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Abstract
In this work, we propose FastDPM, a unified
framework for fast sampling in diffusion prob-
abilistic models. FastDPM generalizes previous
methods and gives rise to new algorithms with
improved sample quality. We systematically in-
vestigate the fast sampling methods under this
framework across different domains, on different
datasets, and with different amount of conditional
information provided for generation. We find the
performance of a particular method depends on
data domains (e.g., image or audio), the trade-off
between sampling speed and sample quality, and
the amount of conditional information. We fur-
ther provide insights and recipes on the choice of
methods for practitioners.

1. Introduction
Diffusion probabilistic models are a class of deep genera-
tive models that use Markov chains to gradually transform
between a simple distribution (e.g., isotropic Gaussian) and
the complex data distribution (Sohl-Dickstein et al., 2015;
Ho et al., 2020). Most recently, these models have obtained
the state-of-the-art results in several important domains, in-
cluding image synthesis (Ho et al., 2020; Song et al., 2020b;
Dhariwal & Nichol, 2021), audio synthesis (Kong et al.,
2020b; Chen et al., 2020), and 3-D point cloud genera-
tion (Luo & Hu, 2021; Zhou et al., 2021). We will use
“diffusion models” as shorthand to refer to these models.

Diffusion models usually comprise: i) a parameter-free T -
step Markov chain named the diffusion process, which grad-
ually adds random noise into the data, and ii) a parameter-
ized T -step Markov chain called the reverse or denoising
process, which removes the added noise as a denoising func-
tion. The likelihood in diffusion models is intractable, but
they can be efficiently trained by optimizing a variant of

1UC San Diego, La Jolla, CA, USA 2NVIDIA, Santa Clara, CA,
USA. Correspondence to: Zhifeng Kong <z4kong@eng.ucsd.edu>,
Wei Ping <wping@nvidia.com>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

the variational lower bound. In particular, Ho et al. (2020)
propose a certain parameterization called the denoising dif-
fusion probabilistic model (DDPM) and show its connection
with denoising score matching (Song & Ermon, 2019), so
the reverse process can be viewed as sampling from a score-
based model using Langevin dynamics. DDPM can produce
high-fidelity samples reliably with large model capacity and
outperforms the state-of-the-art models in image and audio
domains (Dhariwal & Nichol, 2021; Kong et al., 2020b).
However, a noticeable limitation of diffusion models is their
expensive denoising or sampling process. For example,
DDPM requires a Markov chain with T = 1000 steps to
generate high quality image samples (Ho et al., 2020), and
DiffWave requires T = 200 to obtain high-fidelity audio
synthesis (Kong et al., 2020b). In other words, one has to
run the forward-pass of the neural network T times to gener-
ate a sample, which is much slower than the state-of-the-art
GANs or flow-based models for image and audio synthe-
sis (e.g., Karras et al., 2020; Kingma & Dhariwal, 2018;
Kong et al., 2020a; Ping et al., 2020).

To deal with this limitation, several methods have been pro-
posed to reduce the length of the reverse process to S � T
steps. One class of methods compute continuous noise
levels based on discrete diffusion steps and retrain a new
model conditioned on these continuous noise levels (Song &
Ermon, 2019; Chen et al., 2020; Okamoto et al., 2021; San-
Roman et al., 2021). Then, a shorter reverse process can be
obtained by carefully choosing a small set (size S) of noise
levels. However, these methods cannot reuse the pretrained
diffusion models, because the state-of-the-art DDPM mod-
els are conditioned on discrete diffusion steps (Ho et al.,
2020; Dhariwal & Nichol, 2021). It is also unclear the dif-
fusion models conditioned on continuous noise levels can
achieve comparable sample quality as the state-of-the-art
DDPMs on challenging unconditional image and audio syn-
thesis tasks (Dhariwal & Nichol, 2021; Kong et al., 2020b).
Another class of methods directly approximate the orig-
inal reverse process of DDPM models with shorter ones
(of length S), which are conditioned on discrete diffusion
steps (Song et al., 2020a; Kong et al., 2020b). Although
both classes of methods have shown the trade-off between
sampling speed and sample quality (i.e., larger S lead to
higher sample quality), the fast sampling methods without
retraining are more advantageous for fast iteration and de-
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ployment, while still keeping high-fidelity synthesis with
small number of steps in the reverse process (e.g., S = 6 in
Kong et al. (2020b)).

In this work, we propose FastDPM, a unified framework of
fast sampling methods for diffusion models without retrain-
ing. The core idea of FastDPM is to i) generalize discrete
diffusion steps to continuous diffusion steps, and ii) design
a bijective mapping between continuous diffusion steps and
continuous noise levels. Then, we use this bijection to con-
struct an approximate diffusion process and an approximate
reverse process, both of which have length S � T .

