating tool selection remains comparatively
harder—consistent with our method’s emphasis on reflection-driven parameter correction and long-
context recovery.

4.2.2 RESULT ON TOOL-REFLECTION-BENCH

As shown in Table. 2, across open-source baselines, repair rates are low at one try (Repair@1 ≤
9.6%) and only mildly improve with more tries. Training with our method yields consistent gains
for all bases: Llama-3.1-8B-Instruct jumps from 0.7/5.1/6.8 to 4.7/20.5/26.4 (Repair@1/3/5),
a large improvement especially at higher n; Qwen2.5-7B-Instruct improves from 2.4/6.1/8.0
to 9.3/10.3/11.4; Qwen3-4B-Instruct rises from 9.6/10.6/10.6 to 14.9/18.5/19.5 (best Repair@1
among our models). All finetuned models surpass the closed-source LongCat-Lite-8K-Chat across
n∈{1, 3, 5}, indicating that our reflection-aware reward and RL objective substantially enhance re-
pairability and yield more reliable multi-try recovery. It is also worth noting that when tool calls fail
and require repair, our method achieves superior performance compared to closed-sourced mod-
els of the same scale such as LongCat-Lite-8K-Chat Team et al. (2025), GPT-4o-mini OpenAI
(2024a;b), GPT-4.1-mini OpenAI (2025).

Table 2: Experimental Results of Open-Source and Closed-Source Models on the Tool-Reflection-
Bench Test Set.

Models Repair@1 (%) Repair@3 (%) Repair@5 (%)
Close-Sourced Models

LongCat-Lite-8K-Chat 2.3 3.4 4.9
GPT-4o-mini 6.1 8.7 9.0
GPT-4.1-mini 3.1 4.3 5.1

Open-Sourced Models
Llama-3.1-8B-Instruct 0.7 5.1 6.8
Qwen2.5-7B-Instruct 2.4 6.1 8.0
Qwen3-4B-Instruct 9.6 10.6 10.6

Open-Sourced Models Trained on Our Method
Llama-3.1-8B-Instruct 4.7 20.5 26.4
Qwen2.5-7B-Instruct 9.3 10.3 11.4
Qwen3-4B-Instruct 14.9 18.5 19.5

5 CONCLUSION

This paper proposes a structured reflection method for handling tool call failures, transforming the
“from error to repair” process into an explicit, controllable, and trainable action. Our approach
overcomes the limitations of previous heuristic, feedback-based self-correction methods in terms
of controllability and stability. We further construct Tool-Reflection-Bench for both training and
evaluation, and design a task-specific reward function tailored to the tool-calling scenario. In the
reinforcement learning stage, we combine the strengths of DAPO and GSPO to enhance training
effectiveness. Experimental results show that the proposed method significantly improves multi-
turn tool call accuracy on BFCL v3 as well as error repair performance on Tool-Reflection-Bench.
Overall, our method and dataset effectively enhance the reliability of tool interactions and offer a
new perspective on enabling agents to acquire new capabilities by learning from failure.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, et al. Acebench: Who wins the match point in tool learning?
arXiv e-prints, pp. arXiv–2501, 2025a.

Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang
Xie. Sft or rl? an early investigation into training r1-like reasoning large vision-language models.
arXiv preprint arXiv:2504.11468, 2025b.

Mingyang Chen, Haoze Sun, Tianpeng Li, Fan Yang, Hao Liang, Keer Lu, Bin Cui, Wentao Zhang,
Zenan Zhou, and Weipeng Chen. Facilitating multi-turn function calling for llms via composi-
tional instruction tuning. arXiv preprint arXiv:2410.12952, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Bingguang Hao, Maolin Wang, Zengzhuang Xu, Cunyin Peng, Yicheng Chen, Xiangyu Zhao, Jinjie
Gu, and Chenyi Zhuang. Funreason: Enhancing large language models’ function calling via
self-refinement multiscale loss and automated data refinement. arXiv preprint arXiv:2505.20192,
2025.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. CoRR, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios. arXiv preprint arXiv:2401.17167,
2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Yuhua Jiang, Yuwen Xiong, Yufeng Yuan, Chao Xin, Wenyuan Xu, Yu Yue, Qianchuan Zhao, and
Lin Yan. Pag: Multi-turn reinforced llm self-correction with policy as generative verifier. arXiv
preprint arXiv:2506.10406, 2025.

Barrett Martin Lattimer, Varun Gangal, Ryan McDonald, and Yi Yang. Sparse rewards can self-train
dialogue agents. arXiv preprint arXiv:2409.04617, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir Zaki, and Talal Rahwan. Self-reflection
makes large language models safer, less biased, and ideologically neutral. arXiv preprint
arXiv:2406.10400, 2024a.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, et al. Toolace: Winning the points of llm function calling.
arXiv preprint arXiv:2409.00920, 2024b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, May 2024a. Accessed:
2025-09-25.

OpenAI. Gpt-4o system card, 2024b. URL https://arxiv.org/abs/2410.21276. Accessed:
2025-09-25.

OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, April 2025.
Accessed: 2025-09-25.

Shishir G Patil, Huanzhi Mao, Fanjia Yan, Charlie Cheng-Jie Ji, Vishnu Suresh, Ion Stoica, and
Joseph E Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
J Wen. Tool learning with large language models: A survey. corr abs/2405.17935(2024). arXiv
preprint arXiv:2405.17935, 2024a.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
J Wen. Tool learning with large language models: A survey. corr abs/2405.17935(2024). arXiv
preprint arXiv:2405.17935, 2024b.

Matthew Renze and Erhan Guven. Self-reflection in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682, 2024.

RI Saveliev and MV Dendiuk. Self-reflective retrieval-augmented generation (self-rag) in analytical
systems. In Forestry Education and Science: Current Challenges and Development Prospects.
International Science-Practical Conference, October 23-25, 2024, Lviv, Ukraine, 2024.

Meituan LongCat Team, Bei Li, Bingye Lei, Bo Wang, Bolin Rong, Chao Wang, Chao Zhang,
Chen Gao, Chen Zhang, Cheng Sun, et al. Longcat-flash technical report. arXiv preprint
arXiv:2509.01322, 2025.

