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Abstract

Current methods for end-to-end constructive Neural Combinatorial Optimization usually
train a policy using behavior cloning from expert solutions or policy gradient methods from
reinforcement learning. While behavior cloning is straightforward, it requires expensive
expert solutions, and policy gradient methods are often computationally demanding and
complex to fine-tune. In this work, we bridge the two and simplify the training process by
sampling multiple solutions for random instances using the current model in each epoch and
then selecting the best solution as an expert trajectory for supervised imitation learning. To
achieve progressively improving solutions with minimal sampling, we introduce a method
that combines round-wise Stochastic Beam Search with an update strategy derived from a
provable policy improvement. This strategy refines the policy between rounds by utilizing the
advantage of the sampled sequences with almost no computational overhead. We evaluate our
approach on the Traveling Salesman Problem and the Capacitated Vehicle Routing Problem.
The models trained with our method achieve comparable performance and generalization to
those trained with expert data. Additionally, we apply our method to the Job Shop Scheduling
Problem using a transformer-based architecture and outperform existing state-of-the-art
methods by a wide margin.

1 Introduction

Combinatorial Optimization (CO) plays a critical role in many real-world applications in fields as diverse
as logistics, manufacturing, genomics and synthetic biology (Sbihi & Eglese, 2010; Crama, 1997; Naseri
& Koffas, 2020). In a CO problem, the goal is to find the best solution from a finite set of options that
maximizes a given objective function. The NP-hard nature of these problems and their complex variations
make them exceptionally difficult to solve. Traditional methods for solving CO problems typically rely on
exact algorithms, heuristics, and metaheuristics based on decades of research. Exact algorithms such as
enumeration, cutting plane, and branch-and-bound solve CO problems to optimality, but are limited by
NP-hardness (Laporte, 1992). On the other hand, (meta-)heuristic algorithms such as local search, genetic
algorithms, and ant colony optimization can provide solutions faster without guaranteed quality (Crama et al.,
2005; Yang, 2010; Dorigo et al., 2006). While powerful, the traditional methods struggle with scalability,
computational efficiency, and adaptability to other problems. In addition, designing algorithms for a CO
problem requires expert intuition and significant domain knowledge (Vesselinova et al., 2020).

To overcome these limitations, the success of deep learning has led to the emergence of Neural Combinatorial
Optimization (NCO), which departs from traditional CO methods to leverage the pattern recognition and
generalization capabilities of neural networks (Bengio et al., 2021). NCO aims to build models that can
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generate approximate solutions to CO problems by learning from data without manually crafting algorithmic
rules.

A prominent paradigm in NCO is the constructive approach, where a solution to a problem is built step
by step in a sequential decision-making process. A neural network models the policy that guides these
incremental decisions. This policy network is typically trained either by supervised learning (SL) (Vinyals
et al., 2015; Joshi et al., 2019; Fu et al., 2021; Kool et al., 2022; Hottung et al., 2020; Drakulic et al., 2023; Luo
et al., 2023) or by reinforcement learning (RL) (Bello et al., 2016; Kool et al., 2019b; Nazari et al., 2018; Chen
& Tian, 2019; Ahn et al., 2020; d O Costa et al., 2020; Hottung & Tierney, 2020; Kwon et al., 2020; Ma et al.,
2021; Kim et al., 2021; Park et al., 2021; Wu et al., 2021; Park et al., 2022; Zhang et al., 2020; Hottung et al.,
2022; Zhang et al., 2024). SL-based methods use expert solutions as labeled data for behavior cloning. While
this training scheme is simple and effective, obtaining sufficient high-quality solutions from (exact) solvers can
be expensive or even impossible for complex problems. On the other hand, RL methods exploit the natural
modeling of the sequential problem as a finite Markov decision process, where the objective function is used
as an episodic reward to maximize. In contrast to SL methods, they do not require pre-generated solutions
but can suffer from strong hyperparameter sensitivity (Schulman et al., 2017; Henderson et al., 2018) and
sparse rewards. State-of-the-art RL methods for NCO perform remarkably on the training distribution but
generalize poorly to larger instances (Kwon et al., 2020; Luo et al., 2023): typically, the policy is trained with
REINFORCE (Williams, 1992), where gradients are accumulated over full trajectories. This results in high
memory requirements; hence, the autoregressive decoder of the underlying architecture is usually lightweight.
Luo et al. (2023) and Drakulic et al. (2023) recently attributed the poor generalization ability to exactly
the lightweight decoder of the used architectures (Drakulic et al., 2023; Luo et al., 2023). They show that
increasing the size of the decoder structure and moving towards a decoder-only architecture addresses this
issue and leads to superior generalization performance. However, the network’s size makes it impractical to
train the policy with the commonly used RL methods.

To be able to train these larger architectures without expert data, we propose in this paper a simple,
problem-independent training scheme on the intersection of RL and SL: We decode a set of solutions for
randomly generated problem instances in each epoch using the current model. The solution with the best
objective function evaluation for each instance is treated as a pseudo-expert solution (corresponding to a
sequence of incremental decisions). Like decoder-only models in natural language processing (NLP), we train
the policy on these pseudo-expert solutions in a next-token prediction manner. By repeating this process, we
create a ’self-improving’ loop. While self-improving models by training them on their own output have been
proposed in the context of NLP (Huang et al., 2023), our training strategy constitutes a novel proposition for
NCO.

The effectiveness of this strategy relies on the quality of the decoded solutions and the efficiency of the
underlying sampling process. In particular, we want to sample as few sequences as possible to get better
and better solutions in each epoch. While repeated sampling from the conditional distribution given by
the model at each sequential step works in principle, it can result in a set of sequences that lacks diversity,
contains numerous duplicates, and requires a large number of samples to find a solution that enables the
network to improve. In this paper, we propose a sampling mechanism based on batch-wise Stochastic Beam
Search (SBS) (Kool et al., 2019c) as introduced by (Shi et al., 2020). The mechanism draws samples without
replacement in multiple rounds while maintaining a search tree. We suggest taking advantage of the batch-
and round-wise mechanism to enhance its effectiveness. Given the sequences sampled in a single round, we
estimate the expected value of the objective function and update the trie with the advantage of the sampled
sequences, a strategy derived from a provable policy improvement operation. Furthermore, to balance the
explore-exploit tradeoff, we couple this update strategy with Top-p (nucleus) sampling (Holtzman et al.,
2020). After each round, we gradually increase p ≤ 1 to allow more unreliable sequences. Our method applies
to any constructive neural CO problem, unlike sampling strategies that leverage problem specifics to diversify
and improve the sampled solutions (Kwon et al., 2020).

On the Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem (CVRP), we
demonstrate that training state-of-the-art architectures with our introduced method Gumbeldore (GD)1 can

1In homage to Stochastic Beams and where to find them (Kool et al., 2019c).
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produce policies of comparable strength to those trained with expert trajectories from solvers. In addition,
we train a transformer-based architecture for the classical Job Shop Scheduling Problem (JSSP) using our
method. Our results outperform the current state of the art by a wide margin.

Our contributions are summarized as follows:

(i) We propose a novel ’self-improvement’ training strategy for NCO on the intersection of RL and SL: In
each epoch, we decode a set of solutions from the current policy and treat the best sequences found as
pseudo-expert trajectories on which we train the policy in a next-token prediction manner.

(ii) For sequence decoding, we propose a novel method based on drawing the sequences in multiple rounds
using batch-wise SBS. We develop a technique to make the underlying search tree more informed in each
round by updating the sequence probabilities according to their advantage. Informally, we increase (decrease)
the probability of better (worse) trajectories than expected. This update adds next to no computational
overhead to the sampling method, and we derive this technique from a provable policy improvement.

(iii) We show on the TSP and CVRP that our self-improvement method achieves comparable results to direct
training on (near) optimal expert trajectories.

(iv) We present a novel transformer-based architecture for the JSSP that outperforms the current state of the
art when trained with our method.

Our code for the experiments, data, and trained network weights are available at https://github.com/
grimmlab/gumbeldore.

2 Related Work

Learning constructive heuristics Initiated by Vinyals et al. (2015) and Bello et al. (2016), the constructive
approach in neural CO uses a neural network (policy) to incrementally build solutions by selecting one
element at a time. The most prominent way to train the policy network without relying on labeled data
has become policy gradient methods in RL, notably using REINFORCE (Williams, 1992) with self-critical
training (Rennie et al., 2017), where the result of a greedy rollout is used as a baseline for the gradient
(Kool et al., 2019b). A large body of research focuses on keeping the network architecture fixed and instead
improving the self-critical baseline and gradient estimation by diversifying the sampled solutions (Kool et al.,
2019a; Kwon et al., 2020; Kool et al., 2020; Kim et al., 2021; 2022), often by exploiting problem-specific
symmetries. For example, POMO (Kwon et al., 2020), one of the strongest constructive approaches, achieves
diversity in routing problems by rolling out the model from all possible starting nodes of an instance. For
the policy network, the Transformer (Vaswani et al., 2017) has become the standard choice for many CO
problems (Deudon et al., 2018; Kool et al., 2019b; Kwon et al., 2020; Zhao et al., 2022) and is also used
extensively in this work. However, current RL-based methods struggle to generalize to larger instances (Joshi
et al., 2020), possibly due to their prevalent encoder-decoder structure, where a heavy encoder and light
decoder facilitate training with policy gradient methods but limit scalability. On the other hand, recent work
suggests that a lighter encoder with a heavier decoder can significantly improve generalization results (even
with greedy inference only) (Drakulic et al., 2023; Luo et al., 2023), albeit at the cost of increased (if not
prohibitive) computational complexity for training with RL.

Self-improvement in neural CO The cross-entropy method (De Boer et al., 2005; Rubinstein, 1999) is a
derivative-free optimization technique for a single problem instance that can be summarized as generating a set
of solution candidates, evaluating them according to some objective function, and selecting the best-performing
candidates to guide the generation of new solutions. While this principle of pushing the policy toward better
performing sampled solutions lies at the heart of the self-critical policy gradient methods, there is little work
on directly cloning the behavior of trajectories (from multiple instances) sampled from the current model in
neural CO (Bogyrbayeva et al., 2022; Bengio et al., 2021). In fact, independent of our work, Corsini et al.
(2024) make the same observation. They present a ’self-labeling’ strategy that samples multiple solutions
from the current policy and uses the best one as a pseudo-label for supervised training. However, they focus
only on the JSSP and use vanilla sampling with replacement, in contrast to our main contribution, which
updates the policy during the sampling without replacement process. We refer to Appendix E for a deeper
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comparison. Furthermore, Luo et al. (2023) show a hybrid problem-specific way to learn without any labeled
data by pre-training a randomly initialized model with RL on small instances, followed by reconstructing
partial solutions to refine an unlabeled training dataset. We show that we can outperform this strategy
without relying on RL.

