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ABSTRACT

Federated learning continues to evolve but faces challenges in interpretability and
explainability. To address these challenges, we introduce a creative approach em-
ploying Neural Additive Models (NAMs) within a federated learning framework.
These new Federated Neural Additive Models (FedNAMs) approach merges the
advantages of NAMs, where individual networks concentrate on specific input fea-
tures, with the decentralized approach of federated learning, ultimately producing
interpretable analysis results. This integration enhances privacy by training on local
data across multiple devices, thereby minimizing the risks of data centralization
and enhancing model robustness and generalizability. FedNAMs maintain detailed
feature-specific learning, making them especially valuable in sectors like finance
and healthcare. They facilitate training client-specific models to integrate local
updates, preserve privacy, and reduce centralization concerns. Our studies on
various text and image classification tasks, using datasets such as OpenFetch ML
Wine, UCI Heart Disease, and Iris, show that FedNAMs deliver strong interpretabil-
ity with minimal accuracy loss compared to traditional Federated Deep Neural
Networks (DNNs). The research involves notable findings, including the identifica-
tion of critical predictive features at the client level as well as at the global level.
Volatile acidity, sulfates, and chlorides for wine quality. Chest pain type, maximum
heart rate, and number of vessels for heart disease. Petal length and width for
iris classification. This approach strengthens privacy and model efficiency and
improves interpretability and robustness across diverse datasets. Finally, FedNAMs
generate insights on causes of highly and low interpretable features.

1 INTRODUCTION

Deep neural networks (DNN) have delivered remarkable results in areas like computer vision (Himeur
et al., 2023) and language modeling (Che et al., 2023). While understanding the mechanisms behind
their predictions remains challenging, leading them to be often regarded as black-box models. This
lack of interpretability limits their use in critical fields such as finance, criminal justice, and healthcare.
Various efforts have been made to clarify the predictions made by deep neural networks (DNNs) in
Federated learning environments. For instance, a class of methods, exemplified by LIME (Ribeiro
et al., 2016), seeks to explain individual predictions by locally approximating the neural network with
interpretable models, such as linear models and shallow decision trees for each client in the federated
learning environment. However, these methods frequently fall short in robustness and comprehensive
understanding of the model, and their explanations may not accurately reflect the computations of the
original model or lack the detail necessary to grasp the model’s behavior (Zhang & Li, 2023) fully. In
this research, we propose FedNAMs, an interpretable federated learning framework based on Neural
Additive Models (NAMs) (Agarwal et al., 2021). We compare the performance and interpretability
of this framework to traditional federated learning models. Furthermore, the study explores the
trade-offs between interpretability and predictive accuracy in a federated environment.

Interpretable Federated Learning (IFL) has emerged as a promising technology to enhance system
safety robustness and build trust among FL stakeholders, drawing considerable research interest
from academia and industry in recent years (Li et al., 2023). In contrast to existing interpretable AI
methods developed for centralized machine learning, IFL presents more significant challenges due
to enterprises’ limited access to local data and the constraints imposed by local computational and
communication resources. IFL is inherently interdisciplinary, requiring expertise in machine learning,
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optimization, cryptography, and human factors to devise effective solutions. This complexity makes
it challenging for new researchers to stay abreast of the latest developments. A comprehensive
survey paper on this critical and rapidly evolving field has yet to exist. Federated Learning (FL) is
a groundbreaking approach to machine learning that enables models to be trained on decentralized
data sources while safeguarding data privacy. This method is especially advantageous in healthcare,
finance, and mobile applications, where sensitive data is distributed across multiple locations (Aouedi
et al., 2022). Traditional centralized learning approaches present significant privacy risks and are
often impractical due to data transfer limitations and regulatory constraints. Despite the benefits of
FL, a key challenge persists in the interpretability of the models it produces (Zhang et al., 2024b).
Most FL models, particularly those based on deep learning, operate as black boxes, offering minimal
insight into their decision-making processes. This lack of transparency impedes their adoption in
critical fields where understanding the reasoning behind model predictions is crucial. The current
federated learning landscape is dominated by complex, opaque models that, although highly accurate,
provide little transparency. There is an increasing demand for interpretable machine learning models
to elucidate their inner workings and decision-making processes. Neural Additive Models (NAMs)
(Agarwal et al., 2021), which combine the robustness of neural networks with the interpretability
of additive models, represent a promising solution. However, integrating NAMs into the federated
learning framework presents significant challenges, including maintaining interpretability across
distributed nodes and ensuring overall model performance.