Adrian Theuma and Ehsan Shareghi. Equipping language models with tool use capability for tabular
data analysis in finance. arXiv preprint arXiv:2401.15328, 2024.

Juraj Vladika, Ihsan Soydemir, and Florian Matthes. Correcting hallucinations in news sum-
maries: Exploration of self-correcting llm methods with external knowledge. arXiv preprint
arXiv:2506.19607, 2025.

MAOLIN WANG, YINGYI ZHANG, CUNYIN PENG, YICHENG CHEN, WEI ZHOU, JINJIE
GU, CHENYI ZHUANG, RUOCHENG GUO, BOWEN YU, WANYU WANG, et al. Function
calling in large language models: Industrial practices, challenges, and future directions. 2025.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large lan-
guage models can self-correct with key condition verification. arXiv preprint arXiv:2405.14092,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

11

https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2410.21276
https://openai.com/index/gpt-4-1/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and Shuicheng
Yan. Supercorrect: Supervising and correcting language models with error-driven insights. arXiv
preprint arXiv:2410.09008, 9, 2024.

Junjie Ye, Yilong Wu, Sixian Li, Yuming Yang, Tao Gui, Qi Zhang, Xuanjing Huang, Peng Wang,
Zhongchao Shi, Jianping Fan, et al. Tl-training: A task-feature-based framework for training
large language models in tool use. arXiv preprint arXiv:2412.15495, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane, Weiran Yao, Juntao
Tan, Akshara Prabhakar, Haolin Chen, et al. xlam: A family of large action models to empower
ai agent systems. arXiv preprint arXiv:2409.03215, 2024.

Xutong Zhao, Tengyu Xu, Xuewei Wang, Zhengxing Chen, Di Jin, Liang Tan, Zishun Yu, Zhuokai
Zhao, Yun He, Sinong Wang, et al. Boosting llm reasoning via spontaneous self-correction. arXiv
preprint arXiv:2506.06923, 2025a.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, et al. Swift: a scalable lightweight infrastructure for fine-tuning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 29733–29735,
2025b.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 USE OF LLMS

This work leveraged LLMs to verify the mathematical soundness and symbolic accuracy of a few
formulas in Sec.A.5.

A.2 PROMPT FOR PERTURBATION-BASED DISRUPTIONS

In this section, we provide simplified prompts for generating the four types of tool call perturbations,
enabling the community to reproduce our setting. The full prompts and implementation code will
be released upon the paper’s acceptance.

A.2.1 PROMPT FOR CALL-ORDER SWAP

How to construct an error tool call example
System

Goal. Prepend a controlled erroneous <call> and a consistent tool-error message before the
first assistant message, so the model must diagnose and repair.
Procedure.

1. Extract calls: Traverse messages and collect all assistant <call>...</call> blocks
(regex).

2. Choose function name: Parse the last call’s JSON to get "name"; fall back to a regex
if needed.

3. Synthesize wrong call (empty args):

<call>[{"name":"<FUNC_FROM_LAST_CALL>","arguments":{}}]</call>

4. Fabricate tool error (pretty JSON string):

{"tool":"<FUNC_FROM_LAST_CALL>","status":"warning",
"message":"The called function executed but returned partial/mismatched

↪→ data because the arguments did not match the expected schema for
↪→ this call.",

"result": null}

5. Insert pair: Place the wrong assistant call and the tool error before the original first
assistant message.

6. Elicit reflection: Query the LLM with the System/User prompts above to obtain the
reflection text, then prepend <reflect>...</reflect> to the original assistant mes-
sage (the original correct call remains).

Notes. Using the last call’s function ensures schema plausibility; empty arguments induce a
controlled failure; the synthetic tool message supplies concrete evidence for the subsequent
reflection and repair.

How to generate a reflection
System

You are an AI assistant that analyzes failed tool calls and provides reflective summaries. Given
an original tool call and a fabricated error response, generate a brief reflection explaining why
the call likely failed and how to correct it. Be concrete and concise.

User

Fill the placeholders {{...}} exactly.
Original tool call:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

{{ORIGINAL_CALL}}

Error response:
{{FAKE_RESPONSE}}

Please provide a short reflection on the failure cause and the corrective action.

An Example
User

Original tool call:
<call>[{"name":"searchArtistsByArtStyle","arguments":{}}]</call>

Error response:
{"tool":"searchArtistsByArtStyle","status":"warning",
"message":"The called function executed but returned partial/mismatched data

↪→ because the arguments did not match the expected schema for this call.",
"result": null}

Please provide a brief reflection on why this tool call failed and what could be improved. Keep
it concise and helpful.

A.2.2 PROMPT FOR REDUNDANT CALL

How to construct a redundant tool call example
System

Goal. Inject a redundant tool call inside an existing <call> list and a matching redundant tool
response, so the agent must identify and remove the duplication.
Procedure.

1. Extract calls: Traverse the dialogue and collect all assistant-side <call>...</call>
blocks (regex).

2. Pick a target (not the first): Uniformly sample an assistant call position from
{2, . . . , |C|}.

3. Duplicate within the list: Parse the target call’s JSON. If it is a list, append a deep-
copied first element; if it is a single dict, make a two-element list by duplicating it.

4. Fabricate a redundant tool response: Parse the following tool message. Duplicate its
first item (or the dict itself) and mark it as redundant, e.g.

{"status":"redundant","message":"This item duplicates a previous result."}

5. Keep the ground-truth call: The correct call is the original (non-duplicated) first ele-
ment of the target call list.

6. Place the repair evidence: After the redundant tool message, insert an assistant
message with <reflect> diagnosing the redundancy and a correct <call> (the non-
duplicated one), followed by a clean tool response (the original, without the redundant
copy).

Notes. This perturbation preserves schema but injects duplication at both call and response
sides, creating a realistic “over-call” pattern for reflection-and-repair.

How to generate a reflection

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

System

You are an AI assistant that analyzes redundant tool calls and provides reflective summaries.
Given a tool-call list and its redundant tool response, write a brief reflection that (i) identifies
the duplication, and (ii) states the correct next action (use only the necessary call with proper
arguments). Keep the reflection concise and actionable.

