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Abstract

Dataset Distillation (DD) compresses large
datasets into smaller, synthetic subsets, enabling
models trained on them to achieve performance
comparable to those trained on the full data. How-
ever, these models remain vulnerable to adver-
sarial attacks, limiting their use in safety-critical
applications. While adversarial robustness has
been extensively studied in related fields, research
on improving DD robustness is still limited. To
address this, we propose ROME, a novel method
that enhances the adversarial RObustness of DD
by leveraging the InforMation BottlenEck (IB)
principle. ROME includes two components: a
performance-aligned term to preserve accuracy
and a robustness-aligned term to improve robust-
ness by aligning feature distributions between syn-
thetic and perturbed images. Furthermore, we in-
troduce the Improved Robustness Ratio (I-RR), a
refined metric to better evaluate DD robustness.
Extensive experiments on CIFAR-10 and CIFAR-
100 demonstrate that ROME outperforms existing
DD methods in adversarial robustness, achieving
maximum I-RR improvements of nearly 40% un-
der white-box attacks and nearly 35% under black-
box attacks. Our code is available at https:
//github.com/zhouzhengqd/ROME.

1. Introduction
The rapid expansion of large datasets has driven significant
advancements in computer vision and deep learning appli-
cations, including large language models (Vaswani, 2017;
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Figure 1. Comparison of previous DD methods and the pro-
posed ROME under adversarial attacks: (a) Previous DD meth-
ods align representations between original and synthetic datasets
but remain vulnerable to adversarial attacks due to neglecting the
mutual information among input X , latent representations Z , and
output Y , leading to reduced accuracy under perturbations. (b) Our
method, ROME, employs the information bottleneck principle to
minimize mutual information between X and Z , while maximiz-
ing it between Y and Z , thereby enhancing adversarial robustness
and maintaining high accuracy under perturbations.

Chang et al., 2024) and large vision-language models (Rad-
ford et al., 2021), enabling models to achieve high accuracy
and generalization across diverse domains (Thirunavukarasu
et al., 2023; Kirchenbauer et al., 2023). However, training
on such massive datasets presents substantial challenges,
including high computational costs, excessive memory us-
age, and prolonged training times, particularly in resource-
constrained environments (Lei & Tao, 2024; Yu et al., 2023).

Dataset Distillation (DD) (Wang et al., 2018) addresses these
challenges by compressing large datasets into small, syn-
thetic subsets, allowing models to achieve performance com-
parable to those trained on full datasets. Despite the success
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of methods like DC (Zhao et al., 2021), MTT (Cazenavette
et al., 2022), DM (Zhao & Bilen, 2023), IDM (Zhao et al.,
2023), and BACON (Zhou et al., 2024b), models trained
on distilled datasets remain vulnerable to adversarial at-
tacks (Zhou et al., 2024a; Wu et al., 2024), as illustrated
in Figure 1(a). These vulnerabilities pose significant risks
to critical applications such as face recognition (Wei et al.,
2022a;b), object detection (Zhou et al., 2024c; Hu et al.,
2021), and autonomous driving (Wang et al., 2021a; Yuan
et al., 2023), underscoring the need for robust dataset distilla-
tion techniques that enhance adversarial robustness without
compromising performance.

While adversarial robustness distillation (Goldblum et al.,
2020; Kuang et al., 2023; Wang et al., 2024) has been ex-
tensively explored to enhance Adversarial Robustness (AR)
in knowledge distillation (Hinton, 2015; Gou et al., 2021),
its application to DD remains limited. Recent efforts have
made strides in addressing this gap. For instance, Wu et al.
(2024) introduced DD-Robustbench, a framework for evalu-
ating AR across distilled datasets, while Zhou et al. (2024a)
proposed BEARD, a game-theoretic framework with three
metrics for AR evaluation, including adversarially trained
models. Additionally, Xue et al. (2024) developed GUARD,
which enhances AR through curvature regularization. De-
spite these advances, many methods rely on adversarial
training (Madry et al., 2018), which retrains models with
adversarial examples to improve AR. However, applying ad-
versarial training to DD presents two significant challenges:

a. High computational cost of retraining.

b. Trade-off between model performance and robustness.

To address these challenges, we propose a novel method
called ROME, which enhances the adversarial RObustness
of DD using the InforMation BottlenEck (IB) (Tishby et al.,
2000) principle. ROME reduces computational costs for
downstream tasks while maintaining both robustness and
performance. By leveraging the Conditional Entropy Bot-
tleneck (CEB) (Fischer, 2020), a variant of IB with label
priors, ROME minimizes the mutual information between
input X and latent representations Z , while maximizing
it between output Y and Z to enhance the relevant infor-
mation, as shown in Figure 1(b). This design leads to two
key components: a performance-aligned term to preserve
accuracy, and a robustness-aligned term to improve adver-
sarial robustness by aligning feature distributions between
synthetic and perturbed images. Additionally, we intro-
duce a robust prior for dataset generation by applying ad-
versarial perturbations based on the CEB theory, which can
be further strengthened by incorporating robust pretrained
models (Hendrycks et al., 2019; Goldblum et al., 2020).
Furthermore, we propose the Improved Robustness Ratio (I-
RR), an enhanced metric derived from BEARD (Zhou et al.,

2024a), to better evaluate adversarial robustness. Extensive
experiments on CIFAR-10 and CIFAR-100 demonstrate that
ROME outperforms existing DD methods, achieving max-
imum I-RR improvements of nearly 40% and nearly 35%
under white-box and black-box attacks, respectively.

Our main contributions are summarized as follows:

• Theoretically, we first introduce the IB to DD for de-
riving robust distilled datasets. By leveraging the con-
ditional entropy bottleneck, we obtain a numerically
feasible lower bound and reformulate the IB principle,
incorporating adversarial perturbations as a prior for
feature learning. This approach is termed RObust dis-
tilled datasets via inforMation bottlenEck (ROME).

• Algorithmically, to implement ROME, we propose
two key training terms: a performance-aligned term
to preserve the accuracy of models trained on distilled
datasets, and a robustness-aligned term that maximizes
the margin between synthetic images and the decision
boundary to improve adversarial robustness.

• Experimentally, we introduce I-RR, a refined metric for
more effective evaluation of DD robustness. Extensive
experiments on benchmark datasets including CIFAR-
10 and CIFAR-100 demonstrate that our method out-
performs existing DD approaches in adversarial robust-
ness under both white-box and black-box attacks.

2. Related Work
2.1. Dataset Distillation

Dataset distillation, introduced by Wang et al. (2018), is a
bi-level optimization problem that is computationally ex-
pensive due to nested recursion. Zhao et al. (2021) pro-
posed Dataset Condensation (DC), which improves perfor-
mance by aligning gradients between original and synthetic
datasets. Zhao & Bilen (2021) introduced DSA to enhance
distillation via data augmentation, while Cazenavette et al.
(2022) proposed MTT to match training trajectories. Zhao
& Bilen (2023) introduced Distribution Matching (DM),
later refined by Zhao et al. (2023) as Improved Distribution
Matching (IDM). Zhou et al. (2024b) proposed BACON, a
Bayesian method for DD that improves performance.

2.2. Adversarial Robustness Distillation

Adversarial robustness distillation, introduced by Goldblum
et al. (2020), was initially proposed to improve AR in knowl-
edge distillation and demonstrates that smaller models can
achieve enhanced robustness without incurring additional
training costs. Zi et al. (2021) showed that soft labels from
the teacher model significantly improve the robustness of the
student model. Furthermore, Kuang et al. (2023) addressed
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the limitations of adversarial training (Madry et al., 2018)
by proposing Information Bottleneck Distillation (IBD),
which leverages the information bottleneck principle to en-
hance robustness. Wang et al. (2024) introduced DFARD,
a method that enables robust model training without the
need for additional data. Despite notable progress, research
on enhancing AR in DD remains relatively scarce. Promi-
nent works in this field include DD-Robustbench (Wu et al.,
2024), a benchmark tailored for evaluating AR in distilled
datasets, and BEARD (Zhou et al., 2024a), which provides
a thorough AR evaluation using a game-theoretic frame-
work and three distinct metrics. BEARD also examines
models adversarially trained on distilled datasets, thereby
boosting AR. However, this approach necessitates retrain-
ing and introduces a trade-off between model performance
and robustness. Furthermore, Xue et al. (2024) introduced
GUARD, a method that enhances AR through curvature
regularization. Nonetheless, GUARD requires specific as-
sumptions, such as the convexity of the loss function and
the linearity of the feature extractor, which may restrict its
applicability across diverse models and tasks.

In contrast, we propose ROME, a novel method that en-
hances both performance and robustness by integrating the
information bottleneck principle. ROME improves AR
while maintaining high accuracy under adversarial attacks,
eliminating the need for retraining. Inspired by Kuang et al.
(2023), ROME leverages the conditional entropy bottleneck
within DD, providing a flexible and general framework that
effectively balances model performance and robustness. To
implement ROME, we introduce two key components: a
performance-aligned term to ensure the accuracy of models
trained on distilled datasets, and a robustness-aligned term
that maximizes the margin between synthetic images and the
decision boundary to enhance AR. Extended background
and formal definitions are provided in Appendix B.

3. Robust Dataset Distillation via Information
Bottleneck

3.1. Preliminary

Motivation. Dataset distillation compresses large datasets
into compact subsets while preserving comparable perfor-
mance. While adversarial robustness is well studied in re-
lated areas such as knowledge distillation (Goldblum et al.,
2020), it remains underexplored in DD, which focuses on
efficiency and accuracy. Adversarial training, a common
approach to enhance robustness, suffers from two key limi-
tations: (a) high computational cost of retraining, and (b)
trade-off between model performance and robustness.

