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ABSTRACT

With the recent emergence of foundation models trained on internet-scale data
and demonstrating remarkable generalization capabilities, such foundation models
have become more widely adopted, leading to an expanding range of application
domains. Despite this rapid proliferation, the trustworthiness of foundation mod-
els remains underexplored. Specifically, the out-of-distribution detection (OoDD)
capabilities of large vision-language models (LVLMs), such as GPT-4o, which
are trained on massive multi-modal data, have not been sufficiently addressed.
The disparity between their demonstrated potential and practical reliability raises
concerns regarding the safe and trustworthy deployment of foundation models. To
address this gap, we evaluate and analyze the OoDD capabilities of various pro-
prietary and open-source LVLMs. Our investigation contributes to a better under-
standing of how these foundation models represent confidence scores through their
generated natural language responses. Furthermore, we propose a self-guided
prompting approach, termed Reflexive Guidance (ReGuide), aimed at enhancing
the OoDD capability of LVLMs by leveraging self-generated image-adaptive con-
cept suggestions. Experimental results demonstrate that our ReGuide enhances
the performance of current LVLMs in both image classification and OoDD tasks.1

1 INTRODUCTION
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Figure 1: Performance of proprietary and open-source
LVLMs on the ImageNet200 benchmark: (a) state-of-the-
art comparison and (b) the boosting effect of our ReGuide

Thanks to substantial advancements
in hardware and the availability of
large-scale datasets, foundation models
have achieved remarkable performance
across a wide range of tasks, demon-
strating exceptional generalization. This
evolution has shifted toward leveraging
multiple data modalities, particularly vi-
sion and natural language. As a re-
sult, vision-language foundation mod-
els have demonstrated their capabilities
across diverse domains, from general
tasks like text-to-image generation and
vision-question answering, to special-
ized fields such as medical diagnosis
and robotics (Esser et al., 2024; Li et al., 2023; Wake et al., 2023; Majumdar et al., 2024). Despite
the widespread adoption of these large vision-language models (LVLMs) including GPT (OpenAI,
2024), Claude (Anthropic, 2024), and Gemini (Reid et al., 2024), their trustworthiness and relia-
bility have not been adequately investigated. Ensuring the robustness of deep neural networks has
been a key research area to guarantee their safe application in practice. With the rapid populariza-
tion of LVLMs, practical concerns such as harmful content filtering and domain generalization have
been actively studied (Zhang et al., 2024b; Han et al., 2024). However, fundamental aspects, such

1All datasets including lists of images and prompt-response pairs from each LVLM will be made publicly
available upon acceptance.
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as the quality of confidence estimates for model predictions—extensively studied in single-modal
models—remain underexplored. Some works have studied OoDD in CLIP (Ming et al., 2022; Jiang
et al., 2024; Cao et al., 2024) and Stable Diffusion (Zhu et al., 2024), but few have examined OoDD
in LVLMs, particularly with respect to confidence scores expressed through their natural language
responses. This gap between their demonstrated capabilities and real-world reliability raises con-
cerns about ensuring the safe and dependable deployment of LVLMs.

To bridge the gap, we first evaluate and compare the OoDD capabilities of LVLMs. The OoDD
task allows us to investigate how LVLMs behave when required to generate responses beyond the
categories defined within the user-provided prompt. Due to the lack of prior experimental config-
urations, we develop a framework for evaluating the OoDD capabilities of LVLMs. Our focus is
on detecting OoD image inputs based on the in-distribution (ID) space specified by text inputs. To
this end, we design a prompt that defines the ID space and guides the LVLM to provide confidence
estimates through its generated responses. Using this prompt, we evaluate the OoDD capabilities of
both proprietary and open-source LVLMs and analyze their behavior in expressing confidence from
various perspectives. Fig. 1(a) summarizes the comparison of the evaluated LVLMs. In general,
proprietary models outperform open-source models, and open-source models show performance
improvements as model size increases. However, some open-source models including LLaVa-v1.6
(Mistral-7B) (Li et al., 2024a) and GLM-4v-9B (GLM et al., 2024) exhibit low OoDD performance
despite achieving decent results on popular VLM benchmarks.2 We found that one of the reasons
for this discrepancy is the insufficient image interpretation capabilities of these models, which limits
their ability to accurately distinguish between ID and OoD inputs.

To enhance the OoD detectability of LVLMs, we propose a two-stage self-guided prompting ap-
proach called Reflexive Guidance (ReGuide). In the first stage, ReGuide prompts an LVLM to
suggest two groups of concepts based on the given image: semantically similar concepts (i.e., near-
OoD) and semantically dissimilar concepts (i.e., far-OoD). In the second stage, these suggested
concepts are employed as auxiliary OoD classes. To the best of our knowledge, this is the first study
to leverage image inputs to generate informative texts for OoDD. By utilizing the visual interpreta-
tion capabilities of LVLMs, ReGuide remains simple and model-agnostic, allowing the same prompt
to be applied to different LVLMs. Fig. 1(b) shows the effectiveness of ReGuide. Notably, ReGuide
significantly boosts the overall performance of open-source models, making them comparable to
proprietary models. GPT-4o, which is the top performer prior to applying ReGuide, also benefits
from ReGuide, especially on near-OoD datasets (e.g., NINCO, SSB Hard). Our results highlight the
effectiveness of guiding LVLMs through self-generated, image-adaptive concept suggestions.

From the results of our study, we can draw the following insights regarding the effectiveness of
ReGuide: Despite the strong visual interpretation capabilities of LVLMs, which enable them to pre-
dict fine-grained classes of objects effectively, these models tend to avoid generating responses that
fall outside the given prompt categories. Our findings suggest that the models may have developed
a form of positive bias due to their training on positive image-text pairs, or that their ability to ex-
plore areas beyond the information embedded in the prompt has been diminished, possibly due to
human alignment processes. Addressing these limitations can lead to more reliable and versatile
applications of LVLMs in various domains.

2 RELATED WORK

In single-modal vision models, OoDD has been actively studied. Starting with the baseline method
of using the maximum softmax value as an OoD score (Hendrycks & Gimpel, 2017), methods have
evolved to improve confidence modeling (Moon et al., 2020; Liu et al., 2020; Bibas et al., 2021),
post-hoc techniques (Liang et al., 2018; Lee et al., 2018b; Sun et al., 2021; Djurisic et al., 2023;
Sun et al., 2022; Zhang et al., 2023; Liu & Qin, 2024), or a combination of both (Xu et al., 2024).
Another approach involves leveraging auxiliary OoD samples to better distinguish between ID and
OoD inputs. While real OoD samples show strong detection performance (Hendrycks et al., 2019;
Chen et al., 2021; Lu et al., 2023; Katz-Samuels et al., 2022), they require access to real OoD data.
Synthetic samples offer an alternative, providing the benefits of auxiliary OoD data without the need
for collecting real samples (Lee et al., 2018a; Du et al., 2022; Tao et al., 2023; Zheng et al., 2023).

2https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
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Figure 2: Comparison of the OoDD framework for single-modal classifiers, CLIP, and LVLMs

With the growing interest in multi-modal models, particularly VLMs, OoDD methods have advanced
toward leveraging both vision and language modalities. A pioneering LVLM (non-generative) is
CLIP (Radford et al., 2021). Ming et al. (2022) established a baseline for OoDD on CLIP by us-
ing the maximum cosine similarity between image and text features as an OoD score. One main
approach in CLIP-based OoDD focuses on using auxiliary text for OoD concepts, as text data is rel-
atively easy to collect. Wang et al. (2023) simply added ‘no’ as a prefix to ID classes, while Fort et al.
(2021) used labels from OoD datasets, which requires prior knowledge of OoD inputs. Jiang et al.
(2024); Esmaeilpour et al. (2022); Cao et al. (2024) derived auxiliary texts using only ID data, with
Cao et al. (2024) obtaining OoD texts from large language models (LLMs) like GPT. Previous work
such as NegLabel (Jiang et al., 2024) and EOE (Cao et al., 2024), as well as our proposed method,
share the idea of using negative concepts for OoDD. However, we focus on generative LVLMs and
our approach is the first to utilize image-adaptive negative concepts generated by LVLMs.

Diffusion models, a type of generative model, have also been employed for OoDD. One approach is
to compare the reconstruction quality between ID and OoD images (Gao et al., 2023; Tong & Dai,
2024), or to generate synthetic images for OoDD in single-modal vision models (Du et al., 2023;
Girella et al., 2024). However, generative VLMs, particularly foundation models (i.e., LVLMs),
remain understudied in the context of OoDD. While several works have explored confidence esti-
mates in model predictions (Han et al., 2024; Groot & Valdenegro-Toro, 2024), they do not focus
on detecting OoD inputs. Miyai et al. (2024) introduced Unsolvable Problem Detection to evalu-
ate VLMs’ ability to reject unanswerable inputs. However, their focus is on rejection ability, while
our study focuses on distinguishing between answerable and unanswerable inputs and proposes a
method to enhance this ability. In LLMs, several works use model-generated answers to guide final
responses more accurately (Yao et al., 2023; Wei et al., 2022; Shanahan et al., 2023). Our work is
the first to propose a similar approach in LVLMs, leveraging the model’s own generated answers.

3 OOD DETECTION ON VISION-LANGUAGE FOUNDATION MODELS

3.1 PROBLEM DEFINITION

OoD is conventionally defined as distributions outside the training distribution. However, given the
vast amount and broad domain coverage of data used to train LVLMs, this conventional definition
faces challenges in its direct application to LVLMs. To address this, we extend the zero-shot OoDD
framework of CLIP (Radford et al., 2021) to generative LVLMs.

Let X be the image space and Y = {yi}Ci=1 the set of class-representing words, where C is the
number of classes. The OoDD problem for CLIP in zero-shot image recognition is defined as the
scenario where Y does not contain the ground-truth label of an input image x ∈ X . Given x, CLIP
yields a prediction for x based on sim(fI(x), fT (prompt(yi))) where sim(u, v) is the cosine
similarity, prompt is a text template designed to reflect yi (e.g., a photo of yi), and fI , fT are
the image and text encoders, respectively. The cosine similarities between x and each yi ∈ Y are
used to determine whether x belongs to ID or OoD. If the ground-truth label of x is not in Y , those
similarities for all yi in Y will be relatively low, leading to the classification of x as OoD.

We frame the OoDD problem for LVLMs based on the zero-shot OoDD scenario defined for CLIP.
Similarly, Y is set to a fixed word set containing only ID class words. Given both x and Y as inputs,
an LVLM is instructed to produce prediction results in a structured format. Then, class predictions
and confidence estimates for x are extracted from the natural language responses by the LVLM. If
the ground-truth label of x is not in Y , the LVLM should provide low confidence scores for all yi in
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LVLM
Prediction: airplane 
Confidence: {airplane: 92.05, car: 5.32,     ,truck: 3.22, none of these classes: 0.00}

0

Your task is to classify the image into one classes: {ID classes, none of these classes} and assign confidence 
to each class.

You can classify the image into 'none of these classes': if you cannot classify the image into ID classes, if you 
are not sure whether the image belongs to one of the ID classes, or if you think you need other classes other 
than the ID classes.

The following are guidelines for your response. Please respond according to these guidelines. 
You should provide your confidence for each class between 0.00 and 100.00.       Strictly follow the guidelines above.

Here is example of your response. Please respond with the following examples format:
Prediction: car
Confidence: {airplane: 6.34, car: 73.07, bird: 12.72, cat: 54.94, deer: 23.03,   , none of these classes: 1.29}

Task Description

Rejection Class

Guidelines

Examples

…

…

…

…

Figure 3: Framework for OoDD evaluation on LVLMs

Y in its answers. Fig. 2 summarizes the OoDD frameworks for single-modal image classifiers, CLIP,
and LVLMs. Single-modal classifiers detect OoD images based solely on outputs from image inputs.
In contrast, CLIP and LVLMs leverage both image and text inputs, with CLIP combining them via
similarity measures and LVLMs integrating them through cross-modal interactions. LVLMs also
generate natural language outputs, controllable through prompt instructions.

3.2 PROMPT DESIGN

Fig. 3 illustrates the framework for OoDD evaluation on LVLMs with a simplified prompt. Our
prompt consists of four components: a task description, an explanation of the rejection class, guide-
lines, and examples for the response format. Unlike previous work on LVLMs (Han et al., 2024;
Hwang et al., 2024; Groot & Valdenegro-Toro, 2024), we encounter a significant number of failure
cases when using a simple prompt consisting of the task statement including Y and a formatted out-
put structure. We attribute this inconsistency to differences in how confidence scores are assigned in
our framework. In our prompt design, the LVLM is expected to provide confidence scores for each
class in Y , whereas prior work required only a single confidence score for the predicted class. To
mitigate these failures, we enhance the prompt by adding the following components, resulting in the
final prompt used in our experiments. The effectiveness of providing guidelines and examples and
the complete prompt can be found in Appendix B.5 and B.6, respectively.

Rejection class. When we provide only Y , we observe that predictions for OoD samples often do
not correspond to any class in Y . Due to its strong zero-shot visual recognition capabilities, the
LVLM can either provide the ground-truth label for an OoD input image or reject classification into
any of the classes in Y . To address this unintended behavior, we introduce a rejection class named
none of these classes and provide a detailed explanation of its role to the LVLM.

Guidelines addressing failure cases. In addition to the case where the prediction does not fall
within Y , we identify several other issues, such as mismatches between the class assigned the high-
est confidence score and the predicted class, assigning a confidence score of 0.0 to all classes in-
cluding the rejection class, or failing to provide confidence scores for all classes in Y . To reduce the
frequency of these failures, we include guidelines that address the most common cases.

Response examples. In-context learning (ICL) is commonly used to improve response quality by
providing models with examples that illustrate the desired format during inference, allowing them
to generate outputs that better align with these examples (Brown et al., 2020). We leverage ICL to
reduce failure caused by formatting issues. However, we observe that when only a single example
is provided, the LVLM tends to mimic the example, regardless of whether the input image is ID or
OoD. To mitigate this tendency, we provide examples for both ID and OoD input images.

3.3 OOD SCORE DESIGN

Since we provide the rejection class for OoD inputs, the ideal behavior of LVLMs for confidence
estimates is to assign high confidence scores to one of the classes in Y for ID inputs, and to the
rejection class (i.e., none of these classes) for OoD inputs. Therefore, we use the maximum confi-
dence score among the classes in Y (i.e., ID classes) as the OoD score. Note that we do not constrain
the sum of confidence scores. We apply the softmax function to all confidence values to normalize
them, including that of the rejection class. Based on this OoD score design, an input image is likely
to be ID if the score is high, and likely to be OoD if the score is low.

4
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Table 1: Comparison on the ImageNet200 benchmark. Full model names are in the footnotes.
‘Valid’ indicates the ratio of valid responses out of a total of 23, 031 image-prompt queries, with
counts in brackets. Bold highlights the best performance among generative LVLMs.