User

Fill the placeholders {{...}} exactly.
Tool call list (after duplication):
{{TOOL_CALL_LIST}}

Redundant tool response:
{{REDUNDANT_RESPONSE}}

Please provide a short reflection that points out the redundancy and explains how to proceed
correctly.

An Example
User

Tool call list (after duplication):
<call>[

{"name":"searchArtistsByArtStyle","arguments":{"style":"impressionism"}},
{"name":"searchArtistsByArtStyle","arguments":{"style":"impressionism"}}

]</call>

Redundant tool response:
[

{"tool":"searchArtistsByArtStyle","status":"ok","items":[...]},
{"tool":"searchArtistsByArtStyle","status":"redundant",
"message":"This item duplicates a previous result.","items":[...]}

]

Please provide a brief reflection on why this redundant call occurred and how to proceed. Keep
it concise and helpful.

A.2.3 PROMPT FOR MISSING CALL

How to construct a missing-call perturbation example
System

Goal. Remove a necessary assistant <call> and make the subsequent call fail due to missing
context, so the agent must recover the omitted call and then proceed correctly.
Procedure.

1. Extract calls: Parse all assistant-side <call>...</call> blocks (regex).
2. Select a removable call (not the last): Uniformly sample an index i ∈ {1, . . . , |C|−1}.
3. Find paired tool messages: Locate the tool reply immediately after call i (the one to

remove), and the tool reply after call i+1 (the “next” call).
4. Delete call i and its tool reply.

5. Degrade the next call: For the assistant <call> at (original) i+1, keep the function
but set "arguments":{} (empty).

6. Return an error for the next tool: Replace that tool reply with an error JSON indicating
“missing required arguments”.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

7. Reflection and repair insertion: After the error tool reply, insert:
(a) an assistant message containing <reflect> that explains the omission and a re-

instated correct <call> (the removed call i);
(b) the original tool reply for the removed call i;
(c) the corrected next assistant call (its original, non-empty arguments);
(d) the corrected next tool reply (its original content).

Notes. This perturbation creates a realistic “missing prerequisite call” failure: the subsequent
step cannot execute without information from the omitted call. The reflection must (i) identify
the omission and (ii) restore the correct call before proceeding.

How to generate a reflection
System

You are an AI assistant that analyzes missing tool calls and provides reflective summaries.
Given the omitted call (that should have been executed) and the resulting error response from
the next step, write a concise reflection that (i) identifies what was missing, and (ii) states how
to proceed: first reinstate the omitted call with correct arguments, then continue.

User

Fill the placeholders {{...}} exactly.
Missing tool call (the one that should have been made):
{{MISSING_CALL}}

Error response (from the next step):
{{ERROR_RESPONSE}}

Please provide a short reflection that explains the omission and the corrective sequence of ac-
tions.

An Example
User

Missing tool call:
<call>[{"name":"fetchUserProfile","arguments":{"user_id":"u_1293"}}]</call>

Error response (from the next step):
[

{"status":"error",
"message":"Missing required arguments. The function call failed because necessary
↪→ parameters were not provided.",

"result": null}
]

Please provide a brief reflection on what was missing and how to proceed. Keep it concise and
helpful.

A.2.4 PROMPT FOR ARGUMENT ERROR

How to construct an argument–error perturbation example

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

System

Goal. Corrupt the arguments of an existing assistant <call> so that the paired tool reply returns
a parameter–validation error, forcing the agent to diagnose mismatched/invalid arguments and
repair with the correct call.
Procedure.

1. Extract calls: Parse all assistant-side <call>...</call> blocks via regex.
2. Select a call: Uniformly sample one index i ∈ {1, . . . , |C|} and locate its immediate

tool reply.
3. Corrupt arguments: Keep "name" unchanged; replace "arguments" with perturbed

values (e.g., wrong types, out-of-range numbers, empty strings, unknown keys). The
JSON stays well-formed:

<call>[{"name":"<FUNC_NAME>","arguments":{<WRONG_ARGS>}}]</call>

4. Synthesize error reply: Replace the paired tool message with a structured error indi-
cating invalid parameters (e.g., "error code":"INVALID PARAMETERS" and an infor-
mative message).

5. Reflection and repair insertion: Immediately after the error, insert:
(a) an assistant message with <reflect> that contrasts the wrong vs. correct argu-

ments and states the fix;
(b) the original (correct) call and its original (successful) tool reply.

Notes. Do not alter the function name; only arguments are corrupted. Keep JSON/tags valid to
isolate the failure mode to argument errors.

How to generate a reflection
System

You are an AI assistant that analyzes incorrect tool-call parameters and provides a reflective
summary. Given the correct call, the wrong call (with corrupted arguments), and the error
response, write a brief reflection that (i) pinpoints which arguments are incorrect and why, and
(ii) states the corrected call. Be concrete and concise.

User

Fill the placeholders {{...}} exactly.
Correct tool call (ground truth):
{{CORRECT_CALL}}

Wrong tool call made (arguments corrupted):
{{WRONG_CALL}}

Error response:
{{ERROR_RESPONSE}}

Please provide a short reflection that identifies the parameter issues and the corrective action.

An Example
User

Correct tool call:
<call>[{"name":"bookFlight",

"arguments":{"from":"SFO","to":"JFK","date":"2025-11-02","passengers
↪→ ":1}}]</call>

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Wrong tool call made:
<call>[{"name":"bookFlight",

"arguments":{"from":999999,"to":"","date":null,"passengers":"many"}}]</call
↪→ >

Error response:
[{"status":"error",

"message":"Parameter validation failed for bookFlight. One or more arguments are
↪→ invalid.",

"result": null,
"error_code":"INVALID_PARAMETERS"}]

Please provide a brief reflection on which parameters are incorrect and how to fix them. Keep
it concise and helpful.

A.3 TRAINING DATA CASE STUDY

In this section, we extract one complete sample from each of the four perturbation modes for anal-
ysis. Due to space limitations, these four samples are provided in the supplementary material for
reference, while here we only present a brief analysis of the data.