Adversarial examples are non-robust features (Ilyas et al.,
2019) that can be mitigated through their removal. The infor-
mation bottleneck principle (Tishby et al., 2000) addresses
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Figure 2. The framework of ROME: ROME utilizes the informa-
tion bottleneck to frame the robust dataset distillation problem as
a min-max optimization of mutual information. It consists of two
key components: (a) The performance-aligned term maximizes the
mutual information between the latent space Z and the output Y by
aligning the logits with the true labels. (b) The robustness-aligned
term minimizes the mutual information between Z and the input
X , conditioned on a robust prior X̂ (the adversarially perturbed
dataset), by aligning the embeddings to reduce the discrepancy.

this by minimizing mutual information between input and
hidden layers while maximizing it between hidden layers
and output, effectively filtering irrelevant input information
and enhancing adversarial robustness. Prior work (Wang
et al., 2021b; Xu et al., 2022; Kuang et al., 2023) has demon-
strated IB’s effectiveness in improving robustness. Inspired
by IBD (Kuang et al., 2023), which applies IB to knowledge
distillation for robustness enhancement, we integrate IB into
DD to address the challenges of adversarial training. The
framework of our method is illustrated in Figure 2.

Information Bottleneck (IB). The information bottleneck
principle, introduced by Tishby et al. (2000) for informa-
tion compression, has been applied to deep learning mod-
els (Tishby & Zaslavsky, 2015). IB aims to find a repre-
sentation Z that preserves as much information as possible
about the target labels Y , while reducing its dependence on
the input X . The IB objective is formulated as:

RIB ≡ max
Z

I(Y;Z)− βI(X ;Z), (1)

where I denotes the mutual Information and β controls the
trade-off between I(Y;Z) and I(X ;Z).
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Variational Information Bottleneck (VIB). The varia-
tional information bottleneck (Alemi et al., 2017) extends
the IB principle by leveraging variational inference to ap-
proximate mutual information with a tractable lower bound.
The VIB objective is formulated as:

I(Y;Z)− βI(X ;Z)

≥ Ep(x,y)p(z|x)

[
log q(y|z)− β log

p(z|x)
q(z)

]
, (2)

where p(z|x) represents the latent space distribution, q(y|z)
approximates the true conditional distribution p(y|z), and
q(z) is a fixed K-dimensional spherical Gaussian (i.e.,
q(z) = N (z|0, 1)). VIB leverages deep neural networks
to parameterize these distributions, enabling efficient han-
dling of high-dimensional, continuous data like images and
overcoming earlier constraints to discrete or Gaussian cases.
The proof of Eq. 2 is provided in Appendix A.1.

Conditional Entropy Bottleneck (CEB). Building on
VIB, Fischer (2020) proposed the conditional entropy bot-
tleneck, which leverages label prior information to better
approximate q(z). The CEB can be formulated as:

I(Y;Z)− βI(X ;Z|Y)

≥ Ep(x,y)p(z|x)

[
log q(y|z)− β log

p(z|x)
q(z|y)

]
. (3)

3.2. Information Bottleneck Perspective for Robust
Dataset Distillation

Definition 3.1 (Robust Distilled Datasets via Information
Bottleneck (ROME)). Let Y represent a random variable
corresponding to the output information, and Z represent a
random variable corresponding to the latent space informa-
tion in a neural network. Let X denote the synthetic dataset,
and X̂ denote the source dataset. To introduce a robust prior
for the source dataset, adversarial perturbations are applied
to X̂ . The parameter β controls the relationship between X ,
X̂ , and Z . The ROME can be defined as follows:

ROME = I(Y;Z)− βI(X ;Z|X̂ ). (4)

Theorem 3.2. The variational lower bound of I(Y;Z) can
be computed as follows (Proof in Appendix A.2):

I(Y;Z) ≥ Ep(y,z) [log q(y|z)] , (5)

where p(y, z) is the joint distribution of output information
Y and latent information Z with y ∈ Y and z ∈ Z , and
q(y|z) is the variational distribution of Y conditioned on Z .

Theorem 3.3. The variational upper bound of I(X ;Z|X̂ )
can be calculated as follows (Proof in Appendix A.3):

I(X ;Z|X̂ ) ≤ Ep(x,x̂)p(z|x,x̂)

[
log

p(z|x)
q(z|x̂)

]
, (6)

Algorithm 1 RObust Dataset Distillation InforMation
BottleNeck (ROME)

Require: Perturbed data X̂ , one-hot labels yt, classes c ∈
{0, 1, . . . , C − 1}, pretrained logits f(·), embeddings
e(·), learning rate η, iterations T .

Ensure: Robust distilled dataset X .
1: Initialize synthetic dataset X by randomly sampling

from X̂ with corresponding class labels;
2: for t = 1 to T do
3: for c = 0 to C − 1 do
4: Select Xc as the subset of X for class c, and X̂c as

the subset of X̂ for class c;
5: end for
6: Compute the performance-aligned term LPerf Alig us-

ing Eq. 10;
7: Compute the robustness-aligned term LRob Alig using

Eq. 11;
8: Compute total loss LTOTAL as in Eq. 12;
9: Update synthetic dataset: X ← X − η∇XLTOTAL;

10: end for
11: return robust distilled dataset X

where p(z|x) represents the conditional probability distribu-
tion of latent information z ∈ Z given the synthetic dataset
x ∈ X , and q(z|x̂) denotes the variational distribution of
z ∈ Z given the perturbed source dataset x̂ ∈ X̂ .
Theorem 3.4. The variational lower bound of ROME can
be computed as follows (Proof in Appendix A.4):

ROME = I(Y;Z)− βI(X ;Z|X̂ )

≥ Ep(x,x̂,y)p(z|x,x̂,y)

[
log q(y|z)− β log

p(z|x)
q(z|x̂)

]
.

(7)

Remark 3.5. By leveraging variational methods, we aim to
refine our understanding and utilization of mutual informa-
tion in the context of ROME. The variational lower bound
Ep(y,z) [log q(y|z)] as detailed in Theorem 3.2, serves as
a fundamental measure. It optimizes the expectation of
log q(y|z) with respect to the distribution q(y|z), where
q(y|z) acts as a variational approximation to the true con-
ditional distribution p(y|z). This bound provides a conser-
vative estimate of I(Y;Z), ensuring that q(y|z) effectively
captures dependencies between output information Y and
hidden variables Z . Simultaneously, the variational upper
bound Ep(x,x̂)p(z|x,x̂)

[
log p(z|x)

q(z|x̂)

]
, as elucidated in Theo-

rem 3.3, offers an upper bound for I(X ;Z|X̂ ). It quantifies
the expected log ratio between the true conditional distribu-
tion p(z|x) of latent variables Z given the synthetic dataset
X and the variational distribution q(z|x̂), given the per-
turbed dataset X̂ . These bounds help optimize variational
distributions in ROME, improving the distillation of robust
datasets while maintaining key information.
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Table 1. Comparison of model robustness when trained using various DD methods with IPC settings of {1, 10, 50}, against both white-box
targeted and untargeted attacks on the CIFAR-10 and CIFAR-100 datasets. Robustness evaluation metrics include RR and CREI, as well
as their improved versions I-RR and I-CREI. The best results between the baseline and proposed methods are highlighted in bold, while
the second-best results are underlined. Improvements in metrics compared to the second-best results are highlighted in red.

Dataset Method Targeted Attack Untargeted Attack

RR CREI I-RR I-CREI RR CREI I-RR I-CREI

C
IF

A
R

-1
0

Full-size 20.42% 24.98% 67.24% 48.39% 28.33% 25.12% 28.82% 25.36%
DC 2020 30.79% 29.35% 88.51% 58.21% 31.87% 26.70% 56.02% 38.78%

DSA 2021 45.22% 36.43% 86.81% 57.22% 36.53% 27.75% 53.66% 36.32%
MTT 2022 36.00% 32.26% 83.95% 56.24% 33.30% 26.26% 48.34% 33.77%
DM 2023 46.01% 36.01% 85.76% 55.89% 34.50% 28.32% 56.19% 39.16%
IDM 2023 32.35% 27.75% 87.07% 55.11% 33.03% 28.46% 53.43% 38.66%

BACON 2024 36.83% 33.05% 84.37% 56.82% 32.87% 27.20% 50.49% 36.01%

ROME 81.36%
(35.35 ↑)

55.28%
(18.85 ↑)

97.44%
(8.93 ↑)

63.32%
(5.11 ↑)

49.86%
(13.33 ↑)

35.05%
(6.59 ↑)

67.01%
(10.82 ↑)

43.62%
(4.46 ↑)

C
IF

A
R

-1
00

Full-size 6.77% 18.18% 65.50% 47.55% 19.91% 18.60% 20.08% 18.69%
DC 2020 33.11% 30.31% 77.14% 52.32% 28.74% 22.40% 32.33% 24.19%

DSA 2021 43.97% 35.01% 72.97% 49.51% 28.53% 20.40% 33.29% 22.77%
MTT 2022 36.06% 31.16% 74.54% 50.40% 26.07% 19.65% 31.10% 22.17%
DM 2023 39.32% 31.32% 71.29% 47.30% 26.72% 19.78% 29.74% 21.28%
IDM 2023 34.44% 27.16% 74.57% 47.23% 26.28% 20.36% 30.83% 22.63%

BACON 2024 31.81% 29.78% 69.96% 48.86% 25.26% 19.30% 27.42% 20.38%

ROME 103.09%
(59.12 ↑)

66.18%
(31.17 ↑)

100.65%
(23.51 ↑)

64.96%
(12.64 ↑)

44.10%
(15.36 ↑)

28.29%
(5.89 ↑)

46.24%
(12.95 ↑)

29.36%
(5.17 ↑)

3.3. Optimization Framework for Performance and
Robustness Alignment

To achieve optimal performance and adversarial robustness,
we maximize Ep(x,x̂,y)p(z|x,x̂,y) [log q(y|z)] and minimize

Ep(x,x̂,y)p(z|x,x̂,y)

[
β log p(z|x)

q(z|x̂)

]
. Simultaneously, maximiz-

ing the first term aims to enhance classification accuracy,
while minimizing the second term helps reduce the discrep-
ancy between the probability distributions of the synthetic
dataset X and the perturbed source dataset X̂ . For clarity,
we refer to these objectives as the performance-aligned
term and robustness-aligned term, respectively.
Theorem 3.6. The performance-aligned term can also be
expressed as follows (Proof in Appendix A.5):

LPerf Alig = Ep(x,x̂,y)

[
CE

[
yt, f(x)

]]
, (8)

where f(·) is a pretrained model robust to adversarial at-
tacks, and f(x) denotes its logits output for input x. yt is
the one-hot true label vector, and CE denotes cross-entropy.
Theorem 3.7. The robustness-aligned term can also be
expressed as the following lower bound, derived by scaling
Pinsker’s inequality (Proof in Appendix A.6):

LRob Alig = Ep(x,x̂,y)

∥∥Ex∼X [e(x)]− Ex̂∼X̂ [e(x̂)]
∥∥2 ,

(9)

where X and X̂ are class-aligned sample sets (i.e., X con-
tains synthetic samples and X̂ perturbed original samples,
both partitioned by the label y), p(x, x̂, y) is the joint distri-
bution, e(·) is the embedding layer output, and ∥·∥2 denotes
the squared Total Variation distance.