Improving at inference time Closely related to our proposed sampling methods are approaches that use
inference-time search methods (other than greedy and pure beam search) to improve the generated solutions.
While the aforementioned problem-specific diversification of POMO falls into this category, Choo et al. (2022)
propose a beam search guided by greedy rollouts. Active Search (Bello et al., 2016) and EAS (Hottung et al.,
2022) update (a subset of) the policy network parameters for individual instances using gradient descent. The
tabular version of EAS is reminiscent of our approach by forcing sampled solutions to be close to the best
solution found so far. MDAM (Xin et al., 2021) and Poppy (Grinsztajn et al., 2024) maintain a population of
policies, while COMPASS (Chalumeau et al., 2024) learns a distribution of policies that is searched at test
time. However, these search methods are designed only for test time to exploit a pre-trained model or require
a significant computational budget on the order of minutes per instance. This makes them impractical in our
self-improving setting, where we require trajectories that may live for only one epoch.

3 Learning Algorithm

In the following section, we formally set up the problem and present our proposed overarching self-improvement
learning method.

3.1 Problem Setup

This paper considers a CO problem with T ∈ N decision variables of finite domain. Let X be some distribution
over the problem instances. For each instance x ∼ X , we assume that we can construct a feasible solution
sequentially by assigning a value a1 to the first variable, then a2 to the second, and so on, until we arrive at a
complete trajectory a1:T := (a1, . . . , aT ) ∈ Sx, where Sx is the set of all feasible solutions. Given an objective
function fx : Sx → R that maps a feasible solution to a real scalar, the goal is to find arg maxa1:T∈Sx fx(a1:T ).

The corresponding neural sequence problem is to find a policy πθ parameterized by θ and factorized in condi-
tional distributions (i.e., the probability of a decision variable given the previous sequence), that maximizes
the expectation Ex∼XEa1:T∼πθ [fx(a1:T )], where we have the total probability πθ(a1:T ) =

∏T
t=1 πθ(at|a1:t−1).

Here, for consistency of notation, we write a1:0 for an empty trajectory. We assume that we can sample from
X , and usually, X is chosen as a uniform distribution (e.g., for TSP, uniform distribution of points over the
unit square from which we can sample random nodes). The policy πθ is a sequence model that defines valid
probability distributions over partial and complete sequences. In the following, we omit the parameter θ in
the subscript and also refer to the decision variables as tokens by the terminology of sequence models. In
particular, we use the terms ’sequence’, ’trajectory’ and ’solution’ interchangeably.

3.2 Self-Improvement

We describe our proposed simple self-improving training scheme in Algorithm 1. We generate a set of random
problem instances in each epoch and use the current best policy network to sample multiple trajectories for
each instance. We add each instance and the corresponding best trajectory to the training dataset, from
which the network is trained by imitation of the trajectories. In particular, we train the policy to predict
the next token from a partial solution using a cross-entropy loss. At the end of the epoch, if the policy
performs better when rolled out greedily than the currently best, we empty the dataset again (as we expect
the sampled solutions to improve). Otherwise, the dataset will expand in the next epoch, providing the model
with more training data.

The efficiency of the training is determined by the sampling method in line 7, highlighted in bold. The goal
is to obtain a good solution with few samples m, balancing exploration and exploitation. Naively sampling
sequences with replacement (i.e., Monte Carlo i.i.d. sampling, choosing the next token at with probability
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Algorithm 1: Self-improvement training for neural CO
Input: X : distribution over problem instances; f∗: objective function
Input: n: number of instances to sample in each epoch
Input: m: number of sequences to sample for each instance
Input: Validation ∼ X : validation dataset

1 Randomly initialize policy πθ
2 πbest ← πθ . current best policy
3 Dataset← ∅
4 foreach epoch do
5 Sample set of n problem instances Instances ∼ X
6 foreach x ∈ Instances do
7 Sample set of m feasible solutions A := {a(1)

1:T , . . . ,a
(m)
1:T } ∼ πbest

8 Dataset← Dataset ∪ {
(
x, arg maxa1:T∈A fx(a1:T )

)
} . add best solution

9 foreach batch do
10 Sample B instances and partial solutions a

(j)
1:dj = (a(j)

1 , . . . , a
(j)
dj

) with dj < T from Dataset for
j ∈ {1, . . . , B}

11 Minimize batch-wise loss Lθ = − 1
B

∑B
j=1 log πθ

(
a

(j)
dj+1
|a(j)

1:dj

)
. next-token prediction

12 if greedy performance of πθ on Validation better than πbest then
13 πbest ← πθ . update best policy
14 Dataset← ∅ . reset dataset

π(at|a1:t−1)) can lead to a homogeneous (often differing in a single token only (Li et al., 2016; Vijayakumar
et al., 2018)) solution set with many duplicates. For example, Shi et al. (2020) show on a pre-trained TSP
attention model (Kool et al., 2019b) that sampling 1280 sequences with replacement leads to ∼88% duplicate
sequences for instances with 50 nodes, and still ∼17% duplicate sequences for instances with 100 nodes.

4 Sample Without Replacement, but Improvement

In this section, we describe our main contribution, a way to sample sequences without replacement in multiple
rounds as described in Shi et al. (2020), coupled with a policy update after each round. We begin with a recall
of Stochastic Beam Search (Kool et al., 2019c) using the Gumbel Top-k trick (Gumbel, 1954; Yellott Jr., 1977;
Vieira, 2014), followed by a description of how to split the process into multiple rounds using an augmented
trie, as described by Shi et al. (2020). We then describe how to combine the trie with a policy update. In the
following, we use the term "beam search" to refer to the variant of beam search common in NLP, where nodes
in the trie correspond to partial sequences, and a beam search of width k keeps the top k most probable
sequences at each step, ranked by the total log-probability log π(a1:t) =

∑t
t′=1 log π(at′ |a1:t′−1).

4.1 Preliminaries

Stochastic Beam Search SBS is a modification of beam search that uses the Gumbel Top-k trick to sample
sequences without replacement by using Gumbel perturbed log-probabilities. SBS starts at the root node (i.e.,
an empty sequence) a1:0 and sets the root perturbed log-probability Ga1:0 := 0. Now, at any step during the
beam search, let a1:t be a partial sequence with score Ga1:t . Then, for a direct child a1:t+1 ∈ Children(a1:t),
we sample the perturbed log-probability Ga1:t+1 ∼ Gumbel(log π(a1:t+1)) from a Gumbel distribution with
location log π(a1:t+1) under the condition that maxa1:t+1∈Children(a1:t)Ga1:t+1 = Ga1:t , and use the Ga1:t+1 ’s
as the scores for the beam search. By requiring that the maximum of the perturbed log-probabilities of sibling
nodes must be equal to their parent’s, sampled Gumbel noise is consistently propagated down the subtree.
Kool et al. show that this modified beam search is equivalent to sampling k sequences without replacement
from the sequence model π, yielding diverse but high-quality sequences. Since SBS performs the expansion
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of the beam as in regular deterministic beam search, it can be parallelized in the same way. We provide a
detailed summary of the underlying theory in Appendix A.

Incremental Sampling Without Replacement Shi et al. (2020) present an incremental view on
sampling sequences without replacement that can draw one sequence after another. They suggest maintaining
an augmented trie structure that grows with the sampling process, where nodes correspond to partial
sequences as in beam search. Starting from the root node (representing an empty sequence), a single
leaf node a1:T (representing a complete sequence) is sampled from the sequence model π. Then the total
probability of π(a1:T ) is recursively subtracted from the probability of the leaf and its ancestors (which
correspond to all partial sequences a1:0,a1:1, . . . ,a1:T ). After renormalization of the probabilities, the trie
represents a sequence model from which a1:T has been removed, and re-sampling from this updated trie is
equivalent to sampling from the model conditioned on the fact that a1:T cannot be selected (see Figure 1).

1.0

0.3
A

0.2
B

0.5
C

0.06
BB

0.14
BD

0.03
BDC

0.11
BDG

0.89

0.3
A

0.09
B

0.5
C

0.06
BB

0.03
BD

0.03
BDC

0.0
BDG

i.) ii.)

Figure 1: Example of incremen-
tal sampling using a trie. Nodes
represent partial sequences (here,
letters) and contain their total
probabilities. i.) The sequence
’BDG’ is sampled from the model,
and we subtract its total proba-
bility from its ancestors. ii.) Up-
dated trie after erasing ’BDG’.

The incremental nature of the process has the advantage that we can sample
continuously without replacement, stopping only when some condition is
met. To further exploit the parallelism advantages of SBS, Shi et al. (2020)
suggest combining SBS with their method: Instead of drawing just one
sequence, we use the same trie for SBS and draw a batch of k samples in
parallel. Then, the recursive probability update is done for all k sequences.
This allows us to sample batches in rounds, e.g., with a beam width of k
and n rounds, we sample k · n sequences without replacement. Note that
although we must maintain a trie structure, each round of SBS maintains
the constant memory requirements of a beam search of width k.

4.2 Sampling with Gumbeldore

In the following, let x ∼ X be a problem instance, and let k be the beam
width for SBS and n the number of rounds. For sampling from a policy π
in Algorithm 1 above, we use the batch-wise sampling in n rounds to draw
k · n sequences without replacement. Suppose that in the first round we
sample complete trajectories a

(1)
1:T , . . . ,a

(k)
1:T with SBS. The question arises

since we already have k complete trajectories, and thus their evaluations
fx(a(i)

1:T ) ∈ R, can we get information about their quality and use it in the
next round of SBS? Intuitively, for the next round of sampling, we would
like to move in the trie from π to a policy π′ that puts more emphasis on
tokens that have led to ’good’ solutions and less emphasis on tokens that
have led to ’not-so-good’ solutions.

4.2.1 Trie Update

Theoretical Policy Improvement To theoretically motivate our approach, consider any complete
trajectory a1:T = (a1, . . . , aT ) and a policy π. We can move to an improved policy π′ by shifting the
unnormalized log-probability (’logit’) of the intermediate tokens of a1:T by their individual advantage. That
is, for i ∈ {1, . . . , T}, we set

logit π′(ai|a1:i−1) := log π(ai|a1:i−1)+

σ ·

Ea′1:T∼π(·|a1:i) [fx(a′1:T )]− Ea′1:T∼π(·|a1:i−1) [fx(a′1:T )]︸ ︷︷ ︸
advantage of token ai

 .
(1)

Here, σ > 0 is a predefined size of the update step, and a′1:T ∼ π(·|a1:i) denotes a complete sequence
a′1:T = (a′1, . . . , a′T ) drawn from π where a′j = aj for all j ∈ {1, . . . , i}. Informally, (1) increases the probability
of tokens that have a better expected outcome than their parent and decreases it otherwise. Formally, (1)
yields a policy improvement, i.e., we get

Ea1:T∼π′ [fx(a1:T )] ≥ Ea1:T∼π [fx(a1:T )] , (2)
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and we provide a proof of this in Appendix B.

