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Abstract

Coreference resolution is the task of finding001
expressions that refer to the same entity in a002
text. Coreference models are generally trained003
on monolingual annotated data but annotating004
coreference is expensive and challenging. Hard-005
meier et al. (2013) have shown that parallel006
data contains latent anaphoric knowledge, but007
it has not been explored in end-to-end neural008
models yet. In this paper, we propose a sim-009
ple yet effective model to exploit coreference010
knowledge from parallel data. In addition to011
the conventional modules learning coreference012
from annotations, we introduce an unsuper-013
vised module to capture cross-lingual coref-014
erence knowledge. Our proposed cross-lingual015
model achieves consistent improvements, up to016
1.74 percentage points, on the OntoNotes 5.0017
English dataset using 9 different synthetic par-018
allel datasets. These experimental results con-019
firm that parallel data can provide additional020
coreference knowledge which is beneficial to021
coreference resolution tasks.022

1 Introduction023

Coreference resolution is the task of finding expres-024

sions, called mentions, that refer to the same entity025

in a text. Current neural coreference models are026

trained on monolingual annotated data, and their027

performance heavily relies on the amount of anno-028

tations (Lee et al., 2017, 2018; Joshi et al., 2019,029

2020). Annotating such coreference information is030

challenging and expensive. Thus, annotation data031

is a bottleneck in neural coreference resolution.032

Hardmeier et al. (2013) have explored parallel033

data in an unsupervised way and shown that parallel034

data has latent cross-lingual anaphoric knowledge.035

Figure 1 shows a coreference chain in an English–036

Chinese parallel sentence pair. “it”, “EMNLP037

2022” in the English sentence, and “EMNLP 2022”,038

“它”(it) in the Chinese sentence are coreferential039

to each other. This cross-lingual coreference chain040

suggests that parallel multilingual data could be us-041

Figure 1: A coreference chain in an English–Chinese
parallel sentence pair. Mentions in brackets are corefer-
ential to each other.

eful for training coreference models. 042

Parallel data has been applied to project coref- 043

erence annotations in non-neural coreference mod- 044

els (de Souza and Orăsan, 2011; Rahman and Ng, 045

2012; Martins, 2015; Grishina and Stede, 2015; 046

Novák et al., 2017; Grishina and Stede, 2017). In- 047

stead, we focus on neural coreference models and 048

ask the following main research question: Can par- 049

allel data advance the performance of coreference 050

resolution on English, where large amount of an- 051

notations are available? 052

We propose a cross-lingual model which exploits 053

cross-lingual coreference knowledge from parallel 054

data. As there is no annotated cross-lingual coref- 055

erence data, the model computes the coreference 056

scores between target spans and source spans with- 057

out any supervision. We conduct experiments on 058

the most popular OntoNotes 5.0 English dataset 059

(Pradhan et al., 2012). Given the English data, we 060

generate 9 different synthetic parallel datasets with 061

the help of pretrained neural machine translation 062

(NMT) models. The target languages consist of 063

Arabic, Catalan, Chinese, Dutch, French, German, 064

Italian, Russian, and Spanish. The experimental 065

results show that our cross-lingual models achieve 066

consistent improvements, which confirms that par- 067

allel data helps neural entity coreference resolution. 068

2 Coreference Models 069

2.1 neural-coref 070

Most neural coreference models are variants of 071

neural-coref (Lee et al., 2017), whose structure 072

is illustrated in Figure 2 (a). It consists of a text 073

encoder, a mention scorer, and a coreference scorer. 074
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Figure 2: Overview of (a) the conventional monolingual
coreference model and (b) our cross-lingual coreference
model using synthetic parallel data. The main differ-
ences are marked in red. The red block is a cross-lingual
coreference scorer which is expected to capture cross-
lingual coreference knowledge.