FastDPM includes and generalizes the fast sampling
algorithms from denoising diffusion implicit mod-
els (DDIM) (Song et al., 2020a) and DiffWave (Kong et al.,
2020b). In detail, FastDPM offers two ways to construct
the approximate diffusion process: selecting S steps in the
original diffusion process, or more flexibly, choosing S vari-
ances. FastDPM also offers ways to construct the approxi-
mate reverse process: using the stochastic DDPM reverse
process (DDPM-rev), or using the implicit (deterministic)
DDIM reverse process (DDIM-rev). We can control the
amount of stochasticity in the reverse process of FastDPM
as in Song et al. (2020a).

FastDPM gives rise to new algorithms with improved sam-
ple quality than previous methods when the length of the
approximate reverse process S is small. We then extensively
evaluate the family of FastDPM methods across image and
audio domains. We find the deterministic DDIM-rev sig-
nificantly outperforms the stochastic DDPM-rev in image
generation tasks, but DDPM-rev significantly outperforms
DDIM-rev in audio synthesis tasks. Finally, we investigate
the performance of different methods by varying the amount
of conditional information. We find with different amount
of conditional information, we need different amount of
stochasticity in the reverse process of FastDPM.

We discuss related work in Appendix A.

2. Diffusion Models
Let d be the data dimension. Let pdata be the data distri-
bution and platent = N (0, Id×d) be the latent distribution.
Then, the denoising diffusion probabilistic model (DDPM,
Sohl-Dickstein et al., 2015; Ho et al., 2020) is a deep gener-
ative model consisting two Markov chains called diffusion
and reverse processes, respectively. The length of each
Markov chain is T , which is called the number of diffusion
or reverse steps. The diffusion process gradually adds Gaus-
sian noise to the data distribution until the noisy data distri-
bution is close to the latent distribution. Formally, the diffu-
sion process from data x0 ∼ pdata to the latent variable xT
is defined as q(x1, · · · , xT |x0) =

∏T
t=1 q(xt|xt−1), where

each of q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) for some

small constant βt > 0. The hyperparameters β1, · · · , βT
are called the variance schedule.

The reverse process aims to eliminate the noise added in
each diffusion step. Formally, the reverse process from
xT ∼ platent to x0 is defined as pθ(x0, · · · , xT−1|xT ) =∏T
t=1 pθ(xt−1|xt), where each of pθ(xt−1|xt) is defined

as N (xt−1;µθ(xt, t), σ
2
t I); the mean µθ(xt, t) is param-

eterized through a neural network and the variance σt is
time-step dependent constant. Based on the reverse process,
the sampling process is to first draw xT ∼ N (0, I), then
draw xt−1 ∼ pθ(xt−1|xt) for t = T, T − 1, · · · , 1, and
finally outputs x0.

The training objective of DDPM is based on the variational
evidence lower bound (ELBO). Under a certain parame-
terization introduced by Ho et al. (2020), the objective
can be largely simplified. One may first define constants
αt = 1− βt, ᾱt =

∏t
i=1 αi, β̃t = 1−ᾱt−1

1−ᾱt βt for t > 1 and
β̃1 = β1. Then, a noticeable property of diffusion model is

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (1)

thus one can directly sample xt given x0 (see Appendix
B.1 for derivation). Furthermore, one may parameterize
µθ(xt, t) = 1√

αt

(
xt − βt√

1−ᾱt
εθ(xt, t)

)
, where εθ is a neu-

ral network taking xt and the diffusion-step t as inputs. In
addition, σt is simply parameterized as β̃

1
2
t . Ho et al. (2020)

show that minimizing the following unweighted variant of
the ELBO leads to higher generation quality:

min
θ
Lunweighted(θ) = Ex0,ε,t ‖ε− εθ(xt, t)‖22, (2)

where ε ∼ N (0, I), x0 ∼ qdata, t is uniformly taken from
1, · · · , T , and xt =

√
ᾱt · x0 +

√
1− ᾱt · ε from Eq. (1).

3. FastDPM: A Unified Framework for Fast
Sampling in Diffusion Models

In order to achieve high-fidelity synthesis, the number of
diffusion steps T in DDPM is set to be very large so that
q(xT |x0) is close to platent. For example, T = 1000 in
image synthesis (Ho et al., 2020) and T = 200 in audio
synthesis (Kong et al., 2020b). Then, sampling from DDPM
needs running through the network εθ for as many as T
times, which can be very slow. In this section, we pro-
pose FastDPM, which approximates the pretrained DDPM
via much shorter diffusion and reverse processes of length
S � T , thus it can generate a sample by only running the
network S times. The core idea of FastDPM is to: i) general-
ize discrete diffusion steps to continuous diffusion steps and,
then ii) design a bijective mapping between continuous dif-
fusion steps and continuous noise levels, where these noise
levels indicate the amount of noise in data. Finally, we use
this bijective mapping to construct an approximate diffusion
process and an approximate reverse process, respectively.
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3.1. Bijective mapping between Continuous Diffusion
Steps and Noise Levels

In this section, we generalize discrete (integer) diffusion
steps to continuous (real-valued) diffusion steps. Then, we
introduce a bijective mapping R and T = R−1 between
continuous diffusion steps t and noise levels r.

