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ABSTRACT

Although Multimodal Large Language Models (MLLMs) have demonstrated in-
creasingly impressive performance in chart understanding, most of them exhibit
alarming hallucinations and significant performance degradation when handling
non-annotated charts1. We argue that current MLLMs rely largely on visual recog-
nition rather than visual reasoning to interpret the charts, and visual estimation of
numerical values is one of the most fundamental capabilities in chart understand-
ing that require complex visual reasoning. To prove this, we introduce ChartVR-
Bench, a benchmark meticulously designed to isolate and evaluate visual rea-
soning ability in chart understanding. Furthermore, we propose ChartVR-3B/7B
trained with a novel Visual Reasoning Reinforcement Finetuning (VR-RFT) strat-
egy to strengthen genuine chart visual reasoning abilities. Extensive experiments
show that ChartVR achieves superior performance on ChartVRBench, outper-
forming even powerful proprietary models. Moreover, the visual reasoning skills
cultivated by the proposed VR-RFT demonstrate strong generalization, leading to
significant performance gains across a diverse suite of public chart understanding
benchmarks. The code and dataset will be publicly available upon publication.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Bai et al., 2025; Comanici et al., 2025; OpenAI
et al., 2024a; Lu et al., 2024) now play a pivotal role in the field of Artificial Intelligence, particu-
larly for understanding complex visual data. These models have demonstrated a remarkable ability
to process charts, analyze their content, provide insightful explanations, and achieve competitive
performance against existing chart benchmarks (Wang et al., 2024; Masry et al., 2022; Xu et al.,
2024b; Masry et al., 2025a; Xia et al., 2025).

Estimating numerical values from charts is a fundamental capability in chart understanding that in-
volves interpreting visual representations to extract or approximate the underlying numbers. The
core principle is to understand the mapping between the visual elements (e.g., the position, length,
or angle of a mark) on the chart and the data scale it represents. However, when specific numerical
annotations are missing from the chart, the propensity of MLLMs to hallucination increases dramat-
ically (Xu et al., 2024b), as exemplified in Figure 1. This leads us to a fundamental question: Do
MLLMs really understand the charts?

This failure suggests that current MLLMs excel at recognizing about textual content within charts
but struggle profoundly with reasoning from their underlying visual geometry. We argue that it stems
from the fundamental reliance of MLLMs on textual recognition over genuine visual reasoning.
To systematically diagnose this core ability, we introduce the Chart Visual Reasoning Benchmark
(ChartVRBench), which is meticulously designed to isolate numerical value estimation on non-
annotated charts, forcing models to move beyond textual recognition. The evaluation reveals that
not only open-source MLLMs (Bai et al., 2025; Zhu et al., 2025; Lu et al., 2024) face performance
degradation, but even powerful close-source MLLMs, such as GPT-4o (OpenAI et al., 2024a) and
Gemini-2.5-Flash (Comanici et al., 2025), also struggle significantly with ChartVRBench.

Moreover, inspired by the success of Reinforcement Learning (RL) in enhancing textual reasoning
for mathematics and coding (DeepSeek-AI et al., 2025; OpenAI et al., 2024b; Tan et al., 2025;
Huang et al., 2025), we propose ChartVR, a series of MLLMs forged with a novel Visual Reasoning

1The non-annotated charts are those that require viewers to estimate values using the vertical/horizontal axis
scale.
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1.Identify: This Chart is about food sales in 2009
2.Locate: Identify the bar corresponding to “D” for 2019
3.Estimate:Trace a horizontal line from the top of this bar 
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Figure 1: Illustration of the visual reasoning deficit in MLLMs when processing non-annotated
charts. A standard model, limited by its underdeveloped visual reasoning capacity, often re-
sorts to guessing and fails. In contrast, our ChartVR executes a deliberate, human-like reasoning
chain—identifying the target, locating data based on visual scales, and forming a conclusion—to
successfully estimate the value.

Reinforcement Finetuning (VR-RFT) strategy to strengthen genuine chart visual reasoning abilities.
The first stage, Visual Reasoning Activation, uses a Chain-of-Thought Supervised Finetuning (CoT-
SFT) (Liu et al., 2023) to compel the model to externalize a step-by-step analysis of the chart’s
visual components. This forces the model to learn an explicit protocol for geometric interpretation,
such as locating axes and grounding queries to graphical marks, thereby forming the structural
foundation of its visual reasoning capability. Building on this, the second stage, Visual Reasoning
Generalization, employs Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to further
refine this process. By training on a curated dataset of ambiguous samples where the initial model’s
judgment is inconsistent, we force it to make finer perceptual discriminations. This training process
is guided by a novel continuous accuracy reward function with a quadratic formulation, providing a
dense signal directly proportional to the accuracy of the visual estimation. In summary, these stages
steer ChartVR to a robust, generalizable visual reasoning capability for charts.

The extensive experiments demonstrate that ChartVR achieves superior performance on ChartVR-
Bench, even comparable to powerful proprietary models like Gemini-2.5-Flash (Comanici et al.,
2025). More importantly, we demonstrate that the foundational skill cultivated by our method is
highly generalizable. ChartVR exhibits significant performance gains across a diverse suite of pub-
lic, multi-task chart understanding benchmarks (Wang et al., 2024; Xu et al., 2024b; Masry et al.,
2025a), proving the effectiveness of our approach in building more rational and reliable MLLMs for
chart comprehension.

The main contributions of this work are summarized as follows:

• We introduce ChartVRBench, a distinctive benchmark designed to isolate and evaluate genuine
visual reasoning capability in chart understanding. It overcomes the limitations of prior work
by focusing exclusively on numerical estimation tasks, thus disentangling reasoning from text
recognition.

• We propose ChartVR, a series of MLLMs with significantly enhanced visual reasoning capabil-
ities for chart understanding. It achieves excellent performance on our challenging ChartVR-
Bench, compared with chart-specific and general MLLMs, even surpassing powerful proprietary
models like Gemini-2.5-Flash.

• We demonstrate that the visual reasoning ability cultivated by our method is foundational and
highly generalizable. ChartVR is not confined to the specific numerical estimation task, but
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achieves substantial performance gains across a diverse suite of public, multi-task chart under-
standing benchmarks.

2 RELATED WORK

2.1 CHART UNDERSTANDING BENCHMARKS

A suite of benchmarks has been developed to evaluate the chart comprehension capabilities of
MLLMs. Early benchmarks, such as ChartQA (Masry et al., 2022) and PlotQA (Methani et al.,
2020), primarily focused on descriptive tasks. More recently, benchmarks like CharXiv (Wang et al.,
2024), ChartQAPro (Masry et al., 2025a), and ChartMuseum (Tang et al., 2025a) have raised the bar
by incorporating complex questions and diverse, real-world charts. While these works encompass
a wide range of tasks, they often conflate general reasoning with the core challenge of visual inter-
pretation. The most related work to ours is ChartBench (Xu et al., 2024b); while it also focuses on
non-annotated charts, it is composed of mostly synthetic data with limited visual diversity. Similarly,
recent work by Mukhopadhyay et al. (2024) revealed critical flaws in the consistency and robustness
of MLLMs but stopped short of attributing these shortcomings to a fundamental deficit in visual
reasoning. We argue this deficit—the core skill of visual reasoning in a chart’s geometry, such as
numerical value estimation—remains largely untested. Our ChartVRBench is specifically designed
to isolate and evaluate this crucial visual reasoning capability.