Models

ID Near-OoD Far-OoD All OoDIN200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) FPR@95%TPR (↓) / AUROC (↑)

SCALE∗∗ - 86.37 84.84 93.98 -
fDBD∗∗ - 86.37 84.27 93.45 -
AugMix+ASH∗∗ - 87.01 55.83 / 85.74 71.22 / 80.00 19.14 / 95.81 21.00 / 95.67 31.06 / 92.51 -

OpenCLIP 100.00 (23,031) 87.41 62.27 / 85.31 71.48 / 78.36 42.76 / 92.49 47.83 / 89.62 47.47 / 90.68 61.42 / 83.54

GPT-4o 85.49 (19,690) 89.78 21.34 / 93.76 39.49 / 83.42 2.35 / 97.76 7.80 / 95.31 4.30 / 97.18 23.90 / 89.65
Claude 3.5 Sonnet 80.39 (18,515) 86.06 53.10 / 83.74 78.41 / 63.00 9.23 / 96.09 10.42 / 93.83 18.49 / 90.82 49.08 / 76.97
Gemini Pro 1.5 91.92 (21,170) 88.84 21.55 / 91.97 55.77 / 81.39 1.33 / 97.70 6.00 / 95.30 4.96 / 96.55 33.23 / 88.09

LLaVA-v1.6 71.63 (16,496) 2.45 100.00 / 50.82 100.00 / 48.85 100.00 / 50.02 100.00 / 59.23 100.00 / 49.19 100.00 / 50.03
GLM-4v 89.00 (20,498) 69.48 100.00 / 78.88 100.00 / 73.23 100.00 / 82.37 100.00 / 83.82 100.00 / 82.76 100.00 / 77.09
InternVL2-26B 61.64 (14,197) 90.39 82.59 / 60.39 94.19 / 57.28 36.69 / 81.05 28.08 / 87.05 50.84 / 74.33 75.94 / 64.72
InternVL2-76B 97.36 (22,424) 88.30 100.00 / 79.59 100.00 / 71.11 100.00 / 95.98 100.00 / 91.87 100.00 / 93.07 100.00 / 80.13
* OpenCLIP-ViT-B-32, GPT-4o (2024-08-06), LLaVA-v1.6-Mistral-7B, GLM-4v-9B, InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B
** Results based on 100% of the benchmark from the OpenOOD v1.5 leaderboard.3 Only the results available from the leaderboard are shown.

3.4 EXPERIMENTAL SETTINGS

Comparison models. To compare LVLMs from diverse perspectives, we consider both propri-
etary and open-source models. For proprietary models, we employ three state-of-the-art models:
GPT-4o (2024-08-06) (OpenAI, 2024), Gemini Pro 1.5 (Reid et al., 2024), and Claude 3.5 Son-
net (Anthropic, 2024). For open-source models, we use four models: LLaVA-v1.6-Mistral-7B
(LLaVA-v1.6) (Li et al., 2024a), GLM-4v-9B (GLM-4v) (GLM et al., 2024), QWEN-VL-Chat
(QWEN) (Bai et al., 2023), InternVL2-InternLM2-Chat-26B (InternVL2-26B), and InternVL2-
LLaMA3-76B (InternVL2-76B) (Chen et al., 2024). Additionally, we include OpenCLIP (ViT-
B-32 pretrained on LAION 2B-s34b-b79k) (Cherti et al., 2023) as a non-generative LVLM. To
further facilitate comparison between single- and multi-modal models, we also include three single-
modal SOTA vision OoDD models, SCALE (Xu et al., 2024), fDBD (Liu & Qin, 2024), Aug-
Mix+ASH (Djurisic et al., 2023; Hendrycks et al., 2020).

Benchmark datasets. We evaluate the comparison models on the CIFAR10 and ImageNet200
benchmarks proposed in OpenOOD v1.5 (Zhang et al., 2024a). We focus on the standard OoD
setting in OpenOOD v1.5, which includes two types of datasets, near- and far-OoD, categorized
based on the semantic distance between ID and OoD datasets. Since LVLMs are trained on high-
resolution images, our main experiments are conducted on the ImageNet200 benchmark. We also
evaluate the models on the CIFAR10 benchmark to assess their scalability with respect to input
image resolution. For each benchmark, we consider the set of class names from the ID dataset
as Y . Due to cost, time, and API rate limits, we use 25% subsets of the benchmarks. A detailed
explanation of the benchmark datasets can be found in Appendix B.1.

Evaluation metrics. We measure the OoDD performance using two commonly used metrics in
OoDD: the area under the receiver operating characteristic curve (AUROC) and the false positive
rate at the 95% true positive rate (FPR@95%TPR; FPR). We also include the ratio and number of
valid responses—those that adhere to the provided guidelines and example format—as part of the
evaluation metrics. We consider the ability to understand given instructions to be one of the model’s
key capabilities. Only valid responses are included when measuring performance. We additionally
evaluate models on the shared valid responses across all models for a rigorous comparison. This
result can be found in Appendix B.2.

3.5 RESULTS

Tab. 1 presents the OoDD capabilities of the compared models on the ImageNet200 benchmark.
The near- and far-OoD results for SCALE and fDBD represent the average performance across
their respective categories. ‘All OoD’ refers to the performance in distinguishing all OoD inputs,
including near- and far-OoD inputs, from ID inputs (i.e., ID vs. all OoD). The results of QWEN-VL-
Chat are ommitted due to its exceptionally low ability to follow instructions, with a valid response
rate of less than 1%.

3https://zjysteven.github.io/OpenOOD/index.html
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Figure 4: Further analysis on the ImageNet200 benchmark. (a) FPR across different TPR thresholds,
(b) OoD score distribution, (c) OoD detectability based on model sizes, and (d) ID classification
accuracy and OoDD performance of InternVL2-26B according to the given class order

On both image recognition and OoDD tasks, proprietary models outperform the open-source models
in most cases, with reasonable valid response rates. All compared models have more difficulty
in detecting near-OoD than far-OoD. The overall performance ranking of the evaluated LVLMs
generally aligns with the OpenVLM leaderboard4, except for Gemini Pro 1.5. In our results, Gemini
Pro 1.5 shows better ID accuracy and OoDD performance than Claude 3.5 Sonnet and InternVL-
76B. Claude 3.5 Sonnet frequently generates invalid responses compared to other proprietary models
and struggles to detect near-OoD, resulting in worse performance on SSB-Hard compared to the
open-source model GLM-4v in terms of AUROC, despite achieving 16.58% higher ID accuracy.
InternVL2-26B achieves the best ID accuracy, but has difficulty with OoDD and shows the lowest
valid response rate. While there is no clear-cut relationship between image recognition and OoDD
capabilities, models with better image recognition performance generally exhibit stronger OoDD
performance, consistent with the findings of Vaze et al. (2022).

Notably, the proprietary models generally perform on par with or better than the single-modal SOTA
OoDD models. In addition, GPT-4o and Gemini Pro 1.5 outperform OpenCLIP in both ID classifi-
cation and OoDD, showing significantly better performance in OoDD. For a more rigorous compar-
ison, we evaluate OpenCLIP on images where GPT-4o generates valid responses, as GPT-4o has a
relatively lower valid response rate. On the GPT-4o valid query set, GPT-4o still yields better results
on both tasks. This demonstrates its superior visual recognition capability and ability to express con-
fidence scores through its generated responses. This observation is consistent with the evaluation on
the shared valid set across all models compared. Detailed results can be found in Appendix B.2.

Among the open-source models, one notable observation is their FPR of 100%. Our analysis indi-
cates that this is caused by extremely biased confidence values, which will be further discussed in
Sec. 3.6. InternVL2-76B exhibits the best OoDD performance, while InternVL2-26B shows the best
zero-shot image recognition performance among the open-source models. Both models also demon-
strate a better understanding of instructions than Claude 3.5 Sonnet. Overall, InternVL2-76B shows
superior performance in all aspects, including valid response rate, ID accuracy, and OoDD perfor-
mance. It achieves higher ID accuracy and comparable OoDD performance to the single-modal
SOTA models, alongside the highest valid response rates among all compared models. LLaVA-
v1.6 struggles with image recognition, achieving an accuracy of just 2.45%. Most responses from
LLaVA-v1.6 incorrectly identify ID images as OoD, resulting in poor classification accuracy and
OoDD performance.

3.6 FURTHER ANALYSIS

Scalability with image resolution. We assess the input resolution scalability of LVLMs using the
CIFAR10 benchmark. Most models demonstrate higher performance on the CIFAR10 benchmark
than on the ImageNet200 benchmark, with a higher ratio of valid responses. Although the smaller
number of class candidates and coarser class contribute to the improved performance, it indicates
that the LVLMs handle lower-resolution images effectively. As with the ImageNet200 benchmark,
proprietary models consistently outperform open-source models across all datasets, demonstrating
superior performance even on low-resolution images. However, in terms of valid response rate, only
GPT-4o shows a decrease, excluding GLM-4v which is significantly less accurate overall. This sug-
gests that GPT-4o has more difficulty handling low-resolution images compared to high-resolution
images. Detailed results can be found in Appendix B.2.

4https://huggingface.co/spaces/opencompass/open_vlm_leaderboard
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Table 2: Reasoning behind the predictions of GPT-4o and InternVL2-26B on the ImageNet200
benchmark. Bold indicates the predicted class and its confidence score before applying softmax.
Bold italic highlights notable points. Classes with a confidence score of 0.0 are omitted.

Prediction
ID OoD

A
ct

ua
l

ID

G
PT

-4
o

• Ground-truth: Bald eagle
• {bald eagle: 98.75, vulture: 1.0, none of these classes: 0.25}
• The bird in the image is a clear match to the bald eagle class,
recognizable by its distinctive white head, yellow beak, and
large wingspan. Hence, a high confidence is assigned to this
class.

• Ground-truth: Centipede
• {centipede: 40.00, snail: 45.00, none of these classes:
80.00}
• The image appears to resemble a millipede-like structure,
but none of the given 200 classes directly match this obser-
vation. Thus, the prediction is ‘none of these classes’ with
high confidence.

In
te

rn
V

L
2-

26
B • Ground-truth: Tree frog

• {tree frog: 99.99}
• The image shows a green frog with a yellow eye, which is
characteristic of a tree frog. The frog is perched on a leaf , and
its coloration and eye pattern are consistent with tree frogs.

• Ground-truth: Bucket
• {none of these classes: 100.00}
• The image shows a person in a swimsuit, bending over
a bucket, which appears to be in a grassy area. The image
does not clearly depict any of the 200 classes provided, so
the prediction is ‘none of these classes’ with a confidence of
100.00.

O
oD

G
PT

-4
o

• Ground-truth: N/A (Openimage-O)
• {goldfinch: 5.67, junco: 2.93, bald eagle: 1.42, lorikeet:
94.72, toucan: 8.65, . . . , snail: 0.09, golden retriever: 0.14, am-
bulance: 0.18, space shuttle: 0.14, none of these classes: 0.13}
• The bird in the image closely resembles a lorikeet, with its vi-
brant green plumage and colorful facial markings. Other birds
like toucans and goldfinches also show some resemblance, but
the lorikeet class has the highest confidence due to the specific
combination of colors and features.

• Ground-truth: N/A (Openimage-O)
• {none of these classes: 99.99}
• The image shows purple ornamental flowers (Allium),
which do not match any of the given 200 classes.

In
te

rn
V

L
2-

26
B

• Ground-truth: Araneus gemma (NINCO)
• {spider web: 99.99}
• The image shows a spider on a green plant, with a web visible
in the background. The spider’s body and legs are clearly visi-
ble, and the web’s intricate pattern is evident. The confidence in
the prediction of ‘spider web’ is high due to the clear visibility
of the web and the spider’s position within it.

• Ground-truth: Caracal (NINCO)
• {none of these classes: 99.00}
• The animal in the image is a caracal, which is a medium-
sized wild cat native to Africa and parts of the Middle East.
It is characterized by its reddishbrown coat, long legs, and
distinctive blacktufted ears. The caracal is known for its
agility and is often found in grasslands and savannas. The
image shows an animal that matches these characteristics,
making it a “none of these classes” with high confidence.

Highly biased confidence scores. One common observation across both benchmarks is an FPR
of 100%. As shown in Fig. 4(a), LLaVA-v1.6 consistently yields 100% FPR across different TPR
thresholds. This phenomenon is observed in most open-source models, but not in proprietary mod-
els. To understand the cause of this issue, we examine the distribution of OoD scores. Fig. 4(b)
depicts the OoD score distribution of InternVL2-76B and GPT-4o on the ImageNet200 benchmark.
We find that the compared models tend to produce highly biased OoD scores, with most OoD scores
being either 0.0 or 100.00. A detailed explanation can be found in Appendix B.2. This highlights
the need for calibration of confidence scores in the responses of open-source models.

Reasoning. We analyze the contribution of the model’s visual feature interpretability to its OoDD
capability by examining the rationale behind its predictions. The prompt used for reasoning can
be found in Appendix B.6. Tab. 2 presents the reasoning results from GPT-4o and InternVL2-26B
for four different cases on the ImageNet200 benchmark. The results indicate that the high inter-
pretability of visual features contributes to stronger OoDD capabilities. GPT-4o provides detailed
descriptions of images, leading to predictions in fine-grained categories. InternVL2-26B also de-
scribes objects in a given image effectively, but not with the same level of detail as GPT-4o. A
detailed explanation including the reasoning results for LLaVA-v1.6 can be found in Appendix B.3.

Table 3: Comparison on the quality of con-
fidence scores in ID inputs. Bold indicates
the best performance excluding OpenCLIP.

Models

ImageNet200 CIFAR10

ECE AURC ECE AURC

OpenCLIP 2.39 21.95 2.39 11.82

GPT-4o 2.42 18.64 1.66 15.86
LLaVA-v1.6 2.11 893.55 5.58 48.03
GLM-4 3.24 87.34 0.59 283.69
QWEN - - 76.96 705.77
InternVL2-76B 5.52 75.25 2.36 37.34
* ECE and AURC values are multiplied by 102 and
103, respectively. Lower values are better.

Confidence scores on ID. We assess confidence
scores for ID to rigorously explore the expressive-
ness of LVLMs in generating confidence estimates. To
measure the quality of confidence scores, we employ
ECE (Pakdaman Naeini et al., 2015) and AURC (Geif-
man et al., 2019). As shown in Tab. 3, LVLMs exhibit
relatively low ECE despite their highly biased con-
fidence scores. GPT-4o and OpenCLIP demonstrate
good quality in predictive confidence for ID, show-
ing lower ECE and AURC compared to other models.
Although InternVL2-76B achieves classification accu-
racy comparable to GPT-4o, its ECE and AURC are
significantly worse, indicating that InternVL2-76B as-
signs high confidence scores to misclassified inputs.

