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Abstract

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder, and accurate1

prediction remains a critical challenge. Multiple modalities can inform AD predic-2

tion, with public resources such as the Alzheimer’s Disease Neuroimaging Initiative3

(ADNI) providing access to diverse datasets. However, prior studies often rely on4

single modalities, limiting clinical applicability, or struggle to integrate multimodal5

data effectively. In this work, we introduce MOIRA (Multi-Omics Integration6

with Robustness to Absent modalities), a predictive framework that leverages the7

strong discriminative power of structural Magnetic Resonance Imaging (sMRI)8

while flexibly incorporating additional modalities to boost performance. MOIRA9

achieves 0.91 accuracy, substantially surpassing existing approaches. Notably,10

we show that our model trained with sMRI can still improve prediction without11

sMRI data at inference, supporting potentially cost-efficient diagnostic strategies12

in clinical settings. Our findings highlight the value of sMRI-informed multimodal13

integration for advancing robust, translational AD prediction.14

1 Introduction15

Among progressive neurodegenerative conditions, AD is marked by amyloid-beta accumulation and16

related pathological processes that ultimately lead to neuronal loss [4, 28]. Clinical diagnosis of AD17

typically draws on diverse sources, including medical records, cognitive assessments, genetic history,18

and neuroimaging [9], which are now collected at unprecedented scale in public datasets. Leveraging19

these multimodal inputs can offer a more holistic and thorough understanding of disease progression.20

Neuroimaging techniques such as sMRI offer a non-invasive means to assess neurodegeneration21

through detailed brain structural analysis. Notably, sMRI enables accurate in vivo quantification22

of brain regions associated with AD [11]. However, sMRI-based diagnosis is limited to detecting23

anatomical changes, leaving the underlying pathogenesis largely unresolved [24]. High-throughput24

genomic profiling offers valuable insights into the molecular mechanisms of AD and holds promise25

for early-stage detection. Moreover, cerebrospinal fluid (CSF) biomarkers are often recommended26

in diagnostically challenging or atypical cases [25]. Nevertheless, relying solely on biomarkers is27

insufficient for definitive diagnosis or precise prediction of disease progression [5]. Consequently,28

integrating neuroimaging with omics data enables a more comprehensive characterization of hetero-29

geneous AD phenotypes by capturing complementary morphological and molecular information.30

Despite growing interest in multimodal integration for AD prediction, prior work has often focused on31

single modalities, leading to substantial data exclusion and limiting applicability in clinical practice.32

More recent approaches have attempted to integrate multiple data types, yet they often fail to achieve33

stable prediction of phenotypes. For example, Flex-MoE [27] introduced a Sparse Mixture of Experts34

(SMoE) framework capable of handling arbitrary combinations of input modalities and addressing35

missing modality scenarios. In this approach, each available modality is processed by a dedicated36
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Figure 1: Overview of the ADNI dataset and MOIRA architecture. Four modalities were collected:
Imaging (I), Clinical (C), Biospecimen (B), and Genetic (G). Sample sizes for their combinations are
shown (top left). Imaging and Genetic data are preprocessed using 3D CNN and ANOVA feature
selection, respectively. Each modality is processed by (1) modality-specific encoders to produce
embeddings, which are then passed to (2) a fusion module to form an aggregated embedding. This is
input to the (3) predictor for classification. Training optimizes a combination of prediction, auxiliary,
and CLIP losses. AD: Alzheimer’s Disease; MCI: Mild cognitive impairment; NC: Normal control

encoder, while missing ones are approximated via a modality bank. However, incorporating sMRI37

data, which directly reflects neurodegenerative changes [18], resulted in only marginal performance38

gains, suggesting that their model failed to fully exploit the rich information of imaging features.39