2.2 CHART UNDERSTANDING WITH MLLMS

Many general-purpose MLLMs, such as gpt-4o (OpenAI et al., 2024a), Gemini-2.5 Series (Co-
manici et al., 2025), and Qwen (Bai et al., 2025), are increasingly applied to chart understanding
tasks. In parallel, the development of specialized Chart MLLMs has been rapid, with many models
like ChartLlama (Han et al., 2023) and ChartGemma (Masry et al., 2025c). However, their devel-
opment has largely depended on SFT, a paradigm that, as we argue, tends to cultivate superficial
recognition at the expense of genuine reasoning. Recognizing this, a recent wave of models (Chen
et al., 2025; Masry et al., 2025b), have incorporated RL to enhance complex, multi-step reason-
ing. While these RL-based approaches represent a significant step forward, their training objectives
often prioritize the final accuracy of text-heavy queries, which can leave the foundational skill of
visual grounding underdeveloped. In contrast, our ChartVR is specifically designed to address this
fundamental layer. Its RFT framework is meticulously crafted to cultivate the core ability to reason
directly from visual geometry, aiming to develop a genuine visual reasoning capability rather than
optimizing the textual reasoning that typically follows.

2.3 REASONING IN CHART UNDERSTANDING

Reinforcement Learning (RL) has been successfully employed to enhance the reasoning abilities
of Large Language Models (LLMs), allowing them to move beyond the static data distributions of
SFT (Ouyang et al., 2022). By learning from reward feedback, models have shown significant im-
provements in complex domains like mathematics and coding (DeepSeek-AI et al., 2025; Shao et al.,
2024). Inspired by this success, several works have begun to apply similar RL-based paradigms to
MLLMs (Feng et al., 2025; Tan et al., 2025; Huang et al., 2025), activating their visual reasoning
on tasks like visual counting and spatial transformation. Building on these advancements, our work
adapts this powerful paradigm to the specialized domain of chart understanding.

3 CHARTVRBENCH

We introduce Chart Visual Reasoning Benchmark (ChartVRBench), a comprehensive, multi-
domain, and reasoning-centric benchmark designed to rigorously assess the visual interpretation
capabilities of MLLMs on charts that lack explicit numerical annotations. Engineered to move be-
yond simple OCR-dependent tasks, the benchmark comprises a total of 2,453 question-answer pairs.
It features a majority (2,101 pairs) of synthetically generated charts to ensure controlled complexity
and a significant portion (352 pairs) sourced from real-world examples to guarantee practical rele-
vance. The benchmark provides extensive coverage across seven primary chart types, including bar,
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Figure 2: The training paradigm of ChartVR and the data distribution of ChartVRBench. A:
ChartVR leverages a two-stage RFT strategy. Stage 1 activates the model’s reasoning abilities via
SFT on CoT data, while Stage 2 uses GRPO with a multi-component reward system to reinforce
correct chart understanding. B: The composition of ChartVRBench, detailing the distribution of
seven chart types across both synthetic and real data sources.

line, scatter, and combo charts, with a detailed breakdown of the data distribution shown in Figure 2.
This structural diversity is complemented by thematic breadth, with data spanning 38 distinct topics,
including finance, healthcare, and technology, etc. This dual emphasis on structural and thematic va-
riety ensures a rigorous evaluation, mitigating the risk of models overfitting to specific chart formats
or familiar domains.

3.1 DATA CURATION

Synthetic Chart Generation. Our synthetic chart generation process is partially adapted from
the Code-as-Intermediary Translation (CIT) methodology proposed by He et al. (2024), where exe-
cutable plotting code serves as the ground truth for each chart. The process begins with a curated set
of seed scripts, which are then programmatically diversified using Self-Instruct (Wang et al., 2023)
and Evol-Instruct (Xu et al., 2024a) techniques to generate a vast library of visually complex charts.
A critical constraint is the deliberate omission of numerical labels on data points, ensuring that every
chart necessitates visual estimation. To maximize yield, a self-repair mechanism leverages an LLM
to debug and correct any code that fails during execution. Following an automated visual fidelity
check by a MLLM, the entire collection of synthesized data underwent a final, rigorous human
review. This manual verification step served to confirm the high quality of the chart images and
the accuracy of their corresponding question-answer pairs. This code-centric approach, combined
with multiple stages of validation, provides an unimpeachable ground truth, allowing us to generate
verifiably correct Q&A pairs.

Real Chart Collection. To anchor our benchmark in real-world applications, we sourced charts
from reputable data repositories such as Statista and Our World in Data. Each chart was manually
vetted by human annotators to meet strict criteria: high visual quality, data integrity, and a complete
absence of explicit numerical annotations. Following selection, an MLLM was used to generate
candidate question-answer pairs for each chart. Every MLLM-generated pair then underwent a final
round of human verification and refinement to guarantee the accuracy and relevance of both the
question and its ground-truth answer.

3.2 EVALUATION PROTOCOL

Standard exact-match accuracy is ill-suited for value estimation from non-annotated charts, as it
fails to account for the slight perceptual ambiguity inherent in the task, even for human observers.
To address this, we employ a relaxed accuracy metric, which judges a prediction correct if its rel-
ative error from the ground-truth value falls within a tolerance threshold, denoted as τ . To align

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

this threshold with human performance, we conducted an empirical study and found that human
estimations consistently fall within a 2% error margin. Accordingly, we empirically set τ = 0.02.

Formally, a model’s predicted value, Apred, is deemed correct if and only if it satisfies the following
condition relative to the ground truth, Agt:

Apred ∈ [(1− τ)×Agt, (1 + τ)×Agt]

This protocol ensures that our evaluation is both rigorous and fairly aligned with human-level inter-
pretive capabilities, rewarding models for precise visual reasoning rather than penalizing them for
minor, human-like estimation variance.

4 CHARTVR

We propose ChartVR, a series of MLLMs designed to perform visual reasoning for better visual
understanding on non-annotated charts. We formally define this task as follows: given a chart
image I , and a corresponding textual question Q, the goal is to derive a numerical answer A with a
reasoning procedure R. This process can be represented as a mapping function F :

F : (I,Q) → (R,A)

where I is the chart image, Q is the question in text, R is the step-wise reasoning procedure in text,
and A ∈ R is the numerical answer. The fundamental challenge lies in interpreting non-annotated
charts, which requires the model to reason about geometric structures (e.g., axes, scales, positions)
to infer values, rather than simply extracting them via text recognition.

To address this challenge, we propose a novel two-stage Reinforcement Finetuning (RFT) frame-
work. This approach is designed to first instill a robust, human-like reasoning framework and then
meticulously refine the model’s numerical e precision. As illustrated in Figure 2, the RFT pipeline
consists of two sequential stages: (1) Visual Reasoning Activation, which uses supervised fine-
tuning to teach the model the structure of reasoning, followed by (2) Visual Reasoning Generaliza-
tion, which uses reinforcement learning to improve the accuracy and generalizability.

4.1 STAGE 1: VISUAL REASONING ACTIVATION

The initial stage of our pipeline aims to establish a foundational reasoning paradigm. Instead of
having the model directly guess an answer, we teach it to adopt a structured, step-by-step thought
process that mirrors human analysis. To achieve this, we fine-tune our base model on a high-quality
dataset of 43k samples generated by distilling detailed Chain-of-Thought (CoT) processes from an
advanced MLLM (see Appendix B.1 for details). This CoT-SFT process systematically teaches the
model to move beyond direct answer prediction and instead adopt a structured analytical approach:
first identifying and utilizing critical chart components—such as axes, scales, and legends—and then
using them to derive a final answer.