A.3.1 CASE STUDY OF CALL-ORDER SWAP

Setup. The user requests end–to–end logistics for a 10–person business trip (NYC→MIA): search
and book round–trip flights, search and book hotel rooms, and arrange airport–hotel ground trans-
portation. The toolset exposes search flights, book flight, search hotels, book hotel, and
arrange transportation, where the last function depends on confirmed itinerary details (arrival
time and hotel).

Failure trace (order dependency violated). The agent correctly issues two discovery calls, then
prematurely attempts to arrange transportation before booking:

<tool_call>{"name":"search_flights", ...}</tool_call>
<tool_call>{"name":"search_hotels", ...}</tool_call>

<tool_call>{"name":"arrange_transportation",
"arguments":{"arrival_date":"2023-03-21",

"passenger_count":10,
"pickup_location":"MIA Airport",
"dropoff_location":"(to be decided)"}}</tool_call>

The tool returns a dependency error because dropoff location cannot be finalized prior to
book hotel and pickup timing should be aligned to book flight:

Tool: {"status":"error",
"message":"Transportation requires confirmed flight and hotel details.",
"result": null}

Model reflection and repair. The agent emits a concise <reflect> that identifies the or-
der–dependency (transport must follow booking), then repairs by booking first and only then ar-
ranging transport:

<reflect>
Failure stems from an order dependency: transportation must follow confirmed
flight and hotel, as pickup/dropoff depend on the booked itinerary.
Correct plan: (1) book flight; (2) book hotel; (3) arrange transportation.
</reflect>

<tool_call>{"name":"book_flight", ...}</tool_call>
<tool_call>{"name":"book_hotel", ...}</tool_call>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

<tool_call>{"name":"arrange_transportation",
"arguments":{"arrival_date":"2023-03-21",

"passenger_count":10,
"pickup_location":"MIA",
"dropoff_location":"Oceanview Hotel"}}</tool_call>

Why the reward favors the fix. Under our reward in Sec. §3.2: (i) the reflection receives a high
semantic score sref for explicitly diagnosing the order constraint; (ii) the repaired calls exactly match
schema and parameters, yielding scall = 1 (order–invariant matching across the multiset of calls),
while the format/penalty factor F upweights the repaired trajectory because executability and depen-
dency checks now pass; (iii) the premature arrange transportation in the failed rollout triggers
penalties in F (dependency/executability), so Rcore is suppressed and the dynamic sampling filter
(Sec. §3.3) down–weights such uninformative rollouts. Overall, the corrected plan yields a strictly
larger Rtotal than the erroneous one.

Summary. This example shows that explicit reflection converts a latent, long–range constraint
(“book before transport”) into a short textual diagnosis that the policy can optimize against. Our
order–invariant call equality avoids over–penalizing benign output permutations, while depen-
dency–aware format shaping in F enforces inter–call preconditions. Empirically, such cases account
for a substantial share of multi–turn gains, whereas single–turn metrics remain stable.

A.3.2 CASE STUDY OF REDUNDANT CALL

Setup and failure mode. The user requests the list of services for all NYC banks operating for
> 10 years. The agent first queries the bank roster with get operational banks, then correctly
queries services for B001, but erroneously repeats the same service lookup for B001 instead of
proceeding to unseen banks (B002--B004). This is a canonical redundant call error: wasted tool
budget without adding new information.

...
<tool_call>
{"name":"get_operational_banks",
"arguments":{"city":"New York City","min_years_operational":10}}
</tool_call>

User (tool): [{"name":"get_operational_banks","results":{"banks":[
{"bank_id":"B001"}, {"bank_id":"B002"}, {"bank_id":"B003"}, {"bank_id":"B004"}]}}]

<tool_call>
{"name":"get_bank_services","arguments":{"bank_id":"B001"}}
</tool_call>

User (tool): [{"name":"get_bank_services","arguments":{"bank_id":"B001"},
"results":{"services":[...]} }]

Redundant (erroneous) repeat:
<tool_call>
{"name":"get_bank_services","arguments":{"bank_id":"B001"}}
</tool_call>

User (tool): [{"name":"get_bank_services","arguments":{"bank_id":"B001"},
"results":{"services":[...], "note":"Duplicate request"}}]
...

Reflection and repair (ground truth). The reflection diagnoses duplication and prescribes de-
duplication; the corrected plan proceeds with the remaining, unseen IDs:

<reflect>
The last call repeated B001, yielding redundant information.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Avoid duplicates; continue with B002, B003, B004 exactly once each.
</reflect>

<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B002"}}</tool_call>
<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B003"}}</tool_call>
<tool_call>{"name":"get_bank_services","arguments":{"bank_id":"B004"}}</tool_call>

Why the model failed. The failure arises from (i) insufficient state tracking over the set of already-
seen entities (here, bank IDs), and (ii) weak inductive bias against issuing calls whose marginal
information gain is near zero. In multi-turn settings, local myopic policies often re-issue the last
successful pattern without cross-step deduplication.

How the reward steers recovery. Our scoring treats call sets as order-invariant but schema-strict;
redundant calls trigger the count-mismatch component in the format factor F (penalizing |Ccalls| ̸=
|Gcalls|) while EqualCalls fails due to multiset mismatch. The reflection text receives a positive
semantic score if it explicitly identifies the duplication and prescribes the missing IDs, encouraging
concise, actionable self-correction. Together, the structure score S and format factor F downweight
redundant completions and upweight the repaired sequence.

Summary. This case shows that explicit reflection converts a silent efficiency bug into a supervised
correction step: the agent (1) cites the duplicated identifier, (2) enumerates the remaining targets, and
(3) completes them exactly once. Empirically, such reflection-shaped supervision reduces redundant
tool usage and improves multi-turn success without harming single-turn accuracy.

A.3.3 CASE STUDY OF MISSING CALL

Setup. The user asks to register four tax documents: (i) W-2 (ABC Corp), (ii) 1099-INT (First
National Bank), (iii) property tax statement (county assessor), and (iv) Form 1098 (mortgage
lender). The tool schema exposes a single function add tax documents(name, value, category,
priority) with name,value required.