Monte Carlo Approximation for ROME. To approxi-
mate the expectations in Eq. 8 and Eq. 9, we apply Monte
Carlo sampling. Specifically, for each class c ∈ C =
{0, 1, . . . , C − 1}, we draw synthetic samples x and cor-
responding perturbed original samples x̂ under class c. We
then aggregate the sampled pairs across all classes with
equal weighting to construct empirical estimates. The
performance-aligned term is approximated as:

LPerf Alig =

C−1∑
c=0

1

|Xc|
∑
x∈Xc

CE
[
ytc, f(x)

]
, (10)

while the robustness-aligned term is estimated by

LRob Alig =

C−1∑
c=0

∥∥∥∥∥∥ 1

|Xc|
∑
x∈Xc

e(x)− 1

|X̂c|

∑
x̂∈X̂c

e(x̂)

∥∥∥∥∥∥
2

,

(11)

where Xc and X̂c are the synthetic and perturbed sample
subsets of category c, with sizes |Xc| and |X̂c|, respectively.
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Table 2. Comparison of model robustness measured by I-RR for
various dataset distillation methods with IPC-50 under targeted
and untargeted transfer-based and query-based black-box attacks
on CIFAR-10. Best results are in bold, second-best underlined,
and improvements over the second-best highlighted in red.

Method Targeted Attack Untargeted Attack

Transfer Query Transfer Query

DC 85.84% 88.71% 83.97% 43.81%
DSA 94.09% 94.95% 92.31% 54.60%
MTT 91.40% 92.76% 89.02% 48.71%
DM 92.22% 93.86% 90.36% 57.53%
IDM 92.17% 94.37% 89.22% 63.23%

BACON 92.46% 94.67% 89.25% 63.26%

ROME 99.90%
(5.81 ↑)

99.79%
(4.84 ↑)

98.44%
(6.13 ↑)

78.46%
(15.2 ↑)

3.4. Overall Framework and Pseudocode

In summary, the overall loss function of ROME combines
the terms in Eq. 10 and Eq. 11. The total loss function is
defined as follows:

LTOTAL = (1− α)LPerf Alig + αLRob Alig, (12)

where the hyperparameter α serves as the weighting factor
for the total loss function and is adjustable. By tuning α, we
can customize the loss function to optimize performance.

Pseudocode Description. The pseudocode for ROME is
shown in Algorithm 1. ROME guides the distillation pro-
cess to effectively enhance both performance and robustness.
Inputs include the perturbed dataset X̂ , one-hot true labels
yt for synthetic dataset X , classes c ∈ {0, 1, . . . , C − 1},
pretrained logits f(·), embeddings e(·), learning rate η, and
total iterations T . The synthetic dataset X is initialized
by sampling from X̂ with class labels. For each iteration
t = 1 to T , class-wise subsets Xc and X̂c are selected. The
performance-aligned term LPerf Alig and robustness-aligned
term LRob Alig are computed via Eq. 10 and Eq. 11, respec-
tively. The total loss LTOTAL is calculated using Eq. 12, and
the synthetic dataset X is updated via gradient descent.

4. Experiments
In this section, we first outline the experimental setup and
evaluation procedure in Section 4.1. We then assess the
adversarial robustness and accuracy of various DD methods
under both white-box and black-box attacks in Section 4.2.
Section 4.3 presents a comparison of training efficiency for
adversarially distilled datasets. Ablation studies of the pro-
posed ROME method are provided in Section 4.4, followed
by visualizations of the results in Section 4.5.

4.1. Experiment Settings

Datasets and Baseline Methods. To systematically eval-
uate our method, we conduct experiments using the
BEARD (Zhou et al., 2024a) benchmark, which is specifi-
cally designed to assess the adversarial robustness of dataset
distillation methods. The datasets used in our evaluation are
CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky,
2009). We compare the performance of our method against
six baseline dataset distillation techniques: DC (Zhao et al.,
2021), DSA (Zhao & Bilen, 2021), MTT (Cazenavette et al.,
2022), DM (Zhao & Bilen, 2023), IDM (Zhao et al., 2023),
and BACON (Zhou et al., 2024b).

Evaluation Attack. We evaluate the robustness of ROME
against both white-box and black-box adversarial attacks.
For white-box attacks, we adopt FGSM (Goodfellow et al.,
2015), PGD (Madry et al., 2018), DeepFool (Moosavi-
Dezfooli et al., 2016), C&W (Carlini & Wagner, 2017), and
AutoAttack (Croce & Hein, 2020). For black-box attacks,
we consider (1) transfer-based attacks, where adversarial
examples generated from a surrogate model are used to
evaluate models trained with different dataset distillation
methods; and (2) query-based attacks, where adversarial
examples are crafted by querying the model using methods
such as Square (Andriushchenko et al., 2020) and SPSA (Ue-
sato et al., 2018). Both targeted and untargeted scenarios
are evaluated for comprehensive analysis.

To ensure a fairer evaluation, we introduce the Improved Ro-
bustness Ratio (I-RR), which refines the original Robustness
Ratio (RR) from BEARD (Zhou et al., 2024a). Since RR
can overestimate robustness when the Attack Success Rate
(ASR) is dominated by a strong attack, I-RR incorporates
model accuracy (ACC) to better balance robustness and per-
formance. Additionally, we propose the Improved Compre-
hensive Robustness-Efficiency Index (I-CREI), combining
I-RR with the Attack Efficiency Ratio (AE) from BEARD
to jointly assess robustness and efficiency. These metrics
reduce sensitivity to outlier attacks, providing a more stable
and fair evaluation. In our experiments, I-RR is used for
black-box robustness, where efficiency metrics (e.g., com-
putation time) are unavailable, making I-CREI inapplicable.
In white-box settings, I-CREI is preferred for its compre-
hensive assessment of robustness and efficiency. Formal
definitions and further details are provided in Appendix C.1.
Definition 4.1 (Improved Robustness Ratio (I-RR)). Given
a neural network model m ∈M and an adversarial attack
function a ∈ A, the I-RR is defined as:

I-RR(m; a) = 100×
[
1− ASR · ASR

∗

ACC2

]
, (13)

where ASR is the average attack success rate, ASR∗ is
the maximum attack success rate, and ACC is the average
accuracy without adversarial attacks.
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Figure 3. Robustness heatmap of models trained using diverse dataset distillation methods with IPC-50 on CIFAR-10 under targeted and
untargeted attacks. The vertical axis represents attacked models, and the horizontal axis shows models used for transfer attacks. Heatmap
values represent I-RR, with darker colors indicating higher I-RR and thus better robustness against adversarial attacks.

Remark 4.2. The I-RR metric is designed to assess adversar-
ial robustness under a single attack a ∈ A, similar to the RR
introduced by BEARD (Zhou et al., 2024a). When extended
to multiple adversarial attacks {A}, the multi-adversary ver-
sion, denoted as I-RRM, provides a more comprehensive
evaluation of model robustness. Similarly, I-CREI extends
I-RR by incorporating the AE to jointly assess robustness
and efficiency, and can be generalized to multi-adversary
settings (I-CREIM). In the following experiments, I-RR
and I-CREI denote I-RRM and I-CREIM by default, as all
evaluations involve multiple adversarial attacks.

Implementation Details. All experiments use a
ConvNet (Gidaris & Komodakis, 2018). I-RR and AE
measure the average top-1 accuracy over five runs under
attacks and GPU time for attacks, respectively. The
images-per-class (IPC) values are set to 50, 10, and 1, with
models trained using stochastic gradient descent (SGD)
with a learning rate of 0.01, momentum of 0.9, and weight
decay of 0.0005. Robust priors are generated with PGD,
using a perturbation budget of 8

255 under targeted attack
settings, and α = 0.2 in Eq. 12, except in ablation studies.
Adversarial robustness is assessed under both targeted
and untargeted attacks, with a perturbation budget of
|ϵ| = 8

255 . For black-box attacks, the Square attack uses
random search with 5000 queries, and the SPSA attack
evaluates gradients with 128 random samples per iteration,
both using the same budget. The setup follows BEARD
guidelines, with experiments conducted on NVIDIA RTX
3090 GPUs. More experimental settings, evaluation metrics,
and implementation details are provided in Appendix C.1.

4.2. Adversarial Robustness Evaluation

White-box Robustness. Table 1 shows the white-box ro-
bustness of ROME and baseline methods under targeted
and untargeted attacks on CIFAR-10 and CIFAR-100. Best
results are in bold, second-best are underlined, and improve-
ments over the second-best are highlighted in red. The pro-
posed ROME outperforms all methods in BEARD across all
adversarial attacks on both datasets. Specifically, on CIFAR-
10, ROME surpasses DC by 8.93% in I-RR and 5.11% in
I-CREI under targeted attacks, and by 10.99% in I-RR and
4.64% in I-CREI under untargeted attacks. On CIFAR-100,
ROME outperforms DC by 23.51% in I-RR and 12.64%
in I-CREI under targeted attacks, and by 13.91% in I-RR
and 5.17% in I-CREI under untargeted attacks. To further
validate the results in Table 1, we record the accuracies
of models trained on various distilled datasets under PGD
attacks with perturbation budgets from 0 to 0.05, and plot
the robustness curves following the protocol in (Dong et al.,
2020; Liu et al., 2024). The complete curves and additional
analysis are provided in Appendix C.2.