In this research paper, we propose a federated learning framework while imposing specific constraints
on the architecture of neural networks using interpretable models known as Neural Additive Models
(NAMs). While implementing tabular data, these glass-box models maintain a high level of inter-
pretability with minimal loss in prediction accuracy. NAMs are part of the Generalized Additive
Models (GAMs) family (Hastie, 2017), which takes the form:

g(E[y]) = β + f1(x1) + f2(x2) + · · ·+ fK(xK) (1)

where x = (x1, x2, . . . , xK) represents the input with K features, y is the target variable, g(·) is the
link function, and each fi is a univariate shape function with E[fi] = 0.

In traditional GAMs, the model fitting uses the analytical method of iterative back fitting with smooth
low-order splines that effectively reduce overfitting. While more recent GAMs (Hastie, 2017) use
boosted decision trees to enhance accuracy and allow the learning of abrupt changes in the feature-
shaping functions. Hence, it captures better patterns in actual data that smooth splines struggle to
model. This paper explores the use of deep neural networks (DNNs) to fit generalized additive models
(NAMs) in a federated learning setup. NAMs provide interpretable insights on DNNs, which is
essential for federated learning as models will be more understandable across multiple decentralized
nodes. Unlike tree-based GAMs, NAMs can adapt to multiclass, multitask, or multi-label learning.
In a federated learning scenario, models are trained efficiently across distributed nodes using shared
resources. Therefore, FedNAMs will be more scalable than the traditional GAMs.

2 BACKGROUND AND EXISTING WORKS

Federated Learning (FL) (McMahan et al., 2017), (Liu et al., 2024), (Balija et al., 2024), (Hard et al.,
2018) is a machine learning paradigm designed to train models across multiple decentralized devices
or servers while preserving data privacy. Unlike traditional centralized learning approaches, where
data is aggregated and processed in a central location, FL allows data to remain localized while
only sharing model updates. This approach is particularly beneficial in domains where data privacy
and security are paramount, such as healthcare, finance, and mobile applications. Neural Additive
Models (NAMs) (Agarwal et al., 2021) are machine learning models that combine the flexibility
and power of neural networks with the interpretability of additive models. NAMs decompose the
prediction task into individual functions, each contributing to the final prediction transparently. This
decomposition facilitates a clearer understanding of how different features influence model’sel’s
predictions, addressing the interpretability challenge inherent in traditional neural networks.

Federated learning has garnered significant attention in recent years, leading to the development of
various frameworks and methodologies to enhance its effectiveness and efficiency. McMahan et al.
(McMahan et al., 2017) introduced the concept of Federated Averaging (FedAvg), a fundamental
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algorithm in FL that aggregates model updates from multiple clients to create a global model. Subse-
quent research has focused on improving the robustness and scalability of FL systems. Bonawitz et al.
(Bonawitz, 2019) explored secure aggregation techniques to ensure privacy-preserving model updates,
while Kairouz et al. (Kairouz et al., 2021) provided a comprehensive survey of FL advancements,
highlighting the challenges and opportunities in the field. Interpretability has become a critical
aspect of machine learning, especially in applications requiring transparency and trust. Ribeiro et
al. (Ribeiro et al., 2016) introduced LIME (Local Interpretable Model-agnostic Explanations), a
method to interpret predictions of any classifier by approximating it with an interpretable model
locally. Shapley values, derived from cooperative game theory, have also been employed to attribute
contributions of individual features to model predictions, as seen in the work by Lundberg and Lee
(Lundberg & Lee, 2017) on SHAP (Shapley Additive explanations). NAMs proposed by (Agarwal
et al., 2021) is a novel approach for achieving high predictive accuracy and interpretability. By
leveraging the structure of Generalized Additive Models (GAMs) and the learning capabilities of
neural networks, NAMs enable transparent and robust predictive models. The individual contributions
of features are modeled using neural networks, allowing non-linear relationships while maintaining
additive interpretability. Integrating interpretability into federated learning is an emerging research
area. Studies have begun exploring combining interpretable models with FL to ensure privacy and
transparency. For instance, (Zhang et al., 2024a) proposed FedGNN, a federated learning framework
using Graph Neural Networks emphasizing interpretability. Another approach by Gu et al. (Gu et al.,
2021) introduced interpretable FL by incorporating inherently interpretable decision trees into the FL
framework.