Scaling law in terms of model size. We examine the relationship between OoDD capabilities and
model size in terms of the number of parameters. Fig. 4(c) shows AUROC and FPR for InternVL2-
4B, 26B, and 76B in distinguishing all OoD from ID on the ImageNet200 benchmark. We observe
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Prediction: airplane
Confidence: {airplane: 95.07, ⋯, rocket: 12.22, ⋯ ,bicycle: 2.09, ⋯ , none of these classes: 0.00}

Your task is to provide classes that are 
visually similar and dissimilar based on 
the given image. 

LVLM
Your task is to classify the given image:
{airplane,⋯,rocket,⋯,bicycle,⋯, none of 
these classes} and assign confidence 
value for your prediction to each class.

STA
G
E2

ST
A
G
E1

Far-OoD ClassNear-OoD Class
rocket, turboprop, twin-engine aircraft, airliner, commuter plane,
regional jet, Dash 8, fuselage, winglet, propeller plane, nose cone

bicycle, skateboard, lawnmower, washing machine, vacuum 
cleaner, laptop, tennis racket, electric guitar, piano, telescope

… …

Figure 5: Framework of the proposed Reflexive Guidance for OoDD

that OoD detectability improves as model size increases. This observation aligns with our results
and the OpenVLM leaderboard, where larger models generally demonstrate superior performance.

Class order in the prompt. To examine the influence of input class order in the prompt, we evalu-
ate InternVL2-26B with different class orders. Detailed experimental settings for class order can be
found in Appendix B.4. Fig. 4(d) shows the ID classification accuracy and AUROC (ID vs. all OoD).
“Random”, “Similar First”, and “Similar Last” refer to random ordering, placing similar classes to
input images first, and placing similar classes last, respectively. “Similar First” improves both accu-
racy and OoDD performance, while “Random” and “Similar Last” result in a decrease compared to
the baseline. Based on these results, we can infer that the model tends to prioritize inputs received
earlier over those received later. We assume that this tendency arises from the structure of the data on
which InternVL2-26B is trained. It is observed that in the text of the image-text pair dataset used for
the InternVL2-26B training, words referring to objects in the image are predominantly positioned
at the beginning of the text (Li et al., 2024c; Wang et al., 2024; Shahroudy et al., 2016). This may
have given InternVL2-26B an implicit bias regarding word order in the given prompts.

Response failure. Despite providing guidelines to mitigate failures, we still observe failures across
all models. A common issue is the mismatch between the predicted class and the class with the
highest confidence score. For most proprietary models, the inability to identify the given image is
the most frequent failure case. This suggests that proprietary models are more conservative, often
declining to provide answers when outcomes are uncertain. One contributing factor to this is their
refusal to respond to harmful or inappropriate inputs. All three proprietary models decline to answer
questions about these inputs, while none of the open-source models do. Thus, this characteristic
of proprietary models may contribute to their low valid response rates. Failures are not confined to
any specific dataset, indicating that they stem from both datasets and the underlying mechanisms of
models. Detailed results for failure cases and reject responses can be found in Appendix B.5.

4 REFLEXIVE GUIDANCE

We introduce a simple and model-agnostic prompting strategy, Reflexive Guidance (ReGuide), to en-
hance the OoD detectability of LVLMs. The LVLM’s strong generalization ability has been demon-
strated through its performance across various downstream tasks. Therefore, we leverage the LVLM
itself to obtain guidance for OoDD from its powerful zero-shot visual recognition capabilities. Fig. 5
illustrates the overall framework of ReGuide, which is implemented in a two-stage process. Details
on the prompts for each stage can be found in Appendix C.5.

Stage 1: Image-adaptive class suggestions. In the first stage, the LVLM is asked to suggest 2N
class names Aaux derived from the given image. Specifically, we request two groups of class names:
1) N classes that are visually similar to the image denoted as Anear

aux , and 2) N classes that are visually
dissimilar or belong to different domains denoted as Afar

aux. In the context of ID, Anear
aux and Afar

aux can
provide classes conceptually corresponding to near-OoD and far-OoD, respectively. If the input
image is OoD, Aaux = Anear

aux ∪ Afar
aux can offer potential ground-truth label or class names closely

related to the ground-truth label.

Stage 2: OoDD with suggested classes. Stage 2 follows a similar procedure to the original OoDD
evaluation presented in Fig. 3. The major difference is that Aaux is employed as auxiliary OoD
classes. NegLabel (Jiang et al., 2024) and EOE (Cao et al., 2024) also use auxiliary OoD classes for
improving OoDD performance, but they rely on texts to obtain negative concepts. In contrast, our
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Table 4: ReGuide effects on the ImageNet200 benchmark. ‘Valid’ indicates the valid response ratio
from 4, 170 queries. Bold highlights the best performance among the results from each LVLM.

Models

ID Near-OoD Far-OoD All OoDIN200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) FPR@90%TPR (↓) / FPR@95%TPR (↓) / AUROC (↑)

InternVL2-26B 61.49 (2,564) 91.23 82.73 / 82.73 / 56.58 94.34 / 94.34 / 54.79 38.03 / 38.03 / 79.10 28.86 / 28.86 / 86.20 47.91 / 47.91 / 72.86 73.12 / 73.12 / 63.60
+ GPT-text 69.42 (2,895) 89.58 69.44 / 69.44 / 62.17 85.65 / 85.73 / 53.55 26.82 / 28.00 / 84.72 29.20 / 29.20 / 83.51 39.39 / 39.39 / 78.10 62.41 / 62.64 / 65.88
+ ReGuide 78.97 (3,293) 93.73 22.39 / 22.89 / 86.53 15.21 / 15.21 / 90.41 1.39 / 1.39 / 98.02 3.93 / 3.93 / 97.05 2.04 / 2.04 / 97.68 10.24 / 10.27 / 93.19
InternVL2-76B 97.26 (4,056) 89.09 50.85 / 51.28 / 77.83 68.26 / 71.02 / 70.43 2.20 / 2.20 / 96.65 10.76 / 10.76 / 91.80 14.01 / 14.27 / 93.35 42.93 / 44.46 / 80.71
+ReGuide 95.80 (3,995) 90.93 8.05 / 56.36 / 91.35 14.58 / 66.65 / 87.65 0.00 / 59.75 / 95.35 4.08 / 60.00 / 93.38 2.02 / 65.46 / 93.95 8.92 / 64.36 / 94.41
GPT-4o 87.58 (3,652) 90.08 8.57 / 11.90 / 94.41 31.00 / 33.69 / 85.05 1.22 / 2.03 / 97.95 6.03 / 6.03 / 94.48 2.42 / 3.63 / 97.51 16.84 / 18.76 / 91.08
+ ReGuide 79.42 (3,312) 91.50 0.49 / 18.72 / 96.76 7.53 / 31.17 / 92.56 0.00 / 17.05 / 97.08 1.32 / 26.43 / 95.96 0.15 / 19.66 / 96.82 4.02 / 25.66 / 94.61
* GPT-4o (2024-08-06), InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B

approach utilizes the LVLM, allowing images to be utilized to obtain negative concepts for auxiliary
OoD classes. Given the strong zero-shot visual recognition capabilities of LVLMs, it is expected
that OoD input images can be assigned higher confidence scores for Aaux than for Y , since Aaux is
derived from the input image itself. The rejection class none of these classes is retained as a fallback
in case Aaux does not adequately function as auxiliary OoD classes.

OoD score design. To evaluate the OoDD performance of ReGuide, we employ the same OoD score
as in Sec. 3. Since ReGuide leverages auxiliary OoD classes Aaux, we compare different OoD scores
considered in Jiang et al. (2024) and Cao et al. (2024). However, we observe that they yield similar
outcomes. The comparative results of the different OoD scores can be found in Appendix C.4.

4.1 RESULTS

We evaluate ReGuide with GPT-4o and InternVL2-26B/-76B on a 5% subset of the ImageNet200
benchmark due to computational and API costs.5 Since ReGuide benefits from the strong image
recognition capabilities of LVLMs, we exclude LLaVA-v1.6 and GLM-4v from the comparison. For
this experiment, we set the number of negative class suggestions for each group N to 20. Note that
the only difference between the ReGuide prompt and the prompt used in Sec. 3.5) is the addition of
classes suggested by Stage 1. All other prompts remain unchanged to ensure a controlled evaluation.

As shown in Tab. 4, ReGuide significantly improves various aspects of the LVLM’s performance.
Surprisingly, ID classification accuracy improves even though Aaux includes class names that are
visually similar to ID, i.e., Anear

aux . We speculate that considering similar classes collectively assists
in classifying images with otherwise ambiguous predictions, rather than hindering classification
ability. Similar to fine-grained classification training, considering similar classes together may offer
an opportunity to compare features between them and reason about their relevance. This analytical
process enables the model to categorize hard-to-classify images more accurately. We investigate
Aaux for dog breed class images where ReGuide correctly changes predictions of GPT-4o. The Aaux
for samples with changed predictions include highly fine-grained classes. For example, Aaux for
a toy poodle image includes shihpoo, cockapoo, and cavapoo, all of which are mixed
breeds involving poodle. While this is not sufficient to fully support the hypothesis, the inclusion
of highly relevant classes may have contributed to improved classification accuracy.

Table 5: Comparison of the ratio of OoD in-
puts predicted to non-ID classes

Models Baseline +ReGuide

InternVL2-26B 26.88% (601 / 2,236) 89.13% (2,651 / 2,974)
InternVL2-76B 55.54% (2,039 / 3,671) 91.07% (3,297 / 3,620)
GPT-4o 83.92% (2,751 / 3,278) 95.97% (2,885 / 3,006)
* GPT-4o (2024-08-06), InternVL2-InternLM2-Chat-26B, InternVL2-

LLaMA3-76B

In addition, with ReGuide, InternVL2-26B/76B
demonstrate performance comparable or superior
to the SOTA OoDD single-modal models listed in
Tab. 1. We find that the model successfully clas-
sifies OoD inputs into one of Aaux, resulting in a
clearer separation between ID and OoD inputs. As
shown in Tab. 5, the ratio of OoD images predicted
as non-ID classes (i.e., Aaux + the rejection class for
ReGuide and only the rejection class for the baseline) increases with ReGuide, notably by 62.25%
on InternVL2-26B. Near-OoD detection benefits the most from ReGuide across all compared mod-
els, with InternVL2-26B/-76B and GPT-4o showing average improvements of 32.79%, 15.37% and
4.93% in AUROC, respectively. We further examine how ReGuide alters the predictions of OoD im-
ages previously classified as one of the ID classes. ReGuide correctly classifies these misclassified
images into Aaux closely related to the ground-truth label. For example, an image of donut pre-
viously misclassified as the ID class bagel is now correctly classified as chocolate dipped

5The detailed analysis of the inference cost for ReGuide can be found in Appendix C.6.
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donut in Aaux with ReGuide. This demonstrates the effectiveness of leveraging the image under-
standing capabilities of LVLMs. Detailed results of ReGuide can be found in Appendix C.2.

We observe that while InternVL2-26B shows improvements in both FPR@95%TPR and AU-
ROC, larger models like InternVL2-76B and GPT-4o exhibit improved AUROC but degraded
FPR@95%TPR. Upon examining the OoD score distributions and misclassified inputs (i.e., ID in-
puts predicted as one of the suggested classes or vice versa; see Appendix C.3), we find that this is
due to a small subset of ID images with ground-truth labels that either lack a strong correspondence
to the object in the image or correspond to only one of multiple objects present in the image. For
these ID inputs, models with powerful visual recognition capabilities, such as InternVL2-76B and
GPT-4o, suggest more appropriate classes than their given labels. These more suitable suggested
classes lead InternVL2-76B and GPT-4o to predict ID input images as OoD classes with high confi-
dence, resulting in an increase in FPR@95%TPR. It is important to note that this phenomenon is not
a negative effect of ReGuide but a result of a small subset of ID samples with ambiguous or inac-
curate labels. This explanation is further supported by the improvement in FPR@90%TPR, which
indicates that ReGuide generally enhances the model’s ability to handle other ID and OoD inputs
effectively. At a TPR threshold of 90.0, ReGuide significantly reduces FPR on both InternVL2-76B
and GPT-4o across all OoD datasets as the influence of this small subset of images is diminished. A
detailed analysis, including the ROC curve, OoD score distribution, and examples of ID inputs with
ambiguous or inaccurate labels can be found in Appendix C.3.

On the other hand, the suggested classes that are very close to a given image helps detect near-OoD
as discussed above. By including classes derived from near-OoD images, these images are more
likely to be classified into one of the suggested classes rather than ID classes, leading to improved
near-OoD detection performance. The significant improvement in near-OoD detection compared to
far-OoD detection with GPT-4o+ReGuide highlights this effect.

Image-adaptive vs. text-adaptive. We compare ReGuide with an approach based on EOE (Cao
et al., 2024). EOE leverages Aaux suggested by LLMs: we ask GPT-4o to provide Anear

aux and Afar
aux ref-

erencing the ID class names. We denote this approach as GPT-text, as shown in Tab. 4. The prompt
used for GPT-text can be found in Appendix C.5. The key difference between GPT-text and ReGuide
is that GPT-text obtains class suggestions via ID class names in text form, whereas ReGuide utilizes
visual information. As shown in Tab. 4, although GPT-text also enhances InternVL2-26B, the im-
provement was not as significant as that achieved by ReGuide. We infer that this difference arises
from the aforementioned key distinction. When images are used, the model can provide diverse
class concepts based on the context of the given image, as each image serves as a unique input. In
contrast, when text is used, providing diverse concepts becomes challenging because the ID class
set is static. This highlights the effectiveness of image-adaptive OoD class suggestions.

5 CONCLUSION AND LIMITATIONS

In this paper, we address the lack of rigorous evaluation and comparison of the OoDD performance
of LVLMs. To tackle this, we establish a framework to evaluate and compare various proprietary
and open-source LVLMs. Our comparative analysis provides interesting takeaways into how LVLMs
represent confidence scores through their generated natural language responses. Overall, proprietary
LVLMs outperform open-source LVLMs in both image classification and OoDD tasks, demonstrat-
ing comparable or even superior OoDD performance relative to SOTA single-modal OoDD mod-
els. Additionally, open-source LVLMs tend to be overconfident in their response, highlighting the
need for confidence calibration. Analyzing the rationale behind LVLM predictions reveals that their
visual interpretation capabilities impact their OoDD performance. Based on our findings, we pro-
pose ReGuide, a self-guided prompting approach that enhances the OoDD capabilities of LVLMs by
leveraging self-generated, image-adaptive concepts. Experimental results demonstrate that ReGuide
significantly boosts the OoDD performance of both proprietary and open-source LVLMs. We hope
our findings contribute to enhancing the reliability of vision-language foundation models for practi-
cal deployment.