Formally, we employ SFT on this dataset. Each data instance is a tuple (x, q, r, a), where x is the
chart image, q is the question, r is the intermediate reasoning chain, and a is the final answer. The
training objective is to minimize the negative log-likelihood of the model generating the complete
sequence y (the concatenation of r and a) given the image x and question q:

LSFT = −E(x,q,r,a)∼D

|y|∑
t=1

log πθ(yt|x, q, y<t) (1)

where D is our CoT dataset and πθ is the policy of the model with parameters θ. The resulting
fine-tuned model, denoted as πSFT, learns a robust template for visual reasoning and serves as the
starting point for the next stage.

4.2 STAGE 2: VISUAL REASONING GENERALIZATION

Building on the visual reasoning foundation from Stage 1, the second stage focuses on enhancing the
model’s precision and reliability for the numerical estimation task. For this, we use a smaller, high-
signal dataset of 3.4k samples curated to target the model’s specific weaknesses. These samples are
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identified by selecting problems where the SFT-tuned model exhibits “stochastic correctness”—that
is, problems it can solve but not consistently (see Appendix B.3 for details). By training on these
borderline cases with higher-resolution images, we force the model to refine its visual interpretation
skills.

We employ GRPO (Shao et al., 2024), an efficient and scalable reinforcement learning algorithm,
to fine-tune the policy model πSFT. Unlike traditional algorithms like PPO (Schulman et al., 2017),
GRPO forgoes a computationally expensive value network and instead calculates relative advantages
by comparing rewards within a group of sampled responses. For each input (x, q), we sample a
group of G candidate answers {a1, a2, . . . , aG} from the current policy πβ . Each answer ai receives
a reward R(ai), and these rewards are used to compute a normalized relative advantage Ai for each
sample:

Ai =
ri − mean{r1, . . . , rG}

std{r1, . . . , rG}
(2)

The policy is then updated to increase the probability of actions with positive advantages, while a
KL-divergence penalty against the reference model πSFT ensures stable training.

4.3 REWARD FUNCTION DESIGN

The effectiveness of our RL stage hinges on a well-designed reward function. Our function R(ai) is
a composite of two components, targeting both response structure and numerical accuracy:

R(ai) = Rformat(ai) +Racc(ai) (3)

Format Reward. To encourage interpretable and well-structured outputs, we provide a binary
format reward, Rformat. The model receives a reward of 1 if its response strictly adheres to our
predefined template, where reasoning is enclosed in <think></think> tags and final answer in
<answer></answer> tags, and 0 otherwise.

Continuous Accuracy Reward. To overcome the sparse signal from a simple correct/incorrect
binary reward, we introduce a continuous accuracy reward, Racc. This reward provides a fine-grained
signal that recognizes ”nearly correct” answers. For a predicted answer Apred and a non-zero ground
truth Agt, we first calculate the relative error:

drel =
|Apred −Agt|

|Agt|
(4)

Then, we define the reward using a piecewise quadratic function that smoothly decays from 1 to 0:

Racc(drel) =

{(
1− drel

τ

)2
if drel < τ

0 if drel ≥ τ
(5)

We empirically set τ = 0.02 based on a human-calibrated tolerance threshold. For the specific
case where the ground truth Agt is zero, because it is difficult to quantize the relative deviations, the
accuracy reward falls back to exact match, assigning a value of 1 when Agt = Apred and 0 otherwise.

We employ the quadratic formulation for two critical reasons. First, this design provides a clear,
bounded, and intuitive reward range. It yields a reward of 1 for a perfect answer (drel = 0) and
smoothly decay to 0 as the relative error hits the 2% tolerance boundary. Second, the quadratic
shape creates a desirable non-linear decay. It has a gentle slope for subtile errors, granting sub-
stantial partial credit for close answers, while the penalty accelerates as the error approaches the
tolerance threshold. This behavior encourages the model to make fine-grained improvements when
it is already close to the correct answer, while strongly penalizing larger, unacceptable deviations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Implementation Details. The implementation was built upon the ModelScope SWIFT frame-
work (Zhao et al., 2025). We initialize our ChartVR models using the open-source Qwen2.5-VL

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of ChartVR with representative MLLMs on the proposed ChartVRBench. The
best and second-best scores in each column are highlighted using bold and underline formatting,
respectively.

Methods Synthetic Charts Real Charts Overall
Box Area Radar Scatter Bar Line Combo Bar Line Combo

Human Baseline 94.51 43.29 88.46 91.24 96.65 97.68 90.92 84.82 84.35 65.60 87.57

Open-source Models

InternVL3-2B (Zhu et al., 2025) 25.27 8.54 9.62 25.16 51.68 43.05 34.55 43.75 34.78 32.00 32.98
Qwen2.5-vl-3B (Bai et al., 2025) 46.15 14.02 17.95 51.42 72.91 81.13 62.83 66.96 54.78 45.60 56.62
Ovis1.6-llama3.2-3B (Lu et al., 2024) 12.09 3.66 7.69 14.66 13.13 10.93 11.69 8.04 16.52 12.00 11.66
Gemma-3-4B (Team et al., 2025) 9.89 3.05 12.82 11.82 9.22 12.25 6.81 8.04 12.17 7.20 9.34
Qwen2.5-vl-7B (Bai et al., 2025) 70.33 21.34 19.23 61.93 73.74 85.43 68.41 49.11 56.52 48.00 61.39
InternVL3-8B (Zhu et al., 2025) 36.73 12.80 12.18 39.17 43.58 47.68 36.82 38.39 46.09 34.40 36.73

Close-source Models

GPT-4o (OpenAI et al., 2024a) 28.57 12.20 11.54 25.61 21.23 27.15 18.15 13.39 26.96 18.40 20.87
Gemini-2.5-Flash (Comanici et al., 2025) 68.13 25.61 7.69 61.93 72.07 75.17 55.85 49.11 52.17 39.20 55.77

Chart-Specific Models

ChartGemma-3B (Masry et al., 2025c) 10.99 10.98 7.05 21.44 42.74 32.78 24.43 37.50 42.61 28.80 26.74
TinyChart-3B (Zhang et al., 2024) 13.19 7.93 7.69 25.16 56.15 54.30 36.65 57.14 40.87 34.40 35.83
ChartInstruct-7B (Masry et al., 2024) 10.99 1.22 4.49 16.63 35.47 16.56 18.85 51.79 45.22 18.40 20.91
ChartVLM-7.3B (Xia et al., 2025) 9.89 10.37 7.69 10.28 70.39 45.36 32.81 50.00 54.78 35.20 33.63
ChartLlama-13B (Han et al., 2023) 10.99 1.83 5.77 5.25 3.35 4.30 4.01 8.04 9.57 7.20 5.01
Bespoke-MiniChart-7B (Tang et al., 2025b) 72.53 26.83 25.00 66.74 86.87 89.40 75.04 69.64 62.61 45.60 68.16
ChartVR-3B (Ours) 63.74 24.39 19.87 57.33 82.68 87.75 69.46 58.93 57.39 45.60 62.74
ChartVR-7B (Ours) 83.52 37.20 27.56 70.90 88.27 92.05 78.53 69.64 62.61 58.40 72.20

series (Bai et al., 2025) as a foundation. For inference, all models and benchmarks follow their
provided settings where available, with results obtained from a single forward pass using a fixed
random seed of 42 to ensure reproducibility. Additional details are available in Appendix C.

Main Evaluation on ChartVRBench. Our primary evaluation is conducted on the proposed
ChartVRBench to assess genuine visual reasoning capabilities and establish the superiority of our
ChartVR model. On this benchmark, we compare our model against a comprehensive suite of base-
lines organized into three categories: open-source MLLMs, powerful close-source MLLMs and
prominent chart-specific models.