Practical policy update Let a(1), . . . ,a(k) be k complete trajectories sampled with SBS, which we assume
to be ordered by their perturbed log-probabilities Ga(1) ≥ · · · ≥ Ga(k) . We have omitted 1 : T in the subscript
for ease of notation. Motivated by its provable improvement, we would like to apply (1) to all a(i), but
the update relies on our ability to estimate the corresponding expectations. Kool et al. (2019c) present an
unbiased estimator of the objective function expectation of the sequence model:

Ea1:T∼π [fx(a1:T )] ≈
k−1∑
i=1

wa(k)(a(i))fx(a(i)), where wa(k)(a(i)) = π(a(i))
qa(k)(a(i)) , (3)

and qa(k)(a(i)) = P (Ga(i) > Ga(k)) is the probability that the i-th perturbed log-probability is greater than
the k-th largest. In practice, the normalized variant (which is biased but consistent)

µ(a(1), . . . ,a(k)) :=
∑k−1
i=1 wa(k)(a(i))fx(a(i))∑k−1

i=1 wa(k)(a(i))
(4)

is preferred to reduce variance. Note that (4) estimates the ’full’ expectation from an empty sequence. However,
since in SBS, the maximum of the perturbed log-probabilities of sibling nodes is conditioned on their parent,
we can also estimate the expectation starting from other partial sequences: For any sequence b1:j of length j,
let S(b1:j) := {a(m1), . . . ,a(ml)} ⊆ {a(1), . . . ,a(k)} (again ordered by their perturbed log-probabilities) be
the subset of all sampled sequences that share the subsequence b1:j . I.e., we have b1:j = a

(m1)
1:j = · · · = a

(ml)
1:j .

Then,

Ea1:T∼π(·|b1:j) [fx(a1:T )] ≈ µ(a(m1), . . . ,a(ml)) (5)

estimates the expectation of the objective function given b1:j . While we can use this approach to apply (1) to
the logits of any a(i), it has a major drawback: Depending on the length T of the problem, the beam width
k, and the confidence of π, in practice the sampled sequences will rarely share a long subsequence, which
makes it hard to properly estimate the expectation of nodes deep in the trie.

So we take a practical approach and only use the ’global’ advantage fx(ai) − µ(a(1), . . . ,a(k)), which we
propagate up the trie at the same time as we mark a(i) as sampled. Overall, the trie update after each round
of sampling can then be summarized as follows: For all i ∈ {1, . . . , k}, we compute the global advantage
Aa(i) := fx(a(i))− µ(a(1), . . . ,a(k)), and update the logit for each j ∈ {1, . . . , T} via

logit π′(a(i)
j |a

(i)
1:j−1) := log

π(a(i)
j |a

(i)
1:j−1)−

∑
b∈S(a

(i)
1:j)

π(b)

+ σ
∑

b∈S(a
(i)
1:j)

Ab. (6)

We illustrate an example of the trie update after each round in Figure 2. We note that as all expectations are
obtained via (4), the update (6) adds no significant computational overhead to the round-based SBS. When
samling another k sequences in the next round, we repeat the process. In Appendix C.1, we experimentally
compare the theoretical update (1) with the practical update (6), and see that while both yield strong results,
(6) is almost always more favorable in practice.

Choice of step size σ The update (6) scales the probabilities by exp(σ
∑
Ab), so the role of the

hyperparameter σ is mainly to dampen the advantage. Since the magnitude of
∑
Ab usually also changes

as the policy π evolves, the choice of σ is highly problem-dependent. In particular, one could think of, e.g.,
transforming the Ab by min-max normalization or changing σ during training to optimize the behavior of
the update. However, our experiments use the pure advantages and a constant, small problem-dependent σ
throughout the training process (see Section 5.3).
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0.1 0.2 0.1 0.05 0.2 0.05 0.1 0.1 0.1

root

0.4 0.3 0.3

1 2 3 4 5 6 7 8 9

0.1 0.2 0.1 0.05 0.2 0.05 0.1 0.1 0.1

root

0.4 0.3 0.3

1 2 3 4 5 6 7 8 9

-2 0 2 3

0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.98

root

0.0 0.02 0.98

1 2 3 4 5 6 7 8 9

i.) ii.) iii.)

Figure 2: Example of update (6) with beam width k = 3 and σ = 1. Nodes represent partial sequences
and their total probabilities; the numbers {1, . . . , 9} below the leaf nodes are their corresponding objective
function evaluation. i.) We sample k leaf nodes with SBS and obtain the objective function estimate µ with
(4). ii.) We mark each leaf as sampled by removing its total probability from its ancestors. At the same
time (equivalent to adding to the log-probability), we multiply the ancestors’ reduced probability by the
exponential of the leaf’s advantage. iii.) Trie after normalization, corresponding to π′.

Algorithm 2: Sampling with Gumbeldore (GD)
Input: x ∼ X : problem instance; f = fx: objective function; π: policy
Input: k: beam width for SBS; n: number of rounds
Input: σ: policy update step size; pmin: minimum nucleus size
Output: Sampled sequence with highest f

1 Sampled← ∅
2 for i = 1, . . . , n do
3 p← (1− i−1

n−1 ) · pmin + i−1
n−1

4 a
(1)
1:T , . . . ,a

(k)
1:T ← SBS with π, beam width k and nucleus p

5 Sampled← Sampled ∪ {a(1)
1:T , . . . ,a

(k)
1:T }

6 Obtain Eπ[f ] estimate µ← µ(a(1), . . . ,a(k)) via (4)
7 π′ ← π
8 for j = 1, . . . , k do
9 for m = 1, . . . , T do

10 S ← S(a(j)
1:m) ⊆ {a(1)

1:T , . . . ,a
(k)
1:T } . sequences with same first m tokens

11 logit π′(a(j)
m |a(j)

1:m−1)← log
(
π(a(j)

m |a(j)
1:m−1)−

∑
b∈S π(b)

)
+ σ

∑
b∈S(f(b)− µ)

12 Return arg maxa∈Sampled f(a)

4.2.2 Growing Nucleus

To further exploit the round-based sampling strategy, we truncate the conditional distributions π(·|a1:t) using
Top-p (nucleus) sampling (Holtzman et al., 2020) at each beam expansion in SBS with varying p. If n > 1 is

the number of rounds, then we set p for the i-th round with 1 ≤ i ≤ n to p =
(

1− i− 1
n− 1

)
· pmin + i− 1

n− 1 .
We start at a predefined 0 < pmin < 1 and linearly increase p to 1. The idea is that truncating the "unreliable
tail" of π(·|a1:t) with p < 1 may be desirable in later stages of training to further exploit the model. However,
if the model is unreliable, especially in the early stages, we want to consider the full distribution to encourage
exploration. By gradually increasing p, we accommodate both cases, while the trie policy update helps keep
good choices in the nucleus and pushes bad ones out. In practice, we start with pmin = 1 and set pmin = 0.95
after several epochs. When sampling at inference time, an even smaller pmin can improve the results (cf.
Appendix C.3). During training, however, we found that using pmin < 0.9 leads to the model converging
prematurely as it only learns to amplify its decisions.

We summarize the complete sampling strategy in Algorithm 2.

8
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5 Experimental Evaluation

We are pursuing two experimental goals: First, we want to evaluate the effectiveness of our method within the
entire training cycle of the self-improvement strategy (see Algorithm 1), and we test it on three CO problems
with different underlying network architectures: the two-dimensional Euclidean TSP, the CVRP, and the
standard JSSP. Second, as the training relies on the effectiveness of the solution sampling, we want to assess
the solution quality of our sampling strategy (especially with a low number of samples). We take various
network checkpoints of all three problems and compare different sampling techniques with our proposed
method.

5.1 Routing Problems

We consider two prevalent routing problems, the two-dimensional Euclidean TSP and CVRP, where the
constructive approach builds a tour by picking one node after another. For both problems, we reimplement
the transformer-based architecture from the recent Bisimulation Quotienting (BQ) method (Drakulic et al.,
2023). This model has nine layers that process the remaining nodes at each step. In the original work, due to
its size, BQ is trained on expert trajectories from solvers with N = 100 nodes. The authors report excellent
results on the training distribution and superior generalization on larger graphs with N ∈ {200, 500, 1000}
nodes. We train the network on instances with 100 nodes in the same supervised manner. In addition, we
train it with two variants of our proposed self-improvement method, where we sample trajectories without
replacement using (a) simple round-wise SBS (SI WOR), and (b) the proposed Gumbeldore method (SI
GD). The setup is briefly outlined below. For implementation details and hyperparameters, please refer to
Appendix D.2 and D.3. Furthermore, the ’Light Encoder Heavy Decoder’ (LEHD) by (Luo et al., 2023)
follows a similar paradigm to BQ. Apart from supervised learning, they show a problem-specific way to learn
on the TSP without any labeled data. We discuss this method in Appendix C.2 and demonstrate that SI GD
outperforms it.

Datasets and supervised training Training (for supervised learning), validation, and test data are
generated in the standard way of previous work (Kool et al., 2019b) by uniformly sampling N points from the
two-dimensional unit square. The training dataset consists of one million randomly generated instances with
N = 100 nodes for TSP. The validation and test sets (also N = 100) include 10,000 instances each. The test
set is the same widely used dataset generated by Kool et al. (2019b). For N ∈ {200, 500, 1000}, we use a test
set of 128 instances identical to Drakulic et al. (2023). For supervised training and to compute optimality
gaps, we obtain optimal solutions for the generated instances with the Concorde solver (Applegate et al.,
2006). For the CVRP, the datasets have the same number of instances, and we use the same sets as in Luo
et al. (2023), where solutions come from HGS (Vidal, 2022). The vehicle capacities for 100, 200, 500, and
1000 nodes are 50, 80, 100, and 250, respectively. The supervised model is trained by imitation of the expert
solutions using a cross-entropy loss. We sample 1000 batches of 1024 sub-paths in each epoch, following
Drakulic et al. (2023). The model is trained until we have yet to observe any improvement on the validation
set for 100 epochs (in total ∼4.5k epochs for TSP and ∼1.3k for CVRP). We note that we can reproduce (up
to fluctuations) the results from the original work.

Self-improvement training For both SI WOR and SI GD, we generate 1,000 random instances in each
epoch. Per instance, we sample 128 solutions in n = 4 rounds with a beam width of k = 32. For SI GD, we
set the constant σ to scale the advantages to σ = 0.3 for the TSP and to σ = 3 for the CVRP. We refer
to Appendix D.1 for how we obtained these values. For SI GD and both routing problems, we start with
pmin = 1 (no nucleus sampling) and set pmin = 0.95 after 500 epochs. Training on the generated data is
performed in the same supervised way (in total ∼2.2k epochs for TSP and ∼2.7k for CVRP). Interestingly,
SI GD takes fewer epochs on the TSP and more on the CVRP than SL, confirming that it is much harder to
learn heuristics from scratch for the CVRP. Our method cannot access optimality information, so we compare
model checkpoints by their average tour length on the validation set.