Define R. We start with an integer diffusion step t. From
Eq. (1), one can observe xt =

√
ᾱt · x0 +

√
1− ᾱt · ε

where ε ∼ N (0, I), thus sampling xt given x0 is equivalent
to adding a Gaussian noise to x0. Based on this observa-
tion, we define the noise level at step t as R(t) =

√
ᾱt,

which means xt is composed of R(t) fraction of the data
x0 and (1 − R(t)) fraction of white noise. For exam-
ple, R(t) = 0 means no noise and R(t) = 1 means
pure white noise. Next, we extend the domain of R to
real values. Assume that the variance schedule {βt}Tt=1

is linear: βi = β1 + (i − 1)∆β, where ∆β = βT−β1

T−1
(Ho et al., 2020). We further define an auxiliary constant
β̂ = 1−β1

∆β , which is� T assuming that βT � 1.0. 1 Then,

we have ᾱt = (∆β)tΓ
(
β̂ + 1

)
/Γ
(
β̂ − t+ 1

)
(see Ap-

pendix B.2). Because the Gamma function Γ is well-defined
on (0,∞), it gives rise to a natural extension of ᾱt for con-
tinuous diffusion steps t. As a result, for t ∈ [0, β̂), we
define the noise level at t as:

R(t) = (∆β)
t
2 Γ
(
β̂ + 1

) 1
2

Γ
(
β̂ − t+ 1

)− 1
2

. (3)

Define T . For any noise level r ∈ (0, 1), its corresponding
(continuous) diffusion step, T (r), is defined by invertingR:
T (r) = R−1(r). Given a noise level r = R(t), we numeri-
cally solve t = T (r) by applying a binary search based on
Eq. (3). We have T (r) ∈ [t, t + 1] for r ∈ [

√
ᾱt+1,

√
ᾱt],

and this provides a good initialization to the binary search
algorithm. Experimentally, we find the binary search algo-
rithm converges in no more than 20 iterations.

3.2. Approximate the Diffusion Process

Let x̂0 ∼ pdata. Given a sequence of noise levels 1 > r1 >
r2 > · · · > rS > 0, we aim to construct each step in the ap-
proximate diffusion process as x̂s ∼ N (x̂s; rsx̂0, (1−r2

s)I).
To achieve this goal, we define γs = r2

s/r
2
s−1, compute the

corresponding variances as ηs = 1 − γs = 1 − r2
s/r

2
s−1,

and then define the transition probability in the approximate
diffusion process as

q(x̂s|x̂s−1) = N (x̂s;
√

1− ηsx̂s−1, ηsI)

= N
(
x̂s;

rs
rs−1

x̂s−1,

(
1− r2

s

r2
s−1

)
I

)
. (4)

One can see this by rewriting Eq. (1): ηs corresponds to
βt = 1 − αt, γs corresponds to αt, and rs corresponds to

1E.g., βT = 0.02 in Ho et al. (2020); Kong et al. (2020b).

√
ᾱt. We then propose the following two ways to schedule

the noise levels {rs}Ss=1.

Noise levels from variances (VAR). We start from the vari-
ance schedule {ηs}Ss=1. Next, we compute γs = 1− ηs and
γ̄s =

∏s
i=1 γi. The noise level at step s is rs =

√
γ̄s.

Noise levels from steps (STEP). We start from a subset
of diffusion steps {τs}Ss−1 in {1, · · · , T}. Then, the noise
level at step s is rs = R(τs) =

√
ᾱτs .

When ηs = 1− ᾱτs/ᾱτs−1
, we have γ̄s = ᾱτs . Therefore,

noise levels from steps can be regarded as a special case of
noise levels from variances.

3.3. Approximate the Reverse Process

Given the same sequence of noise levels in Section 3.2,
we aim to approximate the reverse process in the original
DDPM. To achieve this goal, we regard the model εθ as
being trained on variances {ηs}Ss=1 instead of the original
{βt}Tt=1. Then, the transition probability in the approximate
reverse process is

pθ(x̂s−1|x̂s) = N (x̂s−1; µ̂(x̂s, s), η̃sI) , (5)

where µ̂(x̂s, s) = 1√
γs

(
x̂s − ηs√

1−γ̄s
εθ(x̂s, T (rs))

)
, η̃s =

1−γ̄s−1

1−γ̄s ηs for s > 1 and η̃1 = η1. η̃s corresponds to the

β̃t = σ2
t term. There are two ways to sample from the

approximate reverse process in Eq. (5). Let every ε̂s be i.i.d.
standard Gaussians for 1 ≤ s ≤ S.

DDPM reverse process (DDPM-rev). The sampling pro-
cedure based on the DDPM reverse process is based on
Eq. (5): that is, to first sample x̂S ∼ platent and then sample
x̂s−1 = µ̂(x̂s, s) +

√
η̃sε̂s.