The significant improvement in adversarial robustness
achieved by ROME can be attributed to the introduction
of the conditional entropy bottleneck principle, which incor-
porates robust priors into the distilled dataset. Additionally,
the use of a pre-trained robust model further strengthens
these priors. Regarding the CIFAR-100 targeted attack re-
sults, where I-RR exceeds 100%, we hypothesize that this
phenomenon, which we refer to as the “Over-Robustness
Phenomenon”, arises due to the application of the informa-
tion bottleneck principle. During model training on ROME,
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Table 3. Comparison of adversarial robustness (I-CREI, %) and
training time (hours) of ROME and baseline dataset distillation
methods on CIFAR-10 (IPC-50) under targeted attacks. “Base”
indicates standard distillation training, while “+AdvTrain” refers
to the additional time required for adversarial training to improve
robustness. Best results, balancing robustness and efficiency, are
highlighted in bold, and † denotes consistent results from “Base”
to “+AdvTrain”, indicating no need for adversarial fine-tuning.

Method I-CREI Training Time

Base +AdvTrain Base +AdvTrain

DC 58.21% 63.43% 0.425 1.088
DSA 57.22% 63.46% 0.437 1.103
MTT 56.24% 62.44% 0.444 1.088
DM 55.89% 63.21% 0.452 1.109
IDM 55.11% 63.11% 0.414 1.055

BACON 56.82% 62.68% 0.442 1.101

ROME 63.32% 63.32% † 0.418 0.418 †

both the original dataset information and non-robust fea-
tures, which serve as robust priors, are effectively utilized.
In the distillation process, ROME compresses substantial
image information from the original dataset, leading to a
higher proportion of non-robust features in the compressed
dataset. Consequently, models trained with ROME may
outperform clean models, exhibiting higher accuracy under
adversarial attacks than in the absence of such attacks. This
“Over-Robustness Phenomenon” explains why I-RR ex-
ceeds 100%, occurring exclusively under targeted attacks
due to robust priors generated via targeted PGD.

Black-box Robustness. To evaluate the black-box robust-
ness of ROME and baseline methods, we conduct compar-
ison experiments using distilled datasets with IPC-50 on
CIFAR-10. We assess performance under both targeted
and untargeted transfer-based and query-based attacks. For
transfer-based attacks, we perform two experiments: (1) ad-
versarial examples generated from an adversarially trained
model are transferred to evaluate the robustness of models
trained with different DD methods, as shown in Table 2, and
(2) adversarial examples generated from a model trained
with a specific DD method are transferred to evaluate the
robustness of models trained with other DD methods, as
shown in Figure 3. Additional results are in Appendix C.2.

Table 2 shows the adversarial robustness measured by I-RR
of ROME and baseline methods against the first transfer-
based and query-based attacks. The best results between
the baseline and proposed methods are highlighted in bold,
while the second-best results are underlined. Improvements
in metrics compared to the second-best results are high-
lighted in red. ROME outperforms all baseline methods
in both attack types. Specifically, ROME achieves near-

Table 4. Ablation studies on the Robust Pretrained Model (RPM)
and Adversarial Perturbation (AP) under both targeted and untar-
geted attacks, evaluated by I-RR and I-CREI on the CIFAR-10
dataset with IPC-50. Best results are highlighted in bold.

Configuration Targeted Attack Untargeted Attack

I-RR I-CREI I-RR I-CREI

Baseline 81.86% 55.26% 32.45% 29.29%
+RPM 84.50% 56.53% 34.89% 30.45%
+AP 94.66% 61.67% 47.64% 36.78%
+RPM&AP 97.73% 63.23% 51.73% 38.95%

perfect robustness, with performance exceeding 99.79% for
targeted and query-based attacks, and shows up to a 15.2%
improvement in untargeted query-based attacks compared
to the second-best DD method. Figure 3 presents a robust-
ness heatmap illustrating the performance of ROME and
baseline methods against the second transfer-based attack.
Darker colors indicate higher robustness, while lighter col-
ors indicate lower robustness. ROME achieves 97.62%, the
best performance under targeted attacks, and 50.36%, the
best performance under untargeted attacks. These results
show that ROME performs strongly in both white-box and
black-box attack scenarios, indicating that the robustness
improvement is not due to obfuscated gradients. The con-
sistent performance across different attack types highlights
ROME’s ability to generalize well, ensuring stability and
effectiveness in various adversarial settings.

4.3. Training Efficiency Comparison with Adversarially
Distilled Datasets

Table 3 presents a comparison of various DD methods in
terms of adversarial robustness (measured by I-CREI un-
der targeted attacks) and training time on CIFAR-10 with
IPC-50. Among all methods, ROME achieves the highest
I-CREI score (63.32%) in the “Base” setting, surpassing
both traditional and recent distillation approaches. Most
baselines rely on adversarial fine-tuning (“+AdvTrain”) to
improve robustness, often requiring significant additional
training time. In contrast, ROME achieves strong robust-
ness without adversarial retraining. Even in the “+AdvTrain”
setting, ROME still outperforms the majority of methods.

In terms of efficiency, ROME requires only 0.418 hours
of training in the “Base” setting, slightly more than IDM
(0.414 hours) but still among the fastest methods. In the
“+AdvTrain” setting, ROME incurs no additional training
time, as it does not require adversarial fine-tuning. In con-
trast, methods like DM require 0.452 hours for base train-
ing and 0.658 hours for adversarial training, totaling over
1.1 hours. This makes ROME the most efficient method
overall, offering strong robustness with the shortest total
training time. Identical values in both “Base” and “+Adv-
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Figure 4. Ablation study of the hyperparameter α. (a) Displays the
accuracy (y-axis) as a function of α (x-axis) for different values of
α, and (b) shows the corresponding visualizations for these values.

Train” columns (marked by †) confirm no additional steps
are needed. Further details on the comparison with mod-
els trained on adversarial datasets and the corresponding
training time are provided in Appendix C.3.

4.4. Ablation Studies

Impact of the Robust Prior. We incorporate the robust
prior into the source dataset as x̂ ∈ X̂ via Adversarial Pertur-
bation (AP), as derived in Theorem 3.7, and further enhance
it using a Robust Pretrained Model (RPM) f(·), as intro-
duced in Theorem 3.6. To evaluate their contributions, we
perform ablation studies on ROME under IPC-50 on CIFAR-
10. As shown in Table 4, the combination of RPM and AP
achieves the highest adversarial robustness, outperforming
either component used in isolation. Further ablation results
on the robust prior are presented in Appendix C.4, with
corresponding visualizations in Appendix C.5.

Impact of the Hyperparameter α. In Eq. 12, the hyperpa-
rameter α balances the performance-aligned and robustness-
aligned terms in the loss function. As shown in Figure 4(a),
varying α significantly affects model performance. Al-
though the optimal accuracy on CIFAR-10 with IPC-50
is achieved at α = 0.2, and may vary for other datasets or
IPC settings (e.g., CIFAR-100; IPC-1 and IPC-10), models
trained with α = 0.2 consistently demonstrate the strongest
robustness against both targeted and untargeted attacks.

4.5. Visualization

Figure 4(b) illustrates how varying the hyperparameter α
affects the generated images. As α increases, the images
become brighter and exhibit more high-frequency details,
which may correspond to stronger adversarial features con-
tributing to improved robustness. However, this increase in
robustness comes with a decrease in clean accuracy (Fig-
ure 4(a)), indicating a trade-off between robustness and
standard performance. Additional visualizations for abla-
tion studies and comparisons across different IPC settings
with other dataset distillation methods are in Appendix C.5.

5. Conclusion, Limitations, and Future Work
In this work, we introduce the information bottleneck prin-
ciple into dataset distillation and propose ROME, a robust
method for dataset distillation. ROME combines two key
components: a performance-aligned term to preserve accu-
racy, and a robustness-aligned term that enhances adversar-
ial robustness without compromising overall performance.
To more effectively evaluate adversarial robustness, we in-
troduce I-RR, a metric that balances attack success with
model accuracy. Experiments on CIFAR-10 and CIFAR-
100 show that ROME consistently outperforms existing
methods in both white-box and black-box settings, achiev-
ing up to 38.19% higher I-RR than the worst baseline and
23.51% higher than the second-best under white-box at-
tacks, and 34.65% and 15.2% improvements, respectively,
under black-box attacks. Notably, these improvements are
achieved without the need for adversarial training, signifi-
cantly reducing training costs while maintaining robustness.

Limitations and Future Work. While ROME effectively
distills robust datasets without adversarial retraining, its
scalability is limited by the large search space for complex
datasets like ImageNet, restricting its applicability to large-
scale language and vision-language models. Future work
will explore more efficient search algorithms and compres-
sion methods to scale ROME to complex tasks and datasets.
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Appendix
This appendix presents supplementary details that further support the main paper, including proofs for theorems, background
on dataset distillation, and experimental setup and results. The contents are organized as follows:

• Appendix A contains proofs for all theorems and definitions presented in this paper.

• Appendix B provides additional background information and preliminary details on dataset distillation.

• Appendix C provides implementation details of experiments and visualizations.

A. Proof
A.1. Proof of Variational Information Bottleneck (VIB)

A.1.1. VARIATIONAL LOWER BOUND OF VIB

We derive a variational lower bound of I(Y;Z) by leveraging the non-negativity of KL divergence. This bound allows us to
approximate the mutual information using a tractable variational distribution q(y|z).