3 NEURAL ADDITIVE MODELS

Neural Additive Models (NAMs) are a class of machine learning models that combine the flexibility
of neural networks with the interpretability of additive models. NAMs have gained attention for their
ability to provide accurate predictions while enabling human-understandable insights into how the
model makes its predictions. NAMs incorporate a series of neural network layers to a Generalized
Additive Model (GAM) (Hastie, 2017). The neural network layers allow the model to capture complex
interactions between variables, while the GAM component provides an interpretable baseline model.
NAMs can be used for classification and regression tasks and trained using standard optimization
techniques. Compared with other methods for interpreting black-box models, NAMs provide more
detailed and faithful explanations of the model’s behavior. Therefore, they are beneficial in high-
stakes domains such as healthcare, finance, and criminal justice. It is essential to understand how a
model makes its predictions. NAMs leverage innovative ExU hidden units, enabling sub-networks to
learn the more linear functions crucial for accurate additive models. By forming an ensemble of these
networks, NAMs can provide uncertainty estimates, enhance accuracy, and mitigate the high variance
that may arise from enforcing a highly linear learning process. We employed an NAM architecture
consisting of three hidden layers containing 20 neurons. During training, the model learns the weights
between the input features and the neurons in each layer, optimizing network’srk’s ability to capture
linear and non-linear relationships in the data.

4 PROBLEM FORMULATION

Our proposed architecture, which adapts Neural Additive Models (NAMs) for a federated learning
context, is designed to balance interpretability and accuracy. It addresses a network optimization
problem focused on uncovering the relationships between input features and the output. In this
architecture, each input feature is processed by an individual neural network, resulting in a model that
maintains this delicate balance. By maintaining separate neural networks for each feature, this ap-
proach preserves the interpretability inherent in additive models while harnessing the representational
strength of neural networks to achieve higher predictive performance.

wt+1 ←
K∑

clienti=1

ni

n
wt+1

clienti
(2)
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where wt+1 is the global model at iteration t + 1 and shows the update rule where wt+1
clienti

is the
weighted sum of the clients model.

f1(x1final) =
f11(x1) + f21(x1) + f31(x1) + · · ·+ fn1(x1)

n
(3)

f1(x2final) =
f12(x2) + f22(x2) + f32(x2) + · · ·+ fn2(x2)

n
(4)

f1(x3final) =
f13(x3) + f23(x3) + f33(x3) + · · ·+ fn3(x3)

n
(5)

... (6)

f1(xkfinal) =

∑n
i=1 fi1(xk)

n
(7)

where f1(x1final) is the final aggregated function for input features x1, which is the sum of the sub-
functions fi1(x1) from each client (for i = 1, 2, · · · , n), divided by the total number of clients
n. This indicates that each feature function is learned separately across different clients, and their
contributions are averaged to produce the final function of that feature. The g(E[yclient1]) represents
the expected prediction for client i. Figure 1 shows the neural additive model architecture and two
different neural networks considered for text and image datasets in Figure 2.

g(E[yclient1]) = β + f11(x1) + f12(x2) + · · ·+ f1K(xK) (8)
g(E[yclient2]) = β + f21(x1) + f22(x2) + · · ·+ f2K(xK) (9)
g(E[yclient3]) = β + f31(x1) + f32(x2) + · · ·+ f3K(xK) (10)
g(E[yclient4]) = β + f41(x1) + f42(x2) + · · ·+ f4K(xK) (11)
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Figure 1: Neural additive model architecture.