Baseline failure (missing calls). The baseline assistant emits only two <tool call>s (W-2, 1099-
INT) and then stops, yielding a 50% recall on required calls. Formally, let Gcalls contain the four
intended calls and Ccalls the two produced calls. Then |Gcalls| = 4, |Ccalls| = 2, and the call–set
equality test fails: EqualCalls(Ccalls, Gcalls) = 0. This is a typical missing-call error in multi-item
requests: the model recognizes the pattern “one item → one call” but truncates the sequence, leaving
later items unprocessed.

Structured reflection (diagnosis). Our method takes the partially executed trajectory as negative
evidence and the original request as positive intent and generates an explicit reflection:

<reflect> “I missed 2 tool call(s). The user listed multiple items, and each item requires a
separate call. I should enumerate all items and complete the remaining calls.” </reflect>

The reflection correctly localizes the failure (under-counting of required calls), quantifies the deficit
(missed= 2), and states the repair rule (enumerate all items ⇒ one call per item).

Repairs (corrective calls). Conditioned on the reflection, the agent appends the missing tool calls
for the remaining items:

• name: Property tax statement; value: county assessor record; category: personal;

• name: Form 1098; value: mortgage interest statement; category: personal.

The assignments work→W-2,1099-INT and personal→property tax, 1098 are semantically consis-
tent: the former are employment/bank income records; the latter are household liabilities/taxes.(Any
schema-compatible categorization would pass executability; ours also preserves natural semantics.)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Why this matters. This case highlights a frequent multi-turn brittleness: once the agent produces
a plausible prefix of calls, it prematurely concludes and fails to cover all requested items. By mak-
ing missingness an explicit, trainable concept, structured reflection converts a sparse binary signal
(success/failure) into actionable supervision:

1. Detection: Compare item cardinalities and arguments; compute I[|Ccalls| < |Gcalls|] and
list uncovered entities.

2. Diagnosis: Attribute the error to enumeration/coverage rather than formatting or parame-
ters.

3. Repair: Synthesize the exact missing calls with schema-valid arguments; preserve already-
correct calls.

Summary. Empirically, such instances improve the model’s coverage discipline: after training, we
observe higher multi-item completion rates with negligible increase in redundant calls, indicating
that the model learned “one-mentioned-item ⇒ one-call” as a robust policy rather than overcalling.

A.3.4 CASE STUDY OF ARGUMENT ERROR

Setup. The tool schema exposes multiple functions with schema–strict
parameters (e.g., check plant water level(plant location:string),
start watering(plant location:string, duration:number),
start trimming(hedge location:string), . . .). The user requests two primary actions in
the backyard: (i) trim hedges and (ii) water all potted plants for about 10 minutes; afterwards ensure
plants have enough water and dispose clippings.

Baseline failure (argument error). The assistant issues
<call>[{"name":"check plant water level","arguments":{}}]</call>

omitting the required key plant location. The tool returns a schema warning that the arguments
“did not match expected schema.” Under our reward, the call-level indicator scall is 0 because the
produced call fails schema equality (tool name matches, but the argument map does not).

Structured reflection (diagnosis). The reflection generated by our process states that the call
“failed because it did not include the required arguments needed by the function’s schema,” and pre-
scribes: “ensure all necessary parameters are provided according to the function’s documentation.”
This localizes the error to parameter mis-specification (not tool selection or ordering), and points
to the concrete fix—satisfy the schema.

Repairs (efficient plan consistent with the request). Given the user’s 10-minute target and the
backyard scope, the corrected action set executes the two core operations with schema-valid argu-
ments:

• start watering(plant location="backyard", duration=10)

• start trimming(hedge location="backyard")

These can be dispatched in parallel (independent resources), achieving the requested time budget
while ensuring plants receive sufficient water and hedges are trimmed. This replaces the invalid
pre-check with a direct, time-bounded watering call that already satisfies the user’s constraint.

Why this matters. Argument errors are common in tool use and typically yield sparse feedback
(“schema mismatch”). By forcing the model to (i) recognize the missing required field and (ii) re-
state the schema-conformant fix, the reflection step converts a low-information error into actionable
supervision. In our benchmark, such instances consistently improve:

1. Schema adherence: higher exact-match rate on name/arguments.
2. Planning under constraints: selection of parameterized calls (duration=10) aligned with

user constraints instead of brittle pre-checks with empty arguments.
3. Stability: fewer retries and warnings downstream because calls are executable on the first

attempt.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Summary. This case illustrates how reflection-guided repair turns a malformed <call> into a
compact, correct, and time-efficient action plan.

A.4 TEST DATA CASE STUDY

In this section, we present two representative test cases and their corresponding evaluation results as
a case study, providing an intuitive demonstration of the effectiveness of our method and the model’s
self-reflection capability for tool-call repair. Since the original cases are relatively long, we include
their full content in the supplementary material for reference and provide only the analysis here.

A.4.1 CASE I

Setting. The tool set exposes three functions: getRecipes(max time, meal type),
getSmoothieIngredients(max time), and findComplementaryRecipes(recipes,
ingredients). The user asks for breakfast recipes under 15 minutes and smoothie pairings
under 5 minutes.

Failure mode (pre-training). The baseline model immediately issues

[{"name":"findComplementaryRecipes","parameters":{}}]

which violates the function schema (both recipes and ingredients are required). The tool returns
a schema-warning. Under our reward, this yields scall = 0 and triggers format penalties F < 1 due
to missing required parameters.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that the failure arises from absent inputs, then correctly decomposes the task into produce
inputs → compose:

[{"name":"getRecipes","parameters":{"max_time":15,"meal_type":"breakfast"}}]
[{"name":"getSmoothieIngredients","parameters":{"max_time":5}}]
[{"name":"findComplementaryRecipes",
"parameters":{"recipes": <from getRecipes>, "ingredients": <from

↪→ getSmoothieIngredients>}}]

This satisfies the schema strictly (tool names and parameter maps match), making the call set correct
and executable.

Why our method helps. (i) Reward shaping: The instance accrues a hard penalty when re-
quired fields are absent; after repair, scall flips to 1 and F → 1, raising Rcore = S · F substantially.
(ii) Sequence-level RL: The GSPO-style sequence-ratio with dual clipping aligns the optimiza-
tion granularity with the sequence reward, while DAPO-style dynamic filtering removes near-zero-
advantage rollouts (all-wrong/all-correct), sharpening learning signals for this failure mode.