To address these limitations, we introduce MOIRA, a multimodal framework that integrates imaging,40

omics, and other data by projecting them into a shared representational space. This design allows41

modalities to complement each other during training, enabling the model to learn more robust42

and generalizable features. In particular, sMRI proved highly informative: beyond its substantial43

contribution to classification performance, it also enhanced the representation learning of other44

modalities by serving as a stable anatomical reference. These results highlight the central role of45

sMRI in improving both predictive accuracy and cross-modal alignment. The main contributions of46

this paper can be summarized as follows:47

• We propose a framework that effectively incorporates incomplete multimodal heterogeneous48

data, including 3D sMRI scans and genomics.49

• We achieve state-of-the-art performance in three-way AD classification while leveraging a50

larger portion of the ADNI database than prior models.51

• We show that high-fidelity imaging features facilitate the utility of understudied modalities,52

with potential cost-saving application in clinical and public health settings.53

2 Materials & Methods54

2.1 Dataset55

We utilized the ADNI dataset [16], which provides large-scale multimodal data encompassing56

neuroimaging, genetics, cognitive assessments, and biomarkers [19]. Following prior studies [26, 27],57

we categorized the data into four modalities: Imaging, Clinical, Biospecimen, and Genomics. For58

Imaging modality, we employed MP-RAGE and IR-FSPGR 3D T1-weighted sequences. They were59

preprocessed via a standard pipeline including reorientation, skull-stripping, affine registration, bias60

field correction, and intensity normalization. The Clinical modality was built by merging patient61

history from the MEDHIST, NEUROEXM, PTDEMOG, RECCMEDS, and VITALS csv files into62

a single tabular dataset. The Biospecimen modality integrated CSF biomarker measurements such63
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as amyloid-beta, total tau, and phosphorylated tau from the UPENNBIOMK_ROCHE_ELECSYS64

dataset with ApoE genotype data from the APOERES dataset. These biomarkers are established as65

highly informative AD biomarkers [21]. The Genomics modality consists of SNP (single nucleotide66

polymorphism) data in PLINK format from the ADNI-1, GO/2, and ADNI-3 studies.67

2.2 Model68

Our framework comprises three key components: (1) modality-specific encoders that map each69

input modality into a latent embedding space, (2) a fusion module that integrates information across70

modalities, and (3) a predictor for the final classification (Figure 1).71

Table 1: Number of features and samples in the ADNI dataset.

Imaging Clinical Biospecimen Genomics
# features 128 1,496 147 135,595
# samples 1,651 2,380 1,744 1,596

Modality-Specific Encoders Each modality-specific encoder received inputs whose dimensions72

are summarized in Table 1. For the Imaging modality, sMRI scans are processed by a 3D CNN with73

three convolutional layers with 16, 32, and 64 channels, each followed by a LeakyReLU activation74

and 3D max pooling. Afterwards, it is flattened and passed through two fully connected layers75

with dimensions 128 → 3, where the 128-dimensional output serves as the image embedding. For76

Genomics, we used an ANOVA F-test to select the top 2,000 features to reduce dimensions. For other77

modalities (Clinical and Biospecimen), we directly feed the raw features into encoder networks.78

Let x(m) ∈ Rdm denote the input features from modality m, where m ∈ {1, . . . ,M}, dm is the input79

dimension, and k is the embedding dimension. Each modality is processed by an encoder E(m)
ϕ :80

z(m) = E
(m)
ϕ

(
x(m)

)
, z(m) ∈ Rk.

Each encoder consists of a two-layer MLP with LeakyReLU activations and dropout, and follows81

an autoencoder-style architecture to learn unsupervised, lower-dimensional representations of the82

modality [23]. Hence, each encoder was paired with a decoder and pre-trained until convergence.83

Fusion Module Let b ∈ {0, 1}M be an indicator vector denoting presence of each modality. We84

introduce a learnable weight matrix W ∈ RM×k where the m-th row w(m) corresponds to modality85

m. The masked weights are then computed:86

w̃(m) = w(m) · b(m),

ensuring that absent modalities have minimal contribution. We then normalize the weights across87

modalities using a softmax along the modality dimension:88

α(m) =
exp(w̃(m))∑M
n=1 exp(w̃

(n))
, α(m) ∈ Rk.