5 DATASETS

The UCI Heart Disease, OpenML Wine, and Iris datasets are widely recognized benchmarks in
machine learning, frequently used for classification tasks across various domains. The UCI Heart
Disease dataset contains 1025 instances and 14 patient medical profile attributes. The attributes
include demographic and clinical factors such as age, chest pain type, resting blood pressure, serum
cholesterol in mg/dl, fasting blood sugar, resting electrocardiographic results (values 0,1,2), maximum
heart rate achieved, exercise-induced angina, ST depression induced by exercise relative to rest, the
slope of the peak exercise ST segment, number of major vessels (0-3) colored by fluoroscopy, ”thal”:
0 = normal; 1 = fixed defect; 2 = reversible defect. The primary goal is to predict the presence (1)
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Network Inputs

Input Layer Hidden Layer Output Layer

Network Output

Input Layer First Convolution Second Convolution FC Layer Output Layer

Figure 2: Two different neural networks considered for text and image datasets.

or absence (0) of heart disease in patients, making it a valuable resource for research in medical
diagnostics. The Wine dataset consists of red variants of the Portuguese wine. The dataset has 1599
instances and 11 attributes such as fixed acidity, volatile acidity, citric acid, residual sugar, chlorides,
free sulfur dioxide, total sulfur dioxide, density, pH, sulfates, and alcohol. The Iris dataset is one
of the most well-known datasets in machine learning, consisting of 150 instances of iris flowers.
Each instance is described by four attributes: sepal length, sepal width, petal length, and petal width.
The Iris dataset target variable has three classes corresponding to the three species of iris flowers:
Iris-setosa and Iris-versicolor. This dataset is ideal for testing algorithms and visualization techniques
due to its simplicity and effectiveness in demonstrating basic classification concepts.

6 EXPERIMENTATION AND RESULTS

In this research, we developed a federated learning framework that leverages a standard neural
network model and Neural Additive Models (NAMS) to identify both high and low contributing
features for each client. For experimentation, we considered three clients in a federated setup. Three
datasets used in this setup first go through the preprocessing by scaling features and converting the
target to a binary classification model for the UCI Heart Disease and Wine dataset while multi-label
classification for the Iris dataset. The dataset is split into training and testing sets and divided into
three distinct clients, each receiving a portion of the training data. Each client is trained using the
NAM model, which consists of several FeatureNN modules, one for each feature, allowing individual
feature contributions to be learned interpretably. The NAM model concatenates outputs from the
feature-specific neural networks and passes them through a final output layer for classification. The
framework utilizes a robust mechanism of performing hyperparameter tuning for dropouts, learning
rate, number of hidden layers in the network, and batch size using grid search across the three clients.
Training incorporates early stopping and learning rate scheduling to prevent overfitting and adapt
learning rates throughout training. Custom weight initialization using Xavier uniform distribution
is applied during training to improve convergence. Furthermore, early stopping is implemented to
halt training. Model equations representing each client’s specific feature contributions are derived,
providing interpretability by highlighting the most and least significant features. Finally, model
performance is evaluated based on classification accuracy and metrics such as the ROC-AUC score,
with the best hyperparameters being selected based on validation accuracy across all clients.