Limitations of this study include the challenges of exerting precise control over LVLM behavior and
the insufficient effectiveness of guidelines to mitigate unintended outputs. Additionally, the image-
adaptive nature of ReGuide may lead to suboptimal class suggestions based on image context. A
detailed discussion of these limitations can be found in Appendix C.7.
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A IMPLEMENTATION DETAILS

All experiments are implemented with Python 3.9 and PyTorch 1.9, using NVIDIA A100 80GB
GPUs. For the InternVL2-llama3-76B model, due to the its significant computational requirements,
we employ 4 A100 GPUs with the VLLM (Kwon et al., 2023) library to reduce time overhead. For
the remaining models, a single A100 GPU is sufficient to run the experiments.

B EXPERIMENTAL DETAILS FOR SEC. 3

B.1 DATASET

We adopt the CIFAR10 benchmark and the ImageNet200 benchmark of the standard OoD setting in
OpenOOD v1.5. The detailed composition of each benchmark is as follows:

The CIFAR10 benchmark consists of CIFAR10 (Krizhevsky et al., 2009) as the ID dataset,
CIFAR100 as the near-OoD dataset, and five datasets—MNIST, SVHN (Netzer et al., 2011),
Places365 (Zhou et al., 2018), Textures (Cimpoi et al., 2014), and Tiny ImageNet (Le & Yang,
2015)—as the far-OoD datasets.

The ImageNet200 benchmark consists of ImageNet200 (Russakovsky et al., 2015) as the ID dataset,
two datasets—NINCO (Bitterwolf et al., 2023) and SSB Hard (Vaze et al., 2022) as the near-OoD
datasets, and three datasets—iNaturalist (Van Horn et al., 2018), Textures, and Openimage-O (Wang
et al., 2022)—as the far-OoD datasets.

We sample 25% of each dataset, ensuring that the proportion of datasets in each benchmark are
maintained. During sampling, we maintain the ratio of the number of samples for each label from
the original dataset. Tables B.1.1 and B.1.2 present the number of images in each dataset for the
ImageNet200 and CIFAR10 benchmarks, respectively. Fig. B.1.1 provides visual representations of
this information. We additionally provide the class distributions of datasets for which label informa-
tion is available. To improve clarity in visualization, we sampled 200 classes from SSB-Hard, which
contains a large number of labels that would otherwise make the plot difficult to interpret. Fig. B.1.2
represents the class distributions for ImageNet200, NINCO, SSB-Hard, and Textures within the Im-
ageNet200 benchmark, while Fig. B.1.3 represent the class distributions for CIFAR10, CIFAR100,
MNIST, SVHN, Textures, and Places365 within the CIFAR10 benchmark. The lists of sampled im-
ages, along with the prompts and responses for each sample used in the main experiments, will be
made publicly available upon acceptance.
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Table B.1.1: The number of images in each dataset in the ImageNet200 benchmark used in our
experiments

Subset %
ID Near-OoD Far-OoD TotalImageNet200 NINCO SSB-Hard iNaturalist Textures Openimage-O

100% 9,000 5,879 49,000 10,000 15,869 5,160 94,908

25% 2,200 1,304 11,770 2,500 3,967 1,290 23,031
5% 400 249 1,970 500 793 258 4,170

Table B.1.2: The number of images in each dataset in the CIFAR10 benchmark used in our experi-
ments

Subset %
ID Near-OoD Far-OoD TotalCIFAR10 CIFAR100 MNIST SVHN Textures Places365 Tiny ImageNet

100% 9,000 9,000 70,000 26,032 5,640 35,195 7,793 162,660

25% 2,250 2,214 17,497 6,504 1,410 8,745 1,948 40,568
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Figure B.1.1: The number of images in each dataset for each benchmark. Blue bars represent the
full datasets, while red bars indicate the sampled datasets.
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(d) Textures

Figure B.1.2: The class distribution in each dataset for the ImageNet200 benchmark. Blue bars
represent the full datasets, while red bars indicate the 25% sampled datasets.
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Figure B.1.3: The class distribution in each dataset for the CIFAR10 benchmark. Blue bars represent
the full datasets, while red bars indicate the 25% sampled datasets.
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B.2 COMPREHENSIVE EXPERIMENTAL RESULTS

Tab. B.2.1 and B.2.3 provide comprehensive results for experimental results on the ImageNet200
and CIFAR10 benchmark, respectively. For the CIFAR10 benchmark, we employ only GPT-4o as
the proprietary model.

CLIP on GPT-4o valid query set. We evaluate OpenCLIP on the inputs where GPT-4o generates
valid responses to analyze whether GPT-4o’s better results are influenced by input bias, such as
rejecting difficult inputs. As shown in Tab. B.2.1, OpenCLIP (GPT-4o valid) shows slightly better
overall performance compared to its performance on the entire 25% subset. Although there is an
improvement, GPT-4o still outperforms OpenCLIP on both tasks. This demonstrates GPT-4o’s su-
perior visual recognition capability and its ability to produce better confidence scores through its
generated responses.

Table B.2.1: Comprehensive results on the ImageNet200 benchmark. For clarity, the full names of
the compared models are provided in the footnotes below the table.∗ ↓ and ↑ mean that lower and
higher values are better, respectively. The AURC values are multiplied by 103, and the other values
are percentages. ‘Valid’ indicates the ratio of valid responses out of a total of 23, 031 image-prompt
queries. The number in brackets represents the number of valid responses. Bold represents the best
performance among generative LVLMs.

Models

ID Near-OoD Far-OoD All OoDImageNet200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) ECE (↓) AURC (↓) FPR@95%TPR (↓) / AUROC (↑)

OpenCLIP 100.00 (23,031) 87.41 2.39 21.95 62.27 / 85.31 71.48 / 78.36 42.76 / 92.49 47.83 / 89.62 47.47 / 90.68 61.42 / 83.54
OpenCLIP 85.49 (19,689) 88.08 2.66 19.81 61.34 / 85.16 72.23 / 77.11 42.69 / 92.52 47.59 / 89.53 47.05 / 90.82 58.54 / 84.32

GPT-4o 85.49 (19,689) 89.78 2.42 18.64 21.34 / 93.76 39.49 / 83.42 2.35 / 97.76 7.80 / 95.31 4.30 / 97.18 23.90 / 89.65
Claude 3.5 Sonnet 80.39 (18,515) 86.06 7.20 78.10 53.10 / 83.74 78.41 / 63.00 9.23 / 96.09 10.42 / 93.83 18.49 / 90.82 49.08 / 76.97
Gemini Pro 1.5 91.92 (21,170) 88.84 2.42 25.83 21.55 / 91.97 55.77 / 81.39 1.33 / 97.70 6.00 / 95.30 4.96 / 96.55 33.23 / 88.09

LLaVA-v1.6 71.63 (16,496) 2.45 2.11 893.55 100.00 / 50.82 100.00 / 48.85 100.00 / 50.02 100.00 / 59.23 100.00 / 49.19 100.00 / 50.03
GLM-4v 89.00 (20,498) 69.48 3.24 87.34 100.00 / 78.88 100.00 / 73.23 100.00 / 82.37 100.00 / 83.82 100.00 / 82.76 100.00 / 77.09
QWEN∗∗ 0.46 (107) - - - - / - - / - - / - - / - - / - - / -
InternVL2-4B 70.97 (16,344) 63.46 22.48 282.95 89.52 / 51.24 96.68 / 47.94 74.52 / 62.75 44.38 / 74.17 73.04 / 61.64 85.09 / 54.52
InternVL2-26B 61.64 (14,197) 90.39 8.78 92.03 82.59 / 60.39 94.19 / 57.28 36.69 / 81.05 28.08 / 87.05 50.84 / 74.33 75.94 / 64.72
InternVL2-76B 97.36 (22,424) 88.30 5.52 75.25 100.00 / 79.59 100.00 / 71.11 100.00 / 95.98 100.00 / 91.87 100.00 / 93.07 100.00 / 80.13
* OpenCLIP-ViT-B-32, GPT-4o (2024-08-06), LLaVA-v1.6-Mistral-7B, GLM-4v-9B, QWEN-VL-Chat (9.6B), InternVL2-Phi-3-mini-4B, InternVL2-InternLM2-Chat-26B,

InternVL2-LLaMA3-76B

Results on shared valid query set across LVLMs To enable a more rigorous comparison, we
evaluate the models using the shared valid query set. Tab. B.2.2 presents the 25% subset of the Im-
ageNet200 results using this shared valid set. QWEN is excluded due to its exceptionally low valid
ratio. The overall performance trends are consistent with those observed on the models’ individual
valid query sets. GPT-4o outperforms all other compared models, and proprietary models demon-
strate superior performance compared to open-source models, aligning with the results observed
with their own valid query sets.

Table B.2.2: Comprehensive results on the shared valid query set of the ImageNet200 benchmark.
For clarity, the full names of the compared models are provided in the footnotes below the table.∗ ↓
and ↑ mean that lower and higher values are better, respectively. The AURC values are multiplied by
103, and the other values are percentages. Bold represents the best performance among generative
LVLMs.

Models

ID Near-OoD Far-OoD All OoDImageNet200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) ECE (↓) AURC (↓) FPR@95%TPR (↓) / AUROC (↑)

OpenCLIP

24.77 (5,707)

87.96 3.06 20.52 65.42 / 83.74 78.94 / 73.01 42.00 / 93.09 41.33 / 91.42 45.67 / 91.52 63.06 / 81.69

GPT-4o 91.74 1.74 9.71 19.66 / 93.81 46.48 / 78.74 1.76 / 98.23 7.38 / 94.85 3.66 / 97.51 26.91 / 87.39
Claude 3.5 Sonnet 87.84 5.13 39.62 59.66 / 78.44 83.39 / 60.28 7.20 / 97.00 9.96 / 94.26 19.05 / 91.22 52.08 / 75.61
Gemini Pro 1.5 90.48 2.28 17.88 25.42 / 91.83 59.93 / 75.01 0.88 / 98.21 5.90 / 94.88 4.88 / 96.89 34.13 / 85.24

LLaVA-v1.6 3.21 12.30 868.83 100.00 / 52.32 100.00 / 49.20 100.00 / 50.01 100.00 / 59.89 100.00 / 48.20 100.00 / 50.53
GLM-4v 69.04 3.06 85.71 100.00 / 76.89 100.00 / 65.93 100.00 / 82.46 100.00 / 83.59 100.00 / 82.62 100.00 / 73.73
InternVL2-26B 91.28 7.80 88.35 81.91 / 61.60 96.00 / 56.73 35.54 / 82.73 21.77 / 90.35 43.35 / 78.53 69.38 / 68.15
InternVL2-76B 90.02 6.38 50.77 61.36 / 77.08 83.07 / 65.83 2.20 / 97.58 9.78 / 93.65 13.92 / 94.45 50.42 / 78.96
* OpenCLIP-ViT-B-32, GPT-4o (2024-08-06), LLaVA-v1.6-Mistral-7B, GLM-4v-9B, InternVL2-Phi-3-mini-4B, InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B

Scalability with image resolution. As shown in Tab. B.2.3, GPT-4o consistently outperforms Open-
CLIP in both image recognition and OoDD tasks, particularly excelling in OoD distinguishability
with AUROC of 98.26% and FPR of 2.62%. However, GPT-4o returns the lowest number of valid
responses among all compared models. QWEN processes low-resolution images better than high-
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resolution ones, though its overall performance remains poor. As shown in its AUROC on OoD
datasets, QWEN assigns higher confidence scores to ID classes for OoD inputs than for ID inputs.
LLaVA-v1.6 processes low resolution images better than high resolution images. However, GLM-4v
performs worse on the CIFAR10 benchmark than on the ImageNet200 benchmark, including valid
response rate. One notable observation is that InternVL2-26B outperforms InternVL2-76B overall
on the CIFAR10 benchmark.

Highly biased confidence scores. The compared models tend to produce OoD score either 0.0 or
100.00, as shown in Fig. 4(b). This indicates that the models typically classify input images as
either ID or OoD with extremely high certainty, e.g., assigning 100.00 to only one class and 0.00
to all other classes. InternVL2-76B exhibites this tendency more strongly than GPT-4o. It produces
almost no responses with OoD scores between 0.0 and 100.00 whereas GPT-4o generates some
responses in this range.

Table B.2.3: Comprehensive results on the CIFAR10 benchmark. For clarity, the full names of the
compared models are provided in the footnotes below the table.∗ ↓ and ↑ mean that lower and higher
values are better, respectively. The AURC values are multiplied by 103, and the other values are
percentages. ‘Valid’ indicates the ratio of valid responses out of a total of 40, 568 image-prompt
queries. The number in brackets represents the number of valid responses. Bold represents the best
performance among the compared models among generative LVLMs.

Models

ID Near-OoD Far-OoD All OoDCIFAR10 CIFAR100 MNIST SVHN Textures Places365 Tiny ImageNet

Valid (↑) ACC (↑) ECE (↓) AURC (↓) FPR@95%TPR (↓) / AUROC (↑)

OpenCLIP 100.00 (40,568) 93.33 2.39 11.82 55.15 / 91.60 15.74 / 97.87 16.88 / 97.89 43.12 / 94.45 41.64 / 92.93 46.99 / 92.65 26.76 / 95.98

GPT-4o 66.42 (26,946) 94.39 1.66 15.86 5.49 / 96.64 0.55 / 99.32 2.67 / 98.19 0.51 / 99.53 5.40 / 96.82 4.15 / 97.39 2.61 / 98.26
LLaVA-v1.6 92.50 (37,525) 83.51 5.58 48.03 100.00 / 84.87 100.00 / 95.75 100.00 / 94.46 100.00 / 94.76 100.00 / 92.39 100.00 / 87.73 100.00 / 93.66
GLM-4v 73.81 (40,098) 35.96 0.59 283.69 100.00 / 67.77 100.00 / 68.34 100.00 / 68.31 100.00 / 68.30 100.00 / 66.21 100.00 / 67.87 100.00 / 67.79
QWEN 72.81 (29,537) 15.90 76.96 705.77 100.00 / 51.91 81.80 / 28.91 99.63 / 28.02 78.39 / 53.73 96.77 / 27.95 96.98 / 28.21 92.01 / 31.01
InternVL2-4B 96.49 (39,143) 81.84 13.49 113.77 100.00 / 69.71 100.00 / 92.75 100.00 / 92.94 100.00 / 93.94 100.00 / 86.11 100.00 / 78.75 100.00 / 89.43
InternVL2-26B 99.80 (40,487) 96.22 1.87 24.47 22.65 / 87.72 0.27 / 98.91 0.00 / 99.04 1.35 / 98.37 12.01 / 93.04 10.86 / 93.61 4.77 / 96.66
InternVL2-76B 99.95 (40,549) 90.93 2.36 37.34 100.00 / 85.91 100.00 / 95.99 100.00 / 96.64 100.00 / 95.65 100.00 / 92.02 100.00 / 90.34 100.00 / 94.29
* OpenCLIP-ViT-B-32, GPT-4o (2024-08-06), LLaVA-v1.6-Mistral-7B, GLM-4v-9B, QWEN-VL-Chat (9.6B), InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B

B.3 DETAILED RESULTS FOR REASONING IN SEC. 3.6

In Sec. 3.6, we provide the reasoning results of GPT-4o and InternVL2-26B on the ImageNet200
benchmark. As shown in Tab. 2, GPT-4o demonstrates strong visual recognition abilities. It provides
detailed descriptions of images, including aspects such as color, object shape, and relationships
with other classes, leading to predictions in fine-grained categories. For example, GPT-4o correctly
identifies the bald eagle image by describing its distinctive features, such as the white head,
yellow beak and large wingspan. For the image classified as lorikeet, GPT-4o provides highly
detailed descriptions of the object’s visual features, including its vibrant green plumage, and arrived
at its conclusion by comparing these features with other possible classes among the provided options,
such as toucans or goldfinches. Due to its impressive visual recognition ability, GPT-4o’s
misclassified predictions often involve classes closely related to the ID class, such as centipede
and millipede.