DDIM reverse process (DDIM-rev). Let κ ∈ [0, 1] be a
hyperparameter. 2 Then, the sampling procedure based on
DDIM (Song et al., 2020a) is to first sample x̂S ∼ platent

and then sample x̂s−1 =
√
γ̄s−1

(
x̂s−
√

1−γ̄sεθ(x̂s,T (rs))√
γ̄s

)
+√

1− γ̄s−1 − κ2η̃sεθ(x̂s, T (rs)) + κ
√
η̃sε̂s. When κ = 1,

it is exactly DDPM-rev (see Appendix B.3 for derivation).

3.4. Connections with Previous Methods

The DDIM (Song et al., 2020a) method is equivalent to
STEP + DDIM-rev in FastDPM. The fast sampling algo-
rithm by DiffWave (Kong et al., 2020b) is related to VAR
+ DDPM-rev in FastDPM. Compared with DiffWave, Fast-
DPM offers an automatic way to select variances in different
settings and a more natural way to compute noise levels.

2κ is η in Song et al. (2020a).
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4. Experiments
In this section, we aim to answer the following two questions
for FastDPM. (1) Which approximate diffusion process,
VAR or STEP, is better? And (2) which approximate reverse
process, DDPM-rev or DDIM-rev, is better? We investigate
these questions by conducting extensive experiments in both
image and audio domains.

We conduct unconditional image generation experiments
on CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu et al.,
2015), and LSUN-bedroom (Yu et al., 2015), unconditional
and class-conditional audio synthesis experiments on the
Speech Commands 0-9 (SC09) dataset (Warden, 2018), and
neural vocoding experiments (audio synthesis conditioned
on mel spectrogram) on the LJSpeech dataset (Ito, 2017).

We use pretrained models in all experiments (Ho et al., 2020;
Esser, 2020; Song et al., 2020a; Kong et al., 2020b). We
use Fréchet Inception Distance (FID) (Heusel et al., 2017;
Lang, 2020), Inception Score (IS) (Salimans et al., 2016),
and the crowdMOS tookit (Ribeiro et al., 2011) to evaluate
generated samples. Details of experimental setup can be
found in Appendix C. Results can be found in Appendix
D. Generated samples can be found in Appendix E and the
demo website. 3

4.1. Observations and Insights

We have the following observations and insights according
to the above experimental results.

VAR marginally outperforms STEP for small S. In the
above experiments, the two approximate diffusion processes
(STEP and VAR) generally match performances of each
other. On CIFAR-10, VAR outperforms STEP when S = 10,
and STEP slightly outperforms VAR when S ≥ 20. On
CelebA, VAR slightly outperforms STEP when S ≤ 20,
and they have similar results when S ≥ 50. On LSUN-
bedroom, VAR slightly outperforms STEP when S ≤ 50,
and STEP slightly outperforms VAR when S = 100. On
SC09, VAR slightly outperforms STEP in most cases. On
LJSpeech, VAR slightly outperforms STEP when S = 5.
Based on these results, we conclude that VAR marginally
outperforms STEP for small S.

Different reverse processes dominate in different do-
mains. In the above experiments, the difference between
DDPM and DDIM reverse processes is very clear. In im-
age generation tasks, DDIM-rev significantly outperforms
DDPM-rev except for the S = 100 case in the LSUN-
bedroom experiment. When we reduce κ from 1.0 to 0.0
(see Table 1), the quality of generated samples consistently
improves. In contrast, in audio synthesis tasks, DDPM-rev

3Demo website: https://fastdpm.github.io. Code:
https://github.com/FengNiMa/FastDPM_pytorch

significantly outperforms DDIM-rev. When we increase
κ from 0.0 to 1.0 (see Table 4), the quality of generated
samples consistently improves. This can also be observed
from Figure 8: DDIM produces very noisy utterances while
DDPM produces very clean utterances.

The results indicate that in the image domain, DDIM-
rev produces better quality whereas in the audio domain,
DDPM-rev produces better quality. We speculate the reason
behind the difference is that in the audio domain, waveforms
naturally exhibit significant amount of stochasticity. The
DDPM reverse process offers much stochasticity because
at each reverse step s, x̂s−1 is sampled from a Gaussian
distribution. However, the DDIM reverse process (κ = 0.0)
is a deterministic mapping from latents to data, so it leads to
degrade quality in the audio domain. This hypothesis is also
aligned with previous result that the flow-based model with
deterministic mapping was unable to generate intelligible
speech unconditionally on SC09 (Ping, 2021).