Inference and baselines All evaluations are performed with the model trained on N = 100. We are
mainly interested in how the self-improving model performs compared to its supervised counterpart (BQ SL)
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Table 1: Results for the routing problems, with emphasis on the BQ architecture. ’Gap’ is the optimality gap
w.r.t Concorde (Applegate et al., 2006) for the TSP and HGS (Vidal, 2022) for the CVRP. ’Time’ is the
time needed to solve all instances. Models are trained on instances with N = 100 nodes and used to evaluate
generalization to N ∈ {200, 500, 1000} nodes. ’beam’ refers to beam search of given width.

Method Test (10k inst.) Generalization (128 instances)
TSP N = 100 TSP N = 200 TSP N = 500 TSP N = 1000
Gap Time Gap Time Gap Time Gap Time

OR-Tools 2.90% 1h 4.52% 6m 4.89% 30m 5.02% 3h
AM, beam 1024 2.49% 5m 6.18% 15s 17.98% 2m 29.75% 7m
MDAM, beam 50 0.40% 20m 2.04% 3m 9.88% 12m 19.96% 1h
POMO, augx8 0.14% 15s 1.57% 2s 20.18% 16s 40.60% 3m
SGBS 0.06% 8m 0.67% 30s 11.42% 10m 25.25% 1.5h
BQ SL, greedy 0.40% 30s 0.60% 3s 0.98% 16s 1.72% 32s
BQ SL, beam 16 0.02% 8m 0.09% 30s 0.43% 4m 0.91% 10m
BQ SI WOR (ours), greedy 0.44% 30s 0.73% 3s 1.39% 16s 2.34% 32s
BQ SI WOR (ours), beam 16 0.03% 8m 0.11% 30s 0.53% 4m 1.16% 10m
BQ SI GD (ours), greedy 0.41% 30s 0.64% 3s 1.12% 16s 2.11% 32s
BQ SI GD (ours), beam 16 0.02% 8m 0.10% 30s 0.46% 4m 1.01% 10m

CVRP N = 100 CVRP N = 200 CVRP N = 500 CVRP N = 1000
Gap Time Gap Time Gap Time Gap Time

OR-Tools 6.19% 2h 6.89% 1h 9.11% 2h 11.66% 3h
AM, beam 1024 4.20% 10m 8.18% 24s 18.01% 3m 87.56% 12m
MDAM, beam 50 2.21% 25m 4.30% 3m 10.50% 12m 27.81% 47m
POMO, augx8 0.69% 25s 4.87% 3s 19.90% 24s 128.89% 4m
SGBS 0.08% 20m 2.58% 50s 15.34% 12m 136.98% 2h
BQ SL, greedy 3.03% 0s 2.63% 4s 3.75% 22s 5.30% 48s
BQ SL, beam 16 1.22% 13m 1.15% 1m 1.93% 6m 2.49% 15m
BQ SI WOR (ours), greedy 3.93% 50s 4.11% 4s 4.87% 22s 8.47% 48s
BQ SI WOR (ours), beam 16 2.06% 13m 2.06% 1m 2.91% 6m 5.87% 15m
BQ SI GD (ours), greedy 3.26% 50s 3.05% 4s 3.89% 22s 8.33% 48s
BQ SI GD (ours), beam 16 1.72% 13m 1.58% 1m 2.32% 6m 5.57% 15m

and thus focus on greedy results. We also report the results using a beam search of width 16 by Drakulic
et al. (2023) for coherence. Furthermore, we list the results of (a) Google’s OR-Tools (Perron & Furnon,
2022) as a non-learning local search algorithm; (b) the prominent Attention Model (AM) (Kool et al., 2019b)
(with a beam search of width 1024), which was trained with self-critical REINFORCE and forms the basis
of most constructive methods for routing; (c) its multi-decoder version MDAM (Xin et al., 2021) (with
a beam search of width 50), which trains multiple diverse policies; (d) POMO (Kwon et al., 2020) with
its best inference technique (corresponding to 8N diversified solutions per instance of size N). (e) SGBS
(Choo et al., 2022), a pure inference technique based on beam search guided by greedy rollouts, backed by
POMO with hyperparameters (β, γ) which are set to (10, 10) for the TSP and (4, 4) for the CVRP. POMO
is considered the current state-of-the-art method of learning constructive heuristics from scratch. POMO
performs impressively on the training distribution but has difficulties generalizing to larger instances. As our
architectural setup is identical to BQ, we refer to the original work by (Drakulic et al., 2023) for comparison
with various other methods.

Results Table 1 summarizes the optimality gaps. Both SI WOR and SI GD show strong performance when
compared to training on expert trajectories, with SI GD outperforming SI WOR. For the TSP, SI GD achieves
results on par with its SL counterpart on the training distribution N = 100 and shows similarly strong
generalization capabilities. For the CVRP, while the results are close to SL on N = 100, the generalization
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difference becomes larger as N grows, with, for example, a difference of ∼ 3% on N = 1000. We note that
generalizing to larger instances means not only larger N but also unseen vehicle capacities. Drakulic et al.
(2023) analyze that the final performance of the model strongly depends on how an expert solution sorts the
subtours. In particular, the model favors learning from solutions where the vehicle starts with subtours with
the smallest remaining vehicle capacity at the end of the subtour (usually 0). Since we cannot guarantee
during learning in our SI procedure that the vehicle is nearly optimally utilized in the subtours, we assume
that this makes it more difficult for the model to generalize to unknown capacities. Nevertheless, the SI
GD and SI WOR generalization results for CVRP still show the same strong dynamics as those of BQ SL,
trained without any labeled data. This makes our method a promising alternative to RL-based policy gradient
methods, especially due to its simplicity.

5.2 Job-Shop Scheduling Problem

In a JSSP instance of size J ×M , we are given J jobs consisting of M operations. Each job’s operations
must be processed in order (called a precedence constraint), and each operation runs on exactly one of M
machines for a given processing time (i.e., there is a bijection between a job’s set of operations and the set
of machines). The goal is to find a schedule that processes all job operations without violating the job’s
precedence constraints and has a minimum makespan (i.e., the completion time of the last operation). In our
required sequential language, we represent a feasible solution, i.e., a schedule that satisfies all precedence
constraints, as a sequence of jobs, where each occurrence of a job means scheduling the next unscheduled
operation of the job at the earliest possible time. In particular, the model predicts a probability distribution
over all unfinished jobs at each step of constructing a solution.

Model We propose a novel pure transformer-based architecture inspired by the BQ principle (Drakulic et al.,
2023) to train a model with our SI GD method. We consider a JSSP instance as an unordered sequence of
operations with positional information for operations belonging to the same job. We mask already scheduled
operations at each construction step and process the sequence through a simple stack of pairs of attention
layers. In each pair, we mask operations so that i.) in the first layer, only operations that belong to the
same job can attend to each other, and ii.) in the second layer, only operations that need to run on the
same machine can attend to each other. We describe the architecture in detail in Appendix D.4. To balance
inference speed and model expressiveness, we settle on a latent dimension of 64, three pairs of attention layers
with eight heads, and a feed-forward dimension of 256.

Datasets All random instances are generated in the standard manner of Taillard (1993) with integer
processing times in [1, 99]. Since we train our model only with our self-improvement method, we pre-generate
a validation set of 100 instances of size 20× 20. We test the model on the well-known Taillard benchmark
dataset (Taillard, 1993), computing optimality gaps to the best-known upper bounds.2

Self-improvement training We train the policy for 100 epochs with SI WOR and SI GD. In each epoch,
we randomly choose a size from {15× 10, 15× 15, 15× 20} and sample 512 instances of the chosen size. We
generate 128 solutions for each instance in 4 rounds of beam width 32. For SI GD, we use an advantage
step size of σ = 0.05 and set pmin = 0.95 after 50 epochs. Similar to the routing problems, we sample 1,000
incomplete schedules (i.e., a partial sequence of jobs) of size 512 from the generated training data. We train
the model to predict the next job to choose using a cross-entropy loss. Please see Appendix D.4 for more
details.

Inference and baselines We test performance of the model by unrolling the policy greedily. Since SI
GD shows the strongest greedy results, we further evaluate the trained model i.) with a beam search of
width 16, ii.) SBS of beam width 16 with a constant nucleus of p = 0.8 and iii.) sampling with GD to
assess the efficiency of GD as an inference technique. We compare our approach with (a) L2D (Zhang et al.,
2020), an RL single-agent method; (b) ScheduleNet (Park et al., 2022), an RL multi-agent method. Both
methods represent a JSSP instance as a disjunctive graph and train Graph Neural Networks (GNNs) with
(variants of) PPO (Schulman et al., 2017); (c) The 500- and 5,000-step variants of L2S (Zhang et al., 2024),

2Available at http://optmizizer.com/TA.php and http://jobshop.jjvh.nl
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Table 2: JSSP results on the Taillard benchmark set with eight different problem sizes. Our models SI WOR
and SI GD are trained on instances of random sizes ∈ {15× 10, 15× 15, 15× 20}, using the resulting model
for all benchmark instances. The first group of results represents greedy inference, while the second group
compares inference types with larger computation times. ’GD 32 × 4’ refers to using GD sampling with
four rounds of beam width 32, using pmin = 0.8. ’SBS 16, p = 0.8’ refers to sampling 16 sequences without
replacement with a constant nucleus size of p = 0.8. For GD 32× 4 and SBS 16, we report the mean across
five repetitions. Best optimality gaps per group are indicated in bold.