Generalization Study on Public Benchmarks. To evaluate the transferability of the skills learned
via our RFT framework, we conduct a generalization study. Specifically, we benchmark our
ChartVR model against the representative chart-specific models—ChartGemma (Team et al., 2025),
TinyChart (Zhang et al., 2024), ChartInstruct (Masry et al., 2024), ChartVLM (Xia et al., 2025),
and ChartLlama (Han et al., 2023)—on a diverse set of public benchmarks. This suite includes the
real-world datasets CharXiv (Wang et al., 2024) and ChartQAPro (Masry et al., 2025a), as well as
the synthetic benchmark ChartBench (Xu et al., 2024b). This allows us to verify that our training
methodology imparts a foundational reasoning ability that generalizes effectively to a variety of
chart understanding tasks.

5.2 EXPERIMENTAL RESULTS

Performance on ChartVRBench. The results, presented in Table 1, underscore the significant
challenge that ChartVRBench poses to a wide range of MLLMs. The generally low scores across
all categories—including powerful proprietary models like GPT-4o (20.87%) and Gemini-2.5-Flash
(55.77%)—reveal a critical and widespread weakness in genuine visual reasoning. This difficulty
stems from our benchmark’s design, which forces models to infer values from graphical geometry
(e.g., axes and scales) rather than relying on OCR-based shortcuts common in other benchmarks.
The particularly low score of GPT-4o has been double-checked and manually validated, which pre-
cisely indicates that many MLLMs lack the genuine visual reasoning ability, as we argue.

Our proposed model, ChartVR, demonstrates a clear superiority in this demanding task. ChartVR-
7B achieves an overall score of 72.20%, outperforming all other models, including the best open-
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Table 2: Performance of ChartVR compared to other chart-specific models on various public chart
understanding benchmarks. The results of the compared methods are from the corresponding bench-
marks. The best and second-best scores in each column are highlighted using bold and underline
formatting, respectively.

Methods ChartVRBench CharXiv (R) ChartBench ChartQAPro

ChartGemma-3B (Masry et al., 2025c) 26.74 12.50 - 6.84
TinyChart-3B (Zhang et al., 2024) 35.83 8.30 - 13.25
ChartInstruct-7B (Masry et al., 2024) 20.91 8.80 - 4.88
ChartVLM-7.3B (Xia et al., 2025) 33.63 - 12.06 -
ChartLlama-13B (Han et al., 2023) 5.01 14.20 21.30 -
Bespoke-MiniChart-7B (Tang et al., 2025b) 68.16 41.40 44.19 34.74
Qwen2.5-VL-7B (Bai et al., 2025) 61.39 39.50 35.35 37.10
ChartVR-7B (Ours) 72.20 43.40 45.34 36.06

Table 3: Ablation study of training strategies for ChartVR-3B and
ChartVR-7B models. The best and second-best scores are high-
lighted.

Training Paradigm ChartVR-3B ChartVR-7B

Synthetic Real Overall Synthetic Real Overall

Zero-Shot 56.87 54.78 56.52 67.66 51.16 61.39
+CoT-SFT 36.55 34.86 40.77 55.45 45.74 54.06
+GRPO 56.59 56.82 56.62 66.44 54.83 64.78
+RFT 64.26 53.69 62.74 73.68 63.35 72.20

Table 4: Ablation study of re-
ward function components for
Qwen2.5-VL-7B.

Reward Component Score

Format 61.84
Cont. Acc 67.88
Acc + Format 70.28
Cont. Acc + Format 72.20

source baseline, Qwen2.5-vl-7B (61.39%), and the strongest proprietary model, Gemini-2.5-Flash.
Notably, even our smaller ChartVR-3B model (62.74%) surpasses most other models, highlighting
the effectiveness of our training methodology. The performance is particularly strong on complex
chart types like Real Combo charts, where ChartVR-7B (58.40%) dramatically outperforms the
other models.

Generalization on Public Benchmarks. As detailed in Table 2, ChartVR-7B exhibits excep-
tional generalization, achieving competitive results across the board. Specifically, on the reasoning-
focused portion of CharXiv, our model achieves an improvement of 3.9% over the base model
Qwen2.5-VL-7B. This success stems from our model’s core visual reasoning capability, which con-
trasts with other chart-specific models that rely on SFT and often fail to develop a generalizable
reasoning capability.

5.3 ABLATION STUDY

Effectiveness of the RFT Training Paradigm. To systematically validate our training strate-
gies, we conducted an comparative study comparing three paradigms: CoT-SFT, GRPO applied
directly to the base model, and our full RFT framework. The results are summerized in Table 3. For
ChartVR-7B, the base model scores 61.39%. Using CoT data as a ’Visual Reasoning Activation’
merely compels the model to adopt a visual reasoning pattern without imparting the underlying abil-
ity. Consequently, this mismatch leads to a performance degradation rather than an improvement.
In contrast, the full RFT framework, which synergistically combines SFT with RL, achieves the
most significant performance gain, reaching 72.20%. This demonstrates that our complete VR-RFT
framework genuinely enhances the model’s visual reasoning ability, leading to its consistent and
substantial outperformance over all other configurations.

Impact of the Reward Function Design. We conducted an ablation study to isolate the contri-
bution of each component in our reward function, with results presented in Table 4. The findings
highlight a strong synergistic effect between enforcing a correct output structure and rewarding nu-
merical precision. A model trained with only the Format reward achieves a score of 61.84, whereas
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combining it with our proposed Continuous Accuracy (Cont. Acc) reward boosts the score signifi-
cantly to 72.20, indicating both components are crucial. Furthermore, the study validates the supe-
riority of our continuous reward design over a standard binary alternative. A model using a simple
binary accuracy reward (Acc + Format), which provides a sparse correct/incorrect signal, is clearly
outperformed by our model using the continuous reward (Cont. Acc + Format). This demonstrates
the effectiveness of our quadratic reward function, which provides a dense and informative learning
gradient. By rewarding ”nearly correct” answers, it encourages the fine-grained improvements in
visual estimation necessary for achieving higher precision.

5.4 CASE STUDY

Axes: 
X-axis: "Rainfall in Volunteer 
Hours"
Y-axis: Years from 2015 to 2022
Data Points:
Locate the 2016 bar on the chart 
to determine its length on the X-
axis.
Context:
The chart shows annual rainfall 
as represented by volunteer 
hours contributed to a 
community garden for each year 
from 2015 to 2022.
Answer:
200

The chart shows the annual 
rainfall in volunteer hours 
for different years. The X-
axis represents the rainfall in 
volunteer hours, and the Y-
axis represents the years. For 
the year 2016, the corr- 
esponding bar reaches up to 
appro-ximately 330 volunte- 
er hours.

339

To estimate the rainfall for 
2016:
1. Locate the bar correspondi- 
ng to the year 2016.
2. Observe its length along the 
x-axis, which represents 
"Rainfall in Volunteer Hours."
3. Compare the length of the 
2016 bar to the grid lines and 
the labeled values on the x-
axis. 
The 2016 bar extends to 
approximately 340 on the x-
axis, indicating that the 
rainfall in volunteer hours for 
2016 is around 340.

thinkAnswer:

 Estimate the rainfall in volunteer hours for the year 2016,
 as seen in the bar chart.

GPT-4o Qwen2.5-VL-7B ChartReasoner-7B

Question：

Figure 3: Qualitative analysis on ChartVRBench. GPT-4o and Qwen2.5-VL-7B exhibits halluci-
nation in the answer and reasoning procedure, respectively. In contrast, our ChartVR-7B is able to
produce a coherent and correct step-by-step reasoning process, leading to an accurate answer.