The amount of conditional information affects the
choice of reverse processes. In audio synthesis experi-
ments, we find the amount of conditional information af-
fects the generation quality of FastDPM with different re-
verse processes. In the unconditional generation experiment
on SC09, DDPM-rev (i.e. κ = 1.0) has the best results.
When there is slightly more conditional information in the
class-conditional generation experiment on SC09, DDIM-
rev with κ = 0.5 has the best results and slightly outper-
forms DDPM-rev. In both experiments DDIM-rev with
κ = 0.0 has much worse results. When there is much more
conditional information (mel spectrogram) in the neural
vocoding experiments on LJSpeech, DDPM-rev is still bet-
ter than DDIM-rev, but the difference between these two
methods is reduced. We speculate that adding conditional
information reduces the amount of stochasticity required.
When there is no conditional information, we need maxi-
mum stochasticity (κ = 1.0); with weak class information,
we need moderate stochasticity (κ = 0.5); and with strong
mel-spectrogram information, even having no stochasticity
(κ = 0.0) is able to generate reasonable samples.

5. Conclusion
Diffusion models are a class of powerful deep generative
models that produce superior quality samples on various
generation tasks. In this paper, we introduce FastDPM, a
unified framework for fast sampling in diffusion models
without retraining. FastDPM generalizes prior methods and
provides more flexibility. We extensively evaluate and an-
alyze FastDPM in image and audio generation tasks. One
limitation of FastDPM is that when S is small, there is
still quality degradation compared to the original DDPM.
We plan to study algorithms offering higher quality for ex-
tremely small S in future.

https://fastdpm.github.io
https://github.com/FengNiMa/FastDPM_pytorch
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A. Related Work
Diffusion models are a class of powerful deep generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Goyal et al.,
2017), which have received a lot of attention recently. These models have been applied to various domains, including image
generation (Ho et al., 2020; Dhariwal & Nichol, 2021), audio synthesis (Kong et al., 2020b; Chen et al., 2020; Okamoto
et al., 2021), image or audio super-resolution (Li et al., 2021; Lee & Han, 2021), text-to-speech (Jeong et al., 2021; Popov
et al., 2021), music synthesis (Liu et al., 2021; Mittal et al., 2021), 3-D point cloud generation (Luo & Hu, 2021; Zhou et al.,
2021), and language models (Hoogeboom et al., 2021). Diffusion models are connected with scored-based models (Song
& Ermon, 2019; 2020; Song et al., 2020b), and there have been a series of research extending and improving diffusion
models (Song et al., 2020b; Gao et al., 2020; Dhariwal & Nichol, 2021; San-Roman et al., 2021; Meng et al., 2021).

There are two families of methods aiming for accelerating diffusion models at synthesis, which reduce the length of the
reverse process from T to a much smaller S. One family of methods tackle this problem at training. They retrain the
network conditioned on continuous noise levels instead of discrete diffusion steps (Song & Ermon, 2019; Chen et al., 2020;
Okamoto et al., 2021; San-Roman et al., 2021). Assuming that the corresponding network is able to predict added noise
at any noise level, we can carefully choose only S � T noise levels and construct a short reverse process just based on
them. San-Roman et al. (2021) present a learning scheme that can step-by-step adjust those noise level parameters, for any
given number of steps S. Another family of methods aim to directly approximate the original reverse process within the
pretrained DDPM conditioned on discrete steps. In other words, no retraining is needed. Song et al. (2020a) introduce
denoising diffusion implicit models (DDIM), which contain non-Markovian processes that lead to an equivalent training
objective as DDPM. These non-Markovian processes naturally permit "jumping steps", or formally, using a subset of steps
to form a short reverse process. However, compared to using continuous noise levels, selecting discrete steps offers less
flexibility. Kong et al. (2020b) introduce a fast sampling algorithm by interpolating steps according to corresponding noise
levels. This can be seen as an attempt to map continuous noise levels to discrete diffusion steps. However, it lacks both
theoretical justification for the interpolation and extensive empirical studies.

In this paper, we propose FastDPM, a method that approximates the original DDPM model. FastDPM constructs a bijective
mapping between (continuous) diffusion steps and continuous noise levels. This allows us to take advantage of the flexibility
of using these continuous noise levels. FastDPM generalizes Kong et al. (2020b) by using Gamma functions to compute
noise levels, which naturally extends from discrete domain to continuous domain. FastDPM generalizes Song et al. (2020a)
by providing a special set of noise levels that exactly correspond to integer steps.
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B. Derivations
B.1. Derivation of q(xt|x0)

According to the definition of diffusion process, we have

xt =
√
αtxt−1 +

√
βtεt, (6)

where each εt is an i.i.d. standard Gaussian. Then, by recursion, we have

xt =
√
αtαt−1xt−2 +

√
αtβt−1εt−1 +

√
βtεt

=
√
αtαt−1αt−1xt−3 +

√
αtαt−1βt−2εt−2 +

√
αtβt−1εt−1 +

√
βtεt

...
=
√
ᾱtx0 +

√
αtαt−1 · · ·α2β1ε1 + · · ·+

√
αtβt−1εt−1 +

√
βtεt.

(7)

As a result, q(xt|x0) is still Gaussian. Its mean vector is
√
ᾱtx0, and its covariance matrix is (αtαt−1 · · ·α2β1 + · · · +

αtβt−1 + βt)I = (1− ᾱt)I . Formally, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (8)

B.2. Derivation of ᾱt

ᾱt =

t∏
i=1

(1− βi)

=

t∏
i=1

(1− β1 − (i− 1)∆β)

= (∆β)t
t−1∏
i=0

(
β̂ − i

)
= (∆β)tΓ

(
β̂ + 1

)
Γ
(
β̂ − t+ 1

)−1

.