15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20
Method Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time
CP-SAT 0.1% 1.25h 0.2% 8h 0.7% 10h 2.1% 10h 2.8% 10h 0.0% 24m 2.8% 9h 3.9% 10h
L2D, greedy 26.0% 0s 30.0% 0s 31.6% 1s 33.0% 1s 33.6% 2s 22.4% 2s 26.5% 4s 13.6% 25s
ScheduleNet, greedy 15.3% 3s 19.4% 6s 17.2% 11s 19.1% 15s 23.7% 25s 13.9% 50s 13.5% 1.6m 6.7% 7m
SPN, greedy 13.8% 0s 15.0% 0s 15.2% 0s 17.1% 0s 18.5% 1s 10.1% 1s 11.6% 1s 5.9% 2s
L2S, 500 steps 9.3% 9s 11.6% 10s 12.4% 11s 14.7% 12s 17.5% 14s 11.0% 16s 13.0% 23s 7.9% 50s
SI WOR (ours), greedy 12.1% 1s 10.9% 1s 11.5% 1s 10.7% 1s 13.6% 2s 3.9% 2s 7.9% 3s 1.7% 28s
SI GD (ours), greedy 9.6% 1s 9.9% 1s 11.1% 1s 9.5% 1s 13.8% 2s 2.7% 2s 6.7% 3s 1.7% 28s
L2S, 5000 steps 6.2% 1.5m 8.3% 1.7m 9.0% 1.9m 9.0% 2m 12.6% 2.4m 4.6% 2.8m 6.5% 3.8m 3.0% 8.4m
SI GD (ours), beam 16 10.1% 2s 9.8% 2s 10.4% 4s 8.5% 5s 12.3% 10s 2.6% 18s 7.7% 40s 1.3% 1.5m
SI GD, SBS 16, p = 0.8 6.0% 2s 6.6% 2s 8.9% 4s 7.4% 5s 10.5% 10s 1.7% 18s 5.0% 40s 0.7% 1.5m
SI GD, GD 32× 4 5.0% 4s 5.6% 10s 7.0% 30s 5.8% 36s 9.2% 1.3m 1.1% 2.4m 4.3% 3.5m 0.4% 9m

a strong GNN-guided improvement method that transitions between complete solutions at each step; (d) the
concurrent work SPN (Corsini et al., 2024), which trains a Graph Attention Network in a self-improving
manner on sampled solutions (we refer to Appendix E for a methodological comparison); and (d) as a
non-learning baseline, the highly efficient constraint programming solver CP-SAT in OR-Tools (Perron &
Furnon, 2022), with a time limit of one hour per instance, as reported by Zhang et al. (2024). As noted in
most previous work on neural CO, a fair comparison of inference times is challenging, as they depend on the
implementation (especially using deep learning frameworks) by orders of magnitude. In particular, we report
the time required to solve the instances of a given size (allowing parallelization) but compare the respective
methods based on their inference type (e.g., treating greedy methods as equally computationally intensive).

Results We collect the results in Table 2. In the greedy setting, both SI GD and SI WOR outperform all
three constructive methods, L2D, ScheduleNet, and SPN, by a wide margin and obtain smaller gaps than
L2S with 500 improvement steps in all but one case. The quadratic complexity of our architecture becomes
noticeable for 100× 20. SI GD significantly improves SI WOR. When allowing for longer inference times, we
compare our strongest model SI GD only with the strongest method, L2S with 5,000 improvement steps.
We note that our method does not always improve with beam search, with some results even worse than
greedy. That sequences with high overall probability do not necessarily mean high quality is a ubiquitous
effect in NLP (Holtzman et al., 2020), showing that the model is not as confident as for the routing problems.
Thus, we use the model obtained with SI GD and sample with SBS and a constant nucleus of p = 0.8. This
maintains short inference times but outperforms L2S across all problem sizes. We can further improve the
results by sampling with GD in multiple rounds (with pmin = 0.8) and using our policy update. For more
results and comparisons when using GD at inference time, see Appendix C.3.

5.3 Sampling Performance

We analyze the performance of GD as a sampling technique, especially when sampling only a small number
of sequences. For this, we take the model weights from two checkpoints during training: One late in
training, when the model has almost converged, and an intermediate one, when the model shows a fair greedy
performance but still has much room for improvement. Taking a checkpoint very early in training carries
limited information, as the performance still depends strongly on weight initialization, and any sampling
method with high exploration leads to substantial improvement. We then sample up to 640 sequences with
an SBS beam width of 32 in up to n = 20 rounds (for sampling with replacement, we sample the equivalent
number of 32 · n sequences) and compare the optimality gap of the best sequences found. In Figure 3, we plot
the results using our proposed method (’Gumbeldore’) and for sampling with (’Sample WR’) and without
replacement (’Sample WOR’). To better understand the impact of the growing nucleus in Section 4.2.2, we
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Figure 3: Sampling results for different training checkpoints, with the corresponding greedy performance of
the model. For Sample WR, we sample 32 · n sequences with replacement, where n is the number of rounds.
For TSP and CVRP, each data point corresponds to the average best solution across 100 instances. For JSSP,
we evaluate the Taillard instances of the corresponding size. Sampling for each data point is repeated 20
times; shades denote standard errors.

also show the results for sampling without replacement with the growing nucleus, but without the policy
update (6) (’Sample WOR (nucleus)’). We note that applying only one round of Sample WOR (nucleus) or
GD is identical to Sample WOR by design. We use the same value for σ as during training, and show results
for pmin = 1 (no nucleus sampling) and pmin = 0.95 (as during training).

In line with Shi et al. (2020), we observe that sampling WOR yields a consistent but slight improvement
over WR for the routing problems but is almost unobservable for JSSP, which has a much longer sequence
length (225 for 15 × 15 and 400 for 20 × 20). Generally, allowing different nucleus sizes can significantly
improve the intermediate models while giving enough room for exploration. Updating the policy between
rounds with GD has a strong impact, especially on the intermediate models. Coupling the policy update
with a growing nucleus further improves the performance. For example, with only four rounds, we obtain an
absolute improvement over Sample WOR of approx. 2% for CVRP and >1% for JSSP 20× 20 and reach
an optimality gap with only 128 samples, which Sample WOR does not reach with 640 samples. While
generally shrinking for only a few rounds, the relative improvement of GD is still significant in late models.
In particular, GD consistently finds better solutions in late models when nucleus sampling only has limited
influence. In Appendix C.4, we further illustrate the applicability of our method on a toy problem: we adapt
our method for the board game Gomoku (Five in a Row) and evaluate how long it takes to consistently beat
a deterministic expert bot.

6 Limitations and Future Work

Adjusting the policy by the advantage requires choosing a step size σ, which must be tuned for the problem
class. To keep the approach principled, we left the step size fixed throughout training; however, the advantages’
magnitude usually shrinks as training progresses. Hence, it might be advantageous to change σ during
training based on problem specifics or normalize the advantages as mentioned in Section 4.2.1. Our method
requires keeping a search tree in memory instead of only one round of SBS, where we can discard all previous
sequences after each step. However, keeping transitions in memory has benefits, such as only evaluating the
policy when needed and thus reducing computation time during search.
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7 Conclusion

In this work, we introduced an approach for training Neural Combinatorial Optimization models that bridges
supervised learning and reinforcement learning challenges. During training, GD finds good solutions with
only a few samples, eliminating the need for expert annotations while reducing computational demands. This
method simplifies the training process and shows promise for enhancing the efficiency of Neural Combinatorial
Optimization using larger architectures.
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A Background on Stochastic Beam Search

This section briefly describes the Gumbel-Top-k trick and the essence of Stochastic Beams and Where to
Find Them (Kool et al., 2019c).

A.1 The Gumbel-Top-k Trick

We denote by Gumbel(µ) a Gumbel distribution with location µ ∈ R and unit scale. The distribution
Gumbel(0) is the standard Gumbel distribution. Similarly to Kool et al. (2019c); Huijben et al. (2022), we
write Gµ for a random variable following Gumbel(µ), and omit µ in the subscript in the case of standard
location µ = 0. The Gumbel distribution is closed under scaling and shifting, in particular for a standard
G ∼ Gumbel(0) we have µ+G ∼ Gumbel(µ).

Gumbel-Max and Gumbel-Top-k trick The following is a condensed summary of the preliminaries in
Kool et al. (2019c), with attribution to Gumbel (1954); Yellott Jr. (1977); Maddison et al. (2014); Vieira
(2014). Consider a discrete distribution Categorical(p1, . . . , pK) with K categories and the probability pi of
the i-th category. Let φi be unnormalized log-probabilities (logits) for pi, i.e., pi ∝ expφi. We can obtain
a sample from this distribution by perturbing each logit with a standard Gumbel and choosing the largest
element (’Gumbel-Max trick’): Let Gφi = φi + Gi with Gi ∼ Gumbel(0), then Gφi ∼ Gumbel(φi) by the
shifting property and arg maxiGφi ∼ Categorical(p1, . . . , pK).

In general, for any subset B ⊆ {1, . . . ,K} we have

max
i∈B

Gφi ∼ Gumbel

log
∑
j∈B

exp (φj)

 , and (7)

arg max
i∈B

Gφi ∼ Categorical
(

exp (φi)∑
j∈B exp (φj)

, i ∈ B

)
, (8)

with max and arg max being independent.

The Gumbel-Max trick can be generalized to drawing an ordered sample (i∗1, . . . , i∗k) without replacement of
size k (’Gumbel-Top-k trick’) by finding the indices of the top k perturbed logits (denoted by arg top k):

i∗1, . . . , i
∗
k = arg top

i
k Gφi .

A.2 Drawing Samples Without Replacement from a Sequence Model

Beam search Beam search is a low-memory, breadth-first tree search of limited beam width k. Given a
policy π, the initial beam of a search from a root node (i.e., an empty sequence) with beam width k consists
of the top k first tokens, ranked by their log-probability. Iteratively, at step t, each partial sequence in the
beam expands its k most probable tokens. The resulting expanded beam is again pruned down to k by taking
the top k partial sequences according to their total log-probabilities log π(a1:t) =

∑t
t′=1 log π(at′ |a1:t′−1),

where a1:t is any sequence in the expanded beam. Depending on the underlying factorized model, the final
sequences found by beam search are often generic and lack variability (Vijayakumar et al., 2018).

Stochastic Beam Search In Stochastic Beams and Where to Find Them (Kool et al., 2019c), Kool et al.
apply the Gumbel-Top-k trick in an elegant way to sample sequences without replacement from a sequence
model. Assuming that the full true is instantiated with all possible complete (leaf) sequences a

(i)
1:T with

i ∈ {1, . . . , N}, one would sample distinct sequences with the Gumbel-Top-k trick by simply considering the
perturbed log probabilities Gφi ∼ Gumbel(φi), where φi = log π(a(i)

1:T ). Of course, instantiating the full tree
is computationally infeasible in practice. Instead, Kool et al. make the following crucial observation: Identify
a node in the trie by the set S of leaves in its corresponding subtree and denote the corresponding (partial)
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sequence by aS , with φS = log π(aS). Then

max
i∈S

Gφi
(7)∼ Gumbel

log
∑
j∈S

expφj

 = Gumbel

∑
j∈S

π(a(j)
1:T )

 = Gumbel (φS) , (9)

i.e., the maximum of the perturbed log probabilities of the leaf nodes in the subtree of S follows a Gumbel
distribution with location log π(aS). Thus, instead of instantiating the full tree to sample k sequences, we
can equivalently sample top-down (Maddison et al., 2014) and perform a beam search of width k over the
perturbed log-probabilities by recursively propagating the Gumbel noise down the subtree according to (9): Let
aS be any partial sequence in the beam at any step of the beam search with perturbed log-probability GφS
(which we can set to zero for the root node). Then we sample GφS′ for all direct children S′ ∈ Children(S)
under the condition that maxS′∈Children(S)GφS′ = GφS , and use GφS′ as the scores for the beam search. We
refer to the original paper by Kool et al. (2019c) for how to sample a set of Gumbels with a certain maximum.