In Figure 3, powerful models like GPT-4o and Qwen2.5-VL-7B either misinterpret the query or
resort to factual hallucination. In contrast, our ChartVR, sculpted by the RFT strategy, demonstrates
a flawless, step-by-step reasoning process. This case study provides a compelling visual proof of our
quantitative findings: ChartVR enhanced by the RFT strategy is transformed from a system prone
to errors and hallucination into a reliable and structured visual reasoner that moves beyond merely
optimizing for the answer.

6 CONCLUSION

In this paper, we investigate a compelling yet significant question: ”Do MLLMs really under-
stand the charts?” By establishing the ChartVRBench, we extensively evaluated open-source, close-
source, and chart-specific MLLMs. The results shows a significant degradation in the performance
of these models, and, through chain-of-thought reasoning, revealed their inability to estimate numer-
ical values through visual reasoning, similar to human behavior. To address this issue, we propose
ChartVR, which enhances the visual reasoning ability of MLLMs via an RFT strategy. This strategy
first activates reasoning capabilities through SFT, and then generalizes reasoning abilities through
RL. Extensive experiments conducted on the proposed ChartVRBench and public chart reason-
ing datasets demonstrate the effectiveness of ChartVR. This work paves the way for empowering
MLLMs to really understand the charts in a human-like manner.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. The ChartVRBench dataset was constructed with
ethical considerations as a priority, with real-world chart data sourced exclusively from publicly
accessible platforms (Statista and Our World in Data) in strict adherence to their terms of service.
Human participation was limited to the ethical recruitment and fair compensation of annotators for
the curation of question-answer pairs and for a small-scale study to calibrate our human-aligned
evaluation metric. The purpose of all tasks was clearly communicated. We believe our work, which
aims to foster more reliable and less hallucinatory AI systems by promoting genuine visual reason-
ing, does not raise any major negative societal concerns.

REPRODUCIBILITY STATEMENT

To ensure the full reproducibility of our findings, all code, data, and trained models will be made
publicly available upon publication. The source code for our novel Reinforcement Finetuning (RFT)
framework, including implementations for both the SFT and GRPO stages, along with all evaluation
scripts, will be released. The complete ChartVRBench dataset, including data generation scripts
for the synthetic portion, will also be made available. Detailed descriptions of the data curation
process, training hyperparameters, and evaluation protocols are provided in Appendices A, B, and
C, respectively. Finally, we will release the final weights for our trained ChartVR-3B and ChartVR-
7B models to facilitate future research.

LLM USAGE STATEMENT

LLMs were utilized as general-purpose assistants throughout this research project. In the research
phase, LLMs served as a tool to accelerate our workflow by generating professional experiment
code, assisting with bug fixing, and conducting deep research to help discover novel ideas and related
works. During the preparation of this manuscript, LLM was also used as a writing and editing
assistant to polish prose for clarity, improve the narrative flow of sections, and format complex
LaTeX tables. All scientific claims, data analysis, and final conclusions were determined by the
human authors, who have reviewed all generated and modified content to ensure its correctness and
take full responsibility for the scientific integrity of this paper.
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APPENDIX

• Sec. A provides details of the proposed benchmark, ChartVRBench, including the problem
definition, data sources, topics, and chart types.

• Sec. B describes the training strategy of the ChartVR, detailing the construction of the SFT and
RL datasets.

• Sec. C presents further details on the evaluation and inference.

• Sec. D interpret the human performence in ChartVRBench

A CHARTVRBENCH BENCHMARK DETAILS

A.1 PROBLEM DEFINITION

The primary task addressed by our benchmark, ChartVRBench, is numerical value estimation on
non-annotated charts. Formally, given a chart image C and a query Q that specifies a target data
point within the chart, the goal is to produce a numerical answer A that accurately estimates the
value of that data point. Crucially, the chart image C is non-annotated, meaning that the numerical
values corresponding to graphical elements (e.g., the height of a bar, a point on a line) are not present
as explicit text labels.

This task is fundamentally a visual reasoning problem, rather than a simple recognition or textual
reasoning task. To arrive at the correct answer A, a model cannot only rely on Optical Character
Recognition (OCR). Instead, it must perform a multi-step cognitive process grounded in the visual
geometry of the chart:

1. Semantic Understanding & Grounding: The model must first parse the query Q and correctly
associate the textual description with the corresponding graphical elements in the chart image C
(e.g., a specific bar, a specific colored line).

2. Structural and Scale Interpretation: The model must identify and interpret the chart’s structural
components, particularly the relevant axes (e.g., the y-axis) and their numerical scales, including
the range and the value represented by tick marks and grid lines.

3. Spatial and Proportional Reasoning: Finally, the model must perform spatial reasoning by com-
paring the target graphical element’s dimension (e.g., its height or position) against the inter-
preted scale of the axis. This often requires proportional estimation or interpolation between
labeled tick marks to infer the final numerical value.

By designing a task that necessitates this entire reasoning chain, we directly evaluate a model’s
ability to not just recognize a chart, but to truly understand its underlying quantitative information.

A.2 DATA TOPICS AND CHART EXAMPLES

To ensure the breadth relevance of ChartVRBench, the synthetic data generation process samples
from a diverse set of 38 distinct topics, as shown in Table 5 guaranteeing that the charts cover a
variety of contexts and narratives. Furthermore, to robustly evaluate a model’s visual reasoning
capabilities across different graphical representations, ChartVRBench incorporates seven primary
chart types. Figure 5 provides a representative example for each of these types, showcasing the
visual diversity and complexity present in our benchmark.

A.3 REAL-WORLD CHART COLLECTION

To ensure ChartVRBench reflects the challenges of real-world applications, we curated a substantial
collection of charts from public online sources. This section details our three-stage process: data
sourcing, a rigorous manual filtering protocol, and a hybrid human-AI pipeline for generating high-
quality question-answer pairs. Figure 6 showcases several examples of the final curated real-world
charts from our collection.
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Table 5: The 38 topics covered in the ChartVRBench dataset.

Category Category
Agriculture and Food Production Human Resources and Employee Management
Architecture and Building Language and Communication
Artificial Intelligence and Robotics Law and Legal Affairs
Art and Design Literature and Writing
Astronomy and Space Manufacturing and Production
Biology and Life Sciences Marketing and Advertising
Books and Publishing Mathematics and Statistics
Business and Finance Music and Performance
Computer Science and Information Technology Physics and Chemistry
Education and Academics Real Estate and Housing Market
Energy and Utilities Religion and Spirituality
Environment and Sustainability Retail and E-commerce
Fashion and Style Science and Engineering
Film and Cinema Social Media and the Web
Food and Beverage Industry Social Sciences and Humanities
Futurism and Innovation Society and Community
Government and Public Policy Sports and Entertainment
Healthcare and Health Transportation and Logistics
History and Culture Travel and Exploration

A.3.1 DATA SOURCING

Statista A significant portion of the real-world charts was sourced from Statista2, a leading global
platform specializing in market and consumer data. Statista provides professional, data-driven vi-
sualizations for a wide array of industries, covering topics from economic indicators and market
forecasts to technology trends and consumer behavior.

Our World in Data The second major source was Our World in Data3, a renowned scientific on-
line publication based at the University of Oxford. Its mission is to make data and research on the
world’s most significant challenges, such as global health, economic development, and environmen-
tal change, accessible and understandable through complex and data-rich visualizations.

In addition to these two primary repositories, the collection was supplemented by charts from various
other miscellaneous public reports and online publications. All data collection was conducted in
strict adherence to the copyright policies, terms of service, and licensing agreements of each source
to ensure full ethical compliance.