I(Y;Z) =
∫

p(y, z) log
p(y, z)

p(y)p(z)
dy dz (14)

=

∫
p(y, z) log

p(y|z)
p(y)

dy dz. (15)

KL(p(Y|Z)∥q(Y|Z)) ≥ 0 (16)

⇒
∫

p(y|z) log p(y|z) dy dz ≥
∫

p(y|z) log q(y|z) dy dz. (17)

I(Y;Z) ≥
∫

p(y, z) log
q(y|z)
p(y)

dy dz (18)

=

∫
p(y, z) log q(y|z) dy dz −

∫
p(y, z) log p(y) dy dz (19)

=

∫
p(y, z) log q(y|z) dy dz −

∫
p(y) log p(y) dy (20)

=

∫
p(y, z) log q(y|z) dy dz +H(Y ) (21)

≥
∫

p(y, z) log q(y|z) dy dz (22)

=

∫
[p(x, y, z) dx] log q(y|z) dy dz (23)

=

∫
[p(x, y)p(z|x, y) dx] log q(y|z) dy dz (24)

=

∫
[p(x, y)p(z|x) dx] log q(y|z) dy dz (25)

=

∫
p(x, y)p(z|x) log q(y|z) dx dy dz (26)

= Ep(x,y)p(z|x) [log q(y|z)] . (27)

12
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A.1.2. VARIATIONAL UPPER BOUND OF VIB

Similarly, we provide a variational upper bound of I(X ;Z) using a surrogate marginal q(z), which is critical for enforcing
the information bottleneck constraint in practice.

I(X ;Z) =
∫

p(x, z) log
p(x, z)

p(x)p(z)
dx dz (28)

=

∫
p(x, z) log

p(z|x)
p(z)

dx dz. (29)

KL(p(Z)∥q(Z)) ≥ 0 (30)

⇒
∫

p(z) log p(z) dz ≥
∫

p(z) log q(z) dz. (31)

I(X ;Z) ≤
∫

p(x, z) log
p(z|x)
q(z)

dx dz (32)

=

∫
[p(x, z, y) dy] log

p(z|x)
q(z)

dx dz (33)

=

∫
[p(x, y)p(z|x, y) dy] log p(z|x)

q(z)
dx dz (34)

=

∫
[p(x, y)p(z|x) dy] log p(z|x)

q(z)
dx dz (35)

=

∫
p(x, y)p(z|x) log p(z|x)

q(z)
dx dy dz (36)

= Ep(x,y)p(z|x)

[
log

p(z|x)
q(z)

]
. (37)

Combining the above variational lower bound on I(Y;Z) and the variational upper bound on I(X ;Z), we derive the
following variational objective for the VIB framework:

I(Y;Z)− βI(X ;Z) ≥ Ep(x,y)p(z|x)

[
log q(y|z)− β log

p(z|x)
q(z)

]
. (38)

A.2. Proof of Theorem 3.2

In the ROME setting, there are a synthetic dataset X and a perturbed source dataset X̂ . ROME aims to learn the
feature representations Z of X , which is comparable to the representations of X̂ . Additionally, we assume Z , X̂ and Y
are independent given X , where denotes as Z ⊥⊥ {X̂ ,Y}|X . Z depends only on X because of Markov chain Z ← X →
{X̂ ,Y}. We can obtain the lower bound of I(Y;Z):

Theorem A.1. The variational lower bound of I(Y;Z) can be computed as follows:

I(Y;Z) ≥ Ep(y,z) [log q(y|z)] . (39)
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Proof.

I(Y;Z) = H(Y)−H(Y|Z) ∝ −H(Y|Z) (40)
= −H(Y|Z) (41)

=

∫
p(y, z) log

p(y, z)

p(z)
dydz (42)

=

∫
p(y, z) log p(y|z)dydz (43)

=

∫
p(y, z) log p(y|z)dydz −

∫
p(y, z) log q(y|z)dydz +

∫
p(y, z) log q(y|z)dydz (44)

=

∫
p(y, z) log q(y|z)dydz +

∫
KL [p(y|z)||q(y|z)] dydz (45)

≥
∫

p(y, z) log q(y|z)dydz (46)

= Ep(y,z) [log q(y|z)] . (47)

A.3. Proof of Theorem 3.3

Theorem A.2. I(X ;Z|X̂ ) can also be simplified as follows:

I(X ;Z|X̂ ) = I(X , X̂ ;Z)− I(X̂ ,Z) = I(X ;Z)− I(X̂ ;Z). (48)

Proof.

I(X ;Z|X̂ ) = H(X|X̂ ) +H(Z|X̂ )−H(X ,Z|X̂ ) (49)

= H(Z|X̂ ) +
[
H(X|X̂ )−H(X ,Z|X̂ )

]
(50)

= H(Z|X̂ ) +
[(

H(X , X̂ )−H(X̂ )
)
−
(
H(X , X̂ ,Z)−H(X̂ )

)]
(51)

= H(Z|X̂ ) +
[
H(X , X̂ )−H(X , X̂ ,Z)

]
(52)

= H(Z|X̂ ) +
[
H(X , X̂ )−

(
H(X , X̂ ) +H(Z|X , X̂ )

)]
(53)

= H(Z|X̂ )−H(Z|X , X̂ ). (54)

I(X , X̂ ;Z)− I(X̂ ,Z) (55)

= H(X , X̂ ) +H(Z)−H(X , X̂ ,Z)−
[
H(X̂ ) +H(Z)−H(X̂ ,Z)

]
(56)

= H(X , X̂ ) +H(Z)−
[
H(X , X̂ ) +H(Z|X , X̂ )

]
−

[
H(X̂ ) +H(Z)−

(
H(X̂ ) +H(Z|X̂ )

)]
(57)

=�����
H(X , X̂ ) +�

��H(Z)−�����
H(X , X̂ )−H(Z|X , X̂ )−�

��
H(X̂ )−�

��H(Z) +�
��

H(X̂ ) +H(Z|X̂ ) (58)

= H(Z|X̂ )−H(Z|X , X̂ ). (59)

Therefore, learning intermediate features Z of X is equivalent to minimizing I(X ;Z|X̂ ).

I(X ;Z|X̂ ) = I(X , X̂ ;Z)− I(X̂ ,Z) = I(X ;Z)− I(X̂ ;Z). (60)

Theorem A.3. The variational upper bound of I(X ;Z|X̂ ) can be calculated as follows:

I(X ;Z|X̂ ) ≤ Ep(x,x̂)p(z|x,x̂)

[
log

p(z|x)
q(z|x̂)

]
. (61)
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Proof.

I(X ;Z|X̂ ) = I(X ;Z)− I(X̂ ;Z) (62)

= H(Z)−H(Z|X )−
[
H(Z)−H(Z|X̂ )

]
(63)

= −H(Z|X ) +H(Z|X̂ ) (64)

=

∫
p(z, x) log

p(z, x)

p(x)
dxdz −

∫
p(z, x̂) log

p(z, x̂)

p(x̂)
dx̂dz (65)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log p(z|x̂)dx̂dz (66)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log p(z|x̂)dx̂dz (67)

+

∫
p(z, x̂) log q(z|x̂)dx̂dz −

∫
p(z, x̂) log q(z|x̂)dx̂dz (68)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log q(z|x̂)dx̂dz −

∫
KL [p(z|x̂)||q(z|x̂)] (69)

≤
∫

p(z, x) log p(z|x)dxdz −
∫

p(z, x̂) log q(z|x̂)dx̂dz (70)

=

∫
p(x)p(z|x) log p(z|x)dxdz −

∫
p(x̂)p(z|x̂) log q(z|x̂)dx̂dz (71)

=

∫
[p(x, x̂)dx̂] p(z|x, x̂) log p(z|x, x̂)dxdz −

∫
p(x̂)p(z|x̂) log q(z|x̂)dx̂dz (72)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)dxdx̂dz −

∫
p(x̂) [p(x|x̂)p(z|x, x̂)dx] log q(z|x̂)dx̂dz (73)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)dxdx̂dz −

∫
p(x, x̂)p(z|x, x̂) log q(z|x̂)dxdx̂dz (74)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)

q(z|x̂)
dxdx̂dz (75)

= Ep(x,x̂)p(z|x,x̂)

[
log

p(z|x)
q(z|x̂)

]
. (76)

A.4. Proof of Theorem 3.4

Theorem A.4. The variational lower bound of ROME can be computed as follows:

ROME = I(Y;Z)− βI(X ;Z|X̂ ) (77)

≥ Ep(x,x̂,y)p(z|x,x̂,y)

[
log q(y|z)− β log

p(z|x)
q(z|x̂)

]
. (78)

Proof.

I(Y;Z) = H(Y)−H(Y|Z) ∝ −H(Y|Z) (79)
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= −H(Y|Z) (80)

=

∫
p(y, z) log

p(y, z)

p(z)
dydz (81)

=

∫
p(y, z) log p(y|z)dydz (82)

=

∫
p(y, z) log p(y|z)dydz −

∫
p(y, z) log q(y|z)dydz +

∫
p(y, z) log q(y|z)dydz (83)

=

∫
p(y, z) log q(y|z)dydz +

∫
KL [p(y|z)||q(y|z)] dydz (84)

= Ep(y,z) [log q(y|z)] (85)

=

∫
[p(x, x̂, y, z)dxdx̂] log q(y|z)dydz (86)

=

∫
p(x, x̂, y)p(z|x, x̂, y) log q(y|z)dxdx̂dydz (87)

= Ep(x,x̂,y)p(z|x,x̂,y) [log q(y|z)] . (88)

I(X ;Z|X̂ ) = I(X ;Z)− I(X̂ ;Z) (89)

= H(Z)−H(Z|X )−
[
H(Z)−H(Z|X̂ )

]
(90)

= −H(Z|X ) +H(Z|X̂ ) (91)

=

∫
p(z, x) log

p(z, x)

p(x)
dxdz −

∫
p(z, x̂) log

p(z, x̂)

p(x̂)
dx̂dz (92)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log p(z|x̂)dx̂dz (93)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log p(z|x̂)dx̂dz (94)

+

∫
p(z, x̂) log q(z|x̂)dx̂dz −

∫
p(z, x̂) log q(z|x̂)dx̂dz (95)

=

∫
p(z, x) log p(z|x)dxdz −

∫
p(z, x̂) log q(z|x̂)dx̂dz −

∫
KL [p(z|x̂)||q(z|x̂)] (96)

≤
∫

p(z, x) log p(z|x)dxdz −
∫

p(z, x̂) log q(z|x̂)dx̂dz (97)