Kool et al. (2019c) show on various language models that this simple procedure yields more diverse beam
search results without sacrificing quality. From a sampling perspective, SBS can be seen as a principled way
to randomize a beam search and construct stable unbiased estimators from a small number of sequences
(Kool et al., 2019a; 2020).

B Policy Improvement Operation

We give a proof for the policy improvement obtained by Equation (1). The following lemma is part of the
policy improvement proof for the updated action selection of Gumbel AlphaZero based on Q-value completion
(Danihelka et al., 2022). For coherence, we formulate and prove it in our general setting, with attribution to
Danihelka et al. (2022).

Lemma: Consider a categorical distribution over the domain Ω = {1, . . . , n} with corresponding probabilities
π(i) for i ∈ Ω. Consider a map q : Ω → R, and let j ∈ Ω. Let π′ be the distribution obtained from π by
changing the unnormalized log-probability (’logit’) of j to

logit π′(j) := log π(j) + q(j)− Ei∼π [q(i)] . (10)

Then, Ei∼π′ [q(i)] ≥ Ei∼π [q(i)].

Proof: We need to show that ∑
i∈Ω

π′(i)q(i) ≥
∑
i∈Ω

π(i)q(i). (11)

Let y = q(j)−Ei∼π [q(i)]. If π(j) = 1, then y = 0, so π′ = π and the claim is true. Hence, assume that π(j) < 1.
Note that for any i ∈ Ω \ {j}, we have π′(i) = c · π(i) with constant c =

(∑
i∈Ω\{j} π(i) + exp(y)π(j)

)−1
.

As
∑
i∈Ω\{j} π(i) = 1− π(j), we can rewrite Ei∼π [q(i)] as

Ei∼π [q(i)] = π(j)q(j) +
∑

i∈Ω\{j}

π(i)q(i) = π(j)q(j) + (1− π(j))
∑

i∈Ω\{j}

π(i)q(i)∑
k∈Ω\{j} π(k)q(k)︸ ︷︷ ︸

=:q̃

(12)

= π(j)q(j) + (1− π(j))q̃ (13)
= π(j)(q(j)− q̃) + q̃. (14)

Analogously, we get

Ei∼π′ [q(i)] = π′(j)q(j) + (1− π′(j))(1− π(j))
∑

i∈Ω\{j}

cπ(i)q(i)∑
k∈Ω\{j} cπ(k)q(k) (15)

= π′(j)(q(j)− q̃) + q̃, (16)
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as the constant c cancels out. In particular, equivalently to (11), we can show that

π′(j)(q(j)− q̃) ≥ π(j)(q(j)− q̃). (17)

By the policy update, we have π′(j) > π(j) ⇐⇒ y > 0, so (17) follows if we can show that y > 0 ⇐⇒
(q(j)− q̃) > 0. But this is true, as

y > 0 ⇐⇒ q(j) > Ei∼π [q(i)] ⇐⇒ q(j) > π(j)q(j) + (1− π(j))q̃ (18)
⇐⇒ (1− π(j))q(j) > (1− π(j))q̃ (19)
π(j)<1⇐⇒ q(j) > q̃ (20)
⇐⇒ q(j)− q̃ > 0. (21)

�

We can now prove the policy improvement over the entire sequence model.

Proposition: Let π be a policy, σ > 0 and let a1:T = (a1, . . . , aT ) be a full sequence drawn from π. Let π′
be the policy obtained from π by changing the logit of π′(ai|a1:i−1) for all i ∈ {1, . . . , T} to

logit π′(ai|a1:i−1) := log π(ai|a1:i−1)+

σ ·
(
Ea′1:T∼π(·|a1:i) [fx(a′1:T )]− Ea′1:T∼π(·|a1:i−1) [fx(a′1:T )]

)
.

(22)

Then,

Ea1:T∼π′ [fx(a1:T )] ≥ Ea1:T∼π [fx(a1:T )] . (23)

Proof: We omit x in the subscript of f to simplify the notation. As σ only changes the magnitude of the
step, we can assume without loss of generality that σ = 1. We show the claim by induction on the length T .

For T = 1, we have a1:T = (a1), and the update reduces to

logit π′(a1) = log π(b) + f(a1)− Ea′∼π [f(a′)] . (24)

Hence, the claim follows from the lemma above.

For the induction step for arbitrary T , we have

Ea′1:T∼π′ [f(a1:T )] =
∑
a′1:T

π′(a′1:T )f(a′1:T ) (25)

=
∑
a′1

π′(a′1)Ea′1:T∼π′(·|a
′
1) [f(a′1:T )] (26)

≥
∑
a′1

π′(a′1)Ea′1:T∼π(·|a′1) [f(a′1:T )] , (27)

where the last inequality follows from the induction hypothesis. But then, due to the form of the policy
update (22), the lemma above can be applied again and we get∑

a′1

π′(a′1)Ea′1:T∼π(·|a′1) [f(a′1:T )] ≥
∑
a′1

π(a′1)Ea′1:T∼π(·|a′1) [f(a′1:T )] (28)

=
∑
a′1:T

π(a′1:T )f(a′1:T ) (29)

= Ea′1:T∼π [f(a′1:T )] , (30)

what we wanted to show. �
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Figure 4: Comparison of the practical policy update (6) ’GD’ with the theoretical update (1) ’Theory GD’
across various model checkpoints and beam widths k ∈ {16, 32, 64}. For TSP and CVRP, each data point
corresponds to the average best solution across 100 instances. For JSSP, we evaluate the Taillard instances of
the corresponding size. Nucleus sampling is switched off. Sampling for each data point is repeated 10 times;
shades denote standard errors.

C Extended Experimental Results

C.1 Comparison with Theoretical Policy Improvement

We compare the practical policy update (’GD’) that we use in our method (6) with the policy update (1) that
yields a theoretical policy improvement (’Theory GD’). The difference between them is that GD updates the
logits in a trajectory according to a single ’global’ advantage. This global advantage is the difference between
the outcome of the trajectory and the estimated expected outcome of the full policy, and it is propagated
recursively to all ancestors of the corresponding leaf node. In contrast, Theory GD updates the logit of each
ancestor individually by computing the difference ’locally’ between the expected outcome of a node and its
direct parent. While Theory GD yields a provable policy improvement, there are two practical difficulties: i.)
In GD, we only need to compute a single expected value. For Theory GD, we must compute the expected
value for each encountered node individually. ii.) In GD, we can use all k sampled trajectories to compute
the expected outcome of the full policy. For Theory GD, when computing the advantage of a particular node,
we need to estimate the expectation of the node and its parent. In particular, we can only get a non-zero
advantage if there are at least two trajectories through the parent. Depending on the confidence of the model
and the beam width k, this is often not the case for nodes deeper in the tree.

In Figure 4 we compare Theory GD with our chosen practical update GD over different checkpoints and
beam width k ∈ {16, 32, 64} as in Section 5.3. We use the same values for σ as in training, but do not apply
nucleus sampling. GD and Theory GD perform similarly on the TSP, where the model is confident early on.
While Theory GD is still a strong update method on the CVRP and JSSP, GD outperforms it in almost
all cases. Coupled with the fact that GD only needs to compute a single expected value and is easier to
implement, we consider it more advantageous for neural CO. However, in many cases, the results are close,
which illustrates the theoretical rationale for GD.

C.2 Comparison with Self-Improving Training Method for LEHD on TSP

Concurrently to Drakulic et al. (2023), Luo et al. (2023) propose the ’Light Encoder Heavy Decoder’ (LEHD)
model for routing problems and also show promising generalization capabilities. The structure of LEHD is
similar to BQ; however, while BQ only shares an affine embedding of the nodes across all time steps, LEHD
encodes the nodes with a single attention layer. The decoder consists of six attention layers, and as in BQ,
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Table 3: Optimality gaps for TSP compared with LEHD with and without labeled data. For LEHD
RL+RRC+SL, we take the results from the original paper, which are better than the ones we obtained with
our implementation.

Method Test Generalization
TSP N = 100 TSP N = 200 TSP N = 500 TSP N = 1000

LEHD SL, greedy 0.58% 0.95% 1.72% 3.34%
LEHD RL+RRC+SL, greedy 1.07% 1.45% 2.56% 4.52%
LEHD SI GD (ours), greedy 0.40% 0.72% 1.43% 3.30%

Table 4: Inference with Gumbeldore on the CVRP. For N = 100, we only consider a test subset of 1000
instances. SBS and GD results are averaged over five repetitions. We use nucleus sampling with constant
p = 0.8 for SBS and GD, and keep σ = 3.0 for GD.

Method Test Generalization
N = 100 N = 200 N = 500 N = 1000
Gap Gap Gap Gap

Beam 128 1.16% 1.10% 1.72% 4.28%
Beam 256 1.00% 0.97% 1.60% 4.27%
Beam 512 0.86% 0.90% 1.40% 3.85%
SBS 32× 4 0.80% 1.07% 2.44% 6.04%
SBS 32× 8 0.65% 0.87% 2.34% 6.00%
SBS 64× 8 0.51% 0.73% 2.20% 5.80%
GD 32× 4 0.73% 1.03% 2.13% 5.25%
GD 32× 8 0.59% 0.76% 2.03% 5.12%
GD 64× 8 0.49% 0.56% 1.88% 4.76%

the model is trained to predict the next node of random subtours sampled from expert solutions. Luo et al.
(2023) additionally present a training process on TSP that does not require solutions from solvers as follows:

• Train LEHD on TSP N = 20 with self-critical REINFORCE for some time.

• Generate a training set of 200,000 random instances of TSP N = 100 and generate solutions for
them with the current model.

• Sample subtours for each instance and randomly reconstruct (RRC) them to improve the solutions.

• Continue training of LEHD by supervised learning with the generated dataset.

In Table 3, we compare this approach (LEHD RL+RRC+SL) to their supervised approach and our method.
We see that our simple training process based on sampling surpasses the relatively complicated RL + randomly
reconstructed solutions approach and obtains results comparable to its supervised counterpart.

C.3 Gumbeldore at Inference Time

There is a plethora of work on how to exploit an already trained policy for neural CO, such as Simulation-
Guided Beam Search (Choo et al., 2022) or (Efficient) Active Search (Bello et al., 2016; Hottung et al., 2022)
(cf. Section 2). Although we consider our sampling method mainly for training, in this section, we evaluate
the performance during inference in the low sample regime. High exploration plays a subordinate role in this
setting, so we use Top-p sampling with a constant p in all rounds. Table 4 shows inference results using the
model trained with SI GD. We compare GD k × n with n rounds and beam width k with sampling without
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Table 5: Inference with Gumbeldore on the JSSP. Results are averaged over five repetitions. In all cases, we
use nucleus sampling with constant p = 0.8, and keep σ = 0.05 for GD.

