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Abstract

We consider a Multi-agent Reinforcement Learning (MARL) setting, in which an attacker
can arbitrarily corrupt any subset of up to k out of n agents at deployment. Our goal is
to design agents that are robust against such an attack, by accounting for the presence
of corrupted agents at test time. To that end, we introduce a novel solution concept,
the Adversarially Robust Nash Equilibrium (ARNEQ), and provide theoretical proof of
its existence in general-sum Markov games. Furthermore, we introduce a proof-of-concept
model-based approach to computing it and theoretically prove its convergence under standard
assumptions. We also present a practical approach called Adversarially Robust Training
(ART), an independent learning algorithm based on stochastic gradient descent ascent.
Our experiments in both cooperative and mixed cooperative-competitive environments
demonstrate ART’s effectiveness and practical value in enhancing MARL resilience against
adversarial behavior.

1 Introduction

The growing prevalence of automated systems has facilitated a fertile ground for implementing the celebrated
multi-agent reinforcement learning (MARL) framework to solve a wide range of important problems. Prominent
examples include finance (Shavandi & Khedmati, 2022; Lee et al., 2007), sensor networks (Cortes et al., 2004;
Choi et al., 2009), autonomous vehicles (Shalev-Shwartz et al., 2016; Zhou et al., 2020; Palanisamy, 2020)
and gaming (Vinyals et al., 2019; Perolat et al., 2022).

One of the main underlying assumptions of this practical framework has been the inherently rational and
selfish nature of the learning agents, according to which their sole objective is to optimize their utilities,
an assumption stemming from game theory (Osborne & Rubinstein, 1994) and economics since the time of
Smith (1776). Indeed, the overwhelming majority of MARL successes have been made by algorithms that are
designed to optimize their objectives.

However, this assumption has been challenged by different lines of research, only sporadically in the past,
but increasingly more in recent years. For example, Chen et al. (2023) study the problem of robustness
of distributed RL systems against Byzantine attacks, where a fraction of agents can report fake data to
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Figure 1: Attack-defense interaction is depicted. First, the agents are trained without any adversarial threat. Then,
the attacker observes all the trained policies of the agents and arbitrarily picks any up to k of them. Once the chosen
policies are arbitrarily perturbed, they are deployed. Our goal is to train policies that remain robust under attack.

the center. Another line of research, which has gained a lot of popularity recently, studies the problem of
adversarial policies in MARL (Guo et al., 2021), where an agent faces an adversarial opponent trained in a
zero-sum Markov game regime. Eliaz (2002) considers the problem of implementing games with potentially
faulty agents, that is, agents who do not necessarily aim at optimizing their utilities but might behave
erratically due to some system malfunction. Furthermore, Babaioff et al. (2007) consider congestion games
with malicious players and study the game-theoretic properties of such games.

The shared underlying insight among these various lines of work is that in reality, certain agents could exhibit
unpredictable behavior, stemming from system malfunctions or unanticipated adversarial objectives. This
insight is further evidenced in various safety-critical applications of MARL, where the presence of such agents
might seriously deteriorate their performance. For example, in traffic management (Kuyer et al., 2008) and
autonomous driving systems, some agents, be it autonomous or human, might cause traffic jams or fatal
accidents due to their erratic behavior, while in distributed energy systems (Roesch et al., 2020) they might
compromise the stability and reliability of the power grid.

Be that as it may, the aforementioned previous work lacks a simultaneously practical and conceptually
general treatment of the problem of malicious agents in multi-agent systems. While Eliaz (2002) proposes an
interesting solution concept, that of a faulty-tolerant Nash equilibrium, their focus is on the implementation
problem, not a learning one, so the question of efficiently computing such an equilibrium is left open. The
line of work initiated by Gleave et al. (2020) on adversarial policies focuses on two-player games, and their
considerations are mostly from the attack’s perspective. Chen et al. (2023) consider distributed RL systems,
where agents share the same goal, while Babaioff et al. (2007) study the properties of a specific class of games
with malicious players, with fixed identities.

Motivated by the above shortcomings, we are interested in providing a formulation of the problem that
captures a general attack model. In particular, we are interested in a model that: (i) involves n-player Markov
games; (ii) the attacker can manipulate any up to k out of n trained policies; (iii) the attacker can arbitrarily
modify the controlled policies. Our aim is to find an efficient defense that takes into account such an attack
model and serves as a robust training procedure for the learning agents.

To that end, we formulate a general-sum Markov game with n players, whereby an attacker is given access to
all agents’ policies at test-time, previously trained on a clean environment. The attacker then arbitrarily
picks and perturbs any up to k < n of them, at which point all policies are deployed. Ultimately, we are
interested in devising a robust training procedure that accounts for the potential attack at test time and can
serve as a defense against it. The attack-defense model is described in Figure 1. Below we describe our main
contributions.

• First, in the same spirit as (Eliaz, 2002; Zhang et al., 2020), we introduce a new notion of equilibrium,
the k-Adversarially Robust Nash Equilibrium (ARNEQ), designed to be robust against the worst-case
arbitrary perturbations of any k out of n policies, and show its existence in general-sum Markov games.

• Second, we propose a model-based procedure to compute such a strategy and show that it converges to
an ARNEQ under standard assumptions on the game structure.

• Third, motivated by gradient-based decentralized methods in Markov games, we propose Adversarially
Robust Training (ART) for MARL, an efficient gradient-based learning algorithm, that can be run
independently among all players at training time.

• Finally, we provide extensive experiments on both cooperative and mixed environments that showcase the
efficiency of ART as a robust defense. Our results show that ART converges to a stable joint strategy and
is able to substantially improve performance, which can be clearly observed in our qualitative results.
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1.1 Other Related Work

1.1.1 Attacks and defenses in (MA)RL.

Adversarial attacks on RL systems have been extensively studied in recent years (Kiourti et al., 2020; Lin
et al., 2017; Huang et al., 2017; Mohammadi et al., 2023; Sun et al., 2020a;b). The main types of these attacks
include training-time attacks (Rakhsha et al., 2020; Xu et al., 2021), test-time attacks (Behzadan & Munir,
2017; Huang et al., 2017; Kos & Song, 2017; Sun et al., 2020a), and backdoor attacks (Kiourti et al., 2020;
Wang et al., 2021; Yang et al., 2019), where the adversarial perturbations happen at the environment level.
More recently, however, there has been a growing interest in the so-called adversarial policies in (MA)RL
(Gleave et al., 2020; Guo et al., 2021; Liu et al., 2022; Wang et al., 2023; Mohammadi et al., 2023; Li et al.,
2019) where attackers assume the identity of an agent, and thus attack by inducing natural observations.
Our work belongs to this class of attack type, but generalizes the framework of adversarial policies in MARL
for general n-player games and focuses on the defense front. Various types of defenses have been proposed
against test-time attacks (Zhang et al., 2020; Pattanaik et al., 2017; Zhang et al., 2021a; Wu et al., 2021),
training-time attacks (Banihashem et al., 2023; Kumar et al., 2021; Lykouris et al., 2021; Wu et al., 2022;
Nika et al., 2023; Zhang et al., 2021a; 2022) and backdoor attacks (Bharti et al., 2022). When it comes to
adversarial policies, previous work has mainly focused on heuristic defenses against them. For two-player
zero-sum Markov games, Gleave et al. (2020) propose sequential fine-tuning procedures against various
adversaries, which seems to robustify the trained policies against such adversaries, but not against a more
general attack. Furthermore, apart from issues such as catastrophic forgetting and myopic robustness against
a specific class of adversaries, the aforementioned defense strategy becomes combinatorially expensive in
n-player Markov games. If the identities of the controlled agents and the objectives of the attacker were
known, then a natural solution concept would be the Nash equilibrium (NE) strategy of the new game. In our
setting, this information is not given. As a consequence, the problem is no longer a standard Markov game,
and thus there is no NE defined in its solution space. Recently Liu et al. (2023) consider the problem of
defense in the two-player regime with one adversarial policy and take a game-theoretic approach. They define
a new game with modified utilities and then solve the game as if it were a zero-sum game. We generalize
their setting and study the defense problem against any up to k out of n adversarial policies in MARL. As
we mentioned earlier, this formulation renders the classical NE notion inappropriate. Thus, a new solution
concept is necessary.

1.1.2 Robust (MA)RL.

Another line of research related to our work is that of robustness in (MA)RL under model uncertainty (Wang
& Zou, 2021; Zhang et al., 2020; Russel et al., 2020; Mankowitz et al., 2018). In this line of work, the focus
is on designing algorithms that learn under worst-case environment assumptions. Instead, we consider the
robustness against the worst-case subset of adversarial policies at test time. A recent work from Li et al.
(2023) studies a similar problem to ours. They consider defenses against unknown Byzantine attacks in a
cooperative regime. However, they take a different approach to the defense problem. They capture the
uncertainty about the adversaries as uncertainty in transitions, which are characterized by types, thus taking
a Bayesian game approach, while allowing only for one adversary. We take a direct robust approach on each
individual agent while allowing for a more general attack of up to k adversaries. Furthermore, their notion of
robust equilibrium pertains to only one joint adversarial policy, while our robust equilibrium associates each
robust policy with a specific joint adversarial strategy. This substantially changes the setting since we are, in
effect, solving n games simultaneously.