=

∫
p(x)p(z|x) log p(z|x)dxdz −

∫
p(x̂)p(z|x̂) log q(z|x̂)dx̂dz (98)

=

∫
[p(x, x̂)dx̂] p(z|x, x̂) log p(z|x, x̂)dxdz −

∫
p(x̂)p(z|x̂) log q(z|x̂)dx̂dz (99)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)dxdx̂dz −

∫
p(x̂) [p(x|x̂)p(z|x, x̂)dx] log q(z|x̂)dx̂dz (100)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)dxdx̂dz −

∫
p(x, x̂)p(z|x, x̂) log q(z|x̂)dxdx̂dz (101)

=

∫
p(x, x̂)p(z|x, x̂) log p(z|x)

q(z|x̂)
dxdx̂dz (102)

=

∫
[p(x, x̂, y)dy] p(z|x, x̂, y) log p(z|x)

q(z|x̂)
dxdx̂dz (103)

=

∫
p(x, x̂, y)p(z|x, x̂, y) log p(z|x)

q(z|x̂)
dxdx̂dydz (104)

= Ep(x,x̂,y)p(z|x,x̂,y)

[
log

p(z|x)
q(z|x̂)

]
. (105)
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Therefore, the lower bound of ROME can be defined as:

ROME = I(Y;Z)− βI(X ;Z|X̂ ) (106)

≥ Ep(x,x̂,y)p(z|x,x̂,y)

[
log q(y|z)− β log

p(z|x)
q(z|x̂)

]
. (107)

Remark A.5. By leveraging variational methods, we aim to refine our understanding and utilization of mutual information in
the context of ROME. The variational lower bound Ep(y,z) [log q(y|z)] as detailed in Theorem 3.2, serves as a fundamental
measure. It optimizes the expectation of log q(y|z) with respect to the distribution q(y|z), where q(y|z) acts as a variational
approximation to the true conditional distribution p(y|z). This bound provides a conservative estimate of I(Y;Z), ensuring
that q(y|z) effectively captures dependencies between output information Y and hidden variables Z . Simultaneously, the
variational upper bound Ep(x,x̂)p(z|x,x̂)

[
log p(z|x)

q(z|x̂)

]
, as elucidated in Theorem 3.3, offers an upper bound for I(X ;Z|X̂ ). It

quantifies the expected log ratio between the true conditional distribution p(z|x) of latent variables Z given the synthetic
dataset X and the variational distribution q(z|x̂), given the perturbed dataset X̂ . These bounds help optimize variational
distributions in ROME, improving the distillation of robust datasets while maintaining key information.

A.5. Proof of Theorem 3.6

Theorem A.6. The performance-aligned term can also be expressed as follows:

LPerf Alig = Ep(x,x̂,y)

[
CE

[
yt, f(x)

]]
, (108)

where f(·) is a pretrained model robust to adversarial attacks, and f(x) denotes its logits output for input x. yt is the one-hot
true label vector, and CE denotes cross-entropy.

Proof.

Ep(x,x̂,y)p(z|x,x̂,y) [log q(y|z)] = Ep(x,x̂,y)p(z|x) [log q(y|z)] (109)
= Ep(x,x̂,y)Ep(z|x) [log q(y|z)] (110)
= Ep(x,x̂,y) [log q(y|e(x))] (111)

= −Ep(x,x̂,y)

[
−yt log q(yt|e(x))

]
(112)

= −Ep(x,x̂,y)

[
CE[yt, f(x)]

]
. (113)

To maximize the performance-aligned term, we can equivalently minimize the negative of this term. To facilitate optimization
using gradient descent, we formulate the term as follows:

LPerf Alig = Ep(x,x̂,y)

[
CE

[
yt, f(x)

]]
. (114)

A.6. Proof of Theorem 3.7

Definition A.7 (Total Variation Distance). The total variation distance can be defined as follows:

TV(P,Q) =
1

2

∑
x

|P (x)−Q(x)|, (115)

where

Definition A.8 (Kullback-Leibler Divergence). The Kullback-Leibler divergence can be defined as follows:

KL(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
. (116)
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Definition A.9 (Pinsker’s Inequality). The Pinsker’s inequality can be defined as follows:

TV(P,Q) ≤
√

1

2
KL(P ||Q). (117)

Theorem A.10. The robustness-aligned term can also be expressed as the following lower bound, derived by scaling
Pinsker’s inequality:

LRob Alig = Ep(x,x̂,y)∥Ex∼X [e(x)]− Ex̂∼X̂ [e(x̂)] ∥2, (118)

where X and X̂ are class-aligned sample sets (i.e., X contains synthetic samples and X̂ perturbed original samples, both
partitioned by the label y), p(x, x̂, y) is the joint distribution, e(·) is the embedding layer output, and ∥ · ∥2 denotes the
squared Total Variation distance.

Proof.

Ep(x,x̂,y)p(z|x,x̂,y)

[
log

p(z|x)
q(z|x̂)

]
= Ep(x,x̂,y)p(z|x)

[
log

p(z|x)
q(z|x̂)

]
(119)

= Ep(x,x̂,y)Ep(z|x)

[
log

p(z|x)
q(z|x̂)

]
(120)

= Ep(x,x̂,y)KL [p(z|x)||q(z|x̂)] (121)

≥ Ep(x,x̂,y)

[
2TV2 [p(z|x), q(z|x̂)]

]︸ ︷︷ ︸
Pinsker’s inequality

(122)

= Ep(x,x̂,y)∥Ex∼X [e(x)]− Ex̂∼X̂ [e(x̂)] ∥2. (123)

Therefore, the robustness-aligned term can be also computed as:

LRob Alig = Ep(x,x̂,y)∥Ex∼X [e(x)]− Ex̂∼X̂ [e(x̂)] ∥2. (124)

B. Extended Background
B.1. Dataset Distillation

Let T = {(xi, yi)}|T |
i=1 denote the real dataset, where each xi ∈ X ⊂ Rd is a d-dimensional input and yi ∈ Y =

{0, . . . , C − 1} is the corresponding class label. The distilled (synthetic) dataset is represented as S = {(x̃i, ỹi)}|S|
i=1, where

x̃i ∈ Rd, ỹi ∈ Y , and |S| ≪ |T |. In this work, we adopt the notation X ≡ S for the synthetic dataset, and use X̂ to denote
the adversarially perturbed version of T . This deviates from the conventional dataset distillation literature, where X typically
refers to the clean source data. The modified definitions are introduced to align with our focus on adversarial robustness, an
aspect that has been underexplored in DD research. Notations in cited methods are retained for clarity and consistency.

The goal of dataset distillation is to construct a compact dataset S that captures the essential information in T such that
training a model on S yields similar performance to training on T . Let ϕθ : x 7→ y denote a model parameterized by θ, and
let L be a loss function (e.g., cross-entropy). The distillation objective is formulated as:

Ex∼T [L(ϕθ(x), y)] ≃ Ex∼S [L(ϕθ(x̃), ỹ)]. (125)

B.1.1. META-LEARNING BASED METHOD

A predominant approach to dataset distillation formulates the task as a bi-level meta-optimization problem (Wang et al.,
2018). The inner optimization minimizes the training loss on the synthetic dataset S to obtain model parameters θ(S), while
the outer optimization updates S to minimize the generalization loss on the original dataset T :

S∗ = argmin
S

Eθ∼Θ [l(T ; θ∗(S))] s.t. θ∗(S) = argmin
θ

L(S, θ), (126)

where L denotes the task-specific loss function. Despite its effectiveness, this bi-level framework introduces substantial
computational overhead, spurring research into more tractable alternatives.
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B.1.2. GRADIENT MATCHING BASED METHODS

To mitigate the memory and time overhead introduced by gradient unrolling in meta-learning, Zhao et al. (2021) propose a
gradient matching approach. This method optimizes the synthetic data S by aligning its gradient with that of the original
data T using cosine similarity. At each iteration, class-wise mini-batches Sc ⊂ S and T c ⊂ T are sampled, where c ∈ C
indexes the classes, and updates are performed independently for each class. The objective is given by:

min
S

Eθ∼Θ

[
C−1∑
c=0

D(∇L(Sc; θ),∇L(Tc; θ))

]
, (127)

where D(·, ·) denotes the cosine distance between gradients. While this formulation avoids full backpropagation through
time, it remains computationally intensive due to repeated gradient computations and per-class updates.

B.1.3. DISTRIBUTION MATCHING BASED METHODS

To further reduce the computational burden of bi-level optimization, Zhao & Bilen (2023) introduce a distribution matching
approach based on the Maximum Mean Discrepancy (MMD) metric. This method minimizes the Euclidean distance between
the feature distributions of synthetic data S and real data T under a given model ϕθ. The objective is defined as:

min
S

Eθ∼Θ∥
1

|S|

|S|∑
i=1

ϕθ(x̃i)−
1

|T |

|T |∑
j=1

ϕθ(xj)∥2, (128)

where ϕθ(x̃) and ϕθ(x) denote the feature embeddings of synthetic and real samples, respectively. By aligning the feature
distributions, this approach bypasses gradient-based unrolling and offers improved efficiency.