In contrast, the reasoning provided by InternVL2-26B is less detailed than that of GPT-4o. Its
descriptions are much more general, and at times, its explanations are based on common knowledge
about the object in the image. For example, for an image of araneus gemma, InternVL2-26B
describes it as a spider on a green plant with a web. Similarly, for an image of a caracal, the
explanation provides mainly general information, such as the species’ native land or habitat. The
analysis results indicate that a high interpretability of visual features contributes to stronger OoDD
capabilities.

We additionally present the reasoning results of LLaVA-v1.6 on the same benchmark to analyze its
low performance, despite reporting valid response rates comparable to other models. As shown in
Tab. B.3.1, LLaVA-v1.6 shows much rough image interpretation than GPT-4o. It primarily predicts
images into coarse-level categories, such as birds or flowers, and its explanations rely more
on common sense than on visual features. This results in incorrect predictions, as evidenced in the
cases where actual ID → prediction OoD. It suggests that better interpretability of visual features is
crucial for enhancing OoDD capabilities.
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Table B.3.1: Reasoning behind predictions of LLaVA-v1.6 on the ImageNet200 benchmark, exclud-
ing cases where the actual input is OoD but the prediction is ID. Due to the low valid response rate,
none of LLaVA-v1.6’s responses corresponds to this case. Bold highlights the predicted class and
its confidence score before applying softmax. Bold italic highlights notable points. We omit some
classes, such as those with a confidence score of 0.0.

Prediction
ID OoD

A
ct

ua
l

ID

• Ground-truth: Ostrich
• {ostrich: 99.99, none of these classes: 0.00}
• The image provided is an ostrich, which is a large flightless bird
native to Africa. It is the largest living bird and is known for its
long neck and legs, as well as its distinctive appearance. The os-
trich is not a fish, a reptile, a mammal, a bird, or an insect, so it
does not belong to any of the other classes provided. Therefore, the
prediction is ’ostrich’ with a confidence of 100.00.

• Ground-truth: Junco
• {none of these classes: 100.00}
• The image provided is a bird, which does not belong to
any of the given 200 classes. Therefore, the prediction is
’none of these classes’ with a confidence of 100.00.

O
oD N/A

• Ground-truth: N/A (Openimage-O)
• {none of these classes: 99.99, all the other classes:
0.01}
• The image provided is a flower, which does not belong
to any of the given 200 classes. Therefore, the prediction
is ’none of these classes’ with a confidence of 100.00.

B.4 IMPLEMENTATION DETAILS FOR CLASS ORDER

To examine the influence of class order in the prompt, we evaluate InternVL2-26B with three dif-
ferent strategies: 1) Random, 2) Similar First, and 3) Similar Last. For Random, we randomly
shuffle classes for every query. For Similar First and Similar Last, we group 200 classes into broad
categories based on their conceptual similarity (e.g., aquatic animals, birds, domestic dogs, and vehi-
cles). We request GPT-4o to group the given classes based on their conceptual similarity. Tab. B.4.1
presents the class grouping results by GPT-4o, which are used for class order experiments in Sec. 3.6.
The prompt used for grouping classes can be found in Fig. B.6.3.

By leveraging class groups, Similar First places the group containing the ground truth label of the
input image at the beginning, while Similar Last places that group at the end. For OoD input im-
ages, we randomly shuffle the class order, since ground-truth label information is not available for
OoD inputs. We evaluate these class order strategies on InternVL2-26B using a 5% subset of the
ImageNet200 benchmark, sampled in the same manner as the 25% subset.

Table B.4.1: Groups and corresponding classes suggested by GPT-4o

Group Classes
Aquatic Animals goldfish, great white shark, hammerhead, stingray, eel, clown fish, puffer fish, grey whale, killer whale, sea

lion, jellyfish, starfish, lobster, hermit crab, newt, axolotl, tree frog, snail

Birds bald eagle, vulture, flamingo, american egret, pelican, king penguin, duck, goose, black swan, hen, ostrich,
peacock, lorikeet, hummingbird, toucan, goldfinch, junco

Reptiles & Amphibians iguana, African chameleon, cobra, scorpion, tarantula, centipede

Insects ladybug, fly, bee, ant, grasshopper, cockroach, mantis, dragonfly, monarch butterfly

Domestic Dogs chihuahua, shih tzu, yorkshire terrier, boston terrier, scottish terrier, west highland white terrier, pug,
pomeranian, toy poodle, beagle, basset hound, cocker spaniels, french bulldog, pembroke welsh corgi,
afghan hound, bloodhound, weimaraner, golden retriever, labrador retriever, collie, border collie, rottweiler,
german shepherd dog, boxer, saint bernard, husky, dalmatian, chow chow, standard poodle, italian grey-
hound, whippet

Wild Mammals timber wolf, hyena, red fox, tabby cat, leopard, snow leopard, lion, tiger, cheetah, wood rabbit, porcupine,
fox squirrel, beaver, guinea pig, zebra, pig, hippopotamus, bison, gazelle, llama, skunk, badger, polar bear,
orangutan, gorilla, chimpanzee, gibbon, baboon, meerkat, panda, koala

Vehicles & Transportation ambulance, jeep, school bus, pickup truck, tractor, steam locomotive, fire engine, canoe, pirate ship,
schooner, submarine, space shuttle, military aircraft, parachute

Weapons & Military assault rifle, cannon, missile, revolver, tank

Sports Equipment basketball, rugby ball, soccer ball, tennis ball, scuba diver, baseball player

Musical Instruments accordion, electric guitar, flute, grand piano, harmonica, harp, saxophone, trombone, violin

Food & Drinks ice cream, bagel, pretzel, cheeseburger, hotdog, pizza, burrito, espresso, cabbage, broccoli, cucumber, bell
pepper, mushroom, Granny Smith, strawberry, lemon, pineapple, banana, pomegranate, acorn

Household backpack, wheelbarrow, bathtub, beer glass, binoculars, birdhouse, bow tie, broom, bucket, cauldron, can-
dle, mobile phone, cowboy hat, gasmask, joystick, lab coat, lawn mower, lipstick, mailbox, mitten, sandal,
shield, spider web, scarf, vase, wine bottle

Landmarks & Structures barn, lighthouse, carousel, castle, volcano

Tools & Machines hammer, hatchet, guillotine
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B.5 DETAILED RESULTS FOR FAILURE CASES

The number of each failure case. Tab. B.5.1 summarizes the frequency of each failure case. Com-
mon failure cases can be categorized into six groups: 1) a mismatch between the predicted class and
the class with the maximum confidence score, 2) failure to provide confidence scores for all classes,
3) responses that are not structured as the given format, 4) responses indicating an inability to iden-
tify the given image, 5) inclusion of classes not listed among the given, and 6) class duplication.
For Case 2, we post-process the responses by assigning a confidence score of 0.0 to the missing
classes, as 200 classes can be considered a substantial number to process effectively. Each failure
case occurs uniformly across all datasets.

Table B.5.1: The number of each failure case on each model with the 25% ImageNet200 benchmark

Models (1) (2) (3) (4) (5) (6)

GPT-4o 105 1 2 3,225 10 0
Claude 3.5 Sonnet 28 1 0 2,550 1,940 0
Gemini Pro 1.5 1558 0 0 208 71 22

LLaVA-v1.6 6,533 2 0 0 0 0
GLM-4v 775 0 0 1,419 339 0
QWEN 180 2,937 13,160 0 7 5,857
InternVL2-76B 212 0 0 0 353 42
* GPT-4o (2024-08-06), LLaVA-v1.6-Mistral-7B, GLM-4v-9B, QWEN-

VL-Chat (9.6B), InternVL2-LLaMA3-76B

Example responses for each failure case. Tab. B.5.2 provides two examples for each failure case.
Case 2 is omitted as it is self-explanatory. Bold text indicates the elements that contribute to the
response being classified as a failure case.

Table B.5.2: Example responses for each failure case

Failure case Example

1) A mismatch between the
predicted class and the class
with the maximum confi-
dence score

• Prediction: ‘great white shark’ Confidence: {‘goldfish’: 0.0, ‘great white shark’: 0.0,
‘hammerhead’: 100.0, · · · , ‘ostrich’: 12.1, ‘none of these classes’: 0.0}

• Prediction: ‘goldfinch’ Confidence: {‘goldfish’: 0.0, ‘great white shark’: 0.0, ‘junco’:
99.98, · · · , ‘ostrich’: 12.1, ‘none of these classes’: 0.0}

3) Responses that are not
structured according to the
given format

• Example: goldfish
• Prediction: {goldfish, great white shark, hammerhead, stingray, hen, ostrich,

goldfinch, junco, bald eagle, vulture, newt, axolotl, tree frog, iguana, African
chameleon, centipede, sea lion, none of these classes}

4) Responses indicating
an inability to identify the
given image

• I’m sorry, I can’t identify specific elements in the image beyond what you’ve provided
in the description.

• I apologize, but I do not feel comfortable classifying or describing this image in detail.

5) Inclusion of classes not
listed among the given

• Prediction: basketball player
• Prediction: birthday

6) Class duplication

• Confidence: {‘goldfish’: 0.0, ‘great white shark’: 0.0, · · · , ‘ostrich’: 99.9, · · · , ‘os-
trich’: 12.1, ‘none of these classes’: 0.0}

• Confidence: {‘goldfish’: 0.0, ‘great white shark’: 0.0, · · · , ‘boxer’: 9.5, · · · , ‘boxer’:
10.0, ‘none of these classes’: 0.0}

Examples for inappropriate content. Tab. B.5.3 shows examples of images and their responses
from each proprietary model. All inappropriate or harmful images we found are from SSB Hard.
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As discussed in Sec. 3.6, All three proprietary models decline to follow a given prompt if an input
image contains such content, instead they return responses with “I’m sorry, I can’t help with that”
or “I apologize, but I do not feel comfortable classifying or describing this image in detail”. Claude
3.5 Sonnet rarely generates responses corresponding Case 4, but its frequency increases for the
inappropriate classes in SSB Hard, such as undies or uzi. However, all open-source models
generate predictions for them.

Table B.5.3: Examples of inappropriate images and the corresponding refusal responses from pro-
prietary models

Image Model Response

GPT-4o I’m sorry, I can’t help with that.

Claude 3.5 Sonnet I apologize, but I don’t actually see an image attached to analyze in this
conversation.

undies Gemini 1.5 Pro I cannot assist with this request as it is sexually explicit in nature.

GPT-4o I’m sorry, I can’t help with identifying or analyzing this image.

uzi
Claude 3.5 Sonnet I apologize, but I do not feel comfortable classifying or describing this

image in detail.

The effectiveness of guidelines and examples. We examine the effects of guidelines and examples
to mitigate invalid responses using InternVL2-76B on the 5% subset of the ImageNet200 bench-
mark. Baseline refers to a prompt that includes only the basic elements: a task description and an
explanation of the rejection class. As shown in Tab. B.5.4, the inclusion of guidelines and examples
results in a nearly 90% reduction in failure cases compared to prompts without them. Examples help
address all types of failure cases, while guidelines are especially effective in reducing Failure Case
(2), where responses do not follow the required format.

Table B.5.4: Ablation results on the effects of guidelines and examples in reducing failure cases
with InternVL2-76B

Prompt (1) (2) (3) (4) (5) (6) Total

Baseline 193 886 - 0 201 0 1,280
+ ID example 18 731 0 0 100 0 849

+ Guidelines 10 493 0 0 128 0 631
+ OoD example 26 34 0 0 79 8 147
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B.6 PROMPT FORMAT

We provide the full prompt formats used for experiments in Sec. 3.5 and 3.6. In the prompt for-
mat, yellow, green, red, blue boxes indicate a task description, an explanation of the reject class,
guidelines, and examples for response format, respectively.

B.6.1 PROMPT FOR BASELINE IN SEC. 3.5

Fig. B.6.1 illustrates the baseline prompt used for experiments in Sec. 3.5. First, we define and
explain the task that the LVLM will serve. We provide all Y in the prompt format and ask the LVLM
to answer the prediction and confidence scores of each yi for x. Note that the sum of the confidence
scores is not limited to a constant value since we empirically observe that the removal of the limit
leads to enhanced outputs including much proper confidence score representations and improved
prediction, particularly for OoD inputs. The red text indicates that the contents vary depending on
the choice of benchmark.

Your task is to classify the given image into one of these 𝐶	 + 	1 classes: ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, none of these classes ㏞ and assign 
confidence values for your prediction to each class.

You can classify the given image into 㑆none of these classes㑆: if you cannot classify the given image into any of the given 
other 𝐶 classes, if you are not sure whether an image belongs to one of the given other 𝐶 classes, or if you think you need 
other classes other than the given other 𝐶 classes to classify the given image.

The following are guidelines for your response. Please respond according to these guidelines.
㏁ You should provide your confidence for each class between 0.00 and 100.00.
㏁ The confidence value can be expressed as a float.
㏁ The class you㑆ve assigned the max confidence should be your prediction.
㏁ Your confidence should be above 0.0 in at least one of the 𝐶	 + 	1 classes given. It is not allowed to assign 0.0 

confidence to every class.
㏁ You should provide your confidence in the 𝐶 + 1 classes given, even if your prediction is 㑆none of these classes㐶.
㏁ Your prediction should be in the given 𝐶 + 1 classes. You are not allowed to predict the given image into any other 

classes than the 𝐶 + 1 given classes.
㏁ There is 㑆none of these classes㑆 in the given 𝐶 + 1 classes. This means that your prediction should be 㑆none of these 

classes㑆 if your prediction is not in one of ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞.
Strictly follow the guidelines above.

Here are two examples of your response. The first one is when a given image is predicted into the given 𝐶 classes 
㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞. The second one is when a given image is predicted into 㑆none of these classes㐶.