1.1.3 Markov games.

We formalize our study using the notion of Markov games (Shapley, 1953). Our goal is to design decentralized
robust training procedures. There has been a lot of research in the past decade on model-based centralized
(Hu & Wellman, 2003) and model-free decentralized methods of computing the celebrated Nash equilibrium
of such games (Daskalakis et al., 2020; Leonardos et al., 2021; Ding et al., 2022; Zeng et al., 2022; Giannou
et al., 2022; Zhang et al., 2021b; Wang & Zou, 2022; Wei et al., 2021). However, all efficient methods are
proposed for particular types of Markov games, such as zero-sum or potential Markov games. The notion of
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robust Markov games has also been previously considered. For instance, Aghassi & Bertsimas (2006) propose
the notion of ex-post equilibrium to handle payoff uncertainty in normal form games, Kardeş et al. (2011)
consider robust Markov games with model uncertainty. In contrast, our notion of uncertainty is related
to adversarial policies. Finally, Kalogiannis et al. (2023) consider cooperative Markov games with a fixed
adversary. Our work differs from them in that we consider a general-sum Markov game setting and assume
the presence of unknown adversarial policies. This substantially changes the nature of the game since the
agents cannot cooperatively team up against the adversaries.

2 Problem Formulation

In this section, we first introduce the relevant notation, then give the necessary background of the problem,
after which we formally introduce our problem.

Notation. As usual ⟨·, ·⟩ will denote the inner product between two vectors from the same vector space, [n]
denotes the set of natural numbers up to and including n. We denote by ∥·∥ the Euclidean norm and by
∆(X) the set of probability simplices on the set X.

2.1 Preliminaries

Let G = (N ,S,A1 × . . . ×An,R1, . . . ,Rn,P, γ, µ) be a Markov game. Here N = [n] represents the set of
n players, S denotes the state space with cardinality S, A := A1 × . . .An is the joint action space with Ai

denoting the action space of player i with cardinality Ai. The reward of player i is a function of the state and
joint action, i.e., Ri : S × A → [0, 1]. The transition kernel is given by P : S × A → ∆(S), with P(s′|s, a)
denoting the probability that the game transitions into state s′ given that joint action a is taken in state s.
The discount factor is denoted by γ ∈ [0, 1), and µ ∈ ∆(S) denotes the initial state distribution. Finally, we
will denote by Ni the set of subsets of cardinality no greater than k of N \ {i}, and we let Ωi = ∆(Ni).

Stationary policies are mappings from states to distributions over actions. Formally, we let πi : S → ∆(Ai)
be a stationary policy for player i, lying in the policy space Πi. Moreover, we denote by Π = Πi × . . .×Πn

the joint policy space of all players, with elements denoted by π. In Sections 4 and 5, we will consider neural
policy classes. Given action a, policy π and a set K ∈ N , we define aK = (aj)j∈K and a−K = (aj)j ̸∈K for
action a and πK = (πj)j∈K and π−K = (πj)j ̸∈K for policy π.

The value function represents the expected discounted cumulative reward of a given player with respect to
a given joint policy, starting from a given state. Formally, given policy π ∈ Π and state s ∈ S, the value
function with respect to player i is given by V s

i (π) = E
[∑∞

t=0 γ
tRi(st, at)

∣∣∣s0 = s, π,P
]
, where the sequence

s0, a0, s1, a1, . . . denotes the traversed state-action tuples when the initial state is s, actions are taken using
π and the transitions follow P. Furthermore, we let V µ

i (π) = Es∼µ[V s
i (π)] denote the value function with

respect to the initial state distribution. The value function satisfies the Bellman equation:

V µ
i (π) =

∑
s∈S

µ(s)
∑
a∈A

∏
j∈N

πj(aj |s)(BVi)(s, a) , (1)

with B representing the Bellman operator acting on Vi, defined as (BVi)(s, a) := Ri(s, a) + γ ⟨P(s, a), Vi(π)⟩,
where Vi(π) denotes the S-dimensional vector with values V s

i (π) and P(s, a) denotes the S-dimensional vector
with entries P(s′|s, a), for all s′ ∈ S. Next, we formally define the notion of a Nash equilibrium.

Definition 1 A joint policy π∗ is said to be a Nash equilibrium (NE) strategy if no player can be better off
by deviating from it. Formally, we have V µ

i (π∗) ≥ V µ
i (π′

i, π
∗
−i), for all π′

i ∈ Πi and i ∈ N . Here π∗
−i denotes

the joint policy of the players other than i.

Further, a joint strategy π∗ is said to be an ϵ-approximate NE strategy if V µ
i (π∗) ≥ V µ

i (π′
i, π

∗
−i)− ϵ, for all

π′
i ∈ Πi and i ∈ N . If an NE joint strategy is stochastic, it is said to be a mixed NE strategy.

Fink (1964) showed that a mixed NE strategy always exists in any given n-player Markov game.
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2.2 Attack Model

As already described in Section 1, we consider test-time attacks, whereby an attacker is allowed access to all n
trained policies and can arbitrarily pick and manipulate any up to k < n of them. It’s important to highlight
that the attacker’s ability to select any subset of k trained policies adds an additional layer of complexity to
the defense problem. Any information about the attack is necessary to obtain an efficient defense against it.
In our setting, the learning agents are unaware of who among them will be attacked at test time, and so, do
not know a priori which agents to treat as adversarial.

2.3 Defense Objective

Our focus in this paper is on the defense front. In particular, we are interested in devising training procedures
that take into account the potential future threat at deployment. At training time, there is no attack present.
The only information the agents have about the attack is the parameter k and its realization at test time.
Thus, our aim is to propose a training procedure for each individual agent, taking into account this parameter,
and the fact that any other agent may behave adversarially towards it. In the next section, we will introduce
a new solution concept that is designed to capture the nature of the attack and provide such a robust defense.

3 Theoretical Results

In this section, we first formulate our solution concept, namely, the adversarially robust Nash equilibrium.
Then, we show its existence in general-sum Markov games. Finally, we provide a model-based approach to its
computation and prove its convergence.

3.1 The Adversarially Robust Nash Equilibrium

In this section we introduce our solution concept which is tailored to our attack model and defense objective.
Our goal here is to provide the agents with a defense strategy that they can use independently of the other
agents. Similar to robust MARL with model uncertainty (Zhang et al., 2020), we consider robustness in
MARL under attack uncertainty. The best that player i can do with the given information is to solve the
worst-case problem, i.e. to be robust against the worst-case attacker (in terms of the agents under attack and
the objectives). To that end, we propose the Adversarially Robust Nash Equilibrium (ARNEQ), defined as
follows.

Definition 2 A joint policy π∗ is said to be an ARNEQ if there exist S-dimensional vectors V ∗
1 , . . . , V

∗
n such

that, for every player i ∈ N and state s ∈ S, we have

π∗
i (·|s) ∈ arg max

πi∈Πi

min
ωi∈Ωi

min
π̂i∈Π−i

EK∼ωi

[∑
a∈A

πi(ai|s)
∏
j∈K

π̂i
j(aj |s)

∏
l ̸∈K∪{i}

π∗
l (al|s)(BV ∗

i )(s, a)
]
,

where we denote by π̂i the joint adversarial policy (π̂i
j)j ̸=i with respect to player i, where π̂i

j ∈ Πj, for each
j ̸= i, and Ωi = ∆(Ni).

Before we proceed any further, it is important to point out that this notion of equilibrium does not correspond
to that in zero-sum Markov games, or even adversarial team Markov games. In fact, the game induced by
the defensive behavior of the agents is not even a static game which all agents share with each other. To see
this, consider the following example.

Example 1 Let n = 3 and k = 1. When computing an ARNEQ, each agent has to consider its worst-case
adversary. Suppose that the worst-case adversary of agent 1 may be agent 2, while the worst-case adversary
of agent 2 may be agent 3. So agent 1 and agent 2 are not playing the same game, since the benign agents
and worst-case adversarial agents for each of them are different.

We will first show that such an equilibrium always exists in general-sum Markov games. We defer the proof
of the result to the Appendix (see the Supplementary Material).
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Theorem 1 Let G be a finite general-sum Markov game with n players, that is, suppose max{n, S,A} <∞,
where A = maxi∈[n] Ai, and let k < n. Assume that an arbitrary subset of at most k players use arbitrarily
modified utilities, and assume that the mixed strategies of all players lie in compact sets. Then, an ARNEQ,
as in Definition 2, exists.

The next natural question is how to find such an equilibrium. In the next section, we will focus on devising a
model-based centralized approach to computing an ARNEQ and prove its convergence.