(9)

B.3. Derivation of DDIM (κ = 1)

When κ = 1, the coefficient of the εθ term in the DDIM reverse process is

−
√

1− γ̄s√
γs

+

√
1− γ̄s−1 −

1− γ̄s−1

1− γ̄s
ηs = − 1− γ̄s√

γs(1− γ̄s)
+

√
(γs − γ̄s)(1− γ̄s − ηs)√

γs(1− γ̄s)
= − 1− γ̄s√

γs(1− γ̄s)
+

γs − γ̄s√
γs(1− γ̄s)

= − ηs√
γs(1− γ̄s)

.

(10)
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C. Detailed Experimental Setup
Image datasets. We conduct unconditional image generation experiments on three datasets: CIFAR-10 (50k object images
of resolution 32× 32 (Krizhevsky et al., 2009)), CelebA (∼163k face images of resolution 64× 64 (Liu et al., 2015)), and
LSUN-bedroom (∼3M bedroom images of resolution 256× 256 (Yu et al., 2015)).

Audio datasets. We conduct unconditional and class-conditional audio synthesis experiments on the Speech Commands
0-9 (SC09) dataset, the spoken digit subset of the full Speech Commands dataset (Warden, 2018). SC09 contains ∼31k
one-second long utterances of ten classes (0 through 9) with a sampling rate of 16kHz. We conduct neural vocoding
experiments (audio synthesis conditioned on mel spectrogram) on the LJSpeech dataset (Ito, 2017). It contains ∼24 hours of
audio (∼13k utterances from a female speaker) recorded in home environment with a sampling rate of 22.05kHz.

Models. In all experiments, we use pretrained checkpoints in prior works. In detail, the pretrained models for CIFAR-10
and LSUN-bedroom are taken from DDPM (Ho et al., 2020; Esser, 2020), the pretrained model for CelebA is taken from
DDIM (Song et al., 2020a). In these models, T is 1000. The pretrained models for SC09 and LJSpeech are taken from
DiffWave (Kong et al., 2020b). In these models, T is 200. In all models, β1 = 10−4, βT = 2 × 10−2, and all βt’s are
linearly interpolated between β1 and βT .

Noise level schedules. For each of the approximate diffusion process in Section 3.2, we examine two schedules: linear and
quadratic. For noise levels {ηs}Ss=1 from variances, the two schedules are:

• Linear (VAR): ηs = (1 + cs) η0.

• Quadratic (VAR): ηs = (1 + cs)2 η0.

We let η0 = β0 and the constant c satisfy
∏S
s=1(1− ηs) = ᾱT . The noise level at step s is rs =

√
γ̄s.

For noise levels {ηs}Ss=1 from steps, they are computed from selected steps {τs}Ss=1 among {1, · · · , T} (Song et al., 2020a).
The two schedules are:

• Linear (STEP): τs = bcsc, where c = T
S .

• Quadratic (STEP): τs = bcs2c, where c = 4
5 ·

T
S2 .

Then, the noise level at step s is rs = R(τs) =
√
ᾱτs .

In image generation experiments, we follow the same noise level schedules as in Song et al. (2020a): quadratic schedules
for CIFAR-10 and linear schedules for CelebA and LSUN-bedroom. We use linear schedules in SC09 experiments and
quadratic schedules in LJSpeech experiments; we find these schedules have better quality.

Evaluations. In all unconditional generation experiments, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017;
Lang, 2020) to evaluate generated samples. For the training set Xt and the set of generated samples Xg, the FID between
these two sets is defined as

FID = ‖µt − µg‖2 + tr
(

Σt + Σg − 2
√

ΣtΣg

)
, (11)

where µt, µg and Σt,Σg are the means and covariances of Xt, Xg after a feature transformation. In each image generation
experiment, Xg is 50K generated images. The transformed feature is the 2048-dimensional vector output of the last layer of
Inception-V3 (Szegedy et al., 2015). In each audio synthesis experiment, Xg is 5K generated utterances. The transformed
feature is the 1024-dimensional vector output of the last layer of a ResNeXT classifier (Xu & Tuguldur, 2017), which
achieves 99.06% accuracy on the training set and 98.76% accuracy on the test set. The FID is the smaller the better.

In the class-conditional generation experiment on SC09, we evaluate with accuracy and the Inception Score (IS). 4 The
accuracy is computed by matching the predictions of the ResNeXT classifier and the pre-specified labels in the dataset. The
IS of generated samples Xg is defined as

IS = exp
(
Ex∼XgKL(p(x)‖Ex′∼Xgp(x′))

)
, (12)

where p(x) is the logit vector of the ResNeXT classifier. The IS and accuracy are the larger the better.