Please respond with the following examples format:

Example 1㏜ when a given image is predicted into the given 𝐶 classes ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Prediction: 𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
Confidence: ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 	𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ㏞
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

Example 2㏜ when a given image is predicted into 㑆none of these classes㐶
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Prediction: none of these classes
Confidence: ㏝	𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 	𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, none of these classes: 𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ㏞
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

These above examples are confidences for two different images. 
When you provide your answer, your answer format should be the same as the format between the dashed lines in the 
examples.
Strictly adhere to the examples format provided above. Do not deviate from the above format.

Figure B.6.1: Prompt used for experiments in Sec. 3.5

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.6.2 PROMPT FOR REASONING

Fig. B.6.2 illustrates the prompt used for reasoning in Sec. 3.6. The red text indicates that the
contents vary depending on the choice of benchmark. The text highlighted in yellow corresponds to
the parts added for reasoning in the baseline prompt.

Your task is to classify the given image into one of these 𝐶 + 1 classes: ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, none of these classes ㏞ and assign 
confidence values for your prediction to each class , and give your rationale behind your prediction and confidence values.

You can classify the given image into 㑆none of these classes㑆: if you cannot classify the given image into any of the given 
other 𝐶 classes, if you are not sure whether an image belongs to one of the given other 𝐶 classes, or if you think you need 
other classes other than the given other 𝐶 classes to classify the given image.

The following are guidelines for your response. Please respond according to these guidelines.
㏁ You should provide your confidence for each class between 0.00 and 100.00.
㏁ The confidence value can be expressed as a float.
㏁ The class you㑆ve assigned the max confidence should be your prediction.
㏁ Your confidence should be above 0.0 in at least one of the 𝐶 + 1 classes given. It is not allowed to assign 0.0 confidence 

to every class.
㏁ You should provide your confidence in the 𝐶 + 1 classes given, even if your prediction is 㑆none of these classes㐶.
㏁ Your prediction should be in the given 𝐶 + 1 classes. You are not allowed to predict the given image into any other 

classes than the 𝐶 + 1 given classes.
㏁ There is 㑆none of these classes㑆 in the given 𝐶 + 1 classes. This means that your prediction should be 㑆none of these 

classes㑆 if your prediction is not in one of ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞.
Strictly follow the guidelines above.

Here are two examples of your response. The first one is when a given image is predicted into the given 𝐶 classes 
㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞. The second one is when a given image is predicted into 㑆none of these classes㐶.

Please respond with the following examples format:

Example 1㏜ when a given image is predicted into the given 𝐶 classes ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ㏞
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Prediction: 𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
Confidence: ㏝ 𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 	𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ㏞
Reasoning: example	reasoning
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

Example 2㏜ when a given image is predicted into 㑆none of these classes㐶
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Prediction: none of these classes
Confidence: ㏝	𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: 	𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒, none of these classes: 𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ㏞
Reasoning: example	reasoning
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

These above examples are confidences for two different images. 
When you provide your answer, your answer format should be the same as the format between the dashed lines in the 
examples.
Strictly adhere to the examples format provided above. Do not deviate from the above format.

Figure B.6.2: Prompt used for reasoning in Sec. 3.6
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B.6.3 PROMPT FOR CLASS ORDER

Fig. B.6.3 illustrates the prompt used for grouping classes in the ImageNet200 dataset based on their
conceptual similarity.

I have 200 category names, and my goal is to group these categories into broader concepts for easier management. Here 
are the 200 category names I have.

Goldfish, great white shark, hammerhead, stingray, hen, ostrich, goldfinch, junco, bald eagle, vulture, newt, axolotl, tree frog, 
iguana, African chameleon, cobra, scorpion, tarantula, centipede, peacock, lorikeet, hummingbird, toucan, duck, goose, black 
swan, koala, jellyfish, snail, lobster, hermit crab, flamingo, american egret, pelican, king penguin, grey whale, killer whale, sea 
lion, chihuahua, shih tzu, afghan hound, basset hound, beagle, bloodhound, italian greyhound, whippet, weimaraner, 
yorkshire terrier, boston terrier, scottish terrier, west highland white terrier, golden retriever, labrador retriever, cocker 
spaniels, collie, border collie, rottweiler, german shepherd dog, boxer, french bulldog, saint bernard, husky, dalmatian, pug, 
pomeranian, chow chow, pembroke welsh corgi, toy poodle, standard poodle, timber wolf, hyena, red fox, tabby cat, 
leopard, snow leopard, lion, tiger, cheetah, polar bear, meerkat, ladybug, fly, bee, ant, grasshopper, cockroach, mantis, 
dragonfly, monarch butterfly, starfish, wood rabbit, porcupine, fox squirrel, beaver, guinea pig, zebra, pig, hippopotamus, 
bison, gazelle, llama, skunk, badger, orangutan, gorilla, chimpanzee, gibbon, baboon, panda, eel, clown fish, puffer fish, 
accordion, ambulance, assault rifle, backpack, barn, wheelbarrow, basketball, bathtub, lighthouse, beer glass, binoculars, 
birdhouse, bow tie, broom, bucket, cauldron, candle, cannon, canoe, carousel, castle, mobile phone, cowboy hat, electric 
guitar, fire engine, flute, gasmask, grand piano, guillotine, hammer, harmonica, harp, hatchet, jeep, joystick, lab coat, lawn 
mower, lipstick, mailbox, missile, mitten, parachute, pickup truck, pirate ship, revolver, rugby ball, sandal, saxophone, school
bus, schooner, shield, soccer ball, space shuttle, spider web, steam locomotive, scarf, submarine, tank, tennis ball, tractor, 
trombone, vase, violin, military aircraft, wine bottle, ice cream, bagel, pretzel, cheeseburger, hotdog, cabbage, broccoli, 
cucumber, bell pepper, mushroom, Granny Smith, strawberry, lemon, pineapple, banana, pomegranate, pizza, burrito, 
espresso, volcano, baseball player, scuba diver, acorn

Here is the initial grouping I attempted.

㏁ Goldfish, great white shark, hammerhead, stingray, grey whale, killer whale, sea lion,
㏁ hen, ostrich, goldfinch, junco, bald eagle, vulture, flamingo, american egret, pelican, king penguin,
㏁ jellyfish, snail, newt, axolotl, tree frog, iguana, African chameleon, cobra,
㏁ eel, clown fish, puffer fish, starfish,
㏁ lobster, hermit crab, scorpion, tarantula, centipede,
㏁ peacock, lorikeet, hummingbird, toucan, duck, goose, black swan,
㏁ chihuahua, shih tzu, afghan hound, basset hound, beagle, bloodhound, italian greyhound, whippet, weimaraner, yorkshire
terrier, boston terrier, scottish terrier, west highland white terrier, golden retriever, labrador retriever, cocker spaniels, collie, 
border collie, rottweiler, german shepherd dog, boxer, french bulldog, saint bernard, husky, dalmatian, pug, pomeranian, 
chow chow, pembroke welsh corgi, toy poodle, standard poodle,
㏁ timber wolf, hyena, red fox, tabby cat, leopard, snow leopard, lion, tiger, cheetah, meerkat,
㏁ ladybug, fly, bee, ant, grasshopper, cockroach, mantis, dragonfly, monarch butterfly,
㏁ wood rabbit, porcupine, fox squirrel, beaver, guinea pig, zebra, pig, hippopotamus, bison, gazelle, llama, skunk, badger, 
polar bear,
㏁ orangutan, gorilla, chimpanzee, gibbon, baboon, panda, koala,
㏁ ambulance, jeep, canoe, school bus, pickup truck, pirate ship, space shuttle, submarine, tractor, parachute,
㏁ assault rifle, cannon, missile, revolver, tank, military aircraft,
backpack, barn, wheelbarrow, bathtub, lighthouse, beer glass, binoculars, birdhouse, bow tie, broom, bucket, cauldron, 
candle, carousel, castle, mobile phone, cowboy hat, fire engine, gasmask, guillotine, hammer,
basketball, rugby ball, soccer ball, tennis ball,
accordion, electric guitar, flute, grand piano, harmonica, harp, saxophone, trombone, violin,
hatchet, joystick, lab coat, lawn mower, lipstick, mailbox, mitten, sandal, schooner, shield, spider web, steam locomotive, 
scarf, vase, wine bottle,
㏁ ice cream, bagel, pretzel, cheeseburger, hotdog, pizza, burrito, espresso
㏁ cabbage, broccoli, cucumber, bell pepper, mushroom,
㏁ Granny Smith, strawberry, lemon, pineapple, banana, pomegranate, acorn
㏁ volcano
㏁ baseball player, scuba diver

Could you refine the grouping of these 200 classes to make them clearer?

Figure B.6.3: Prompt used for GPT-4o to group classes for class order in Sec. 3.6
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C EXPERIMENTAL DETAILS FOR REFLEXIVE GUIDE

C.1 SUGGESTED CLASS POST-PROCESSING

Despite the guidelines provided in Stage 1, responses that deviated from the guidelines are observed.
These failure cases can be broadly categorized into four cases: 1) inclusion of ID class names, 2)
failure to suggest exactly N classes for each near- and far-OoD group, 3) duplicated classes, and
4) no suggestion due to failure in recognizing the image. We post-process the suggested answers
to refine them into a feasible set of auxiliary OoD classes, except for Case 4. For Case 1, we
exclude suggestions that are character-level identical to ID classes. For Case 2, if the total number
of suggestions exceeds 2N , we sample only 2N classes from the suggestions. If the total number of
suggestions is less than 2N , we use the suggestions as is without any supplementation. For Case 3,
we remove one of duplicated classes.

C.2 DETAILED RESULTS FOR SEC. 4.1

Tab. C.2.1 presents the comprehensive results for ReGuide.

Table C.2.1: ReGuide results on 5% subset of the ImageNet200 benchmark. The AURC values are
multiplied by 103, and the other values are percentages. ‘Valid’ indicates the ratio of valid responses
out of a total of 4, 170 image-prompt queries. Bold denotes the best performance among the results
from each model.

Models

ID Near-OoD Far-OoD All OoDImageNet200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) ECE (↓) AURC (↓) FPR@90%TPR (↓) / FPR@95%TPR (↓) / AUROC (↑)

InternVL2-26B 61.49 (2,564) 91.23 8.12 92.27 82.73 / 82.73 / 56.58 94.34 / 94.34 / 54.79 38.03 / 38.03 / 79.10 28.86 / 28.86 / 86.20 47.91 / 47.91 / 72.86 73.12 / 73.12 / 63.60
+ GPT-text 69.42 (2,895) 89.58 11.84 83.87 69.44 / 69.44 / 62.17 85.65 / 85.73 / 53.55 26.82 / 28.00 / 84.72 29.20 / 29.20 / 83.51 39.39 /39.39 / 78.10 62.41 / 62.64 / 65.88
+ ReGuide 78.97 (3,293) 93.73 12.42 59.23 22.39 / 22.89 / 86.53 15.21 / 15.21 / 90.41 1.39 / 1.39 / 98.02 3.93 / 3.93 / 97.05 2.04 / 2.04 / 97.68 10.24 / 10.27 / 93.19
InternVL2-76B 97.26 (4,056) 89.09 5.93 48.20 50.85 / 51.28 / 77.83 68.26 / 71.02 / 70.43 2.20 / 2.20 / 96.65 10.76 / 10.76 / 91.80 14.01 / 14.27 / 93.35 42.93 / 44.46 / 80.71
+ReGuide 95.80 (3,995) 90.93 1.54 9.28 8.05 / 56.36 / 91.35 14.58 / 66.65 / 87.65 0.00 / 59.75 / 95.35 4.08 / 60.00 / 93.38 2.02 / 65.46 / 93.95 8.92 / 64.36 / 94.41
GPT-4o 87.58 (3,652) 90.08 3.30 7.94 8.57 / 11.90 / 94.41 31.00 / 33.69 / 85.05 1.22 / 2.03 / 97.95 6.03 / 6.03 / 94.48 2.42 / 3.63 / 97.51 16.84 / 18.76 / 91.08
+ ReGuide 79.42 (3,312) 91.50 1.55 8.66 0.49 / 18.72 / 96.76 7.53 / 31.17 / 92.56 0.00 / 17.05 / 97.08 1.32 / 26.43 / 95.96 0.15 / 19.66 / 96.82 4.02 / 25.66 / 94.61
* GPT-4o (2024-08-06), InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B

As in Sec. B.2, we evaluate the effectiveness of ReGuide on the shared valid query set. As shown
in Tab. C.2.2, the overall performance trends among the LVLMs remained consistent with their
performance on their own valid query sets. ReGuide enhances OoDD performance across all models,
consistent with the results observed on their own valid query sets. We additionally evaluate their
FPR at a TPR threshold of 90%, considering the high sensitivity to TPR thresholds, as discussed
in Sec. 3.6. At the 90% TPR threshold, FPR is significantly reduced, and ReGuide consistently
demonstrates lower FPR compared to the baseline across all OoD datasets.

Table C.2.2: ReGuide results on the shared valid query set of the 5% ImageNet200 benchmark. ↓
and ↑ mean that lower and higher values are better, respectively. The AURC values are multiplied by
103, and the other values are percentages. Bold represents the best performance among the results
from each model.

Models

ID Near-OoD Far-OoD All OoDImageNet200 NINCO SSB-Hard iNaturalist Textures Openimage-O

Valid ACC (↑) ECE (↓) AURC (↓) FPR@90%TPR (↓) / FPR@95%TPR (↓) / AUROC (↑)

InternVL2-26B 93.30 5.44 54.24 86.67 / 86.67 / 57.02 93.78 / 93.78 / 56.90 34.03 / 34.03 / 81.80 31.52 / 31.52 / 85.18 47.20 / 47.20 / 74.08 70.34 / 70.34 / 66.22
+ ReGuide 96.09 9.22 39.58 33.33 / 33.33 / 81.75 17.88 / 17.88 / 90.21 2.09 / 2.09 / 98.75 5.43 / 6.52 / 96.91 2.00 / 2.00 / 98.84 12.23 / 12.39 / 93.22
InternVL2-76B 34.29 92.74 5.00 49.09 64.00 / 65.33 / 75.10 72.63 / 76.98 / 70.10 1.05 / 1.05 / 98.45 10.87 / 10.87 / 92.87 18.40 / 18.40 / 94.56 45.80 / 48.12 / 81.29
+ReGuide (1,430) 93.85 1.40 9.17 6.67 / 56.00 / 93.27 19.75 / 73.09 / 86.39 0.00 / 64.92 / 96.46 6.52 / 69.57 / 93.14 2.80 / 60.40 / 95.10 11.59 / 68.03 / 90.58
GPT-4o 93.85 3.03 4.97 8.00 / 13.33 / 94.13 32.50 / 36.70 / 84.51 1.05 / 1.57 / 98.04 8.70 / 8.70 / 92.52 2.00 / 3.60 / 97.21 18.39 / 21.26 / 90.28
+ ReGuide 92.18 1.39 11.22 1.33 / 28.00 / 96.42 9.80 / 42.77 / 91.41 0.00 / 25.13 / 97.13 3.26 / 33.70 / 95.12 0.40 / 33.20 / 96.62 5.44 / 36.61 / 93.90
* GPT-4o (2024-08-06), InternVL2-InternLM2-Chat-26B, InternVL2-LLaMA3-76B

Tab. C.2.3 and C.2.4 present example responses of each models in Tab. 4. The first row in Tab. C.2.3
indicates the classes suggested by GPT-4o when ID class names are provided (i.e., GPT-text). The
prompt used to obtain class suggestions of GPT-text can be found in Sec. C.5. A class name
below each image is the ground truth of the corresponding image. The class suggestion set in
GPT-text remains fixed regardless of the input images, as ID classes are static information, whereas
ReGuide’s suggestions change based on the input image due to its image-adaptive nature.