A.3.2 CURATION PROTOCOL

Once a large pool of charts was collected, each candidate chart underwent a meticulous, two-step
curation process performed by our recruited team of human annotators.

Step 1: Manual Filtering and Vetting. Each chart was manually vetted against stringent crite-
ria for inclusion in ChartVRBench. A chart was accepted only if it satisfied all of the following
conditions, otherwise it was discarded:

1. High Visual Quality: The image must be of sufficient resolution, clear, and free of significant
compression artifacts or other visual noise that could impede interpretation.

2. Data Integrity: The chart must be coherent and visually consistent, with clearly defined axes,
legends, and graphical elements.

3. Absence of Annotations: We exclusively select charts where numerical values are not explicitly
printed on the graphical elements (e.g., no numbers on top of bars). This constraint is funda-

2https://www.statista.com/
3https://ourworldindata.org/

15

https://www.statista.com/
https://ourworldindata.org/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

mental to our benchmark, as it forces a model to perform genuine visual reasoning rather than
relying on OCR shortcuts.

Step 2: Question-Answer Pair Generation. Once a chart was approved, we employed a two-
stage, human-in-the-loop process to generate its corresponding question-answer pair:

1. MLLM-based Candidate Generation: We first use a capable MLLM to generate an initial set of
candidate question-answer pairs for each chart, prompting it to ask a specific numerical estima-
tion question.

2. Human Verification and Refinement: Every MLLM-generated pair is then subjected to rigor-
ous human review. Annotators verify the question’s clarity and relevance, and then carefully
perform the visual estimation themselves to validate the answer’s accuracy. If necessary, they
refine the question’s phrasing or correct the ground-truth answer to ensure the final Q&A pair is
unambiguous and factually correct.

B DETAILS OF DATASETS AND TRAINING

B.1 DATA CONSTRUCTION FOR SFT

The dataset used for the Supervised Fine-Tuning (SFT) ”cold start” phase is meticulously con-
structed through a knowledge distillation process. The goal is to generate high-quality Chain-
of-Thought (CoT) data that can effectively activate the reasoning paradigm of our base models.
This process leverages a powerful teacher model (In our experiment, we use the Qwen2.5-VL-32B-
Instruct) to generate reasoning traces for the question-answer pairs in our ChartVRBench dataset.

The data construction pipeline involves several key stages to ensure the quality and validity of the
final CoT samples:

1. Prompting for Chain-of-Thought Generation: For each data triplet, consisting of Python plot-
ting code (C), a question (Q), and its corresponding ground-truth answer (A), we employ a large
language model (LLM) as a teacher to generate a step-by-step reasoning process. The core of this
process involves a carefully constructed textual prompt that integrates the Python code (C) and
the question (Q). This prompt is designed to guide the LLM to derive the provided ground-truth
answer (A), forcing the model to articulate a logical pathway from the code and question to the
correct result. The model is required to structure its output using specific tags, separating the rea-
soning steps (<think>...</think>) from the final answer (<answer>...</answer>).

2. Validation and Filtering: Each generated CoT sample undergoes a rigorous, multi-step valida-
tion process to filter out low-quality or incorrect reasoning:

• Structural Check: The generated text is first parsed to ensure that both the reasoning and
answer tags are present. Samples with missing tags are discarded.

• Answer Verification: The final answer extracted from the <answer> tag is programmat-
ically compared against the ground-truth answer. We employ a robust evaluation function
that checks for both exact string matches and numerical equivalence within a tolerance
threshold to ensure correctness.

• Leakage Detection: The generated reasoning trace within the <think> tags is scanned for
any mention of the ”original answer.” This crucial step prevents the model from ”cheating”
by simply copying the ground-truth answer into its reasoning, ensuring that the generated
thought process is genuine.

B.2 RL ALGORITHM SELECTION

We selected GRPO to fine-tune our multimodal model for enhanced chart visual reasoning, primarily
due to its superior efficiency and its alignment with our reward structure. Compared to Proximal Pol-
icy Optimization (PPO), GRPO significantly reduces computational and memory overhead. GRPO
eliminates the need for a separate value model—which is typically as large as the policy model—by
estimating the baseline directly from the scores of multiple sampled outputs. This efficiency is crit-
ical given the large scale of our models (e.g., 7B parameters), making GRPO a practical solution
under limited hardware resources.
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Furthermore, while Direct Preference Optimization (DPO) offers an efficient alternative to tradi-
tional RLHF, it is fundamentally designed for binary preference datasets (i.e., chosen vs. rejected
responses). Our task, however, benefits from a more granular, continuous reward signal that reflects
the degree of correctness in quantitative analysis. GRPO is adept at directly optimizing for such
programmatic, scalar rewards, allowing the model to learn from fine-grained feedback. This makes
it better suited for improving the visual reasoning in chart than a preference-based method like DPO.

B.3 DATASET CONSTRUCTION FOR GRPO

The curation process, inspired by the principles of rejection sampling and active learning, involves a
multi-round, varied-prompting inference pipeline designed to probe the model’s knowledge bound-
aries. The goal of this pipeline is to construct a specialized, high-signal dataset by isolating ambigu-
ous cases that the SFT-tuned model can sometimes solve but not consistently. This strategy focuses
the training process on the most informative examples where the model is most uncertain, rather
than wasting computational resources on problems that are already mastered (always correct) or are
currently too difficult (always incorrect).

Our pipeline involves the following systematic steps:

1. Initial Dataset Curation: We begin by constructing an initial, high-quality dataset for GRPO.
This dataset is synthesized following the method introduced earlier. We selected only those
instances that achieved a score of either 4 or 5, ensuring a strong baseline of correct.

2. Multi-Round Inference: Initially, we run inference multiple times on the initial GRPO dataset
using our base model. To elicit a wide range of reasoning pathways and outcomes for each
problem, we set the sampling temperature to 1.0 for each run.

3. Filtering for ”Stochastic Correctness”: The correctness of every generated response is logged.
After all rounds are complete, we filter this log to isolate the target samples. We select only those
question-answer pairs that the model answered correctly in at least one round but incorrectly in
at least one other round.

The rationale behind this selective filtering is to force the policy to learn to distinguish between suc-
cessful and flawed reasoning pathways for the exact same problem. Training on these ”boundary”
cases ensures that the GRPO stage is dedicated to resolving ambiguity and reinforcing robust rea-
soning where it is most needed, leading to more significant and generalizable improvements in the
model’s core abilities.

B.4 DETAILED FORMULATION OF THE ACCURACY REWARD

A core component of the GRPO framework is the Continuous Accuracy Reward (Racc), which is
designed to provide a dense, fine-grained signal for optimizing the model’s numerical estimation ca-
pabilities. A simple binary reward (correct/incorrect) is often too sparse for reinforcement learning,
as it fails to differentiate between a near-miss and a completely wrong answer. To overcome this,
we designed a continuous reward function that recognizes and rewards ”nearly correct” answers,
thereby creating a smoother optimization landscape. The formulation of this reward is visualized in
Figure 4.

Our accuracy reward function provides a dense, informative, and well-behaved signal that is ide-
ally suited for guiding our reinforcement learning process towards generating highly accurate and
reliable numerical estimations.

B.5 MORE TRAINING DETAILS

Our training process begins with the Qwen2.5-VL-7B-Instruct model as the foundation. Using the
Swift framework, we perform SFT for 2 epochs on our 4.2k instruction-following dataset. In this
stage we freeze the vision tower and the multimodal aligner while exclusively tuning the LLM’s
parameters. We set the learning rate to 1e-5 with a warm-up ratio of 0.05 and use an effective batch
size of 256. The SFT process is conducted on 8 NVIDIA H800 GPUs, utilizing bfloat16 precision
and the DeepSpeed ZeRO-3 optimization strategy.
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Figure 4: Visualization of our quadratic accuracy reward function (Racc) with a tolerance threshold
of ε = 0.02. The reward smoothly decays from 1 to 0, with a gentle slope for small errors and an
accelerating penalty for larger deviations.