6.1 INTERPRETATION OF FEATURE RELATIONSHIPS

Figure 3 shows images depicting the output variation to different features for the heart dataset.
Table 1 and Table 2 represent client-wise feature contributions for UCI Heart disease data and
feature attribution values of Captum for UCI Heart disease data, respectively. We benchmarked our
framework performance with PyTorch Captum. Our framework offers more detailed and feature-
specific interpretability than Captum, which typically provides aggregate feature importance values.
Captum generates average attributions for each feature across the entire model, which can obscure
individual features’ contributions at different learning stages. In contrast, our approach extracts
interpretability at multiple stages of the model by independently evaluating the contribution of each
feature through specialized sub-networks of NAMs. Figure 4 shows the high and low interpretable
features and their causes shown for the heart disease dataset. The plots generated for the Heart
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Disease dataset visually represent the relationship between various features and the predicted output
for different clients. For instance, the feature x age demonstrates varying trends across clients, with
some models showing a positive correlation between age and the predicted outcome. In contrast,
others display an adverse or fluctuating relationship. This suggests that age may have a different
impact on the heart disease prediction model for various clients, possibly due to variations in the
data distribution or the model’s sensitivity to age-related factors. Similarly, the x cp (chest pain
type) feature shows a distinct pattern across clients, where the impact on the model’s prediction
varies. In some cases, higher values of x cp increase the predicted output, indicating a higher
likelihood of heart disease, while in others, the effect is less pronounced or even reversed. These
differences highlight the importance of personalizing models based on specific client data, as the
same feature may have differing implications depending on an individual’s overall health profile and
other contributing factors. Detailed result is shown in Appendix A.
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Figure 3: Image depicting the output variation to different features for the heart disease dataset.
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Feature Client 1 Client 2 Client 3
thalach 4.489 5.226 3.375
thal 4.360 3.416 4.298
age 4.096 3.649 3.364
ca 3.838 4.041 4.246
cp 3.679 4.684 3.260
sex 3.583 3.649 4.629
trestbps 3.557 3.832 3.797
oldpeak 3.385 4.423 4.195
fbs 3.373 2.613 2.951
restecg 3.253 3.704 3.281
exang 2.926 3.928 3.626
slope 2.778 2.704 3.264
chol 2.181 3.735 3.564

Table 1: Client-wise feature contributions for
UCI Heart disease data.

Feature Average Attribution
age -0.003673
sex -0.000434
cp -0.004202
trestbps -0.002589
chol -0.000223
fbs -0.001079
restecg -0.001987
thalach -0.004438
exang 0.003228
oldpeak -0.010129
slope -0.004840
ca 0.001944
thal -0.008827

Table 2: Feature attribution values of Captum
(Benchmark) for UCI Heart Disease data.
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Figure 4: High and low interpretable features and their causes are shown for the heart disease dataset.

6.2 INSIGHTS ON FEATURE IMPACTS

Table 3 shows the client-wise feature contributions for the UCI-wine dataset. Figure 5 shows the
image depicting the output variation concerning different features of the Iris dataset. Figure 6 shows
the benchmark comparison with Meta’s Captum (right) for highly contributing pixels (masked) on
MNIST data test image. The vertical plots for selected features in the Heart Disease dataset reveal how
specific attributes influence model predictions across different clients. For example, the x trestbps
(resting blood pressure) feature shows varying effects: one client’s model indicates a sharp increase
in predicted risk with higher blood pressure, while another shows a minimal impact. This suggests
that resting blood pressure is a significant predictor for some clients but not others. Similarly,
x thalach (maximum heart rate achieved) exhibits diverse influences, with higher heart rates
strongly associated with increased heart disease risk in some clients but not others. These variations
highlight the importance of assessing feature impact within the context of client-specific data. The
analysis of features like x fixed acidity and x volatile acidity across different clients
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shows consistent influence, though the magnitude and direction may vary slightly, suggesting a need
for tailored model adjustments. Detailed result is shown in Appendix A.
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Figure 5: Image depicting variation of output with respect to different features for Iris dataset