15× 15 20× 15 20× 20 30× 15 30× 20 50× 15 50× 20 100× 20
Method Gap Gap Gap Gap Gap Gap Gap Gap
SBS 32× 4 5.0% 5.7% 7.3% 6.1% 9.4% 1.1% 4.3% 0.4%
SBS 32× 8 4.7% 5.3% 7.0% 5.7% 9.0% 0.9% 4.0% 0.3%
SBS 64× 8 4.3% 5.3% 6.4% 5.2% 8.8% 0.9% 4.0% 0.3%
GD 32× 4 4.8% 5.6% 7.0% 5.8% 9.2% 1.1% 4.3% 0.4%
GD 32× 8 4.5% 5.3% 6.7% 5.3% 8.8% 0.9% 4.0% 0.3%
GD 64× 8 4.2% 4.8% 6.3% 5.0% 8.6% 0.8% 3.7% 0.2%

replacement (with Top-p) via round-based SBS k × n and to beam search with corresponding beam width.
We see that both sampling methods outperform beam search on N = 100 and N = 200 but not on N = 500
and N = 1000. Furthermore, the policy update of GD leads to a consistent improvement over SBS. The
CVRP results indicate that combining GD and deterministic beam search could result in a robust inference
method. On the JSSP in Table 5, we observe the same improvement of GD over SBS. The margin, however,
is not as wide as for intermediate models by Section 5.3. We omit the results for deterministic beam search
on JSSP, as SBS supersedes them with nucleus sampling and a beam width of 16 (cf. Table 2).

C.4 Gomoku: A Toy Problem

Played on a Go board, Gomoku is a game for two players who take turns placing their stones on the board,
starting with black. The first player to have five stones in a row horizontally, vertically, or diagonally wins.
We formulate the following problem: Given a deterministic expert bot playing black, how long does it take a
greedy model playing white to learn from scratch to beat the opponent from all possible starting positions of
black? Here, the model’s policy takes a board configuration and predicts a distribution over the next possible
moves. We take the deterministic rule-based bot (’v1’), the Gomoku state representation, and the AlphaZero
architecture for Go provided by the LightZero benchmark suite (Niu et al., 2023). In each epoch, we generate
training data by sampling multiple trajectories using the current policy from all possible starting positions of
black. Then, for each start position, we take from the sampled trajectories either a random trajectory where
white wins or, if there is no win for white, a random trajectory where black wins. In the case of a draw, we
take a random draw. The supervised training in each epoch then consists of learning the policy to predict
the next move of the winner. After each epoch, we greedily unroll the policy for each starting position of
black and count the number of times white wins. How many epochs does it take for white to win every time?
The formulated problem is not standard, and board games are usually approached with self-play. Therefore,
it is instead a tiny illustrative toy problem to further show the applicability of our method.

We play on a 9 × 9 Go board. First, we let the model sample 320 sequences with replacement for each
possible starting position and train the policy in each epoch on 100 batches of 32 pairs of the form (<board
configuration>, <next move of winner>). Repeated ten times, the model takes an average of 60.2 epochs
for white to consistently beat black.

For training with GD, we score a complete trajectory with its game result: 1 for a white win, -1 for a
black win, and 0 for a draw. We also sample 320 sequences in 10 rounds with an SBS batch size of 32. We
completely turn off nucleus sampling and use the game outcome as an advantage to propagate up the tree
(equivalent to setting the expected outcome to a draw). Using a step size of σ = 5, which heavily favors
moves that lead to a win and punishing moves that lead to a lose, it takes an average of 47.7 epochs (∼ 20%
faster than sampling with replacement) for white to greedily win all the time.
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D Implementation and Experimental Details

Hardware and frameworks Our code is developed in PyTorch (Paszke et al., 2019). Training and
inference are performed for all experiments using two NVIDIA RTX A5000 with 24GB memory. As we do not
need to collect gradients during sampling, we can easily parallelize solution sampling for different instances in
each epoch. We spread it across 16 workers using ray.io.

D.1 Choice of Gumbeldore Step Size

We generally choose the step size σ for the update in (6) as follows: We train the model using round-based
SBS (i.e., with σ = 0) for 20 epochs with four rounds of beam width 32. We then perform a grid search over
σ ∈ [0, 5] on a small validation set.

D.2 Traveling Salesman Problem

D.2.1 Problem Setup

In the Euclidean TSP with N nodes in the unit square [0, 1]2 ⊆ R2, a node permutation (i.e., a complete
roundtrip, where all nodes are visited only once) with minimal edge weight should be found. A problem
instance is defined by the two-dimensional coordinates of the N nodes. The sequential problem asks for
choosing one unvisited node at a time. The objective function to maximize evaluates a full tour by the
negative tour length. Random instances are generated in the standard way of Kool et al. (2019b) by sampling
the coordinates of the N nodes uniformly from the unit square.

D.2.2 Policy Network

We use the transformer-based architecture of BQ (Drakulic et al., 2023) and give a short overview of the
network flow: At the start, the coordinates of the N nodes (x1, . . . ,xN ) ∈ RN×2 are affinely embedded into
a latent space of dimension d, and we obtain nodes (x′1, . . . ,x′N ) ∈ RN×d. At each time step, given a partial
tour with an origin node x′i and a destination node x′j , we add a learnable lookup embedding to x′i and x′j
and send them together with all unvisited nodes through a stack of transformer layers. ReZero (Bachlechner
et al., 2021) normalization is used instead of layer normalization within the transformer layers. No positional
encoding is used, as the order of nodes does not play a role. After the transformer layers, a linear layer
Rd → R projects the processed nodes to a logit vector in RN , from which the logits corresponding to x′i and
x′j are masked out.

Trajectory prediction Given an instance of N nodes, we choose a random node as the origin, mark it as
visited, and set it as the destination node as well. The network predicts a distribution over the remaining
nodes, and after choosing one, we mark this one as visited, set it as the new origin node, and so on.

We use a latent dimension of d = 128 (following a preprint version of BQ) and nine transformer layers with
eight heads and feed-forward dimension of 512.

D.2.3 Supervised Training

Subtours Given an instance and a complete tour, we train on random subtours. That is, given t ∈ {4, . . . , N}
(a subtour with three nodes is trivial) and an instance of size N = 100 with a complete tour, we sample a
subtour of length t. The first and last nodes of the subtour are taken as the origin and destination nodes,
and the corresponding target to predict is the next node after the origin node. For computational efficiency,
we keep t fixed within the same minibatch.

Subtour augmentation During training, we randomly augment each sampled subtour in the following
ways, each of which does not change the solution:

• Switch the direction of the subtour
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• Swap x and y coordinates for each node

• Reflect all nodes along the horizontal line going through the center (0.5, 0.5)

• Reflect all nodes along the vertical line going through the center (0.5, 0.5)

• Rotate all nodes around the center (0.5, 0.5) by a random angle. Note that this can lead to coordinates
outside [0, 1]2. In this case, we linearly scale the coordinates so that they lie within the unit square
again.

Hyperparameters In each epoch, we train on 1,000 batches consisting of 1,024 sampled subtours. We use
Adam (Kingma & Ba, 2014) as an optimizer, with an initial learning rate of 1e-4 and no decay. Gradients are
clipped to unit L2-norm.

D.2.4 Gumbeldore Training

In each epoch, we sample 1,000 random instances for which we sample 128 solutions with GD using a beam
width of k = 32 in n = 4 rounds. We use a step size of σ = 0.3 throughout training. We start with pmin = 1
(i.e., no nucleus sampling) to not restrict exploration in any way, and set pmin = 0.95 after 500 epochs.
Supervised training is performed with the best sampled solutions as in its supervised counterpart; however,
we use an initial learning rate of 2e-4. To better utilize the GPUs, we parallelize the sampling procedure
across 16 workers which share the two GPUs. Sampling all solutions for the 1,000 instances takes about one
minute for N = 100.

D.3 Capacitated Vehicle Routing Problem

D.3.1 Problem Setup

A CVRP problem instance is given by coordinates of N customer nodes and one depot node. Each customer
node xi has a demand δi, which must be fulfilled by a delivery vehicle of capacity D. The vehicle must visit
all nodes exactly once in a set of subtours that start and end at the depot node, and where the sum of the
customers’ demands visited in a subtour does not exceed the vehicle’s capacity D. The goal is to find a set of
subtours with minimal total distance that visits all customers.

Instance generation Following (Kool et al., 2019b; Drakulic et al., 2023; Luo et al., 2023), an instance
is generated by sampling the coordinates for the customers and the depot uniformly from the unit square.
The demands δi are sampled uniformly from the set {1, . . . , 9}. The vehicle capacity is set respectively to
D = 50, 80, 100, 250 for corresponding N = 100, 200, 500, 1000. We normalize the vehicle’s total capacity to
D̂ = 1 and the demands to δ̂i = δi

D .

Solution formation To align solutions, we also follow the approach of (Kool et al., 2019b; Drakulic et al.,
2023; Luo et al., 2023) and describe a complete solution by two vectors, where one is a permutation of the
customer indices, and the other is a binary vector indicating whether the i-th customer in the permutation
is reached via the depot or not. For example, a complete tour (0, 1, 4, 5, 0, 2, 3, 0, 6, 7, 8, 0), where index 0
denotes the depot, consists of 3 subtours which start and end at the depot. The corresponding solution split
into the two vectors of length 8 is (1, 4, 5, 2, 3, 6, 7, 8) for the permutation and (1, 0, 0, 1, 0, 1, 0, 0).

D.3.2 Policy Network

As for the TSP, we use the transformer-based architecture of BQ (Drakulic et al., 2023) and give a short
overview of the network flow: At any point in time, we represent each node (including the depot) as a
four-dimensional vector, where the first two entries are the coordinates of the node, the third entry is the
demand (with 0 demand for depot) and the last entry is the current remaining capacity of the vehicle. Also,
at any point, we have an origin node (equal to the depot at the beginning). The depot, the origin node, and
the remaining unvisited nodes are affinely embedded into the latent space Rd, and we mark the origin and
the depot by adding a learnable lookup embedding as for the TSP. The stack of transformer layers processes
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the embeddings of the depot, origin, and remaining nodes before projecting the output to two logits for each
remaining node via a linear layer. The two logits correspond to choosing the node via the depot or directly
from the origin. We mask all infeasible actions, indicating whether a node must be reached via the depot as
its demand exceeds the current capacity of the vehicle (or must be reached via the depot as the origin is
equal to the depot). The structure of the attention layers is identical to the ones in the TSP.