4Note that FID is not an appropriate metric for conditional generation.
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In the neural vocoding experiment on LJSpeech, we evaluate the speech quality with the crowdMOS tookit (Ribeiro et al.,
2011), where the test utterances from all models were presented to Mechanical Turk workers. We report the 5-scale Mean
Opinion Scores (MOS), and it is the larger the better.
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D. Evaluation Results in Experiments
We report image generation results under different approximate diffusion processes, approximate reverse processes and S,
the length of FastDPM. Evaluation results on CIFAR-10, CelebA, and LSUN-bedroom measured in FID are shown in Table
1, Table 2, and Table 3, respectively.

Table 1. CIFAR-10 image generation measured in FID. STEP means noise levels from steps and VAR means noise levels from variances.
Both use quadratic schedules. S is the length of FastDPM. The standard DDPM (T = 1000) has FID = 3.03.

Approx. Approx. FID (↓)
Diffusion Reverse S = 10 S = 20 S = 50 S = 100

STEP DDIM-rev (κ = 0.0) 11.01 5.05 3.20 2.86
VAR DDIM-rev (κ = 0.0) 9.90 5.22 3.41 3.01
STEP DDIM-rev (κ = 0.2) 11.32 5.16 3.27 2.87
VAR DDIM-rev (κ = 0.2) 10.18 5.32 3.50 3.04
STEP DDIM-rev (κ = 0.5) 13.53 6.14 3.61 3.05
VAR DDIM-rev (κ = 0.5) 12.22 6.55 3.86 3.15
STEP DDPM-rev 36.70 14.82 5.79 4.03
VAR DDPM-rev 29.43 15.27 6.74 4.58

Table 2. CelebA image generation measured in FID. STEP means noise levels from steps and VAR means noise levels from variances.
Both use linear schedules. S is the length of FastDPM. The standard DDPM (T = 1000) has FID = 7.00.

Approx. Approx. FID (↓)
Diffusion Reverse S = 10 S = 20 S = 50 S = 100

STEP DDIM-rev (κ = 0.0) 15.72 10.77 8.31 7.85
VAR DDIM-rev (κ = 0.0) 15.31 10.69 8.41 7.95
STEP DDPM-rev 29.52 19.38 12.83 10.35
VAR DDPM-rev 28.98 18.89 12.83 10.39

Table 3. LSUN-bedroom image generation measured in FID. STEP means noise levels from steps and VAR means noise levels from
variances. Both use linear schedules. S is the length of FastDPM.

Approx. Approx. FID (↓)
Diffusion Reverse S = 10 S = 20 S = 50 S = 100

STEP DDIM-rev (κ = 0.0) 19.07 9.95 8.43 9.94
VAR DDIM-rev (κ = 0.0) 19.98 9.86 8.37 10.27
STEP DDPM-rev 42.69 20.97 10.24 7.98
VAR DDPM-rev 41.00 20.12 10.12 8.13
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We report audio synthesis results under different approximate diffusion processes, approximate reverse processes and S, the
length of FastDPM. Evaluation results of unconditional generation on SC09 measured in FID and IS are shown in Table 4.
Evaluation results of class-conditional generation on SC09 measured in accuracy and IS are shown in Table 5. Evaluation
results of neural vocoding on LJSpeech measured in MOS are shown in Table 6.

Table 4. SC09 unconditional audio synthesis measured in FID and IS. STEP means noise levels from steps and VAR means noise levels
from variances. Both use linear schedules. S is the length of FastDPM. The original DiffWave (T = 200) has FID = 1.29 and IS= 5.30.

Approx. Approx. FID (↓) IS (↑)
Diffusion Reverse S = 10 S = 20 S = 50 S = 10 S = 20 S = 50

STEP DDIM-rev (κ = 0.0) 4.72 5.31 5.54 2.46 2.27 2.23
VAR DDIM-rev (κ = 0.0) 4.74 4.88 5.58 2.49 2.42 2.21
STEP DDIM-rev (κ = 0.5) 2.60 2.52 2.46 3.94 4.17 4.19
VAR DDIM-rev (κ = 0.5) 2.67 2.49 2.47 3.94 4.20 4.20
STEP DDPM-rev 1.75 1.40 1.33 4.03 4.57 5.16
VAR DDPM-rev 1.69 1.38 1.34 4.06 4.63 5.18

Table 5. SC09 class-conditional audio synthesis. The results are measured by accuracy and IS. STEP means noise levels from steps and
VAR means noise levels from variances. Both use linear schedules. S is the length of FastDPM. The DiffWave (T = 200) has accuracy
= 91.2% and IS = 6.63.