3.2 Adversarially Robust Nash Q-Learning

Nash Q-Learning (Hu & Wellman, 2003) is a model-based approach to finding the Nash equilibrium of a
Markov game. Essentially, each player maintains estimates of the Q-values of every player1 and then computes
the Nash equilibrium of the stage game. The Q-values are then updated based on the outcome of applying
the so-called Nash operator (analogous to the Bellman operator for Markov games) on the current Q-values.
This method leverages a celebrated result from Filar & Vrieze (2012) which links the value functions that
correspond to the Nash equilibrium of the entire Markov game with those corresponding to each individual
stage game, which will be defined later.

First, we need to define an operator that is appropriate for our setting and satisfies the recursive property
analogous to the Bellman operator. Based on Definition 2, we define the following update sequence, for any
i ∈ N , state s ∈ S and t ≥ 0:

V
t+1
i (s) = max

πi

min
ωi∈Ωi

π̂i∈Π−i

EK∼ωi

[∑
a∈A

πi(ai|s)πt
−(K∪{i})(a−(K∪{i})|s)π̂i

K(aK |s)(BV
t

i)(s, a)
]
,

where πt denotes the joint benign policy computed at step t. Similarly, we define the Bellman backup for the
Q-values with respect to an ARNEQ policy π∗, for any state-action tuple (s, a), as follows, for given learning
rates αt ∈ [0, 1):

Q
∗
i (s, a) = Ri(s, a) + γ

∑
s′∈S
P(s′|s, a)EK∼ω∗

i

[∑
a′∈A

π∗
−K(a′

−K |s′)π̂i,∗
K (a′

K |s′)Q∗
i (s′, a)

]
,

where ω∗
i and π̂i,∗ are the adversarial counterparts of the ARNEQ policy of player i, and π̂i,∗

K = (π̂i,∗
j )j∈K .

At this point, we need to introduce another relevant definition – an instantiation of the ARNEQ for a stage
game defined in terms of the Q-values only for a given state. Our procedure will iteratively compute it for
each encountered state.

Definition 3 Fix state s ∈ S. Given the Q-values Qi(s, a), for all i ∈ N and a ∈ A, the joint tuple
(πi, π̂

i, ωi)i∈N is said to be a stage ARNEQ with respect to state s if, for every i ∈ N , we have

(πi, π̂
i, ωi) ∈ arg max

πi∈Πi

min
ω′

i∈Ωi

π′
−i∈Π−i

EK∼ω′
i

[∑
a∈A

πi(ai|s)π−(K∪{i})(a−(K∪{i})|s)π′
K(aK |s)Qi(s, a)

]
.

Now we are ready to formulate the update rule for our procedure as follows:

Q
t+1
i (st, at) = (1− αt)Q

t

i(st, at) + αt

(
Ri(st, at) + γARNEQ

(
Q

t

i(st+1)
))

, (2)

where

ARNEQ(Qt

i(st+1)) := EK∼ωt
i

[∑
a′∈A

πt
−K(a′

−K |st)π̂i,t
K (a′

K |st)Q
t

i(st+1, a
′)
]
,

1We will use player and agent interchangeably.
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with Q
t

i(st+1) = [Qt

i(st+1, a)]a∈A. Here, at denotes the joint action taken at time step t in state st by all
the agents, πt denotes the stage game ARNEQ joint policy computed with values (Qt

i)i∈N with adversarial
counterparts (ωt

i , π̂
i,t)i∈N .

Before stating the main result of this section, we first state the assumptions under which it holds. They are
standard in similar model-based approaches to equilibrium computation (Zhang et al., 2020; Hu & Wellman,
2003; Yang et al., 2018).

Assumption 1 Each state and action tuple has been visited infinitely often.

Assumption 2 The rates αt satisfy, for every t ≥ 0:

• 0 ≤ αt < 1,
∑

t≥t αt =∞ and
∑

t≥0 α
2
t <∞.

• αt = 0 for any (s, a) ̸= (st, at), that is, we only update the Q-values corresponding to traversed state-actions.

Assumption 3 For each stage game, one of the following conditions holds:

• A stage ARNEQ is also a global optimum, that is, for any i ∈ N and π(·|s), we have

EK∼ωt
i

[∑
a∈A

πt
−K(a−K |s)π̂i,t

K (aK |s)Q
t

i(s, a)
]
≥ EK∼ωi

[∑
a∈A

π−K(a−K |s)π̂i
K(aK |s)Q

t

i(s, a)
]
,

for any π ∈ Π, π̂i ∈ Π−i and ωi ∈ Ωi.

• A given player’s payoff is increased if other benign players or its attacker deviate, that is, for any i ∈ N
we have

EK∼ωt
i

[∑
a∈A

πt
−K(a−K |s)π̂i,t

K (aK |s)Q
t

i(s, a)
]
≤ EK∼ω′

i

[∑
a∈A

πt
i(ai|s)π′

−(K∪{i})(a−(K∪{i})|s)π̂′
K(aK |s)Q

t

i(s, a)
]
,

for all π′ ∈ Π, π̂′ ∈ Π−i and ω′
i ∈ Ωi.

Now we are ready to state the result. Its full proof is deferred to the Appendix (see the Supplementary
Material).

Theorem 2 Under Assumptions 1, 2 and 3 (formally stated in the Appendix), the Adversarially Robust
Nash Q-Learning procedure as given in Equation equation 2 converges to Q∗

i , for every player i ∈ N .

Proof sketch. The main ingredient of the proof is utilizing a previous result from (Hu & Wellman, 2003)
which states that, if Assumptions 1 and 2 hold, and a given operator on the Q-functions is a contraction, then
the procedure described above converges to an equilibrium. So the only thing to prove is that the ARNEQ
operator is a contraction. We use Assumption 3 to that end, by separately considering both cases of the
assumption. With this, all the conditions of the utilized result are satisfied, and thus we conclude convergence
to an ARNEQ. □

This result completes the theoretical characterization of our problem. Although the proposed procedure is
simple and intuitive, with the crucial benefit of satisfying strong theoretical guarantees, there are also several
unfortunate drawbacks associated with it. First, note that the update rule given in Equation equation 2
requires knowledge of the equilibrium policies of the benign agents in every iteration, which in turn requires
knowledge of the Q-values of all agents, from every agent’s point of view. This is a downside that all
centralized, value-based, algorithms in MARL, such as Nash Q-Learning, share. Second, even if knowledge
of the Q-values of all agents can be guaranteed, the problem of computing a Nash equilibrium from given
utilities in a general-sum Markov game is known to be computationally hard (Daskalakis et al., 2009). Finally,
the theoretical guarantees of the proposed method heavily rely on the stated assumptions. Such assumptions
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may not always be satisfied in practice, where the irregularities in the individual utilities do not need to
satisfy saddle point or global optima conditions. Motivated by the above, our next goal is thus to find
a more practical and efficient approach to finding ARNEQ policies. In the next section, we introduce a
model-free gradient-based algorithm that is able to empirically provide an efficient defense in various MARL
environments.

4 Adversarially Robust Training for MARL

In this section, we propose an independent learning algorithm, Adversarially Robust Training (ART) for
MARL, a gradient-based method that uses a two-timescale update rule, designed to provide a practically
efficient defense against unknown adversarial policies.

Our robust notion of equilibrium imposes a specific training strategy. Note that the adversarial policies that
complement an ARNEQ strategy profile are not necessarily identical across different players. Thus, each
player, apart from computing its policy, also needs to compute its own set of adversarial agents and their
associated adversarial policies. Thus, three different components need to be learned independently. Since
each individual problem is a max min problem, it is natural to consider the Gradient Descent Ascent (GDA)
learning paradigm (Lin et al., 2020). This method has been widely used in the context of Markov games and
has been shown to converge to equilibria in more structured regimes (Daskalakis et al., 2020).

Recall from the previous section that ωi, πi and π̂i denote the adversarial subset selection policy, the benign
policy, and adversarial joint policy with respect to agent i, respectively. We parametrize them as θi, θi and θ̂i,
respectively. Based on these definitions, we define the loss with respect to a given adversarial subset selection
policy ωi, dependent on joint policy π and adversarial policy π̂i, as

Li(θi, θ, θ̂
i) = EK∼ωi(θi)

[
V µ

i

(
π−K(θ−K), π̂i

K(θ̂i
K)
)]

.

Based on this definition, and the fact that we can write the above loss as an inner product, we have

∇θi
Li(θi, θ, θ̂

i) =
〈
∇θi

ωi(θi), V µ
i (π(θ), π̂i(θ̂i))

〉
,

where V µ
i (π(θ), π̂i(θ̂i)) denotes the

∑k
m=1

(
n−1

m

)
-dimensional vector with entries V µ

i (π−K(θ−K), π̂i
K(θ̂i

K)), for
K ∈ Ni.