Takeaway. Compared to the baseline that jumps to composition with empty inputs, the trained
policy learns to (a) diagnose the schema error, (b) stage prerequisite calls to produce the missing
inputs, and (c) complete the composition with a schema-valid call set. This precisely matches our
benchmark’s objective: enable robust, multi-turn tool use via reflection and repair.

A.4.2 CASE II

Setting. Available tools include get current season(), get seeds by season(season),
filter seeds by availability(seeds), purchase seeds(seeds, quantity), and
calculate total cost(purchased seeds). The user asks to buy 10 packets of seasonal
vegetable seeds and report the total cost.

Failure mode (pre-training). The baseline calls the aggregator first, with no inputs:

[{"name":"calculate_total_cost","parameters":{}}]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

This violates the required schema (purchased seeds missing), producing a warning and yielding
scall = 0 and a strong format penalty F < 1 in our reward.

Reflection-driven repair (post-training). After RL on Tool-Reflection-Bench, the model first
reflects that costing requires purchased items, then executes a staged pipeline to materialize prereq-
uisites before aggregation:

[{"name":"get_current_season","parameters":{}}]

[{"name":"get_seeds_by_season","parameters":{"season":"<CUR_SEASON>"}}]

[{"name":"filter_seeds_by_availability","parameters":{"seeds":<SEASONAL_SEEDS>}}]

[{"name":"purchase_seeds","parameters":{"seeds":<AVAILABLE_SEEDS>,"quantity":10}}]

[{"name":"calculate_total_cost","parameters":{"purchased_seeds":<PURCHASED>}}]

Each call now matches tool name and parameter map exactly (schema-strict), so scall = 1 and
F → 1.

Why it works. Reward design penalizes missing required fields and redundant structure, while
granting full credit only when the <call> set exactly matches the ground truth (schema-strict,
order-invariant). The sequence-level RL objective (GSPO-style ratio, dual clipping) aligns opti-
mization with sequence rewards, and DAPO-style dynamic filtering removes near-zero-advantage
groups, concentrating updates on informative failures. Together these guide the policy to diagnose
schema errors, stage prerequisite calls, and complete the costing correctly.

Takeaway. The trained policy no longer “guesses” totals from empty inputs. Instead, it plans →
acquires data → purchases → aggregates, a behavior precisely targeted by our reflection-and-repair
rewards.

A.5 THEORETICAL ANALYSIS

We analyze the main design choices of our reward in Sec. §3.2 and the RL objective in Sec. §3.3.
Throughout, Sim ∈ [0, 1], all weights are nonnegative, presence masks are indicators, and
clip(x, a, b) = min{b,max{a, x}}. To avoid symbol overloading, we denote by rfmt the format-
penalty attenuation scalar used in Sec. §3.2 (called r there), and by rseq the sequence-level impor-
tance ratio in Sec. §3.3.

A.5.1 CONSISTENCY OF PRESENCE-MASK NORMALIZATION

Recall

S =
wrIr sref + wcIc scall + wfIf sfinal

Wact
, Wact = wrIr + wcIc + wfIf, (30)

where w•≥ 0, I•∈ {0, 1}, at least one I• = 1, sref, sfinal∈ [0, 1], and scall∈ {0, 1}.

Lemma 1 (Convex-combination form). Let A = {k ∈ {r,c,f} : Ik = 1} and define

αk =
wk∑
j∈A wj

for k ∈ A. (31)

Then αk≥ 0,
∑
k∈A αk = 1, and

S =
∑
k∈A

αk sk with sr = sref, sc = scall, sf = sfinal. (32)

Proof. Since Ik = 1 iff k ∈ A, the numerator equals
∑
k∈A wksk and Wact =

∑
k∈A wk > 0.

Divide both to obtain the stated form.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proposition 1 (Boundedness, stability, and scale invariance). With Wact > 0:

(a) S ∈ [0, 1] and, more sharply, S ∈ [mink∈A sk, maxk∈A sk].
(b) If one only toggles absent parts (keeps A and {wk}k∈A unchanged), then S is unchanged.
(c) For any λ > 0, replacing each active weight by λwk leaves S unchanged.

Proof. (a) By Lemma 1, S is a convex combination of {sk}k∈A; the interval bound follows from
sk ∈ [0, 1]. (b) Absent-part toggles do not change A nor the active wk. (c) Common scaling cancels
in numerator/denominator.

Corollary 1 (Continuity and Lipschitzness). Fix A and wk for k ∈ A. Then S is an affine (hence
continuous) map of (sk)k∈A with

|S − S′| ≤
∑
k∈A

αk |sk − s′k| ≤ max
k∈A

|sk − s′k|, (33)

so S is 1-Lipschitz w.r.t. the ℓ∞-norm on the active scores.

Remark. The definition via clip[0,1](·) in equation 25 is not needed for S since the convex-
combination form already implies S ∈ [0, 1].

A.5.2 FORMAT FACTOR: BOUNDEDNESS, MONOTONICITY, AND EQUALCALLS
ATTENUATION

Let
Ptotal = Pmiss + βextra Pextra + γcount Pcount, βextra, γcount ≥ 0, P• ≥ 0, (34)

and define the attenuation scalar

rfmt =

{
rreduce, EqualCalls

(
Ccalls, Gcalls

)
,

1, otherwise,
rreduce ∈ (0, 1]. (35)

Consider
F = clip[0,1](1− λm Ptotal rfmt) , λm ≥ 0. (36)

This is equivalent to the piecewise definition in equation 23 since Pmiss=Pextra=Pcount=0 implies the
inner value equals 1.

Proposition 2 (Core properties of F).

(a) Boundedness and regularity. F ∈ [0, 1] for all inputs; F is continuous, piecewise affine in
(Pmiss, Pextra, Pcount) and 1-Lipschitz w.r.t. its scalar argument before clipping.

(b) Monotonicity. For fixed (λm, rfmt), F is nonincreasing in Pmiss, Pextra, Pcount and nonin-
creasing in λm and in rfmt.

(c) EqualCalls attenuation improves F . If EqualCalls holds so that rfmt is replaced by
rreduce ≤ 1, then F weakly increases.