Approx. Approx. Accuracy (↑) IS (↑)
Diffusion Reverse S = 10 S = 20 S = 50 S = 10 S = 20 S = 50

STEP DDIM-rev (κ = 0.0) 66.5% 68.3% 66.1% 3.21 3.18 2.87
VAR DDIM-rev (κ = 0.0) 66.6% 68.5% 66.1% 3.26 3.22 2.88
STEP DDIM-rev (κ = 0.5) 85.8% 88.4% 87.8% 5.79 6.23 6.00
VAR DDIM-rev (κ = 0.5) 86.0% 88.2% 88.0% 5.74 6.24 6.03
STEP DDPM-rev 79.9% 82.7% 86.8% 4.71 5.10 5.83
VAR DDPM-rev 81.0% 82.8% 87.0% 4.93 5.16 5.86

Table 6. LJSpeech audio synthesis conditioned on mel spectrogram measured. The results are measured by 5-scale MOS with 95%
confidence intervals. STEP means noise levels from steps and VAR means noise levels from variances. Both use quadratic schedules. S is
the length of FastDPM.

Approx. Diffusion Approx. Reverse S MOS (↑)
STEP DDIM-rev (κ = 0.0) 5 3.72± 0.11
VAR DDIM-rev (κ = 0.0) 5 3.75± 0.10
STEP DDPM-rev 5 4.28± 0.08
VAR DDPM-rev 5 4.31± 0.07

DiffWave (T = 200) 200 4.42± 0.10
Ground truth – 4.51± 0.07
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E. Generated Samples in Experiments
In this section, we display generated samples of FastDPM, including image samples and mel-spectrogram of audio samples.

E.1. Unconditional Generation on CIFAR-10

S = 10

S = 20

S = 50

S = 100

STEP VAR

Figure 1. Comparison of generated samples of FastDPM on CIFAR-10 among different S and approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0).

κ = 0.0

κ = 0.2

κ = 0.5

DDPM-rev

S = 10 S = 20

κ = 0.0

κ = 0.2

κ = 0.5

DDPM-rev

S = 50 S = 100

Figure 2. Comparison of generated samples of FastDPM on CIFAR-10 among different S and approximate reverse processes. The
approximate diffusion process is VAR.
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E.2. Unconditional Generation on CelebA

S = 10

S = 20

S = 50

S = 100

STEP

VAR

STEP

VAR

STEP

VAR

STEP

VAR

Figure 3. Comparison of generated samples of FastDPM on CelebA among different S and approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0).
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E.3. Unconditional Generation on LSUN-bedroom

STEP

VAR

Figure 4. Comparison of generated samples of FastDPM on LSUN bedroom among different approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0) and S = 100.
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STEP

VAR

Figure 5. Comparison of generated samples of FastDPM on LSUN bedroom among different approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0) and S = 50.
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STEP

VAR

Figure 6. Comparison of generated samples of FastDPM on LSUN bedroom among different approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0) and S = 20.
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STEP

VAR

Figure 7. Comparison of generated samples of FastDPM on LSUN bedroom among different approximate diffusion processes. The
approximate reverse process is DDIM-rev (κ = 0.0) and S = 10.
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E.4. Unconditional Generation on SC09
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(a) STEP + DDIM-rev (κ = 0.0) (top) / DDIM-rev (κ = 0.5) (middle) / DDPM-rev (bottom)
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(b) VAR + DDIM-rev (κ = 0.0) (top) / DDIM-rev (κ = 0.5) (middle) / DDPM-rev (bottom)

Figure 8. Mel-spectrogram of 16 synthesized utterances (S = 50). We use linear noise level schedules from steps in (a) and variances in
(b). In each subplot, the top row shows results of DDIM-rev (κ = 0.0), the middle row shows results of DDIM-rev (κ = 0.5), and the
bottom row shows results of DDPM-rev. DDPM-rev produces the clearest utterances in these approximate reverse processes.
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E.5. Conditional Generation on SC09
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(a) STEP + DDIM-rev (κ = 0.0) (top) / DDIM-rev (κ = 0.5) (middle) / DDPM-rev (bottom)
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(b) VAR + DDIM-rev (κ = 0.0) (top) / DDIM-rev (κ = 0.5) (middle) / DDPM-rev (bottom)

Figure 9. Mel-spectrogram of 20 synthesized utterances (S = 50). We use linear noise level schedules from steps in (a) and variances in
(b). In each subplot, the top row shows results of DDIM-rev (κ = 0.0), the middle row shows results of DDIM-rev (κ = 0.5), and the
bottom row shows results of DDPM-rev. DDIM-rev (κ = 0.5) produces the clearest utterances in these approximate reverse processes.
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E.6. Neural Vocoding on LJSpeech
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(a) Ground truth (top) / STEP + DDIM-rev (middle) / STEP + DDPM-rev (bottom)
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(b) Ground truth (top) / VAR + DDIM-rev (middle) / VAR + DDPM-rev (bottom)

Figure 10. Mel-spectrogram of ground truth and generated LJ001-0001 (S = 5, channel= 128). We use linear noise level schedules from
steps in (a) and variances in (b). In each subplot, the top row shows ground truth, the middle row shows results of DDIM-rev (κ = 0.0),
and the bottom row shows results of DDPM-rev. Both DDPM-rev and DDIM-rev generate high quality speech.