The loss, with respect to player i, of the adversarial policy π̂i, depending on ωi and π is similarly defined.
However, the gradient here is with respect to θ̂i. Note that, for each component j of the adversarial policy
π̂i the gradient ∇

θ̂i
j

Li(θi, θ, θ̂
i) is proportional to

∑
K:K∈Ni∧j∈K V µ

i (π−K(θ−K), π̂i
K(θ̂i

K)), since for those
subsets K that do not contain j as an adversarial component, the gradient becomes 0.

Our learning protocol proceeds as follows. In every round t ≥ 1, player i ∈ N maintains three gradient
updates, one for the adversarial subset parameters θt

i , one for the adversarial policy parameters θ̂i,t and one
for its own benign policy parameters θt

i. Furthermore, we set the same learning rate ηA for both ω
(t)
i and

π̂
(t)
i , since they both comprise the adversarial component of the problem.

At the beginning of the round, player i collects samples of subsets from the adversarial subset selection
policy of the previous round ωt−1

i . In order to perform the gradient updates of round t, player i needs to
collect several roll-outs. We denote by ∇̃Li(θi, θ, θ̂

i) the gradient estimate used for the updates based on the
collected roll-outs.

The pseudocode of the described method is given in Algorithm 1.

5 Experimental Results

We evaluate policies trained using ART in two cooperative environments and one environment where the agents
do not have aligned utilities. More specifically, we consider the Spread multi-agent-particle environment (Lowe
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Algorithm 1 ART for MARL (for player i)
Input: Number of potential adversaries k; accuracy parameter ϵ > 0; learning rates ηA and ηB ; number of
episodes T . Initialize: θ0

i = 0, θ0 = 0, θ̂i,0
j = 0, for all i ∈ N , j ̸= i.

1: for t = 1, 2, . . . , T do:
2: Sample adversarial subsets from ωt−1

i .
3: θt

i ← θt−1
i − ηA∇̃θiLi

(
θt−1

i , θ
t−1

, θ̂i,t−1
)

4: θ
t

i ← θ
t−1
i + ηB∇̃θi

Li

(
θt

i , θ
t−1

, θ̂i,t−1
)

5: for j ∈ Ni do:
6: θ̂i,t

j ← θ̂i,t−1
j − ηA∇̃θ̂i

j

Li

(
θt

i , θ
t−1

, θ̂i,t−1
)

7: end for
8: end for

et al., 2017), a cooperative multi-agent extension of the MuJoCo Ant environment (Todorov et al., 2012),
and the cooperative Pursuit environment (Gupta et al., 2017). For detailed descriptions and parameters of
the environments, see the Appendix (in the Supplementary Material).

Environment Algorithm No Adversary 1 Adversary 2 Adversaries 4 Adversaries

Independent
Spread

Naive −34.0 ± 1.9 −493.2 ± 11.2 −480.8 ± 16.1

NAFixed-K(k=1) −142.8 ± 24.5 −271.2 ± 31.0 −290.8 ± 36.6
ART(k=1) −123.4 ± 11.7 −190.2 ± 13.3 −242.0 ± 33.4
ART(k=2) −148.0 ± 15.1 −201.4 ± 11.7 −213.6 ± 9.9

Ant
Naive 327.5 ± 48.9 2.2 ± 10.7

NA NAFixed-K(k=1) 229.0 ± 30.0 29.5 ± 14.8
ART(k=1) 181.9 ± 25.4 58.2 ± 6.7

Pursuit

Naive 40.7 ± 3.1 34.4 ± 1.2 32.3 ± 1.9 −2.0 ± 2.3
Fixed-K(k=1) 37.6 ± 2.8 35.7 ± 4.1 30.9 ± 2.8 8.5 ± 2.7
Fixed-K(k=2) 29.2 ± 10.5 26.3 ± 10.3 25.7 ± 9.8 17.1 ± 3.3
Fixed-K(k=4) 25.89 ± 7.24 23.82 ± 7.50 16.97 ± 8.12 6.21 ± 6.27
ART(k=1) 47.3 ± 1.3 50.6 ± 1.8 48.1 ± 1.9 26.0 ± 4.3
ART(k=2) 42.6 ± 3.7 37.4 ± 1.7 36.4 ± 2.4 21.0 ± 4.0
ART(k=4) 35.6 ± 4.3 32.8 ± 1.5 34.0 ± 1.6 19.3 ± 2.0

Table 1: Comparison of ART with the proposed baselines. Fixed-K(k=2) for Independent Spread is omitted, as it is equivalent
to ART(k=2). We report the mean and the standard error of the total reward achieved by an agent under attack over five runs
with different seeds. In each run, we first train the benign agents and then train adversaries to minimize the total reward of one
of the benign agents, considered to be a victim.
For Independent Spread, we report the worst-case total reward, where the minimum is taken over all possible victims and their
adversaries. Since Ant and Pursuit are cooperative and symmetric environments, we consider an attacker that controls a specific
subset of agents with cardinality k, while the remaining agents are victims who have a common reward function. The table
reports the total reward of these agents. Note that, for Ant, we only consider k = 1, since an adversary that controls more
agents can lift the ant up, denying any forward movement.

5.1 Baselines

We compare the effectiveness of ART with Naive Training, where no adversarial agents are present during
the training phase. This provides a baseline for evaluating the resilience of robustly trained agents compared
to conventional techniques. Additionally, we introduce the Fixed-K training baseline where the subset of
agents controlled by the adversary is fixed during the training process. We aim to signify the importance of
training with the worst-case subset of adversaries. Both baselines are trained with the same hyperparameters
as ART, ensuring a fair comparison across the board.
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Figure 2: Consecutive snapshots of agents under attack by one adversary in the Independent Spread environment:
first row represents Naive Training and second row represents ART(k=1). The green circle corresponds to the agent
under attack, red to the adversary, blue to the benign agent not under attack, the black star is the target landmark of
the attacked agent, and the black circles are the target landmarks of other agents. Naively trained agents do not
avoid other agents and allow the adversary to infer the position of their landmark, resulting in the adversary blocking
it. Agents trained with ART choose a longer route to their destination, which avoids adversarial agents, and maintain
distance around their landmark, which does not allow the adversary to infer its exact location.

Figure 3: Consecutive snapshots of agents under attack in the Ant environment: first row represents naive training
and second row represents ART(k=1). The dotted red line in Ant serves as a stationary reference point. Naively
trained agents struggle to move forward when under attack. Robustly trained ones are able to move forward when one
leg is corrupted.

5.2 Implementation Details

To train robust neural policies, we implemented ART as described in Algorithm 1. Both the adversarial
and benign policies are updated using the PPO (Schulman et al., 2017) implementation of the ray library
(Moritz et al., 2018). The adversarial subset selection model ω, as described in Section 4 is implemented using
pytorch (Paszke et al., 2019) and utilizes REINFORCE (Sutton et al., 1999) update rules. To allow training
ω with more data, we used additionally generated trajectories. Hyperparameters were selected according to
the fine-tuned examples provided in the ray library, except for the learning rate of benign agents, which is
set to be half of the learning rate of adversarial agents. This leads to aggressively updated adversaries, while
still ensuring convergence in a reasonable time. All used hyperparameters can be found in the Appendix (see
the Supplementary Material).

5.3 Empirical Analysis

Quantitative analysis. To evaluate the robustness of the obtained agents, we fixed the benign policies
and trained new adversaries from scratch that use the same hyperparameters. We used the latter to test
if the robust policies generalize to new attackers. Table 1 reports the test-time results of ART and both
baselines. We observe that in all environments, ART consistently outperforms Naive Training when under
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Figure 4: Consecutive snapshots of agents under attack by 4 adversaries in the Pursuit environment: the first row is a
result of Naive Training and the second row is a result of ART(k=1). For better visibility, we zoomed in on the area
of interest (indicated by the red dotted area). A full version can be found in the Appendix (see the Supplementary
Material). Red circles correspond to adversarial agents, green to benign agents, and blue to evaders, the orange boxes
to the field of view of agents. Yellow arrows show the movement of the adversary in the upper row and benign agents
in the lower row. Naively trained agents expect cooperation, leading to agents being easily fooled. The adversary
moves upward instead of left, resulting in the prey not being captured. Agents trained with ART learned to effectively
avoid contact with other agents, until they arrive at a specific location. This technique ensures that in every group of
agents, there are always enough benign agents present to fully surround prey.
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Figure 5: Achievable increase in the performance of a single agent, i.e., victim, after we train the benign agents and
adversaries as described in Table 1. We consider one fixed victim agent and 5 different runs with different seeds. In
each run, we train the benign policies until convergence using ART. Afterward, we select one agent and train an
adversary attacking the selected agent. Then, training of the selected agent is continued for 5% of the original number
of training steps, while keeping all other policies fixed. Depicted is the difference between the performance of the
improved policy and the original performance. If the players have converged to an ARNEQ, then further training a
given agent when the rest of the players keep playing fixed strategies should not imply increased performance for
this player. Otherwise, this would mean there is room for improvement which would violate the very condition of an
equilibrium. Note that, on average, performance tends to stay the same, except for some small oscillations which are
due to the stochasticity of deep RL methods. This suggests that players are close to an ARNEQ.