The final coreference clusters are predicted based075

on the scores of these modules.076

Given a document, the encoder first generates077

representations for each token. Then the model cre-078

ates a list of spans, varying the span width.1 Each079

span representation is the concatenation of 1) the080

first token representation, 2) the last token represen-081

tation, 3) the span head representation, and 4) the082

feature vector, where the span head representation083

is learned by an attention mechanism (Bahdanau084

et al., 2015) and the feature vector encodes the085

size of the span. Then the mention scorer, a feed-086

forward neural network, assigns a score to each087

span. Afterwards, the coreference scorer computes088

how likely it is that a mention refers to each of the089

preceding mentions.090

During training, given a span i, the model091

predicts a set of possible antecedents Y =092

{ϵ, 1, . . . , i − 1}, a dummy antecedent ϵ and pre-093

ceding spans. The model generates a probability094

distribution P (yi) over antecedents for the span095

i, as shown in Equation 1 below. s(i, j) denotes096

the coreference score between span pair i and j.097

The coreference loss is the marginal log-likelihood098

of the correct antecedents. During inference, the099

model first recognizes potential antecedents for100

each mention, then it predicts the final coreference101

clusters. More specifically, given a mention, the102

model considers the preceding mention with the103

highest coreference score as the antecedent.104

P (yi) =
es(i,yi)∑

y′∈Y(i) e
s(i,y′)

(1)105

1The number of generated spans is decided by hyper-
parameters, i.e., the maximum width of a span, the ratio of
entire span space, the maximum number of spans.

2.2 Cross-Lingual Model 106

We hypothesize that parallel data can provide addi- 107

tional coreference information which benefits learn- 108

ing coreference. As there is no supervision to the 109

target-side and cross-lingual modelling, we attempt 110

to transfer the source-side learned parameters to 111

the target-side unsupervised modules by adding ad- 112

ditional adapters, which has been shown efficient 113

and effective (Houlsby et al., 2019). Therefore, we 114

extend neural-coref by introducing a target-side 115

encoder, adapters for target-side mention scorer, 116

and cross-lingual coreference scorer, where each 117

adapter is a one-layer feed-forward neural network 118

with 500 hidden nodes. The overview of our cross- 119

lingual model is shown in Figure 2 (b). 120

For the target-side, we can use a shared cross- 121

lingual encoder or a target-side monolingual en- 122

coder. The coreference scorer computes corefer- 123

ence scores between target-side spans and source- 124

side spans. This is the key component to learn 125

cross-lingual coreference knowledge. The strat- 126

egy we follow is the same as that in neural-coref 127

during inference: Given a source mention, the tar- 128

get mention with the highest coreference score is 129

considered as the corresponding cross-lingual an- 130

tecedent. 131

Say the model has predicted a source mention 132

list Ms: {ms1 ,ms2 , . . . ,msm} and a target men- 133

tion list Mt: {mt1 ,mt2 , . . . ,mtn}. The model has 134

also generated a two-dimensional coreference score 135

matrix, where sij represents the coreference score 136

between msi and mtj . We denote Y(i) as the pos- 137

sible antecedent set of the source mention i. The 138

cross-lingual coreference loss is defined in Equa- 139

tion 2, where ĵ = argmax
j∈Y(i)

sij for a given i. 140

Lx =
∑m

i=1 e
−siĵ (2) 141

During training, the model learns to minimize 142

both the coreference loss and the cross-lingual 143

coreference loss Lx with a ratio 1 : 1. During in- 144

ference, we only employ the source-side modules, 145

which are trained with coreference supervision, to 146

predict coreference clusters. 147

3 Experiments 148

3.1 Data 149

We experiment with the OntoNotes 5.0 English 150

dataset. The number of documents for training, 151

development, and test is 2802, 343, and 348, re- 152

spectively. The data is originally from newswire, 153
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Data F1mention
MUC B3 CEAFe F1avg ∆ F1