Finally, the aggregated embedding is obtained via a weighted sum of the modality-specific ones:89

h =

M∑
m=1

α(m) ⊙ z(m),

where ⊙ denotes the Hadamard product. We ℓ2-normalize h before passing it to the predictor. The90

fusion module allows to adaptively weight available modalities and compensate for missing ones.91

Predictor The aggregated representation h is passed to a predictor network Pθ parameterized by θ:92

ŷ = Pθ(h), ŷ ∈ RC ,

where C is the number of classes and ŷ denotes the predicted class probabilities. The predictor93

consists of a two-layer MLP with LeakyReLU activations and dropout.94
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Figure 2: The evaluation results of MOIRA using the ADNI dataset. (A) Three-way classification
accuracy versus number of samples used across multimodal learning methods. Blue points represent
complete only models (requiring all modalities), while red points represent incomplete-inclusive
models (handling missing modalities). The latter utilize more data during training and inference.
Asterisks on DiaMond*, MMTFN*, and Mul-T* indicate that their scores reflect balanced accuracy
[12], unlike others reporting standard accuracy. (B) Experimental setups evaluating whether imaging
enhances learning from other modalities. (C) Accuracy comparison from Figure 2B. Model trained
with ICBG outperforms the one trained with CBG, even when imaging is absent at inference time.

Loss Function The training objective combines three terms: (i) a prediction loss of cross-entropy95

between ground-truth labels and predictions from aggregated embedding from the fusion module; (ii)96

an auxiliary loss of the same cross-entropy but using each modality-specific embedding; and (iii) a97

contrastive loss [17] over all modality pairs to guide cross-modal alignment (Figure 1).98

3 Results99

A total of 2,380 subjects were used in this study, with splits of 70%, 15%, and 15% for training,100

validation, and test sets, respectively. We compared our model mainly with Flex-MoE [27], which101

is currently the strongest model in terms of handling missing modalities in ADNI. To ensure fair102

comparison, we aligned our data splits with those used in Flex-MoE. The embedding dimension was103

set to 1,000, with encoder and predictor dropout rates of 0.5 and 0.1. Models were trained for 200104

epochs. All experiments were conducted using NVIDIA A40 GPUs. Each experiment was run three105

times with different seeds to ensure reproducibility, and the results were averaged.106

MOIRA was evaluated against other three-way classification approaches on the ADNI dataset. Figure107

2A summarizes accuracy and the number of samples utilized. Most prior methods are limited108

to patients with complete modalities, restricting their usable sample size to no more than 1,247109

[3, 8, 9, 10, 12, 13, 22, 29]. By contrast, models that incorporate incomplete multimodal data extend110

coverage to 2,380 patients. However, such models generally report lower accuracy when using this111

larger cohort [15, 26, 27]. In contrast, our model achieves both broad utilization of incomplete data112

and high classification accuracy, without the trade-off observed in prior methods.113

Table 2: Comparison of MOIRA to Flex-MoE across modality sets in Accuracy, AUC, and F1

Modals Accuracy AUC F1

Flex-MoE MOIRA Flex-MoE MOIRA Flex-MoE MOIRA

I, C,B,G 66.11± 1.14 91.13± 0.74 81.67± 0.54 98.12± 0.07 64.73± 2.01 90.58± 0.87

I, C,B 64.05± 1.78 91.78± 0.66 80.55± 1.26 98.03± 0.05 61.60± 1.46 91.03± 0.22
I, C,G 63.21± 1.73 90.94± 0.13 79.55± 1.69 98.00± 0.13 61.98± 1.04 90.12± 0.19
I,B,G 62.28± 2.75 91.60± 0.23 79.27± 0.65 98.13± 0.23 59.45± 3.14 91.00± 0.22
C,B,G 65.36± 1.38 71.34± 0.92 81.67± 0.59 87.20± 0.25 64.15± 1.69 69.34± 0.97