The results on InternVL2-26B/-76B and GPT-4o demonstrate the effectiveness of ReGuide.
Firstly, ReGuide suggests helpful classes for OoDD. For example, as shown in Tab. C.2.3, In-
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ternVL2+ReGuide suggests near-OoD classes for dotted image, such as polka dot, cherry
red, or salmon-colored, which are highly close to its ground-truth. These suggested classes
successfully guide the model to classify OoD inputs into one of the auxiliary OoD classes. For
softball image, the prediction of ReGuide is also closest to the ground-truth.

Table C.2.3: Example responses of InternVL2-26B on 5% subset of ImageNet200 benchmark

Near-OoD Far-OoD

Prediction
InternVL2-26B

+ GPT-text

+ ReGuide

GPT-text suggested OoD classes

siamese cat, bengal tiger cub, chee-
tah cub, lynx, arctic wolf, manatee,
walrus, otter, arctic fox, albatross,
macaw, snowy owl, peregrine fal-
con, arctic hare, hedgehog, wood-
pecker, puffin, seahorse, swordfish,
caracal

motorcycle, bulldozer, windmill,
skyscraper, piano keyboard, surf-
board, basketball hoop, bookshelf,
drone, traffic light, skis, space
rover, diving board, ferris wheel,
telescope, typewriter, electric fan,
hot air balloon, sewing machine,
xylophone

ReGuide suggested OoD classes

Im
ag

eN
et

20
0

marlin, bonito, remora, great white
shark, sailfish, tiger shark, sword-
tail, flying fish, barracouta, men-
haden, electric eel, smelt, pilotfish,
thresher shark, squid, tuna, herring,
bluefin tuna, mackerel, pufferfish

nautilus, sea urchin, sand dollar,
starfish, oyster, krill, cuttlefish,
sea spider, snail, horseshoe crab,
mahimahi, conch, guppy, copepod,
abalone, sunfish, barracuda, octo-
pus, brittle star, mullet

great white shark

swordfish

hammerhead hammerhead

SS
B

H
ar

d

baseball diamond, baseball uni-
form, baseball field, baseball
helmet, umpire, athlete, baseball
game, softball player, baseball
team, baseball, outfielder, baseball
bat, baseball jersey, second base-
man, pitcher

baseball pants, fielder, catcher,
shortstop, baseball stadium, sports
player, first baseman, baseball
glove, baseball cap, baseball card,
third baseman, coach, baseball mitt,
baseball player, baseball cleats, bat-
ter, referee

baseball player

baseball player

softball softball player

Te
xt

ur
es

polka dot, cerise, cherry red, blush,
cherry blossom, fuchsia, garnet,
coral, rose, peach, roseate, salmon-
colored

cherry, pink, vermilion, crimson,
wine red, salmonpink, scarlet, ma-
genta, ruby, maroon, burgundy,
salmon pink, mauve

scarf

none of these
classes

dotted polka dot
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Table C.2.4: Example responses of GPT-4o on 5% subset of ImageNet200 benchmark

ReGuide suggested OoD classes Prediction
Near-OoD Far-OoD GPT-4o

+ ReGuide

Im
ag

eN
et

20
0 greyhound, lurcher, saluki, rhode-

sian ridgeback, vizsla, basenji,
irish wolfhound, doberman, ibizan
hound, deerhound, basque shep-
herd, great dane, galgo, pharaoh
hound, borzoi

umbrella, wristwatch, bicycle, elec-
tric fan, soccer cleat, refrigera-
tor, telescope, skateboard, basket-
ball hoop, vacuum cleaner, washing
machine, piano, coffee maker, lap-
top, microwave, tennis racket, desk
chair, bookcase, alarm clock

greyhound

whippet
whippet

SS
B

H
ar

d oriole, bunting, grosbeak, vireo,
sparrow, kinglet, finch, linnet,
wren, pine siskin, nuthatch, phoebe,
treecreeper, tanager, canary, star-
ling, chickadee, warbler, titmouse

umbrella, wristwatch, bicycle, elec-
tric fan, soccer cleat, alarm clock,
tennis racket, refrigerator, tele-
scope, skateboard, basketball hoop,
vacuum cleaner, washing machine,
piano, laptop, microwave, desk
chair, bookcase, coffee maker

goldfinch

yellowhammer

none of these
classes

Te
xt

ur
es

fish scales, coral, chainmail, tur-
tle shell, reptile skin, armadillo
shell, rocky surface, crocodile skin,
bark texture, mesh fabric, min-
eral formation, mosaic, sandstone,
fossil texture, lizard skin, dragon
scales, pangolin scales, pebbles,
snake skin, textured leather

umbrella, wristwatch, bicycle, elec-
tric fan, soccer cleat, alarm clock,
tennis racket, refrigerator, tele-
scope, skateboard, basketball hoop,
vacuum cleaner, washing machine,
piano, laptop, microwave, desk
chair, bookcase, coffee maker

goldfish

scaly
fish scales

C.3 ANALYSIS ON OOD SCORE WITH REGUIDE

To further investigate the FPR increase in larger models such as InternVL2-76B and GPT-4o in
Tab. 4, we analyze the ROC curves for each model with and without ReGuide. Fig. C.3.1 shows
the ROC curves for InternVL2-26B and GPT-4o. Both models exhibit improved ROC curves after
applying ReGuide; however, the FPR declines more gradually for GPT-4o+ReGuide compared to
InternVL2-26B+ReGuide as TPR decreases from 100% as shown in Fig. C.3.1(b) and C.3.1(d).
While the reduction in FPR for GPT-4o+ReGuide is less pronounced at high TPR thresholds (e.g.,
100%–95%), it achieves significantly lower FPR as the TPR threshold approaches 90%.
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Figure C.3.1: ROC curves for InternVL2-26B and GPT-4o

To explore the causes of the FPR change observed across models in Fig. C.3.1, we analyze exam-
ples at the two extremes –100.00% and 0.0%– of the ROC curves, as well as the shifts in OoD
score distributions induced by ReGuide. This analysis reveals that the increase in FPR@95%TPR
for larger models such as InternVL2-76B and GPt-4o stems from their superior visual recognition
ability, which leads to more confident predictions with highly suitable class suggestions.

Tab. C.3.1 presents examples on the extremes of Fig. C.3.1(b) and C.3.1(d). This highlights that la-
beling issues arise from insufficiently thorough annotations. First, a small subset of datasets exhibits
a conceptual mismatch between the objects in images and their ground-truth labels. For instance, the
grand piano image demonstrates a misprediction caused by such labeling issues, as the object is
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more accurately described as a grand piano mechanism, a class suggested by GPT-4o, rather
than the ground-truth label grand piano. Another case involves images with ground-truth labels
corresponding to objects that occupy only a small portion of the image, as shown in the bee and
ball examples. In the bee image, the dominant object is a plant resembling a cactus, yet the
ground-truth label is bee. For such images, LVLMs often suggest classes based on the dominant
objects and classify them accordingly.

Table C.3.1: Examples at the extremes of the ROC curves for the ImageNet200 benchmark. Bold
indicates the predicted class and its confidence score before applying the softmax function. Classes
with a confidence score of 0.00 have been omitted.

Model
GPT-4o InternVL2-26B

R
O

C
cu

rv
e

10
0.

00
%

grand piano

• Dataset: ImageNet200
• Near-OoD: accordion keys, harpsichord, harmonium, headphones,
electric organ, concert grand, synthesizer, keyboard, grand piano
mechanism
• Far-OoD: umbrella, hammer action, wristwatch, bicycle,
hairdryer, lamp, electric fan, tennis racket, blender, refrigerator
• Prediction: grand piano mechanism
• {grand piano mechanism : 99.99, none of these classes: 0.00}

bee

• Dataset: ImageNet200
• Near-OoD: sunflower, dandelion, marigold, daisy, tulip, rose, lily,
orchid, iris, carnation, peony, chrysanthemum, pansy, violet, hy-
acinth
• Far-OoD: dandelion clock, aloe vera, dandelion head
• Prediction: cactus flower
• {cactus flower: 100.00, none of these classes: 0.00}

0.
00

%

ball

• Dataset: SSB-Hard
• Near-OoD: tree, mountain, baseball game, baseball diamond,
baseball uniform, baseball cap, baseball glove
• Far-OoD: umbrella, hammer action, wristwatch, bicycle,
hairdryer, lamp, electric fan, tennis racket, blender, refrigerator
• Prediction: baseball player
• {baseball player: 100.00, none of these classes: 0.00}

amphiuma means

• Dataset: NINCO
• Near-OoD: conger, moray, catfish, pike, salmon, tuna, swordfish,
marlin
• Far-OoD: umbrella, hammer action, wristwatch, elephant,
rhinoceros, walrus, narwhal, tuskfish, horn
• Prediction: eel
• {eel: 100.00, none of these classes: 0.00}

The suggested classes provided by GPT-4o for label-mismatched inputs are significantly fine-
grained and contextually appropriate. Tab. C.3.2 presents the classes suggested by GPT-4o for im-
ages with ambiguous or inaccurate labels. For example, GPT-4o suggests classes such as model
ape, gorilla figurine, orangutan statue, and monkey figurine as near-OoD
classes. Based on the shape and texture of the object in the image, these suggestions are highly rele-
vant and more suitable classifications. Similarly, for the cockshell image, GPT-4o suggests near-
OoD classes such as motorboat, sailboat, rowboat, and kayak, which are fine-grained
categories closely related to the depicted object. As shown in Tab. C.3.2, GPT-4o’s strong image
recognition capabilities allow it to provide fine-grained, contextually appropriate classifications for
images with ambiguous or inaccurate labels.

Table C.3.2: GPT-4o+ReGuide examples for images with ambiguous or inaccurate labels from the
ImageNet200 benchmark. Bold indicates the predicted class and its confidence score before apply-
ing the softmax function. Classes with a confidence score of 0.00 have been omitted.

ID inputs classified into OoD classes OoD inputs classified into ID classes

canoe

• Dataset: ImageNet200
• Near-OoD: rowing boat, paddle, life jacket, riverbank, rapids, raft,
white water rafting, paddling, inflatable boat, kayaking gear, river
rafting, inflatables, oar, water sports, kayak, watercraft, stream
• Far-OoD: umbrella, outdoor adventure, bicycle, wristwatch, elec-
tric fan, soccer cleat, tennis racket, helmet, refrigerator, telescope,
skateboard, basketball hoop, vacuum cleaner, washing machine, pi-
ano, laptop, microwave, desk chair, bookcase, coffee maker, alarm
clock
• Prediction: kayaking gear
• {kayaking gear : 100.0, none of these classes: 0.00} cockshell

• Dataset: SSH-Hard
• Near-OoD: ferry, catamaran, life jacket, motorboat, sailboat,
dinghy, dock, raft, rowboat, houseboat, life raft, trawler, paddleboat,
gondola, skiff, marina, yacht, canoe paddle, pontoon boat, kayak
• Far-OoD: umbrella, bicycle, treadmill, electric fan, stethoscope,
refrigerator, recliner, telescope, skateboard, typewriter, basketball
hoop, vacuum cleaner, washing machine, sewing machine, suitcase,
microwave, toaster, briefcase, alarm clock
• Prediction: canoe
• {canoe: 98.00, none of these classes: 2.00}

chimpanzee

• Dataset: ImageNet200
• Near-OoD: model ape, toy ape, gorilla figurine, primate figure,
collectible primate, action figure chimp, novelty chimp, monkey fig-
urine, toy baboon, orangutan statue, anthropoid toy, plastic monkey,
chimpanzee toy, plush monkey, stuffed chimpanzee, baboon replica,
simian statue, caricature gorilla, ape sculpture, monkey model
• Far-OoD: umbrella, bicycle, headphones, lamp, book, shoes,
clock, refrigerator, pencil, guitar, computer, notebook, car, chair,
printer, hat, toaster, sunglasses
• Prediction: monkey figurine
• {monkey figurine: 95.00, none of these classes: 0.01} boar

• Dataset: SSB-Hard
• Near-OoD: hog, boar, peccary, berkshire pig, potbellied pig, sad-
dleback pig, warthog, hampshire pig, pietrain pig, wild boar, sow,
yorkshire pig, javelina, meishan pig, tamworth pig, duroc pig, man-
galitsa pig, kune kune, vietnamese pig, large white pig
• Far-OoD: umbrella, wristwatch, bicycle, electric fan, soccer cleat,
refrigerator, telescope, skateboard, bookcase, basketball hoop, vac-
uum cleaner, washing machine, piano, laptop, microwave, tennis
racket, desk chair, coffee maker, alarm clock
• Prediction: pig
• {pig: 95.00, none of these classes: 5.00}

wheelbarrow

• Dataset: ImageNet200
• Near-OoD: caster, cart, wheel rim, unicycle, wagon, trolly wheel,
bicycle wheel, pushcart, hand truck, scooter, garden barrow, dolly,
wheel, yard cart, stroller, tricycle, garden trolley, motorcycle wheel,
tire
• Far-OoD: umbrella, wristwatch, electric fan, paintbrush, soccer
cleat, tennis racket, electric drill, refrigerator, telescope, skateboard,
basketball hoop, vacuum cleaner, washing machine, piano, laptop,
microwave, desk chair, bookcase, coffee maker, alarm clock
• Prediction: wheelbarrow
• {wheelbarrow: 90.00, wheel: 90.00, none of these classes: 0.00} peacock

• Dataset: SSB-Hard
• Near-OoD: damselfly, moth, wasp, termite, cricket, bumblebee,
flea, aphid, hornet, lacewing, stink bug, praying mantis, beetle, ci-
cada, firefly, katydid
• Far-OoD: umbrella, wristwatch, bicycle, electric fan, soccer cleat,
tennis racket, refrigerator, telescope, skateboard, basketball hoop,
vacuum cleaner, washing machine, piano, coffee maker, laptop, mi-
crowave, desk chair, bookcase, alarm clock
• Prediction: monarch butterfly
• {monarch butterfly: 95.00, none of these classes: 5.00}
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Fig. C.3.2(a) and C.3.2(b) depict the OoD score distributions for InternVL2-26B and GPT-4o, re-
spectively. As shown in Fig. C.3.2(a), with ReGuide, InternVL2-26B produces OoD scores ranging
between 0.00 and 100.00, which is not observed without ReGuide. However, the effect of ReGuide
on GPT-4o differs from that on InternVL2-26B. The OoD score distribution for GPT-4o becomes
more biased with ReGuide, as illustrated in Fig. C.3.2(b). The number of responses with OoD scores
between 0.00 and 100.00 decrease significantly. We infer that this outcome is due to the strong vi-
sual recognition ability of GPT-4o. As shown in Tab. 2, the suggestions of GPT-4o include classes
that are highly similar to the given image.
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Figure C.3.2: OoD score distributions for InternVL2-26B and GPT-4o

For more detailed analysis of the ReGuide effect, we examine the OoD score distributions for ID
and OoD inputs separately. Fig. C.3.3 displays OoD score distributions for ID and OoD inputs on
InternVL2-26B and GPT-4o.
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Figure C.3.3: OoD scores distributions of each ID and OoD for InternVL2-26B and GPT-4o

A common observation regarding ReGuide for InternVL2-26B and GPT-4o is the shift in the OoD
score distribution of OoD inputs. As shown in Fig. C.3.3(b) and C.3.3(d), ReGuide increases the
number of OoD inputs with an OoD score of 0.0 while reducing those with a score of 100. This shift
demonstrates that the models effectively classify OoD inputs into one of the suggested OoD classes,
thereby improving OoD detectability and confirming that ReGuide functions as intended.