attack. Fixed-K training results in a more robust policy than naive training, but the benign agents tend
to overfit to the adversaries present during training, resulting in worse performance when under attack by
different adversarial agents. The importance of anticipating the correct number of adversaries during the
training procedure is environment-specific. In Independent Spread, optimal performance of ART is achieved
if the number of adversaries during training matches their number at deployment time. In pursuit, training
with a smaller number of adversaries yields better performance in all scenarios. We conjecture that this may
be due to the hardness of training with a larger number of adversarial agents. In the Independent Spread
and Ant environment the resilience against adversarial attacks of ART and Fixed-K comes at the cost of
decreased performance in a clean environment. In Pursuit, adversarial training is beneficial even when there
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is no attack. This can, in part, be explained by examining the behavior of the trained agents, which we
discuss in the qualitative analysis.
Qualitative analysis. Next, we analyze how the behavior of agents trained with ART differs from naive
training in the examined environments. For Independent Spread, Figure 2 shows that agents trained using
ART opt for longer routes, strategically avoiding potential adversaries. This behavior explains the observed
difference in performance when comparing ART and naive training in clean and adversarial environments.
For Ant, Figure 3 depicts the ability of ART to train agents that are able to move the ant forward even if
one leg is acting maliciously. As can be seen in the figure, we do not learn such a robust policy with Naive
Training. For Pursuit, Figure 4 depicts that agents trained using ART meet up at a specific point at the
beginning of the episode. This strategic rendezvous not only allows them to navigate the environment in a
trusted group, enabling them to bypass interactions with adversaries but seems to contribute to improved
performance even when not under attack.
Convergence. Finally, we aim to evaluate the convergence of ART by analyzing the achievable increase
in performance of a single agent. A small increase signifies the approximate convergence of ART to an
ARNEQ. Figure 5 depicts this increase in performance for all evaluated environments and differing numbers
of adversaries. As the achieved improvement is small, this suggests that we approach an ARNEQ.

6 Concluding Discussion

We considered the problem of defending against unknown adversarial policies in general-sum Markov games.
We proposed a novel solution concept, namely, the adversarially robust Nash equilibrium (ARNEQ). Further,
we provided a theoretical characterization of our solution concept and analyzed a centralized method for
computing it. We also proposed a practical decentralized algorithm to compute an ARNEQ and empirically
demonstrated its efficiency across three different environments.

On the experimental front, our paper provides comprehensive results in three different multi-agent reinforce-
ment learning environments, all of which showcase the benefit of using our defense algorithm at training.
Conducting further experiments on more challenging environments with more agents would provide further
insight into the efficiency of our method. The nature of our algorithm necessitates the simultaneous computa-
tion of as many estimates as there are players, for each individual player. Thus, it would be interesting to see
how scalable our method is for large games. Here, approaches such as mean-field multi-agent reinforcement
learning might provide essential tools.

On the theoretical front, we provided characterization results for convergence in a centralized setting of our
model. A key open question that is left in the paper is whether we can restrict the attack model so that we
are able to provide theoretical convergence guarantees on independent gradient-based learning methods in
more structured regimes. For instance, in Markov potential games, it is known that independent learning
converges to an approximate Nash equilibrium due to a common potential function for all players. Under
our attack model, this game structure is damaged, since the players constantly update their estimates of
utilities for the other players at training time – which are different from the original utilities of the underlying
game. Thus, a natural research question would be: can we utilize the underlying potential function, and
characterize the quantity of deviation of the modified value functions from their original values using this
potential function? Addressing such a question is an interesting future research direction.
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A Proof of Existence (Theorem 1)

For the existence proof, we will use the Kakutani’s fixed point Theorem. This result has been classically
used in proving the existence of Nash equilibria in various types of Markov games. It requires the careful
construction of a set-valued function whose fixed point would represent the equilibrium of the game of interest.
Once the construction is made, the theorem states that, if such a function satisfies some technical conditions,
then the existence of its fixed point is guaranteed, thus effectively proving the existence of an equilibrium
of the game. This will be our approach in the following. First, we will prove some auxiliary results related
to properties such as contraction, continuity, and convexity. Then, we will construct a set-valued function
whose fixed point would represent an ARNEQ and further show that it satisfies the technical conditions of
Kakutani’s fixed point theorem.

A.1 Auxiliary Results

In this section we prove some auxiliary results which will be needed in the proof of Theorem 1.

We will use the following definitions only for this section. Fix an arbitrary state s and player i. Let xi
s denote

a benign policy πi(·|s) of player i at state s, and let y−i
s denote the joint policy π−i(·|s) of the rest of the

benign players. Moreover, let zi
s denote an adversarial joint policy π̂i(·|s) and ωi

s denote the randomized
strategy ωi, but only applied on state s. We also denote by X the policy space ∆(Ai) and by Y the joint
policy space ×j ̸=i∆(Aj). Note that we do not assume action spaces that depend on the state. Let Z = X ×Y
denote the whole policy space Π.

Now, given a vector of value functions (V i)i∈N in some compact value function space V = V1 × . . .× Vn, let
us define, for each player i ∈ N and state s ∈ S, the function

f i
s

(
xi

s, y
−i
s , zi

s, ω
i
s, V

i
)

:= Ea∼(xi
s,y−i

s ,zi
s),ωi

s

[
R(s, a) + γ

〈
P(s, a), V i

〉]
.

Next, let us define

ϕi
s(xi

s, y
−i
s , V i) := min

zi
s∈Y

min
ωi

s∈Ωi

f i
s

(
xi

s, y
−i
s , zi

s, ω
i
s, V

i
)
,
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and

ψi
s(y−i

s , V i) := max
xi

s∈X
ϕi

s(xi
s, y

−i
s , V i) .

Note that, the spaces X , Y, and Ωi are compact spaces (closed and bounded) as policy spaces. Our first
result shows that the mapping ψ is a contraction mapping on the value function spaces.

Lemma 1 Given joint policy x, let ψx : V → V, be such that, for each i, s we have ψx(V ) = (ψi
s(y−i

s , V i))i,s.
Then, the mapping ψ is a contraction mapping.

Proof: Let V,U ∈ V. Fix a player i and state s. Note that we have∣∣∣ψi
s(y−i

s , V i)−ψi
s(y−i

s , U i)
∣∣∣ =

∣∣∣∣max
xi

s∈X
ϕi

s(xi
s, y

−i
s , V i)− max

xi
s∈X

ϕi
s(xi

s, y
−i
s , U i)

∣∣∣∣
≤
∣∣ϕi

s(x̃i
s, y

−i
s , V i)− ϕi

s(x̃i
s, y

−i
s , U i)

∣∣
=
∣∣∣∣min
zi

s∈Y
min

ωi
s∈Ωi

f i
s

(
x̃i

s, y
−i
s , zi

s, ω
i
s, V

i
)
− min

zi
s∈Y

min
ωi

s∈Ωi

f i
s

(
x̃i

s, y
−i
s , zi

s, ω
i
s, U

i
)∣∣∣∣

≤
∣∣f i

s

(
x̃i

s, y
−i
s , z̃i

s, ω̃
i
s, V

i
)
− f i

s

(
x̃i

s, y
−i
s , z̃i

s, ω̃
i
s, U

i
)∣∣

=
∣∣∣Ea∼(x̃i

s,y−i
s ,z̃i

s,ω̃i
s)
[(
R(s, a) + γ

〈
P(s, a), V i

〉)
−
(
R(s, a) + γ

〈
P(s, a), U i

〉)]∣∣∣
=
∣∣∣Ea∼(x̃i

s,y−i
s ,z̃i

s,ω̃i
s)
[
γ
〈
P(s, a), V i − U i

〉]∣∣∣
≤ γ

∥∥V i − U i
∥∥

∞ ,

where for the first inequality, we let x̃i
s be the maximizer of ϕi

s(xi
s, y

−i
s , V i), for the second inequality we let

(z̃i
s, ω̃

i
s) be the minimizer of f i

s

(
x̃i

s, y
−i
s , zi

s, ω
i
s, U

i
)
, and for the last inequality we use Hölder. □

Next, we will show that there exists a unique robust value vector of the above mapping, a result that follows
from Banach’s contraction theorem which we state below.

Theorem 3 (Banach’s Contraction Mapping Theorem) Let (V, ∥·∥) be a complete metric space and
let ψ : V → V be a contraction mapping. Then there exists a unique fixed point of the function ψ.

Lemma 2 For any given joint policy x, player i ∈ N and state s ∈ S, there exists a unique value vector V i

such that
V i

s = max
xi

s∈X
min
zi

s∈Y
min

ωi
s∈Ωi

f i
s

(
xi

s, y
−i
s , zi

s, ω
i
s, V

i
)

= ψi
s(y−i

s , V i) .