(d) Plateau characterization. F = 1 iff λmPtotalrfmt = 0 (e.g., Ptotal = 0 or λm = 0). If
λm > 0 and rfmt > 0, then F = 0 iff Ptotal ≥ 1/(λmrfmt).

Corollary 2 (Sensitivity bound). Off the plateaus (1− λmPtotalrfmt ∈ (0, 1)),
|∆F | ≤ λmrfmt

(
|∆Pmiss|+ βextra|∆Pextra|+ γcount|∆Pcount|

)
. (37)

A.5.3 CORE REWARD WITH SIMILARITY BACKOFF: SIGNAL AND VARIANCE CONTROL

Let Rcore = S · F as in equation 24. The total reward uses a backoff when Rcore is very small:

Rtotal =

{
clip[0,1](Rcore), Rcore ≥ ε,

clip[0,1]
(
wb · Sim

(
concat(C), concat(G)

))
, otherwise,

(38)

with wb ∈ (0, 1] and ε > 0. Note Rcore ∈ [0, 1] already, hence clipping is redundant but harmless
and keeps the two branches notationally symmetric.

We analyze its effect under a standard policy-gradient estimator ∇θE[Rtotal] =
E[Rtotal ∇θ log πθ(·)].

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Lemma 3 (Uniform bounded variance of the reward). Since Rtotal ∈ [0, 1], we have
Var(Rtotal) ≤ 1

4 for any data distribution.

Lemma 4 (Non-degenerate gradient second moment on the backoff branch). Let B =
{Rcore < ε} with P(B) = p > 0. Assume Sim(concat(C), concat(G)) ≥ σ a.s. on B for some
σ > 0, and E

[
∥∇θ log πθ(·)∥2 1B

]
> 0. Then

E
[∥∥Rtotal ∇θ log πθ(·)

∥∥2] ≥ (wbσ)
2 E
[∥∥∇θ log πθ(·)

∥∥2 1B

]
> 0. (39)

Implication. When Rcore requently approaches 0 (in the early stages of training), the backoff branch
ensures that the second moment of the gradients does not degenerate; combined with the variance
upper bound from Lemma 3, this helps stabilize the optimization updates.

A.5.4 SEQUENCE-LEVEL IMPORTANCE SAMPLING AND CLIPPING

Let the sampled completion be o = (o1, . . . , oT), and define the sequence-level (geometric-mean,
length-normalized) ratio

rseq(θ) =

(
T∏
t=1

πθ(ot | q, o<t)
πθold(ot | q, o<t)

)1/T

= exp
(

1
T

T∑
t=1

log ρt

)
, ρt =

πθ(ot | ·)
πθold(ot | ·)

. (40)

Proposition 3 (Length-independent ratio range under bounded log-ratios). If log ρt ∈ [−L,L]
a.s. for some L > 0, then

e−L ≤ rseq(θ) ≤ eL for all T ≥ 1, (41)

whereas the unnormalized product ratio ranges in [e−LT , eLT].

Implication. The geometric mean aligns the ratio granularity with the sequence-level reward in
equation 26, prevents exponential blow-up with T , and—together with dual clipping—reduces vari-
ance at the sequence level.

A.5.5 DYNAMIC FILTERING OF PROMPT GROUPS (DAPO-STYLE)

Let a prompt group produce G rollouts {oi}Gi=1 with rewards Ri∈ [0, 1] and batch z-scored advan-
tages

Âi =
Ri − R̄

sR
, R̄ = 1

G

G∑
j=1

Rj , sR =

√√√√ 1
G

G∑
j=1

(Rj − R̄)2 > 0. (42)

Define the accepted set

S =
{
i : |Âi| > τadv

}
, 0 < |S| < G, Var({Ri}Gi=1) > τvar > 0. (43)

Write the per-sample (sequence-level, dual-clipped) PPO-like term as

ℓi(θ) = min
{
rseq,i(θ) Âi, clip

(
rseq,i(θ), 1− εlow, 1 + εhigh

)
Âi

}
, (44)

and denote its gradient by gi(θ) = ∇θℓi(θ). Assume the usual score-function bound and clipped
ratio range: ∥∥∇θ log πθ(oi,t | q, oi,<t)

∥∥ ≤ Bπ, rseq,i(θ) ∈ [1− εlow, 1 + εhigh]. (⋆)

A uniform bound on per-rollout gradients. Since rseq,i(θ) is the geometric mean of token ratios,

∇θrseq,i(θ) = rseq,i(θ)
1

|oi|

|oi|∑
t=1

∇θ log πθ(oi,t | q, oi,<t). (45)

Using (⋆) and that the clipped branch is constant on plateaus, there exists a finite Cψ = (1+εhigh)Bπ
such that

∥gi(θ)∥ ≤ Cψ |Âi| for all i, θ. (46)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Lemma 5 (Zero or near-zero advantages). (a) If Âi = 0, removing oi leaves the group-wise
expected gradient unchanged.
(b) If |Âi| ≤ τadv, then, for any θ,∥∥ E [gi(θ)]

∥∥ ≤ Cψ τadv, E
[
∥gi(θ)∥2

]
≤ C2

ψ τ 2
adv. (47)

Proof. (a) The contribution is proportional to Âi. (b) Apply equation 46 and take expectations.

Bias and variance effects with 1
G normalization. Let the filtered group gradient be

g̃(θ) =
1

G

∑
i∈S

gi(θ), g(θ) =
1

G

G∑
i=1

gi(θ) (unfiltered). (48)

Define the discarded set Sc = {1, . . . , G} \ S . Then

E[g̃(θ)]− E[g(θ)] = − 1

G

∑
i∈Sc

E[gi(θ)], (49)

∥∥∥ E[g̃(θ)]− E[g(θ)]
∥∥∥ ≤ |Sc|

G
Cψ τadv ≤ Cψ τadv,

using Lemma 5(b). Moreover,

E

[∥∥∥ 1
G

∑
i∈Sc

gi(θ)
∥∥∥2] ≤ |Sc|

G2
C 2
ψ τ 2

adv, (50)

thus, discarding near-zero advantageous terms induces at most an O(τ 2
adv)-level change in the second

moment; with respect to the 1
G normalization, it does not introduce any additional scaling bias.