The increase in inputs with an OoD score of 0.0 is also observed for ID inputs. As previously
discussed in Tab. C.3.1, this is caused by ID images with ambiguous or inaccurate labels. For such
inputs, GPT-4o+ReGuide effectively classifies them into a single class with higher confidence, as
the suggested classes often include one closely aligned with the ground-truth label. This explanation
is further supported by the improvement in FPR@90%TPR, where the influence of this small subset
of images is reduced, as shown in Tab. 4.
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C.4 COMPARISON OF OOD SCORE FUNCTIONS

When incorporating available auxiliary OoD classes, one of effective scoring strategies is to include
confidence estimates for these auxiliary OoD classes. For example, NegLabel (Jiang et al., 2024)
uses the scoring function as the ratio of the sum of ID softmax to the sum of both ID and OoD
softmax, and EOE (Cao et al., 2024) utilizes the difference between max ID softmax and max OoD
softmax.

We compare three different scoring functions: 1) the maximum ID softmax, 2) the difference be-
tween the sum of ID softmax and OoD softmax, and 3) the difference between the maximum ID
softmax and maximum OoD softmax. Each of the scoring functions is represented, in order, as
follows:

Smax(x,Y,Aaux) = max
i∈Y

esi/τ∑
k∈Y∪Aaux

esk/τ
(1)

Ssumsub(x,Y,Aaux) =
∑
i∈Y

esi/τ∑
k∈Y∪Aaux

esk/τ
−

∑
j∈Aaux

esj/τ∑
k∈Y∪Aaux

esk/τ
(2)

Smaxsub(x,Y,Aaux) = max
i∈Y

esi/τ∑
k∈Y∪Aaux

esk/τ
− max

j∈Aaux

esj/τ∑
k∈Y∪Aaux

esk/τ
(3)

where τ is a temperature.

Tab. C.4.1 presents the results with these scoring functions. All results are on a 5% subset of
ImageNet200 benchmark using InternVL2-26B+ReGuide. No significant differences are observed
across the scoring functions. LVLMs tend to assign high confidence to a single predicted class, re-
sulting in similar results regardless of these different scoring designs. Therefore, all results reported
in our paper are measured by Smax.

Table C.4.1: Comparison results between different scoring functions on a 5% subset of ImageNet200
benchmark using InternVL2-26B

Near-OoD Far-OoD All OoDNINCO SSB-Hard iNaturalist Textures Openimage-O

FPR@95%TPR (↓) / AUROC (↑)

Smax 22.89 / 86.53 15.21 / 90.41 1.39 / 98.02 3.93 / 97.05 2.04 / 97.68 10.27 / 93.19
Ssumsub 23.88 / 86.46 15.21 / 90.58 10.65 / 97.45 3.49 / 96.90 2.33 / 97.69 11.59 / 93.19
Smaxsub 23.38 / 86.53 15.27 / 90.59 1.39 / 97.45 3.93 / 96.90 2.04 / 97.69 10.33 / 93.26
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C.5 PROMPT FORMAT

We provide the full prompts used for experiments in Sec. 4.1. In the prompt, yellow, green, red,
blue boxes indicate a task description, an explanation of rejection class, guidelines, and examples
for response format, respectively.

C.5.1 PROMPT FOR CLASS SUGGESTION OF GPT-TEXT

Fig. C.5.1 illustrates the prompt used for class suggestion of GPT-text. The guidelines consist of
two key instructions: first, to avoid suggesting classes that are too similar to the image, and second,
to avoid suggesting classes that are identical to the ID class. The red text indicates that the contents
vary depending on the choice of benchmark.

Your task is to provide 2𝑁 class names based on the given class names: ㏝𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠㏞. The first 𝑁 names are visually similar to
the given classes. The last 𝑁 names are visually dissimilar or belong to different domains. You should not provide over 2𝑁
class names.

Avoid suggestions that are very similar to each other. For example, suggestions that are part of a large object or in the same 
broad category, such as ㏝𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑙𝑎𝑠𝑠	𝑠𝑒𝑡	1㏞ or ㏝𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑙𝑎𝑠𝑠	𝑠𝑒𝑡	2㏞.

Do not provide the following category names as your suggestions: ㏝𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, none of these classes㏞

Figure C.5.1: Prompt used for class suggestion of GPT-text

C.5.2 PROMPT FOR REGUIDE STAGE 1

Fig. C.5.2 illustrates the prompt used for class suggestion of ReGuide Stage 1. Similar to the original
prompt used for evaluating OoDD and the prompt used for class suggestion on GPT-text, we provide
a few guidelines to prevent receiving uninformative class names, such as ID class names, overly
similar class names or just a repetition of a class name. Without an example, the response format
of image-based suggestions deviates more compared to that of text-based suggestions. Thus, we
include the response format as an illustrative example. The red text indicates that the contents vary
depending on the choice of benchmark.

Your task is to provide 2𝑁 class names based on the given image. The first 𝑁 names are visually similar to the image. The 
last 𝑁 names are visually dissimilar or belong to different domains. You should not provide over 2𝑁 class names.

Avoid suggestions that are very similar to each other. For example, suggestions that are part of a large object or in the same 
broad category, such as ㏝𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑙𝑎𝑠𝑠	𝑠𝑒𝑡	1㏞ or ㏝𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑙𝑎𝑠𝑠	𝑠𝑒𝑡	2㏞.

Do not provide the following category names as your suggestions: ㏝𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, none of these classes㏞

Here is an example of your response:
Example㏜ When the given image is 㐵𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑙𝑎𝑏𝑒𝑙㑆
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Class suggested: 𝑒𝑥𝑎𝑚𝑝𝑙𝑒	𝑐𝑙𝑎𝑠𝑠	𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

Strictly follow this format for your response.

Figure C.5.2: Prompt used for ReGuide Stage 1
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C.5.3 PROMPT FOR REGUIDE STAGE 2

Fig. C.5.3 illustrates the prompt used for ReGuide Stage 2. The red text indicates that the contents
vary depending on the choice of benchmark. The blue indicates the locations of the suggested OoD
classes from Stage 1. The highlighted text in yellow indicates modifications made to reflect these
suggested classes. GPT-text employs the same prompt format for GPT-4o’s suggested classes.

Your task is to classify the given image into one of these 𝐶 + 1 classes: ㏝𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦	𝑂𝑜𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠, none of these 
classes㏞ and assign confidence values for your prediction to each class.

You can classify the given image into 㑆none of these classes㑆: if you cannot classify the given image into any of the other 
classes given, if you are not sure whether an image belongs to one of the given other 𝐶 + 2𝑁 classes, or if you think you 
need other classes other than the given other 𝐶 + 2𝑁 classes to classify the given image.

The following are guidelines for your response. Please respond according to these guidelines.
㏁ You should provide your confidence for each class between 0.00 and 100.00.
㏁ The confidence value can be expressed as a float.
㏁ The class you㑆ve assigned the max confidence should be your prediction.
㏁ Your confidence should be above 0.0 in at least one of the 𝐶 + 2𝑁 + 1 classes given. It is not allowed to assign 0.0 

confidence to every class.
㏁ You should provide your confidence in the 𝐶 + 2𝑁 + 1 classes given, even if your prediction is 㑆none of these classes㐶.
㏁ Your prediction should be in the given 𝐶 + 2𝑁 + 1 classes. You are not allowed to predict the given image into any other 

classes than the 𝐶 + 2𝑁 + 1 given classes.
㏁ There is 㑆none of these classes㑆 in the given 𝐶 + 2𝑁 + 1 classes. This means that your prediction should be 㑆none of these 

classes㑆 if your prediction is not in one of the other classes.
Strictly follow the guidelines above.

Here is an example of your response.

Please respond with the following examples format:

Example㏜
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁
Prediction: your prediction
Confidence: ㏝𝐼𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: your prediction, 𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦	𝑂𝑜𝐷	𝑐𝑙𝑎𝑠𝑠𝑒𝑠: your prediction, none of these classes: your prediction㏞
㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁㏁

These above examples are confidences for two different images. 
When you provide your answer, your answer format should be the same as the format between the dashed lines in the 
examples.
Strictly adhere to the examples format provided above. Do not deviate from the above format.

Figure C.5.3: Prompt used for ReGuide Stage 2

C.6 INFERENCE COST ANALYSIS

While ReGuide, as a two-stage approach, incurs higher computational costs compared to single-
turn generation (Section 3), the inference cost does not double. This is because caching image
representations eliminates the need to process the same image twice, and the shorter prompt in Stage
1 (class suggestion) reduces the token count. For open-source models, we analyze the inference cost
from a computational complexity perspective, whereas for proprietary models, the analysis focuses
on API usage costs.

We estimate the inference time FLOPs following Li et al. (2024b). This standard practical estimate
is based on a simplified scaling law, assuming that the inference cost of the LLM scales linearly with
both the number of tokens processed and the model size. The inference time FLOPs is estimated
as:

FLOPs = O(N × T ) (4)
where N is the number of parameters in the LLM and T denotes the total number of tokens involved
in the inference process. Specifically, T is the sum of Q, V , and G, which correspond to the
number of text input tokens, image tokens, and generated tokens, respectively. For example, for
InternVL2-76B, the prompt depicted in Fig. B.6.1 with ImageNet200 classes includes 5,350 input
tokens. The number of generated tokens is 1,936, assuming the output follows the provided example
structures, and the number of image tokens is 256. Thus, the baseline FLOPs is estimated as
7× 1010 × (256 + 5, 350 + 1, 936).

Similarly, for ReGuide, FLOPs is estimated as:

FLOPs = O(N × (V +QStage1 +GStage1 +QStage2 +GStage2)) (5)
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where QStage1, GStage1 and QStage2, GStage2 denote the number of text input and generated tokens
for Stage 1 and Stage 2, respectively. Although ReGuide involves two stages, the input image is
processed only once as the same image is reused across both stages and can be cached. Note that the
inference cost of the vision encoder is excluded, as it remains consistent for both the baseline and
ReGuide within the same VLM.

Tab. C.6.1 presents FLOPs for the baseline and ReGuide on InternVL2 models. These
values are estimated on one input pair (image-prompt) of the ImageNet200 benchmark,
assuming that the generated outputs follow one of the provided example structures.

Table C.6.1: Estimated computational
costs for InternVL2 models (in units of
1013 FLOPs)

Models Baseline +ReGuide

InternVL2-26B 15.086 17.052
InternVL2-76B 52.794 60.144
* InternVL2-InternLM2-Chat-26B,

InternVL2-LLaMA3-76B

ReGuide requires only 1.14× the computational cost
compared to the baseline. It is because 1) the prompt
used in Stage 1 is short and simple (e.g., 917 tokens for
Stage 1), and 2) the image tokens are processed only
once. Consequently, the increase in computational
cost arises solely from the processing of the Stage 1
prompt. Additional optimization techniques for multi-
turn inference could further reduce the computational
cost gap between the baseline and ReGuide.

Tab. C.6.2 shows API costs for proprietary models un-
der the baseline and ReGuide experiments on the 5%
ImageNet200 benchmark. From the perspective of
API costs, ReGuide exhibited a higher proportional increase compared to computational costs above,
with a 1.47× increase relative to the baseline. Since we processed each stage separately, the API
cost reflects a scenario where image token caching is not applied. Additionally, we did not employ
multi-turn inference, as it provided no advantages in inference time due to the absence of batch
inference support. Implementing multi-turn batch inference could significantly improve efficiency
and reduce costs.

Table C.6.2: API costs (USD) for proprietary models, calculated per 1 million input and output
tokens

Models Input token Output token Baseline ReGuide

GPT-4o 1.25 5 73 107
Claude 3.5 Sonnet 3 15 228 -
Gemini Pro 1.5 3.5 10.5 193 -
* GPT-4o (2024-08-06)

One possible approach to reduce the inference cost gap between the baseline and ReGuide is to inte-
grate the two-stage prompts into a single prompt while maintaining ReGuide’s process of providing
suggested classes. This adjustment would allow ReGuide to maintain its effectiveness with a single
forward pass. Fundamentally, it is essential to develop LVLMs to overcome their tendency to limit
responses to the options explicitly provided in the user-defined prompt. Such advancements would
enable LVLMs to explore and utilize information beyond the immediate constraints of the prompt,
establishing robust models capable of generating safe and reliable responses to a wider range of
inputs.

C.7 LIMITATIONS OF REGUIDE

While the proposed ReGuide improves performance in both image classification and OoDD tasks,
there remain limitations. These challenges are primarily caused by the difficulty in exerting pre-
cise control over the behavior of the VLM. Due to the inherent complexity of understanding the
implicit dynamics of LVLMs, controlling their behavior through prompting does not always ensure
the desired outcome. Although we provide additional guidelines based on the model’s failure cases
to mitigate unintended responses, this approach is insufficient for full control over outputs. To ad-
dress unintended outputs, we can utilize LLMs to iteratively refine prompts based on the model’s
responses. Leveraging external LLMs for this purpose is expected to function similarly to model en-
semble principles, resulting in prompts better suited to the model compared to heuristic refinements.

From a visual perspective, ReGuide relies on the image understanding capabilities of LVLMs. Any
potential improvement depends on the model’s ability to recognize visuals accurately. Additionally,
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since our proposed approach is image-adaptive, the quality of the suggested class set is influenced
by the image context. For instance, if the target object occupies only a small portion of the image,
an LVLM may focus more on other objects in the background. This tendency can result in class
suggestions that are either uninformative or overly broad.
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