The analysis highlights that while each feature consistently impacts model output across different
clients, the magnitude and direction of this influence can vary, suggesting the need for client-
specific adjustments. For example, x fixed acidity shows both positive and negative effects for
Client 1, while Client 2 experiences consistent impacts. Features like x volatile acidity and
x sulphates significantly affect outcomes with varied client slopes, though the overall patterns
are similar. Other features such as x citric acid, x residual sugar, and x chlorides
display consistent trends with minor variations. Additionally, the comparison of digit ’9’ images
shows how the model emphasizes specific pixel regions (highlighted in black) crucial for accurate
predictions, contrasting with the less significant areas in gray. This visualization offers insight into
the neural network’s interpretability and decision-making process.
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Feature Client 1 Client 2 Client 3 Meta Captum Average Attribution
thalach 4.489 5.226 3.375 -0.004438
thal 4.360 3.416 4.298 -0.008827
age 4.096 3.649 3.364 -0.003673
ca 3.838 4.041 4.246 0.001944
cp 3.679 4.684 3.260 -0.004202
sex 3.583 3.649 4.629 -0.000434
trestbps 3.557 3.832 3.797 -0.002589
oldpeak 3.385 4.423 4.195 -0.010129
fbs 3.373 2.613 2.951 -0.001079
restecg 3.253 3.704 3.281 -0.001987
exang 2.926 3.928 3.626 0.003228
slope 2.778 2.704 3.264 -0.004840
chol 2.181 3.735 3.564 -0.000223

Table 3: Client-wise feature contributions and Feature attribution values of Captum for UCI Wine
dataset with reduced precision.

Original Image Highlighted Image Original Image Attribution Map

Figure 6: Benchmark comparison with Meta’s captum (right) for highly contributing pixels (masked)
on MNIST data test image

7 CONCLUSION AND FUTURE WORK

This work presents a novel framework for Federated Neural Additive Models (FedNAMs) using
Neural Additive Models, an innovative subfamily of Generalized Additive Models (GAMs) designed
to leverage deep learning techniques for scalability across large datasets and high-dimensional features.
Our approach addresses critical challenges associated with scalability and performance in federated
learning, all while maintaining the interpretability that GAMs are known for, distinguishing it from
traditional black-box deep neural networks (DNNs). Experiments on various datasets, including the
UCI Heart Disease, OpenML Wine, and Iris datasets, demonstrated that FedNAMs achieve state-
of-the-art performance across diverse tasks. Despite their smaller and faster architecture than other
neural-based GAMs, FedNAMs effectively capture the nuances of federated learning environments,
where data is distributed across multiple clients. The observed plot confirms that the heart disease
rate increases with age, aligning with real-life data and trends. This validates the correlation between
age and heart disease in practical scenarios. Our results reveal that while the models trained on
different clients, such as those using the UCI Heart Disease, OpenML Wine, and Iris datasets, exhibit
consistent feature contributions, the local data characteristics still influence specific parameter values.
This finding is crucial, as it suggests that FedNAMs can maintain personalization at the client level
while ensuring generalizability across the entire federated learning system. Future research will focus
on further enhancing the scalability and efficiency of federated NAMs, especially in scenarios with a
larger number of clients and more complex data distributions. Additionally, efforts will be directed
toward performing interpretability analysis in large language models (LLMs) to better understand the
decision-making processes of these models in federated environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank all the reviewers and mentors who provided valuable insights into our work.

REFERENCES

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey E Hinton. Neural additive models: Interpretable machine learning with neural nets.
Advances in neural information processing systems, 34:4699–4711, 2021.

Ons Aouedi, Alessio Sacco, Kandaraj Piamrat, and Guido Marchetto. Handling privacy-sensitive
medical data with federated learning: challenges and future directions. IEEE journal of biomedical
and health informatics, 27(2):790–803, 2022.

Sree Bhargavi Balija, Amitash Nanda, and Debashis Sahoo. Building communication efficient
asynchronous peer-to-peer federated llms with blockchain. In Proceedings of the AAAI Symposium
Series, volume 3, pp. 288–292, 2024.

Keith Bonawitz. Towards federated learning at scale: Syste m design. arXiv preprint
arXiv:1902.01046, 2019.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen Zhou, Victor S Sheng, Huaiyu Dai, and Dejing
Dou. Federated learning of large language models with parameter-efficient prompt tuning and
adaptive optimization. arXiv preprint arXiv:2310.15080, 2023.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
presence of arbitrary device unavailability. Advances in Neural Information Processing Systems,
34:12052–12064, 2021.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
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