Proof: Note that, the fact that the metric space (V, ∥·∥∞) is complete, since V is compact, together with
Lemma 1 above, implies the desired result as a consequence of Banach’s contraction mapping point theorem
(Theorem 3). □

Now we need to show that our functions f i
s are equicontinuous. First, let us define the following norm jointly

on policies and value functions. Given joint policies x and y, and value functions V and U , for every state s
and player i, let

d
(
(xs, V

i), (ys, U
i)
)

= max
i∈N ,a∈Ai

∣∣xi
sa − yi

sa

∣∣+ max
s∈S

∣∣V i
s − U i

s

∣∣ ,
where xs denotes the joint policy vector for state s, xi

sa denotes the probability of player i taking action
a ∈ Ai in state s, while V i

s denotes the value of state s for player i with respect to value vector V .

Lemma 3 Fix s ∈ S and player i. Given ϵ > 0, there exists δ(ϵ) > 0, such that, if for any p = (xs, V
i) and

q = (ys, U
i), we have d(p, q) < δ(ϵ), then, for all zi

s ∈ Y and ωi
s ∈ Ωi, we have∣∣f i

s(xs, z
i
s, ω

i
s, V

i)− f i
s(ys, z

i
s, ω

i
s, U

i)
∣∣ < ϵ .
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Proof: First, note that, since rewards are in the unit interval, value functions are bounded by 1/(1− γ).
Letting p = (xs, V ) and q = (ys, U), we have∣∣f i

s(xs, z
i
s, ω

i
s, V

i)− f i
s(ys, z

i
s, ω

i
s, U

i)
∣∣

=
∣∣Ea∼(xs,zi

s,ωi
s)
[
R(s, a) + γ

〈
P(s, a), V i

〉]
− Ea∼(ys,zi

s,ωi
s)
[
R(s, a) + γ

〈
P(s, a), U i

〉]∣∣
≤ EK∼ωi

[∣∣∣∣∣∑
a∈A

∏
j∈K

zi,j
saj

∏
l ̸∈K

xi
sal

(
R(s, a) + γ

〈
P(s, a), V i

〉)
−
∑
a∈A

∏
j∈K

zi,j
saj

∏
l ̸∈K

yi
sal

(
R(s, a) + γ

〈
P(s, a), U i

〉) ∣∣∣∣∣
]

≤

∣∣∣∣∣∑
a∈A

∏
j∈K∗

zi,j
saj

∏
l ̸∈K∗

xi
sal

(
R(s, a) + γ

〈
P(s, a), V i

〉)
−
∑
a∈A

∏
j∈K∗

zi,j
saj

∏
l ̸∈K∗

yi
sal

(
R(s, a) + γ

〈
P(s, a), U i

〉) ∣∣∣∣∣
≤
∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

R(s, a)

∣∣∣∣∣∣
+ γ

∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

〈P(s, a), V i
〉∣∣∣∣∣∣

+ γ
∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

∏
l ̸∈K∗

yi
sal

〈
P(s, a), V i − U i

〉∣∣∣∣∣∣
≤
∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

∣∣∣∣∣∣+ γ

1− γ
∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

∣∣∣∣∣∣
+ γ

∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

∏
l ̸∈K∗

yi
sal

∥∥V i − U i
∥∥

∞

∣∣∣∣∣∣
= 1

1− γ
∑
a∈A

∣∣∣∣∣∣
∏

j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

∣∣∣∣∣∣+ γAn
∥∥V i − U i

∥∥
∞ ,

where the second inequality follows from Hölder’s inequality, where K∗ denotes the set that maximizes the
difference inside the absolute value; for the third inequality we have just used an algebraic artifice, adding
and subtracting a term related to yi and V i, and then rearranging; the third inequality uses the fact that the
rewards are in the unit interval, and Hölder’s inequality.

Now, let us define

δ1(ϵ) = (1− γ) min{ϵ, 1}
2(2n−k − 1)An

, and δ2(ϵ) = min{ϵ, 1}
2γAn

.

Moreover, let αi
s,ai

= yi
sai
− xi

sai
. Assume that |αi

sai
| < min{δ1(ϵ), δ2(ϵ)}, and |V i

s − U i
s| < min{δ1(ϵ), δ2(ϵ)}

for any player i ∈ N , state s ∈ S and action a ∈ A. For the first term on the right-hand-side of the last
equality above, we have

1
1− γ

∑
a∈A

∣∣∣∣∣ ∏
j∈K∗

zi,j
saj

 ∏
l ̸∈K∗

xi
sal
−
∏

l ̸∈K∗

yi
sal

∣∣∣∣∣
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≤ 1
1− γ

∑
a∈A

∏
j∈K∗

zi,j
saj

∑
M⊂N \K∗

|M |≥1

∣∣∣∣∣ ∏
m∈M

αm
s,am

∣∣∣∣∣
∣∣∣∣∣∣
∏

m ̸∈MC

ym
sam

∣∣∣∣∣∣
≤ 1

1− γ
∑
a∈A

∏
j∈K∗

zi,j
saj

∑
M⊂N \K∗

|M |≥1

∣∣∣∣∣ ∏
m∈M

αm
s,am

∣∣∣∣∣
≤ 1

1− γ
∑
a∈A

∑
M⊂N \K∗

|M |≥1

∣∣∣αm′

s,am′

∣∣∣
≤ ϵ

2 ,

where the first inequality follows from the algebraic identity

∣∣∣∣∣
n−k∏
m=1

(ym
sam

+ αm
sam

)−
n−k∏
m=1

ym
sam

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

M⊆N \K∗

|M |≥1

( ∏
m∈M

αm
sam

)( ∏
m∈MC

ym
sam

)∣∣∣∣∣∣∣∣ ,
the second inequality follows from the fact that the product of numbers in the unit interval is no greater than
1; the third inequality uses a similar argument on the policies zj

saj
and the rest of the differences αm

sam
, except

αm′

sam′ , where we note that αm
sam

are also in the unit interval; the last inequality follows by definition of δ1(ϵ).

On the other hand, note that we also have

γAn
∥∥V i − U i

∥∥
∞ <

ϵ

2 ,

by definition of δ2(ϵ). Thus, we obtain that∣∣f i
s(xs, z

i
s, ω

i
s, V

i)− f i
s(ys, z

i
s, ω

i
s, U

i)
∣∣ < ϵ

2 + ϵ

2 = ϵ .

□

Next, we will state the following lemmas, which will be the rest of the necessary ingredients for the existence
proof. We omit their proofs, since they follow the same lines as in (Kardeş et al., 2011; Fink, 1964). First, let
us define the unique best response for player i as

τ i(y−i) =
{
V i : V i

s = max
xi

s

min
zi

s

min
ωi

s

f i
s(xi

s, y
−i
s , zi

s, ω
i
s, V

i),∀s ∈ S
}
.

Lemma 4 The function ϕi
s(xi

s, y
−i
s , V i) is continuous in all its variables, for all i ∈ N and s ∈ S.

Proof: The result immediately follows from the fact that the pointwise minimum of a family of equicontinuous
functions is continuous. □

Lemma 5 The function ϕi
s(xi

s, y
−i
s , V i) is concave in xi

s, for a fixed y−i
s and V i.

Proof: The result immediately follows by definition of ϕi
s. □

Lemma 6 The function ψi
s(y−i

s , V i) is continuous in y−i
s . Furthermore, the set {ψi

s(y−i
s , V i)|V i is bounded}

is equicontinuous.

Proof: The result follows from Lemma 3 above and Lemma 3 in (Fink, 1964). □

Lemma 7 If the sequence y−i,n goes to y−i and τ i
s(y−i,n) goes to V i

s , as n goes to ∞, then

τ i
s(y−i

s ) = V i
s .
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Proof: Observe that∣∣V i
s − ψi

s(y−i,n
s , V i)

∣∣ ≤ ∣∣V i
s − τ i

s(y−i,n)
∣∣+
∣∣τ i

s(y−i,n)− ψi
s(y−i

s , τ i
s(y−i,n)

∣∣+
∣∣ψi

s(y−i
s , τ i

s(y−i,n)− ψi
s(y−i,n

s , V i)
∣∣ ,

for every n ≥ 1, i ∈ N and s ∈ S. Now note that
∣∣V i

s − τ i
s(y−i,n)

∣∣ → 0 and∣∣ψi
s(y−i

s , τ i
s(y−i,n)− ψi

s(y−i,n
s , V i)

∣∣ → 0, as n → ∞, by assumption. Moreover, Lemma 6 implies
that

∣∣τ i
s(y−i,n)− ψi

s(y−i
s , τ i

s(y−i,n)
∣∣ =

∣∣ψi
s(y−i

s , τ i
s(y−i,n)− ψi

s(y−i
s , τ i

s(y−i,n)
∣∣ → 0, as n → ∞. Hence,∣∣V i

s − τ i
s(y−i,n)

∣∣→ 0, as n→∞. □

A.2 The Proof of Theorem 1

In this section, we will conclude the proof of Theorem 1. In order to do that, we will make use of the famous
Kakutani’s fixed point theorem which we state below. First, let us define the notion of upper semi-continuous
functions, which is a precondition of this result.