For the GRPO stage, we initialize the model with the checkpoint from the SFT phase and employ
the GRPO algorithm on our 3.4k preference dataset. In this phase, we continue to freeze the vision
tower but expand the scope of fine-tuning to include both the LLM and the multimodal aligner. The
learning rate is reduced to 1e-6, again with a 0.05 warm-up ratio. For the rollout process, we use a
generation batch size of 32 to create 4 completions per sample with a temperature of 1.0; the training
itself uses an effective batch size of 64. The reward function is the composite of the Format and
Continuous Accuracy rewards. The hardware and optimization setup remains consistent, utilizing 8
NVIDIA H800 GPUs with bfloat16 precision and DeepSpeed ZeRO-3.

C EVALUATION AND INFERENCE DETAILS

This section outlines the precise methodologies and inference settings used to evaluate all models
and benchmarks, ensuring full reproducibility and fairness. Our protocols were designed by strictly
adhering to the author-recommended settings and official evaluation scripts where available.

C.1 GENERAL INFERENCE SETTINGS

All experiments reported in this paper were conducted using the default hyperparameters of each re-
spective model, with no model-specific tuning performed at inference time. To ensure reproducibil-
ity, the random seed for all generation processes was fixed to 42, and the sampling temperature
was set to 1.0. Our inference pipeline is built upon the vLLM framework, which provides efficient,
high-throughput serving for Large Language Models.

C.2 EVALUATION ON CHARTVRBENCH

Our evaluation on the proposed ChartVRBench employed different prompting strategies depending
on the model type to ensure a fair and rigorous assessment.

General MLLMs. To verify the visual reasoning capabilities of general-purpose models, we em-
ployed a structured Chain-of-Thought (CoT) prompt, shown in Figure 10. This prompt compels the
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model to first articulate its reasoning—by analyzing axes, data points, and context—before provid-
ing a final answer. The prompt enforces a strict separation between the step-by-step logic (output
in ‘¡think¿‘ tags) and the concise final output (in an ‘¡answer¿‘ tag). This approach allows us to
pinpoint the exact stage where a model’s logic succeeds or fails, moving our analysis beyond simple
accuracy metrics.

Chart-Specific Models. In contrast, for models already fine-tuned on specific chart-related data
formats (including ChartGemma, TinyChart, ChartInstruct, ChartVLM, and ChartLlama), we did
not use our generalized CoT prompt. To elicit their best possible performance and establish the
strongest baseline, we followed the official author-recommended procedures:

1. We cloned the official public repository for each model.
2. We utilized their provided, out-of-the-box inference scripts and default model weights without

modification.
3. We fed the images and questions from our ChartVRBench test set directly into these scripts.

This methodology ensures that we are comparing our model against the most capable version of
each specialized baseline.

C.3 EVALUATION OF CHARTVR ON PUBLIC BENCHMARKS

To validate the generalization of ChartVR’s enhanced reasoning capabilities, we evaluated it against
several standard public benchmarks, following the official protocol for each.

CharXiv. We utilized the official code and evaluation scripts from the CharXiv repository. We
integrated our locally-deployed ChartVR as the model backend into their inference pipeline, keeping
all other components (data loading, pre-processing, and scoring scripts) identical to the original
setup.

ChartBench. Our evaluation followed a similar protocol using the complete pipeline from the of-
ficial ChartBench repository. We generated predictions with our ChartVR model and fed the outputs
directly into the official scoring script.

ChartQAPro. As the official repository provides a standalone evaluation script but not a full
inference pipeline, we implemented a two-step process. First, we developed a script to generate
predictions for the test set using a prompt that precisely replicated the template described in the
ChartQAPro paper. Second, the resulting file of predictions was used as input for the official evalu-
ation script to compute the final accuracy score.

D INTERPRETATION OF HUMAN PERFORMANCE

It is important to note that human accuracy on this task is not 100%. This is primarily due to inherent
tendencies in human visual estimation, for instance, individuals often gravitate towards estimating
with round or integer values that appear close to the correct answer, rather than performing precise
interpolation. Our analysis indicates that a 2% relative error tolerance is a reasonable threshold to
account for these natural human inaccuracies.

Furthermore, performance varies significantly across chart types. For area charts, accuracy sees a
substantial decline, because many questions require calculating the difference between the upper and
lower boundaries of a shaded region, a task made considerably more difficult by the common ab-
sence of horizontal gridlines as visual aids. Similarly, for complex combo charts, lower performance
can be attributed to cognitive factors, such as misinterpretation of the prompt or misunderstanding
the intricate relationships between different chart components.
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Box Chart Radar Chart

Question:What is the approximate average 
satisfaction score for Hospital D?
Answer:5

Question:What is the approximate 
'Creativity' score for Surrealism?
Answer:6Area Chart

Scatter Chart

Bar Chart

Question:What is the maximum duration 
in months shown for any legal issue in 
the chart?
Answer:57

Question:What is the specific value of the popularity index 
for Pop music in the year 2022 estimated from the chart?
Answer:68 Question:Based on the scatter plot, approximately how many 

followers are gained when 3 fashion items are promoted?
Answer:420

Combo Chart
Line Chart

Question:What is the approximate Talkativity Points value for 
the year 1862 in the chart?
Answer:34

Question:What is the approximate value of the highest bar 
in the Basic Models group?
Answer:5600

Figure 5: An overview of sample question-answer pairs for various synthetic chart types within the
ChartVRBench dataset.
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Bar Chart

Line Chart

Combo Chart

Question:What is the estimated graduation rate for Black 
students in Green Bay during the 2011-12 academic year?
Answer:50

Question:What is the estimated share of imports for 
Saudi Arabia in this chart?
Answer:5.5

Question:What was the estimated Expenditure as share of 
GDP for the year 2015?
Answer:0.81

Figure 6: An overview of sample question-answer pairs for various real chart types within the
ChartVRBench dataset.
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========================================
ROLE
========================================
You are an expert vision-language analyst.  
Your job is to look at the image, read the question, think 
step-by-step, and provide the final answer.
========================================
CRITICAL RULES (must follow all)
========================================
1. **Use ONLY the image and the question** when you 
think.  
   └ The “Original Answer” is supplied **solely for self-
checking**.  
   └ NEVER quote, copy, hint at, or mention it in your 
reasoning.  
   └ Forbidden words/phrases inside <think>:  
     “original answer”, “ground-truth”, “GT”, “correct 
answer”, or the answer value itself.
2. Finish your full reasoning first, then decide your own 
answer  
   (±2 % numerical tolerance is acceptable).  
   └ If truly uncertain, output “uncertain” in <answer>.
3. Output exactly TWO tags in this order—nothing else:
<think>Your reasoning here</think>
<answer>Your final answer</answer>
========================================
INPUT FIELDS
========================================
Question      : {original_question}  
Original Answer (for self-check only) : {original_answer}
========================================
EXAMPLE OUTPUT
========================================
<think>The point at “1900-present” lies slightly above the 
90 tick; reading the y-axis, it corresponds to 93 on the 
popularity scale.</think>
<answer>93</answer>