Acceptance constraints avoid degeneracy. The constraints 0 < |S| < G and Var({Ri}) > τvar
ensure: (i) the batch standardization sR is well-defined; (ii) both positive and negative (or at least
non-identical) signals are present, preventing the trivial zero-gradient case where all Âi are identical.
Consequently, g̃(θ) is a non-degenerate direction whenever useful learning signal exists.

Asymptotic unbiasedness with vanishing threshold. If the threshold decays τ (t)adv ↓ 0 and the law
of Âi has a continuous density at 0, then the discard probability P(|Âi| ≤ τ

(t)
adv) → 0, and

lim
t→∞

∥∥∥ E[g̃ t(θ)]− E[g(θ)]
∥∥∥ = 0, (51)

i.e., the dynamic filtering becomes asymptotically unbiased while retaining finite-time variance-
reduction benefits.

Summary. Dynamic filtering deletes rollouts whose contributions are provably negligible (zero or
O(τadv)), thereby reducing variance and compute without altering the expected update in the limit
τadv→0; using the same 1/G normalization as equation 26 avoids spurious scaling bias.

A.5.6 CONVERGENCE CONSIDERATIONS FOR THE CLIPPED SEQUENCE-LEVEL OBJECTIVE

Consider the surrogate objective JRL(θ) in equation 26, where rewards are bounded in [0, 1] and the
sequence-level importance ratios are dual-clipped to [1− εlow, 1 + εhigh].

Assumptions.

(A1) Bounded scores. There exists Bπ < ∞ such that for all histories (q, o<t) and tokens ot,∥∥∇θ log πθ(ot |q, o<t)
∥∥ ≤ Bπ .

(A2) Bounded rewards & finite clipping. For each rollout oi, Ri ∈ [0, 1] and rseq,i(θ) ∈
[1− εlow, 1 + εhigh] with 0 < εlow, εhigh < ∞.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(A3) Non-degenerate batch dispersion. On accepted groups, Var({Ri}Gi=1) ≥ τvar > 0, so
Âi = (Ri − R̄)/std(R) are well-defined.

(A4) Vanishing filtering. τ (t)adv ↓ 0 and the law of Âi has a continuous density at 0, so P(|Âi| ≤
τ
(t)
adv) → 0.

(A5) Stepsizes. Robbins–Monro conditions:
∑
t ηt = ∞ and

∑
t η

2
t < ∞.

Lemma 6 (Bounds on per-sample gradients and second moments). Let o = (o1, . . . , o|o|) and
rseq(θ) denote the (clipped) sequence ratio. Then

∇θrseq(θ) = rseq(θ)
1

|o|

|o|∑
t=1

∇θ log πθ(ot |q, o<t),
∥∥∇θrseq(θ)

∥∥ ≤ (1 + εhigh)Bπ. (52)

Moreover, the PPO-style term is piecewise smooth and its gradient magnitude is bounded by
C1 := (1 + εhigh)Bπ |Â|; together with (A3), |Â| ≤ 1√

τvar
yields a uniform second-moment bound

E
[
∥∇θℓi(θ)∥2

]
≤ C2 < ∞.

Lemma 7 (Asymptotic unbiasedness under vanishing filtering). Let g(θ) denote the full (unfil-
tered) stochastic gradient and g̃τ (θ) =

1
G

∑
i: |Âi|>τ gi(θ) the filtered version with 1

G normalization.
Under (A4) and the bounded second moments above,

lim
τ↓0

∥∥E[g̃τ (θ)]− E[g(θ)]
∥∥ = 0 for all θ. (53)

Theorem 1 (Convergence to a stationary point of the surrogate). Suppose (A1)–(A5) hold.
Then the iterates of stochastic gradient ascent on JRL(θ) with the dynamic filtering scheme converge
almost surely to the set of stationary points of the surrogate objective.

Proof sketch. By Lemma 6 and the reward boundedness (Lemma 3), the stochastic gradients have
uniformly bounded second moments; the objective is bounded and piecewise smooth (kinks of mea-
sure zero). Lemma 7 guarantees that the bias due to filtering vanishes as τ

(t)
adv → 0. Therefore the

noisy gradient process forms a Robbins–Monro stochastic approximation with asymptotically un-
biased gradients and square-summable noise, yielding a.s. convergence to stationary points of JRL
(e.g., Kushner–Yin/Bottou).

Remarks. (i) The min-with-clipping introduces bias w.r.t. the true off-policy objective, but ensures
variance control and stability; the theorem concerns the surrogate we optimize. (ii) Sequence-level
ratios and sequence-level clipping align the gradient scale with the sequence reward, avoiding to-
ken/sequence granularity mismatch and contributing to the boundedness needed above. (iii) In prac-
tice, we keep τvar and the clip window fixed and decay τadv, which satisfies the lemmas’ conditions
and matches our training protocol.

27

	Introduction
	Related Works
	Tool-augmented Large Language Models
	Self-Correction in LLMs

	Method
	Tool-Reflection-Bench
	Perturbation-based Disruptions
	Positive Samples Transformations
	Reflection Repair Process

	Reward Design
	RL for Tool-Reflection-Bench

	Experiments
	Experiment Settings
	Experiment Results
	Result on BFCL v3
	Result on Tool-Reflection-Bench

	Conclusion
	Appendix
	Use of LLMs
	Prompt for Perturbation-based Disruptions
	Prompt for Call-Order Swap
	Prompt for Redundant Call
	Prompt for Missing Call
	Prompt for Argument Error

	Training Data Case Study
	Case Study of Call-Order Swap
	Case Study of Redundant Call
	Case Study of Missing Call
	Case Study of Argument Error

	Test Data Case Study
	Case I
	Case II

	Theoretical Analysis
	Consistency of Presence-Mask Normalization
	Format Factor: Boundedness, Monotonicity, and EqualCalls Attenuation
	Core Reward with Similarity Backoff: Signal and Variance Control
	Sequence-Level Importance Sampling and Clipping
	Dynamic Filtering of Prompt Groups (DAPO-style)
	Convergence Considerations for the Clipped Sequence-Level Objective