Definition 4 A correspondence κ : Z → 2Z is said to be upper semicontinuous if yn ∈ κ(xn), for all n ≥ 1,
limn→∞ xn = x and limn→∞ yn = y imply that y ∈ κ(x).

With this, we can now state Kakutani’s fixed point theorem.

Theorem 4 (Kakutani’s fixed point theorem) If Z is a closed, bounded and convex set in a Euclidean space,
and κ is an upper semicontinuous correspondence mapping Z into the family of closed convex subsets of Z,
then there exists x ∈ Z such that x = κ(x).

We will construct a correspondence that satisfies the conditions of the theorem, and show that its fixed point
is an equilibrium point. The correspondence we need is the following:

κ(x) =
{
y ∈ Z : yi

s ∈ arg max
ui

s∈X
ϕi

s(ui
s, x

−i
s , V i), V i

s = max
ui

s∈X
ϕi

s(ui
s, x

−i
s , V i),∀s ∈ S, i ∈ N

}

In the previous section, we have shown that the functions ϕi
s satisfy continuity. We will further show that

the defined set function κ satisfies the conditions of Kakutani’s theorem. Let us first restate Theorem 1 for
convenience, and then proceed to its proof.

Statement 1 Let G be a finite game with n players and let k < n. Assume that an arbitrary subset of at
most k players use arbitrarily modified utilities, and assume that the mixed strategies of all players lie in
compact sets. Also, assume that, for each player i ∈ N , the sets Ωi are compact. Then, a k-ARNEQ, as
given in Definition 2 exists.

Proof: We will use the same argument as in the proof of Theorem 4 of (Kardeş et al., 2011). We repeat the
argument here with our notation for completion.

Given i ∈ N , s ∈ S, Lemma 4 shows that the function ϕi
s(xi

s, y
−i
s , V i) is continuous in all of its variables.

This, together with the fact that its domain is compact, implies that ϕi
s achieves its maximum, that is

arg maxui
s∈X ϕi

s(ui
s, x

−i
s , V i) ̸= ∅. On the other hand, Theorem 2 implies that V i

s = maxxi
s∈X ϕi

s(xi
s, y

−i
s , V i).

Thus, we have that κ(x) ̸= ∅, by definition of κ above.

Next, we show that κ(x) is a convex set. Suppose that u, v ∈ κ(x), for some u = (u1, . . . , un) and
v = (v1, . . . , vn). Then, for any y ∈ Z, i ∈ N and s ∈ S, we have, by definition of κ(x), that

V i
s = ϕi

s(ui
s, x

−i
s , V i) = ϕi

s(vi
s, x

−i
s , V i) ≥ ϕi

s(yi
s, x

−i
s , V i) ,

for any y ∈ Z. Thus, for any λ ∈ [0, 1], i ∈ N , s ∈ S, and by concavity of ϕi
s(yi

s, x
−i
s , V i), we have

ϕi
s(yi

s, x
−i
s , V i) ≤ V i

s = λϕi
s(ui

s, x
−i
s , V i) + (1− λ)ϕi

s(vi
s, x

−i
s , V i)

≤ ϕi
s

(
(λui

s + (1− λ)vi
s), x−i

s , V i
)
)
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≤ V i
s ,

which implies that λui
s + (1− λ)vi

s ∈ κ(x). Thus, the image of κ is convex.

Next, we will show that κ is upper semicontinuous. To that end, suppose that xn → x and yn → y, and that
yn ∈ κ(xn), for n ≥ 1. Note that τ i

s(x−i,n
s )→ V i

s , since x−i,n → x−i, as a subsequence of (xn)n≥1. Using the
triangle inequality, we obtain∣∣ϕi

s

(
yi

s, x
−i
s , V i

)
− V i

∣∣
≤
∣∣ϕi

s

(
yi

s, x
−i
s , V i

)
− ϕi

s

(
yi,n

s , x−i,n
s , τ i

s(x−i,n)
)∣∣+

∣∣ϕi
s

(
yi,n

s , x−i,n
s , τ i

s(x−i,n)
)
− V i

s

∣∣
=
∣∣ϕi

s

(
yi

s, x
−i
s , V i

)
− ϕi

s

(
yi,n

s , x−i,n
s , τ i

s(x−i,n)
)∣∣+

∣∣τ i
s(x−i,n)− V i

s

∣∣→ 0, as n→∞

Thus, V i
s = ϕi

s(yi
s, x

−i
s , V i). Lemma 7 also implies that τ i

s(x−i) = V i
s . Thus, we obtain

V i
s = ϕi

s(yi
s, x

−i
s , V i) = τ i

s(x−i) = max
ui

s∈X
ϕi

s(ui
s, x

−i
s , V i) .

Therefore, y ∈ κ(x), which is what we needed, in order to prove that κ is upper semicontinuous. The fact that
κ(x) is a closed set for any x ∈ X follows by definition of upper semicontinuity. Thus, κ satisfies the conditions
of Theorem 4, which implies that its fixed point exists, that is, there exists joint policies x = (x1, . . . , xn) and
value functions V 1, . . . , V n), such that, for any i ∈ N and s ∈ S, we have

xi
s ∈ arg max

ui
s∈X

min
ωi

s∈Ωi

min
zi

s∈Y
Ea∼xi

s,x−i
s ,zi

s,ωi
s

[
R(s, a) + γ

〈
P(s, a), V i

〉]
,

and

V i
s = max

ui
s∈X

min
ωi

s∈Ωi

min
zi

s∈Y
Ea∼xi

s,x−i
s ,zi

s,ωi
s

[
R(s, a) + γ

〈
P(s, a), V i

〉]
.

Thus, an ARNEQ of G exists. □

B Proof of Convergence of Adversarially Robust Nash Q-Learning (Theorem 2)

In this section, we will formally prove that the Nash Q-Learning approach to Adversarially Robust Training
convergence to an ARNEQ under certain technical assumptions. We first define some necessary additional
notions and then state the assumptions.

Given t ≥ 1, let (Qt

i(s))i∈N denote the stage game at state s, where Qt

i(s) = [Qt

i(s, a)]a∈A is the game
matrix of player i comprised of the Q-value estimates at time t. Recall that a stage game ARNEQ
(πt

i(·|s), π̂i,t(·|s), ωt
i)i∈N for state s is defined as the joint policy that satisfies, for each i, the following:

(πt
i(·|s), π̂i,t(·|s), ωt

i) ∈ arg max
πi∈Πi

min
ωi∈Ωi

π̂i∈Π−i

EK∼ωi

∑
a∈A

πi(ai|s)
∏

i̸=j ̸∈K

πt
j(aj |s)

∏
l∈K

π̂i
l(al|s)Q

t

i(s, a)


We restate Assumption 3 for convenience.

Statement 2 For each stage game at time t and state s ∈ S, one of the following conditions holds.

• A stage ARNEQ is also a global optimum, that is, for any i ∈ N and π(·|s), we have

EK∼ωt
i

[∑
a∈A

πt
−K(a−K |s)π̂i,t

K (aK |s)Q
t

i(s, a)
]
≥ EK∼ωi

[∑
a∈A

π−K(a−K |s)π̂i
K(aK |s)Q

t

i(s, a)
]
,

for any π ∈ Π, π̂i ∈ Π−i and ωi ∈ Ωi.
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• A given player’s payoff is increased if other benign players or its attacker deviate, that is, for any i ∈ N
we have

EK∼ωt
i

[∑
a∈A

πt
−K(a−K |s)π̂i,t

K (aK |s)Q
t

i(s, a)
]
≤ EK∼ω′

i

[∑
a∈A

πt
i(ai|s)π′

−(K∪{i})(a−(K∪{i})|s)π̂′
K(aK |s)Q

t

i(s, a)
]
,

for all π′ ∈ Π, π̂′ ∈ Π−i and ω′
i ∈ Ωi.

Given that Assumptions 1, 2 and 3 hold, we can proceed with our argument. We will prove the following
result.

Lemma 8 For every player i and round t, and for any given stage game matrix of Q-values Qi(s), let
Bt

i : Q→ Q be an operator on the Q-value function space Q, defined as

Bt

iQi(s, a) := Ri(s, a) + γEK∼ωt
i

[∑
a′∈A

πt
−K(a′

−K |s)π̂
i,t
K (a′

K |s)Qi(s, a′)
]
,

for any given (s, a)-tuple. Then, Bt

i is a contraction operator with respect to the l∞ norm.

In order to prove the above lemma, we will make use of the following standard result on pseudo-contractions.