As in the original paper (Drakulic et al., 2023), we use a latent dimension of d = 192, nine transformer layers
with 12 heads, and a feed-forward dimension of 512.

D.3.3 Supervised Training

Subtours As for the TSP, we train on random subtours. We impose the restriction that a sampled subtour
must end at the depot (Luo et al., 2023).

Subtour augmentation We augment an instance by randomly reversing the direction of individual
subtours. We then sort the subtours in ascending order by the remaining vehicle capacity at the end of the
subtour. Sorting the subtours is a crucial step that we copy from Drakulic et al. (2023), who analyze that the
order of the subtours has a substantial impact on the final performance of the model, where the model obtains
better results when learning to schedule subtours first which utilize the vehicle as good as possible. Finally,
we perform the same random geometric augmentation techniques as for TSP (reflection, rotation, flipping).

Inference During inference, we follow the approach of Drakulic et al. (2023) and consider at each step the
250 nearest neighbors of the current origin node.

Hyperparameters The hyperparameters for training are identical to TSP.

D.3.4 Gumbeldore Training

Gumbeldore hyperparameters are identical to TSP, with a step size of σ = 3.0. To enhance generalization, we
sample the vehicle capacity from {40, 41, . . . , 100} during instance generation.

D.4 Job Shop Scheduling Problem

D.4.1 Problem Setup

Problem definition We use a similar notation as in Pirnay et al. (2023). In a JSSP instance of size J ×M ,
we are given J jobs. Each job consists of M operations which need to be scheduled on M machines. There
is a bijection between the operations of a job and the set of the machines, i.e., every job must visit each
machine exactly once. Thus, job i ∈ {1, . . . , J} can be represented by (oi,l, pi,l)Ml=1, where oi,l ∈ {1, . . . ,M} is
the index of the machine on which the l-th operation must run, and pi,l ∈ R>0 is the processing time that it
takes to process the operation on machine oi,l. The operations of a job must run in order; only one operation
can be processed by a machine at a time, and once an operation starts, it must finish. The aim is to find a
schedule with minimum makespan, where the makespan is given by the time the last machine finishes. In
particular, the objective function to maximize is defined by the negative makespan of a schedule. A JSSP
instance is fully defined by the set {(oi,l, pi,l)Ml=1}Ji=1.

Instance generation We generate a random instance in the way of Taillard (1993) by uniformly sampling
processing times from {1, . . . , 99} and setting the order of the machines on which a job must run as a uniformly
random permutation of the set of machines.

Schedule representation As there is a bijection between the operations of a job and the M machines,
and the operations must run in order, we can represent a schedule by an ordered sequence of job indices
(j1, . . . , jJ·M ), where ji ∈ {1, . . . , J}. Here, the occurrence of a job i means that the next unscheduled
operation of job i should be processed on the corresponding machine as soon as possible. Note that, as in the
routing problems, a sequence defining a schedule is generally not unique. In particular, in our constructive
sequential formulation, we choose one unfinished job index after another until all jobs are finished.
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Figure 5: Example of a problem instance with J = 2 and M = 4. The operations’ processing times and
machines are shown in the table on the left. The first two operations have already been scheduled with the
partial schedule (1, 1, 2, 2). The corresponding Gantt chart and availability times are shown on the right.

Tail subproblems Similar to the routing problems, we want to employ a similar tail-recursion property.
For this, let {(oi,l, pi,l)Ml=1}Ji=1 be a problem instance. We introduce two additional tuples (Amach

i )Mi=1 and
(Ajob

i )Ji=1, where Amach
i indicates the availability of the i-th machine, i.e., the earliest time an operation can

start on machine i. Analogously, Ajob
i indicates the earliest time the next operation of the i-th job can start.

For an empty schedule, the availability times are all set to zero. When choosing a job with index i, let l be
the index of the operation that is to be scheduled and m = oi,l be the index of the machine on which the
operation must run. We then compute the finishing time z of the operation via

z = max{Ajob
i , Amach

m }+ pi,l (31)

and update the availability times to

Amach
m , Ajob

i ← z. (32)

The crucial thing to note here is that given an optimal schedule (j1, . . . , jJ·M ) with minimal makespan and
q ∈ {1, . . . , J ·M}, the subschedule (jq, . . . , jJ·M ) is an optimal solution to the subproblem where after
scheduling j1, . . . , jq−1, the corresponding operations have been erased, and the availability times have been
updated according to (32). A small example can be seen in Figure 5

This property motivates how our model is set up: For the routing problems, we have a heavy decoder that
only cares about unvisited nodes and no longer about how it visited previous nodes. Similarly, for the JSSP,
we are only interested in the unscheduled operations and the availability times at any time. We feed this
information to a network described below.

D.4.2 Policy Network

A suitable architecture for the JSSP should account for the fact that the problem is invariant to the job and
the machine indexing (for the latter, it is only important if two operations must run on the same machine,
but not which one). Our proposed architecture processes the J ·M operations with multiple transformer
layers, and we use masking to account for the indexing invariance. We make this precise as follows:

Let Amach, Ajob be the availability times at any constructive step. Let i be the index of an unfinished job,
and mi be the index of the machine on which the next unscheduled operation of job i must run. Define
ri := max{Ajob

i , Amach
mi } as the time at which this operation would start if it were scheduled next. We

represent the state of the instance by A ∈ RJ×M×2, where for i ∈ {1, . . . , J} and l ∈ {1, . . . ,M} we set

Ai,l =
(
pi,l
100 ,

ri −mini′∈{1,...,J} ri′
100

)
. (33)
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I.e., we repeat the start time across all operations for a job, shift the time back to 0, and scale the processing
times into [0, 1]. We affinely embed A into a latent space Rd to obtain Â ∈ RJ×M×d. We compute a
sinusoidal positional encoding P ∈ RM×d (Vaswani et al., 2017) which we add to each job i via Âi + P . We
send the resulting sequence of operations through a stack of pairs of transformer layers, wherein each pair:

i.) We use ReZero normalization (Bachlechner et al., 2021) as in the architecture for the routing problems.

ii.) In the first transformer layer, referred to as the ’job-wise layer’:

• Only operations within the same job attend to each other. In practice, this can be efficiently
achieved by folding the job dimension into the batch dimension, i.e., reshaping the sequence
from RB×J×M×d to RB·J×M×d.

• We mask all operations that have already been scheduled.
• We add ALiBi (Press et al., 2022) positional information to query-key attention scores as an

attention bias in each head of a job-wise layer. Precisely, let h be the number of heads, then
the ALiBi-specific slope for the k-th head is given by the 2− 8k

h . Then, we set the additive
bias for a querying operation with index l1 ∈ {1, . . . ,M} and a key operation with index l2 to
2− 8k

h · (l2 − l1) for the k-th head. While not strictly necessary for good performance, we found
that ALiBi slightly improves the results by carrying the positional information of the operations
through all job-wise layers.

iii.) In the second transformer layer, referred to as the ’machine-wise layer’:

• We let two operations attend to each other only if they need to run on the same machine.
• We also mask all operations that have already been scheduled but do not employ ALiBi attention

bias.

The operations transform according to different roles by repeatedly switching between job- and machine-wise
layers. Note that this strategy is invariant to the job and machine indexing. In principle, it is possible to
achieve a similar effect by only considering the entire sequence in RB×J·M×d for all transformer layers and
using different masks within individual heads to account for job-wise and machine-wise attention. We settled
for the switching strategy, as folding the jobs into the batch dimension practically saves computation time.

After the transformer layers, we gather the output O ∈ RJ×d corresponding to the next unscheduled operation
of each job (in case the job is already finished, we take the last operation ). We apply a final transformer
block on the sequence O, masking already finished jobs. Afterward, we project the output to logits with a
linear layer Rd → R, again masking finished jobs.

Figure 6 gives an overview of the network.

Size We use a latent dimension of d = 64 with three pairs of transformer layers, where each layer has eight
heads and a feedforward dimension of 256. With the final transformer layer, this amounts to a total of 7
layers.

D.4.3 Gumbeldore Training

We train the model with GD for 100 epochs. In each epoch, we randomly pick a J ×M size in {10 ×
15, 15× 15, 15× 20}. We generate 512 random instances of the chosen size for which we sample 128 solutions
with GD using a beam width of k = 32 in n = 4 rounds. We use a fixed advantage step size of σ = 0.05.
We start with pmin = 1 and set pmin = 0.95 after 50 epochs. During supervised training on the generated
solutions, given a full trajectory (j1, . . . , jJ·M ), we uniformly sample q ∈ {1, . . . , J ·M − 1} and compute
Amach and Ajob according to the subschedule (j1, . . . , jq−1). The training target is then to predict jq. No
further augmentation is performed.

As for the routing problems, we use an initial learning rate of 2e-4 and clip gradients to unit norm.
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Figure 6: Overview of the network architecture, using the two jobs with four operations from Figure 5. Boxes
represent operations, and the numbers in the boxes indicate the machine on which it has to run. Here, we
assume that the first two operations of Job 1 and the first operation of Job 2 are already scheduled. In the
job-wise transformer layer, only operations within the same job attend to each other. We mask scheduled
operations. We accommodate masking and ALiBi positional information in the additive attention bias (shown
before scaling with slope). In the machine-wise layer, only operations running on the same machine may
attend to each other, also masking scheduled operations (pink square: mask, green square: do not mask).
The next possible operation is gathered for each job and used to predict the policy.

E Comparison to Concurrent Work

Independently of our work, Corsini et al. (2024) develop a similar learning strategy for the JSSP. They also
turn away from RL and sample 256 solutions in each epoch for randomly generated instances using the
current model. Then, they supervisedly train a GNN + Pointer Network on the generated solutions. They
call this strategy ’self-labeling’. While our Algorithm 1 is slightly different from theirs (maintaining a best
greedy policy and expanding the dataset in case of no improvement), their work and ours match in the spirit
of applying behavior cloning to sampled solutions. However, Corsini et al. (2024) focus on the JSSP and
their proposed GNN architecture using the disjunctive graph representation of the JSSP. Most importantly,
while they discuss different sampling schemes, they settled on sampling with replacement (Monte Carlo i.i.d.
sampling) from the sequence model, which they found sufficient for their approach. Our main contribution
revolves around a principled way to get the most out of a few samples, applied to various neural CO problems,
and we show in Section 5.3 that our method can significantly improve the sampling performance. Furthermore,
we compare our method on the JSSP with their approach in Table 2. Our work is also motivated by bridging
the problem that large network architectures that generalize strongly can be computationally challenging to
train with policy gradient methods. However, we emphasize that we believe the work of Corsini et al. (2024)
and ours are mutually reinforcing, as both conclude that a more ’straightforward’ training strategy than
self-critical policy gradient methods can lead to a strong performance in neural CO.
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