* I: Imaging; C: Clinical; B: Biospecimen; G: Genomics
** Results are reported as mean ± std values.
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To assess the contribution of individual modalities, we conducted ablation studies and compared our114

model with Flex-MoE. Table 2 shows that the performance of Flex-MoE decreased only by 1.1%115

without Imaging modality, suggesting limited use of sMRI data. In contrast, our model exhibited a116

21.7% drop without the Imaging modality, signifying MOIRA’s utilization of sMRI in AD prediction.117

We further replaced the 3D CNN–extracted sMRI embeddings with descriptors derived from the UCSF118

Cross-Sectional FreeSurfer (7.x) dataset [ADNI1, GO, 2, 3, 4]. The data contains cortical thickness,119

volumetric measurement, and other anatomical information summarized using the FreeSurfer software120

[6]. As shown in Table 3, this led to a substantial drop in predictive performance compared to models121

using the original 3D CNN embeddings. The finding suggests that sMRI data is more effective122

through approaches that fully preserve and use its rich spatial and morphological structure [2].123

Table 3: Classification performance using FreeSurfer dataset (w/o CNN) and sMRI (w/ CNN).

Metric MOIRA (w/o CNN) MOIRA (w/ CNN)
ACC 72.36± 1.13 91.13± 0.74
AUC 88.33± 1.28 98.12± 0.07

Beyond imaging (I), ablation of other modalities led to only marginal changes in classification124

performance (Table 2), raising the question of whether the model relies predominantly on sMRI.125

To test this, we compared two settings: (1) training with all four modalities but masking I during126

inference, and (2) using only C, B, and G throughout training, validation, and testing (Figure 2B).127

If predictions depended solely on I, then masking I at inference (Scenario 1) would at best yield128

similar performance to the CBG-only baseline (Scenario 2). However, Figure 2C shows that Scenario129

1 outperformed Scenario 2 by 10.7% in accuracy, despite having no access to imaging at inference.130

This indicates that incorporating sMRI during training improves the model’s ability to capture patterns131

in other modalities. The limited gains observed from Table 2 when including non-imaging modalities132

are not due to an absence of informative signals, but to the prevailing predictive strength of imaging133

data. Clinically, this suggests that the model trained with imaging modality retains predictive power134

even when future patients have no sMRI data, thereby enhancing its applicability in real-world135

prognostic settings where incomplete data modalities are common.136

4 Conclusion137

Integrating heterogeneous multimodal data is crucial for deepening our understanding of complex138

diseases such as AD, as it enables a systems-level perspective that encompasses both molecular and139

structural pathology. However, this integration remains challenging due to the frequent absence of140

certain modalities and the difficulty of harmonizing diverse data types [14].141

In this study, we present MOIRA, a multimodal integration framework that handles diverse modalities,142

including sMRI and various non-imaging data. The fusion module aligns features extracted from143

modality-specific encoders in a shared embedding space. Hence, unlike models that rely on samples144

with complete modalities, MOIRA can flexibly leverage incomplete datasets.145

Furthermore, we showed that image embeddings provide high-fidelity anatomical information and146

serve a dual role: contributing directly to inference and guiding the integration of less informative or147

missing modalities. This supervisory role enhances performance even when imaging data are absent148

at inference. Our finding that incorporating sMRI data during training can improve prediction for149

patients missing them is particularly relevant since key AD biomarkers such as amyloid-beta, tau, or150

clinical symptoms may precede the onset of overt disease by over a decade in some cases [1, 20].151

This has important implications for pre-emptive intervention, which are increasingly emphasized in152

emerging AD treatment strategies [7]. Beyond AD, MOIRA generalizes to other conditions where153

imaging and omics data are available, highlighting its potential as an extensible framework for154

multimodal disease modeling.155

In future work, we will improve the integration of modalities such as genotypes and CSF data,156

investigate the underlying mechanisms by which sMRI contributes to the CBG-only inference (Figure157

2B), and conduct feature importance analyses to identify biomarkers for AD diagnosis. We hope158

our work inspire further research into incomplete-inclusive learning strategies and contribute to the159

development of robust diagnostic models for AD and related neurodegenerative disorders.160
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