Distill CoT Data Prompt：

Figure 7: The Prompt in Distilling the CoT Data
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Question: What is the median electricity consumption for the 
Washing Machine based on the boxplot coordinates?
Chart Type: Box Chart
Answer: 60
CoT Data: <think>
Step 1: Locate the bar for "Washing Machine" on the y-axis, 
which is positioned in the middle of the chart.
Step 2: Identify the thick horizontal line inside the box of the 
"Washing Machine" bar. This line represents the median. 
Step 3: Follow the median line horizontally to the x-axis, which 
shows electricity consumption in watt-hour/day. 
Step 4: The median line intersects the x-axis at a point that lies 
exactly on the 60 mark, as it aligns perfectly with the gridline 
labeled 60. 
Step 5: Giving the Answer is 60.</think> 
<answer>60</answer>

Figure 8: Example 1 of CoT Dataset
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Question: What is the health consciousness index in 2022 based 
on the chart coordinates?
Answer: 12
CoT Data:<think>
Step 1: Locate the year "2022" on the x-axis. 
Step 2: Identify the data point for the "Health Consciousness Index" 
line at this year. It is represented by an upward-pointing triangle 
marker (^) on the dashed red line. 
Step 3: Follow the vertical position of this marker upward to the 
right y-axis, which is labeled "Health Consciousness Index" and 
ranges from 0 to 80 in increments of 10. 
Step 4: The marker aligns exactly with the 78 mark on the right y-axis. 
Step 5: Giving the Answer is 78.</think>
<answer>12</answer>

Figure 9: Example 2 of CoT Dataset
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========================================
ROLE
========================================
You are an expert vision-language analyst.  
Your job is to look at the image, read the question, and 
provide a answer.
========================================
CRITICAL RULES (must follow all)
========================================
1.  **FINAL ANSWER** Your output MUST contain the 
answer tag: `<answer>your answer</answer>`.
2.  **STRICT FORMAT:** The answer inside the 
`<answer>` tag must be the final, concise result (e.g., a 
single number). Do not include explanations or units 
unless required by the chart's notation.
========================================
INPUT FIELDS
========================================
Question: {original_question}  

========================================
ROLE
========================================
You are an expert vision-language analyst.  
Your job is to look at the image, read the question, and 
provide a answer.
========================================
CRITICAL RULES (must follow all)
========================================
1.  **STEPBYSTEP THINKING:** You need to think 
step-by-step first before answering the question.Your 
thought process (which you must output in the <think> 
tag) should explicitly focus on:
    *   **Axes:** What do the horizontal (X-axis) and 
vertical (Y-axis) represent? Note their labels, units, and 
scale.
    *   **Data Points:** Locate the specific bars, points, 
lines, or other points relevant to the question.
    *   **Context:** Read the chart's title, legend, and any 
other text to fully understand the context.
2.  **FINAL ANSWER** Your output MUST contain the 
answer tag: `<answer>your answer</answer>`.
3.  **STRICT FORMAT:** The answer inside the 
`<answer>` tag must be the final, concise result (e.g., a 
single number). Do not include explanations or units 
unless required by the chart's notation.
========================================
EXAMPLE
========================================
Question: "What is the population of Tokyo?"
(Imagine an image of a bar chart showing city populations)
Your Correct Response:
<think>To answer the question, I first look at the chart's 
X-axis, which represents different cities, and the Y-axis, 
which shows their populations in millions. The bar for 
Tokyo is approximately from 35 million to 40 million. So I 
estimate the population to be around 37.3 million.</think>
<answer>37.3</answer>
========================================
INPUT FIELDS
========================================
Question      : {original_question}  

========================================
ROLE
========================================
You are an expert vision-language analyst.  
Your job is to look at the image, read the question, and 
provide a answer.
========================================
CRITICAL RULES (must follow all)
========================================
1.  **STEPBYSTEP THINKING:** You need to think 
step-by-step first before answering the question.Your 
thought process (which you may output in the <think> 
tag) should explicitly focus on:
    *   **Axes:** What do the horizontal (X-axis) and 
vertical (Y-axis) represent? Note their labels, units, and 
scale.
    *   **Data Points:** Locate the specific bars, points, 
lines, or other points relevant to the question.
    *   **Context:** Read the chart's title, legend, and any 
other text to fully understand the context.
2.  **FINAL ANSWER** Your output MUST contain the 
answer tag: `<answer>your answer</answer>`.
3.  **STRICT FORMAT:** The answer inside the 
`<answer>` tag must be the final, concise result (e.g., a 
single number). Do not include explanations or units 
unless required by the chart's notation.
========================================
INPUT FIELDS
========================================
Question      : {original_question}  

Direct Prompt： Chain of Thought(CoT) Prompt： Forced Output-CoT Prompt：

Figure 10: CoT Prompting Reasoning Steps in ChartVRBench Evaluation
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Reasoning：To answer this question, I'll follow these 
steps:

1. Identify the X-axis, which represents the years.
2. Identify the Y-axis, which represents the percentage of 
renewable energy.
3. Locate the data point for Canada in the year 2020.
4. Read the value on the Y-axis corresponding to that 
data point.

The data point for Canada in 2020 is located on the 
green dashed line. By examining the graph, it appears 
that the value is just below 28%.

Answer：28%

Reasoning：The graph shows trends in renewable energy 
adoption across three countries: Germany, Brazil, and 
Canada. To determine the renewable energy percentage for 
Canada in 2020:

1. Locate the year 2020 on the x-axis.
2. Identify the data series for Canada, which is represented 
by the green dashed line with square markers.
3. Find the point where the Canadian data line intersects the 
vertical gridline corresponding to 2020.
4. Read the y-axis value at this intersection point.

From the graph, the Canadian data line intersects the 2020 
vertical gridline is about from 25 to 30. At approximately 27% 
on the y-axis.

Answer：27

Question:At approximately 
what renewable energy 
percentage is Canada 
shown for the year 2020? 
pitchfork strikes per day?
Answer:27

Qwen2.5-VL-7B： CoT Answer ChartReasoner-7B： CoT Answer

Figure 11: Example 1 from ChartVRBench comparing the CoT outputs of Qwen2.5-VL-7B and
ChartVR-7B.
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Reasoning：The chart has a circular layout with axes 
representing different categories: Use of Renewable 
Energy, Water Usage Efficiency, Sustainable Crop Yield, 
Soil Health Improvement, and Biodiversity Promotion. 
The radial axis ranges from 0 to 10, indicating the score 
for each category. The green line extends to the 'Water 
Usage Efficiency' category, which appears to have a 
score slightly above 6.

Answer：6.5

Reasoning：The radar chart evaluates agricultural vectors 
for sustainable development across five categories: Use of 
Renewable Energy, Water Usage Efficiency, Sustainable 
Crop Yield, Soil Health Improvement, and Biodiversity 
Promotion.

To determine the approximate score for 'Water Usage 
Efficiency':
1. Locate the 'Water Usage Efficiency' label on the chart.
2. Observe where the green polygon intersects the radial 
line corresponding to 'Water Usage Efficiency'.
3. Compare this intersection point to the concentric circles 
that represent numerical values (2, 4, 6, 8, 10).
4. The intersection appears to be just close the 6 mark and 
above the 4 mark, closer to 6 than 4.

Given these observations, the score for 'Water Usage 
Efficiency' is approximately 6.

Answer：6

Question:At approximately 
what renewable energy 
percentage is Canada 
shown for the year 2020? 
pitchfork strikes per day?
Answer:27

Qwen2.5-VL-7B： CoT Answer

ChartReasoner-7B： CoT Answer

Figure 12: Example 2 from ChartVRBench comparing the CoT outputs of Qwen2.5-VL-7B and
ChartVR-7B.
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