Lemma 9 (Lemma 8 of Hu & Wellman (2003)) Assume that αt satisfy Assumption 2 and that the
mapping Bt : Q→ Q satisfies the following condition: there exists a number 0 < γ < 1 and a sequence γt ≥ 0
converging to zero with probability 1 such that∥∥BtQ− BtQ∗∥∥ ≤ γ ∥Q−Q∗∥+ γt ,

for all Q ∈ Q and Q∗ such that Q∗ = E[BtQ∗], then the iteration defined by

Qt+1 = (1− αt)Qt + αtBtQt

converges to Q∗ with probability 1.

Now we are ready to prove Lemma 8. In order to do so, we need to show that its conditions are satisfied for
our setting.

Proof: Let (Qi)i∈N and (Q′
i)i∈N be two given sets of Q-value functions. Denote by (πi, π̂

i, ωi)i∈N and
(π′

i, π̂
′, ω′

i)i∈N their corresponding ARNEQ policies, respectively. Let (s, a) be a given state-action tuple and
suppose we have

Bt

iQi(s, a) ≥ Bt

iQ
′
i(s, a).

If the first part of Assumption 3 holds, then we have

0 ≤
∣∣∣Bt

iQi(s, a)− Bt

iQ
′
i(s, a)

∣∣∣
= γ

∣∣∣∣∣EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)Qi(s, a′)

]
− EK∼ω′

i

[∑
a′∈A

π′
−K(a′

−K |s)π̂′
K(a′

K |s)Q
′
i(s, a′)

]∣∣∣∣∣
≤ γ

∣∣∣∣∣EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)Qi(s, a′)

]
− EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)Q

′
i(s, a′)

]∣∣∣∣∣
= γ

∣∣∣∣∣EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)

(
Qi(s, a′)−Q′

i(s, a′)
)]∣∣∣∣∣

≤ γ max
K∈Ni

∣∣∣∣∣∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)

(
Qi(s, a′)−Q′

i(s, a′)
)∣∣∣∣∣
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≤ γmax
a′∈A

∣∣∣Qi(s, a′)−Q′
i(s, a′)

∣∣∣
≤ γ

∥∥∥Qi −Q
′
i

∥∥∥
∞

.

If the second part of Assumption 3 holds, then, instead we have

0 ≤
∣∣∣Bt

iQi(s, a)− Bt

iQ
′
i(s, a)

∣∣∣
= γ

∣∣∣∣∣EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)Qi(s, a′)

]
− EK∼ω′

i

[∑
a′∈A

π′
−K(a′

−K |s)π̂′
K(a′

K |s)Q
′
i(s, a′)

]∣∣∣∣∣
≤ γ

∣∣∣∣∣EK∼ωi

[∑
a′∈A

π−K(a′
−K |s)π̂i

K(a′
K |s)Qi(s, a′)

]
− EK∼ω′

i

[∑
a′∈A

πi(ai|s)π′
−K−i(a′

−K−i|s)π̂′
K(a′

K |s)Q
′
i(s, a′)

]∣∣∣∣∣
≤ γ

∣∣∣∣∣EK∼ω′
i

[∑
a′∈A

πi(ai|s)π′
−K−i(a′

−K−i|s)π̂′
K(a′

K |s)Qi(s, a′)
]

−EK∼ω′
i

[∑
a′∈A

πi(ai|s)π′
−K−i(a′

−K−i|s)π̂′
K(a′

K |s)Q
′
i(s, a′)

]∣∣∣∣∣
≤ γ max

K∈Ni

∣∣∣∣∣∑
a′∈A

πi(ai|s)π′
−K(a′

−K |s)π̂′
K(a′

K |s)
(
Qi(s, a′)−Q′

i(s, a′)
)∣∣∣∣∣

≤ γmax
a′∈A

∣∣∣Qi(s, a′)−Q′
i(s, a′)

∣∣∣
≤ γ

∥∥∥Qi −Q
′
i

∥∥∥
∞

,

where the second inequality follows from the equilibrium definition with respect to player i’s policy and the
third inequality follows by the second part of Assumption 3.

A similar argument is used for the case when we have

Bt

iQi(s, a) ≤ Bt

iQ
′
i(s, a).

Since the chosen (s, a)-tuple was arbitrary, we conclude that∥∥∥Bt

iQi − B
t

iQ
′
i

∥∥∥
∞
≤ γ

∥∥∥Qi −Q
′
i

∥∥∥
∞

.

□

Thus, we have shown that the operator Bt

i is a contraction. Recall that this operator has Q∗
i as a fixed point.

Furthermore, the rates αt, t ≥ 1, satisfy the requirements of Lemma 9. Hence, the result of Theorem 2
follows.

C Experiments: Environments

C.1 Independent Spread

This environment modifies the Spread environment from Lowe et al. (2017) in such a way, that all agents
pursue an individual goal, instead of cooperating toward one shared objective. Each agent strives to reduce
the distance to a landmark that is designated to them while simultaneously avoiding collisions with other
agents. Therefore, the reward of each agent consists of the negative L2-distance to their designated landmark,
coupled with a large penalty of 10 for colliding with agents. Agents observe their position, as well as the
relative position of their designated landmark and all peer agents. The action space consists of no-action as
well as increasing the velocity in one of four directions.

24



Published in Transactions on Machine Learning Research (08/2024)

Figure 6: Full version of Figure 4 (zoomed out).

C.2 Multi-Agent Ant

We consider a cooperative multi-agent extension of the MuJoCo Ant environment (Todorov et al., 2012) as
proposed in Peng et al. (2021). Agents control one leg of the ant, and need to cooperate with the other legs
to maximize the distance traveled forward, while maintaining balance. Consequentially, each agent receives
a shared reward, which consists of the forward momentum compared to the preceding frame and a small
incentive of 0.1 reward for not falling over. We removed the penalty for large actions and high external
contact, as the adversary could easily exploit this reward function without actually impacting the ant’s
objective and there is defence mechanism for the other agents. Agents observe the position and orientation of
all joints and can apply torque to the joint between the torso and upper leg and between the upper and lower
leg of the leg they control.

C.3 Pursuit

We finally consider the cooperative Pursuit environment Gupta et al. (2017). Each agent assumes the role of
one of the eight pursuers aiming to catch 30 randomly moving evaders. Evaders are captured if they are
enclosed on all sides by pursuers or walls. Pursuers receive the reward of 5 for every successful capture, as
well as an urgency reward of −0.1 every time step there is still prey left to be captured. Observations consist
of all pursuers, evaders, and walls within a 7x7 grid around the agent. The available actions are staying at
the current position or moving one field to the left, right, up, or down.

D Experiments: Hyperparameters

Hyperparameters for the PPO algorithm for all environments are given in Table 7.
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Hyperparameter Value for Spread Value for Ant Value for Pursuit
Total timesteps 800K 13M 10M

Batch size 4000 65536 5000
Minibatch size 128 4096 500

Epochs per update 30 30 30
Learning rate α 0.0003 5 ∗ 10−5 5 ∗ 10−5

Discount Factor γ 0.99 0.99 0.99
Clipping parameter A 0.3 0.2 0.3

Advantage estimation discount λ 1.0 0.95 0.95
Entropy coefficient 0.0 0.0 0.01

Value function loss coefficient 1.0 0.5 1.0
Figure 7: Hyperparameters for Spread, Ant, and Pursuit

E Experiments: Computing Infrastructure

Computing infrastructure for the Independent Spread and Pursuit environment:

• GPU: None

• CPU: Intel Xeon E5-2667 v2

• Memory: 256GB, DDR3, 1866 MHz, ECC

• Operating System: Debian

The computing infrastructure for the Ant environment:

• GPU: V100 Nvidia Tesla GPU 32GB

• CPU: Intel Xeon Gold 6134M

• Memory: 768GB, DDR4 2666MT/s, ECC

• Operating System: Debian

F Experiments: Runtime

Runtime for all algorithms and environments are given in Table 8.

Algorithm Runtime for Spread Runtime for Ant Runtime for Pursuit
Independent Learning 27m28s 1h45m58s 10h6m

fixed-k 22m36s 1h46m48s 10h9m
ART 34m38s 1h50m24s 10h55m59s

Figure 8: Runtime of algorithms for Spread, Ant and Pursuit

26


	Introduction
	Other Related Work
	Attacks and defenses in (MA)RL.
	Robust (MA)RL.
	Markov games.


	Problem Formulation
	Preliminaries
	Attack Model
	Defense Objective

	Theoretical Results
	The Adversarially Robust Nash Equilibrium
	Adversarially Robust Nash Q-Learning

	Adversarially Robust Training for MARL
	Experimental Results
	Baselines
	Implementation Details
	Empirical Analysis

	Concluding Discussion
	
	 Appendix
	Proof of Existence (Theorem 1)
	Auxiliary Results
	The Proof of Theorem 1

	Proof of Convergence of Adversarially Robust Nash Q-Learning (Theorem 2)
	Experiments: Environments
	Independent Spread
	Multi-Agent Ant
	Pursuit

	Experiments: Hyperparameters
	Experiments: Computing Infrastructure
	Experiments: Runtime