B.2. Adversarial Robustness Distillation

B.2.1. ADVERSARIAL TRAINING

Deep neural networks have been found to be vulnerable to adversarial examples, which are generated by adding imperceptible
adversarial perturbations (Szegedy et al., 2014). Goodfellow et al. (2015) proposed the Fast Gradient Sign Method (FGSM)
adversarial attack method, which generates adversarial perturbation in the direction of the gradient of the loss function.
Madry et al. (2018) presented a Projected Gradient Decent (PGD) adversarial attack method, which is a multi-step optimal
first-order attack method. Following these works, a series of works have been proposed to improve the performance of the
adversarial attack, such as DeepFool (Moosavi-Dezfooli et al., 2016), C&W (Carlini & Wagner, 2017), AutoAttack (Croce
& Hein, 2020). To overcome the effect of adversarial examples on deep neural networks, Madry et al. (2018) proposed
adversarial training by adopting a multistep adversarial attack, i.e., PGD, to generate adversarial examples to improve
adversarial robustness. adversarial training has been demonstrated as one of the most effective approaches to improve
adversarial robustness, which can be formulated as a mini-max optimization problem as follows:

argmin
θ

E(x,y)∼D

[
max

ϵ
L(fθ(x+ ϵ), y)

]
s.t. ∥ϵ∥p ≤ c, (129)

where fθ(·) represents DNN with wights θ, D is a data distribution with the benign sample x and the correponding ground
truth label y, ϵ is the generated adversarial perturbation, c is the maximum perturbation strength and L(fθ(x + ϵ), y)
represents the cross entropy loss function. The adversarial perturbation can be defined as:

ϵt =
∏

[−c,c]

[ϵt−1 + α sign(∇xL(fθ(x+ ϵt−1), y))] , (130)

where ϵt is the adversarial perturbation for t iterations and α is the step size.

B.2.2. INFORMATION BOTTLENECK

Information Bottleneck (IB) (Tishby et al., 2000; Alemi et al., 2017) aims to encode the maximally informative representation
Z for target labels Y while restrain input informmation X . The objective function of IB can be dedined as:

RIB ≡ max
Z

I(Y;Z)− βI(X ;Z), (131)

where I denotes the mutual Information and β controls the trade-off between (Y;Z) and I(X ;Z).
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C. Experiment
C.1. Experiment Settings

Datasets. In our experiments, we use two standard image classification datasets: CIFAR-10 (Krizhevsky, 2009) and
CIFAR-100 (Krizhevsky, 2009). Each dataset has been selected for its relevance and complexity in the context of dataset
distillation and adversarial robustness evaluation.

• CIFAR-10 (Krizhevsky, 2009) contains 60,000 32 × 32 color images in 10 classes, with 50,000 images for training
and 10,000 for testing. The images are preprocessed to normalize pixel values to the range [0, 1].

• CIFAR-100 (Krizhevsky, 2009) Similar to CIFAR-10 but with 100 classes, this dataset contains 60,000 images, divided
into 50,000 training and 10,000 testing images. Each image is resized to 32 × 32 pixels and normalized.

Dataset Distillation Methods. We use six representative dataset distillation methods as baselines: DC (Zhao et al.,
2021), DSA (Zhao & Bilen, 2021), DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), IDM (Zhao et al., 2023),
and BACON (Zhou et al., 2024b). These methods span several common categories in recent dataset distillation research,
including gradient matching methods (Zhao et al., 2021; Zhao & Bilen, 2021), distribution matching methods (Zhao &
Bilen, 2023; Zhao et al., 2023; Zhou et al., 2024b), and trajectory matching methods (Cazenavette et al., 2022).

• DC (Zhao et al., 2021) formulates dataset distillation as a bi-level optimization problem, focusing on matching the
gradients of deep neural networks trained on the original dataset T and the synthetic dataset S.

• DSA (Zhao & Bilen, 2021) improves distillation by incorporating data augmentation, enabling the generation of more
informative synthetic images, which enhances the performance of models trained with these augmentations.

• DM (Zhao & Bilen, 2023) offers a straightforward yet impactful method for generating condensed images by aligning
the feature distributions of synthetic images S with those of the original training set T across multiple sampled
embedding spaces.

• MTT (Cazenavette et al., 2022) introduces trajectory matching as a distillation technique, condensing large datasets
into smaller ones by aligning the training trajectories of models trained on both the synthetic S and original T datasets.

• IDM (Zhao et al., 2023) proposes a novel dataset condensation approach based on distribution matching, which proves
to be both efficient and promising for dataset distillation tasks.

• BACON (Zhou et al., 2024b) leverages a Bayesian framework for dataset distillation, formulating it as risk minimization
to substantially improve performance and efficiency.

Adversarial Attack Methods. All attacks are implemented using the BEARD framework (Zhou et al., 2024a), which
provides a comprehensive suite of state-of-the-art adversarial attack methods, including both white-box and black-box
attacks. To ensure fair comparisons, consistent parameters are applied across all models. The attack library includes FGSM
(Goodfellow et al., 2015), PGD (Madry et al., 2018), C&W (Carlini & Wagner, 2017), DeepFool (Moosavi-Dezfooli et al.,
2016), and AutoAttack (Croce & Hein, 2020) for white-box attacks, as well as Square (Andriushchenko et al., 2020) and
SPSA (Uesato et al., 2018) for black-box attacks. During evaluation, adversarial perturbations are applied to assess the
robustness of distilled datasets generated by various methods. Both targeted and non-targeted attacks are conducted to
comprehensively evaluate adversarial robustness. For consistency, all trained models are tested under the same parameters,
with the perturbation budget set to |ϵ| = 8

255 for all methods except DeepFool and C&W.

• FGSM (Goodfellow et al., 2015) generates adversarial examples by perturbing the input in the direction of the gradient
of the loss function, with a perturbation size set to ϵ = 8/255.

• PGD (Madry et al., 2018) extends FGSM by applying iterative steps to create adversarial examples. The perturbation
budget and step size are adjusted for each dataset to enhance attack strength.

• C&W (Carlini & Wagner, 2017) focuses on optimizing adversarial examples to minimize perturbation while ensuring
misclassification, providing a robust evaluation of model robustness.
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• DeepFool (Moosavi-Dezfooli et al., 2016) estimates the minimal perturbation required to induce misclassification,
offering insights into the model’s sensitivity to adversarial changes.

• AutoAttack (Croce & Hein, 2020) combines multiple strong attacks to provide a comprehensive evaluation of model
robustness, ensuring thorough assessment of adversarial robustness.

• Square (Andriushchenko et al., 2020) utilizes a random search strategy without relying on gradient approximation. It
is configured with multiple queries and a fixed perturbation budget.

• SPSA (Uesato et al., 2018) estimates gradients by drawing random samples and performs multiple iterations, each
constrained by a fixed perturbation budget.

Evaluation Metric.
Definition C.1 (Average Attack Success Rate). Let m ∈M represent a neural network model and a ∈ A an adversarial
attack function. The average attack success rate is defined to evaluate the average-case attack scenario as follows:

ASR = Em∈MEa∈AASR(m; a). (132)

Definition C.2 (Maximum Attack Success Rate). Given a neural network model m ∈M and an adversarial attack function
a ∈ A. The maximum attack success rate is defined to capture the worst-case attack scenario as follows:

ASR∗ = max
m∈M,a∈A

ASR(m; a). (133)

Definition C.3 (Average Accuracy). Let m ∈ M represent a neural network model and a ∈ A an adversarial attack
function. The average accuracy is defined to normalize both the average- and worst-case attack conditions as follows:

ACC = Em∈MEa∈∅ACC(m; a). (134)

Definition C.4 (Improved Robustness Ratio (I-RR)). Given a neural network model m ∈ M and an adversarial attack
function a ∈ A, the improved robustness ratio is defined as:

I-RR(m; a) = 100×
[
1− ASR · ASR

∗

ACC2

]
, (135)

where ASR is the average attack success rate, ASR∗ is the maximum attack success rate, and ACC is the average accuracy
without adversarial attacks.

Remark C.5. The I-RR metric is designed to assess adversarial robustness under a single attack a ∈ A, similar to the
RR introduced by BEARD (Zhou et al., 2024a). When extended to multiple adversarial attacks {A}, the multi-adversary
version, denoted as I-RRM, provides a more comprehensive evaluation of model robustness. Similarly, I-CREI extends
I-RR by incorporating the AE to jointly assess robustness and efficiency, and can be generalized to multi-adversary settings
(I-CREIM). In the following experiments, I-RR and I-CREI denote I-RRM and I-CREIM by default, as all evaluations
involve multiple adversarial attacks.

Motivation for Introducing I-RR and I-CREI. The Robustness Ratio (RR) (Zhou et al., 2024a) evaluates adversarial
robustness by calculating the relative difference between the average (ASR) and worst-case (ASR∗) attack success rates,
aiming to quantify the discrepancy between these values as follows:

RR(m; a) = 100×
[
1− ASR
ASR∗

]
. (136)

However, RR may overestimate robustness when a dominant attack disproportionately inflates ASR∗. The Improved
Robustness Ratio (I-RR) addresses this issue by ensuring that both the average (ASR) and worst-case (ASR∗) attack
success rates are minimized, while maintaining high clean accuracy (ACC). Furthermore, I-CREI extends the Comprehensive
Robustness-Efficiency Index (CREI) by replacing RR with I-RR, providing a more reliable assessment that balances both
attack effectiveness and computational efficiency. Together, I-RR and I-CREI establish a more robust and fair evaluation
framework, particularly in scenarios where adversarial attacks vary widely in strength or dominate specific cases.
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Black-box Evaluations. We conduct two types of transfer-based attacks and one query-based attack to evaluate the
robustness of DD methods in black-box settings:

• Transfer-based Attack from Adversarially Trained Models: Adversarial examples are generated from an adver-
sarially trained model and transferred to evaluate the robustness of models trained with various DD methods. This
simulates an attacker who cannot access the distilled model but can use adversarial examples from a different model.
Results are shown in Table 2.

• Transfer-based Attack across Distilled Models: Adversarial examples are generated from a model trained with
a specific DD method and transferred to models trained with other DD methods. This tests the transferability of
adversarial perturbations and investigates the impact of DD method choice on robustness. Results are shown in Figure 4.

• Query-based Attack: Adversarial examples are generated using Square (Andriushchenko et al., 2020) and SPSA
(Uesato et al., 2018) through multiple rounds of querying, assessing model robustness under query-based attacks.
Results are shown in Table 2.

Implementation Details. We use a ConvNet architecture (Gidaris & Komodakis, 2018) for the dataset distillation
experiments. The performance of the synthetic datasets is evaluated by I-RR and AE, representing the average top-1
accuracy over five runs and the average GPU time required for adversarial attacks on the validation set, respectively. The
experiments are conducted with different IPC values, specifically IPC-50, IPC-10, and IPC-1. Models are trained using the
SGD optimizer with a learning rate of 0.01, momentum of 0.9, and weight decay of 0.0005. All robust priors are generated
using PGD with a perturbation budget of 8

255 under targeted attack settings. In our experiments, we set α in Eq. 12 to
0.2, except in the ablation studies. Both targeted and untargeted attacks are used to evaluate adversarial robustness. To
maintain consistency, all models are trained with identical parameters, and a perturbation budget of |ϵ| = 8

255 is applied to
all methods except DeepFool (Moosavi-Dezfooli et al., 2016) and C&W (Carlini & Wagner, 2017). For black-box attacks,
the Square attack employs random search without gradient approximation, configured with a maximum of 5000 queries
and a perturbation budget of 8

255 . Similarly, the SPSA attack conducts full gradient evaluations by drawing 128 random
samples per iteration, utilizing a perturbation budget of 8

255 in a single iteration. For fair comparisons in generalization, we
incorporate DSA (Zhao & Bilen, 2021) data augmentation during the evaluation model training process. Other parameters
are set in accordance with those used in BACON (Zhou et al., 2024b), ensuring consistency across experiments. The overall
experimental setup follows the guidelines outlined in BEARD (Zhou et al., 2024a). All experiments, including synthetic
dataset generation and model training, are conducted on NVIDIA RTX 3090 GPU clusters.

C.2. Adversarial Robustness Evaluation

White-box Robustness. The robustness curves are shown in Figure 5. We evaluate the adversarial robustness of models
trained on distilled datasets with different IPC settings using PGD attacks under both targeted and untargeted settings, across
various perturbation budgets. As the perturbation budget increases, the adversarial robustness of all models decreases,
with the rate of decline serving as an indicator of robustness. Notably, the model trained with ROME exhibits the slowest
decrease in accuracy, demonstrating superior robustness compared to other methods. Furthermore, the robustness curves
under targeted attacks decline more gradually than those under untargeted attacks, indicating that ROME is particularly
more robust against targeted PGD attacks. This enhanced robustness aligns with the incorporation of targeted PGD as a
robustness prior during training, which likely contributes to its improved defense against such attacks.

Black-box Robustness. Table 5 reports the I-RR of ROME and baseline methods under transfer-based black-box attacks
on CIFAR-10, evaluated at IPC levels 1, 10, 50, and the aggregated metric M. While robustness generally decreases with
increasing IPC for all methods and is higher under targeted than untargeted attacks, ROME consistently achieves the highest
robustness with the smallest variation across IPC settings and attack types. This demonstrates ROME’s superior and stable
adversarial robustness across different dataset distillation scales and attack scenarios.

C.3. Additional Results on Adversarially Distilled Dataset Training Efficiency

CREI Comparison and Robustness Analysis. We compare ROME against adversarially distilled datasets using the
BEARD benchmark and I-CREI as a unified robustness metric. As summarized in Table 6, ROME delivers strong adversarial
robustness under targeted attacks across different dataset compression levels (IPC-1, 10, 50) and their aggregation (denoted
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Figure 5. Robustness curves of models trained on distilled CIFAR-10 datasets with varying IPC settings under white-box attacks.
Subfigures (a), (b), and (c) present the results for targeted attacks with IPC-1, IPC-10, and IPC-50, respectively, while (d), (e), and (f)
show the corresponding results for untargeted attacks with the same IPC settings.

Table 5. Comparison of I-RR across IPC settings 1, 10, 50, and M (a unified metric aggregating these settings) for various DD methods
under black-box attacks on CIFAR-10. Best results are highlighted in bold.

Method Targeted Attack Untargeted Attack

IPC-1 IPC-10 IPC-50 IPC-M IPC-1 IPC-10 IPC-50 IPC-M

DC 99.52% 92.54% 85.84% 90.67% 99.28% 90.03% 83.97% 89.31%
DSA 98.65% 93.81% 94.09% 90.92% 98.30% 91.11% 92.31% 89.13%
MTT 95.31% 93.40% 91.40% 89.80% 94.05% 90.63% 89.02% 87.52%
DM 99.15% 94.53% 92.22% 90.08% 99.12% 91.02% 90.36% 88.45%
IDM 93.86% 92.12% 92.17% 89.91% 91.88% 88.99% 89.22% 86.97%

BACON 93.80% 91.90% 92.46% 89.24% 91.18% 88.46% 89.25% 85.66%

ROME 99.98% 99.98% 99.90% 99.44% 99.60% 98.94% 98.44% 97.34%
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Table 6. Comparison of adversarial robustness between ROME and adversarially distilled datasets using DD methods under CIFAR-10
IPC-1, IPC-10, and IPC-50, evaluated using I-CREI against both targeted and untargeted attacks. Best results are highlighted in bold.

Mrthod Targeted Attack Untargeted Attack

IPC-1 IPC-10 IPC-50 IPC-M IPC-1 IPC-10 IPC-50 IPC-M

DC 64.51% 64.27% 63.96% 63.43% 56.44% 51.52% 49.60% 48.08%
DSA 64.15% 64.09% 64.47% 63.46% 53.54% 50.09% 50.73% 47.19%
MTT 63.05% 63.90% 63.98% 62.44% 47.50% 49.58% 49.52% 44.39%
DM 64.34% 64.00% 64.54% 63.21% 53.52% 50.62% 51.89% 46.58%
IDM 64.47% 64.09% 64.29% 63.11% 51.19% 51.63% 51.99% 47.96%

BACON 63.84% 64.03% 64.22% 62.68% 47.37% 50.02% 51.32% 44.66%

ROME 64.46% 64.32% 63.66% 63.32% 51.24% 48.29% 43.67% 43.62%

Table 7. Comparison of training time for ROME and adversarially distilled datasets using DD methods on CIFAR-10 IPC-50. Best results
are highlighted in bold. The training time is measured in hours, with total time including both standard training and adversarial retraining.

Method Standard Training Adversarial Training Total

DC 0.425 0.663 1.088
DSA 0.437 0.666 1.103
MTT 0.444 0.644 1.088
DM 0.452 0.658 1.109
IDM 0.414 0.641 1.055

BACON 0.442 0.659 1.101

ROME 0.418 0.000 0.418

as IPC-M), achieving comparable or better results than prior methods such as DC, DSA, MTT, DM, IDM, and BACON.
Notably, unlike these baselines which require adversarial retraining to reach competitive robustness, ROME attains its
performance without any additional adversarial fine-tuning.

Under untargeted attacks, ROME exhibits a decline in robustness at higher IPCs (e.g., 43.67% at IPC-50), likely due to its
reliance on robust priors generated via targeted PGD during distillation, which biases the model toward robustness against
targeted threats. As further discussed in Section 4.2, this design can lead to an Over-Robustness Phenomenon, where
improvements in targeted robustness do not fully generalize to untargeted settings. Consequently, ROME demonstrates
weaker robustness under untargeted attacks compared to adversarially trained DD methods. Despite this limitation, ROME
strikes a favorable balance between robustness and training efficiency, making it a lightweight and practical distillation
approach. Future work will aim to design distillation objectives that improve robustness across various threat models.

Training Time Comparison and Efficiency Analysis. Table 7 compares the training times for neural network models
trained on distilled datasets generated by ROME and several other dataset distillation methods, including DC, DSA, MTT,
DM, IDM, and BACON, under CIFAR-10 IPC-50. ROME requires 0.418 hours for model training on the distilled dataset,
which is slightly higher than IDM at 0.414 hours. However, ROME does not involve adversarial retraining. In contrast,
methods such as DC, DSA, MTT, DM, and IDM necessitate additional adversarial retraining to achieve comparable
robustness. For example, DM requires a total of 1.109 hours, with 0.658 hours spent on adversarial retraining, more than
doubling the training time compared to standard training.

The primary computational cost for ROME stems from distilling adversarially robust features, which forces the model to
learn from a broader set of adversarial examples during the training process. While this adds complexity to the distillation
process, ROME continues to perform excellently during standard training. Unlike methods such as DC, DSA, MTT, DM,
and IDM, which require additional adversarial retraining to achieve comparable robustness, ROME eliminates this retraining
step, significantly reducing computational overhead. This makes ROME a more efficient approach, as it achieves strong
adversarial robustness without the time-consuming retraining phase.
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Table 8. Ablation study of Robust Pretrained Model (RPM) and Adversarial Perturbation (AP) on CIFAR-10 with IPC-50, evaluated under
targeted and untargeted attacks using I-RR, AE, and I-CREI. Best results are highlighted in bold.

Baseline RPM (f(·)) AP (x̂) Targeted Attack Untargeted Attack

I-RR AE I-CREI I-RR AE I-CREI

✓ 81.86% 28.66% 55.26% 32.45% 26.13% 29.29%
✓ ✓ 84.50% 28.56% 56.53% 34.89% 26.00% 30.45%
✓ ✓ 94.66% 28.68% 61.67% 47.64% 25.92% 36.78%
✓ ✓ ✓ 97.73% 28.73% 63.23% 51.73% 26.16% 38.95%

C.4. Ablation Study

More details are provided in Table 8, which also includes the calculation of the Attack Efficiency Ratio (AE). The ablation
studies confirm that ROME incorporates the best-performing results.

C.5. Visualization

Figure 6 shows the distilled datasets generated by ROME under varying robust prior configurations, highlighting their
impact on the synthetic data distribution. Figures 7, 8, and 9 illustrate the distilled datasets generated by ROME, BACON,
and IDM on CIFAR-10 and CIFAR-100 with IPC settings of 50, 10, and 1, respectively.

Figure 6. Visualization of distilled datasets generated by ROME under different robust prior configurations, showcasing the impact of
varying settings on the synthetic data distribution.
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Figure 7. Visualizations of distilled datasets generated by diverse DD methods with IPC-50 settings on the CIFAR-10 and CIFAR-100.
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Figure 8. Visualizations of distilled datasets generated by diverse DD methods with IPC-10 settings on the CIFAR-10 and CIFAR-100.

Figure 9. Visualizations of distilled datasets generated by diverse DD methods with IPC-1 settings on the CIFAR-10 and CIFAR-100.
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