R P F1 R P F1 R P F1

English 85.42 80.31 81.40 80.85 71.31 70.92 71.10 65.81 70.97 68.30 73.42 0

English–Arabic 86.13 81.73 81.80 81.77 72.91 71.77 72.34 67.85 71.53 69.64 74.58 1.16
English–Catalan 86.17 81.38 82.36 81.87 72.55 72.75 72.65 67.77 72.19 69.91 74.81 1.39
English–Chinese 86.02 81.16 82.43 81.78 71.91 72.74 72.32 66.96 72.17 69.47 74.53 1.11
English–Dutch 86.29 81.53 82.84 82.18 72.67 73.31 72.99 68.36 72.41 70.33 75.16 1.74
English–French 85.93 81.12 82.15 81.63 72.06 72.36 72.20 67.36 71.31 69.28 74.37 0.95
English–German 86.02 81.86 81.28 81.56 73.06 70.82 71.92 67.42 70.93 69.14 74.20 0.78
English–Italian 86.13 81.71 82.09 81.90 72.82 72.09 72.45 67.73 71.60 69.61 74.65 1.23
English–Russian 86.17 82.38 81.31 81.84 73.75 70.62 72.15 67.94 71.12 69.49 74.50 1.08
English–Spanish 86.21 81.72 81.88 81.80 72.62 71.88 72.25 67.88 71.11 69.45 74.50 1.08

Table 1: F1 scores on mention detection (F1mention) and coreference resolution (F1avg) of the monolingual
model trained on English and cross-lingual models trained on 9 different synthetic parallel datasets. ∆ F1 is the
improvement over the monolingual model. Bold numbers are the best scores in each column. F1avg scores of all
the cross-lingual models are statistically significant (t-test, p < 0.05).

magazines, broadcast news, broadcast conversa-154

tions, web, conversational speech, and the Bible.155

It has been the benchmark dataset for coreference156

resolution since it is released. The annotation in157

OntoNotes covers both entities and events, but with158

a very restricted definition of events. Noun phrases,159

pronouns, and head of verb phrases are considered160

as potential mentions. Singleton clusters2 are not161

annotated in OntoNotes.162

Given the English data, we use open access pre-163

trained NMT models released by Facebook and the164

Helsinki NLP group to generate synthetic parallel165

data (Wu et al., 2019; Ng et al., 2019; Tiedemann166

and Thottingal, 2020).167

3.2 Experimental Settings168

Our experiments are based on the code released169

by Xu and Choi (2020).3 We keep the original set-170

tings and do not do hyper-parameter tuning. As171

Xu and Choi (2020) have shown that higher-order,172

cluster-level inference does not further boost the173

performance on coreference resolution given the174

powerful text encoders, we do not consider higher-175

order inference in our experiments. Even though176

the mention boundaries are provided in the data,177

we still let the model learn to detect mentions by178

itself. For evaluation, we follow previous studies179

and employ the CONLL-2012 official scorer (Prad-180

han et al., 2014, v8.01) to compute the F1 scores181

of three metrics (MUC(Vilain et al., 1995), B3182

(Bagga and Baldwin, 1998), CEAFe(Luo, 2005))183

and report the average F1 score.184

The baseline model is trained on monolingual185

data while the cross-lingual models are trained on186

synthetic parallel data. Note that we use the trained187

monolingual model to initialize the source-side188

2An entity cluster that only contains a single mention.
3https://github.com/lxucs/coref-hoi

modules of the cross-lingual model. We mainly 189

employ cross-lingual pretrained models, the XLM- 190

R base model, as our encoders, but we also explore 191

using two separate monolingual encoders. All the 192

models are trained for 24 epochs with 2 different 193

seeds, and the checkpoint that performs best on the 194

development set is chosen for evaluation. We only 195

report the average scores. Each model is trained on 196

a single Nvidia V100 GPU with 32GB memory. 197

3.3 Experimental Results 198

Table 1 shows the detailed scores of each model 199

on the OntoNotes 5.0 English test set. Compared 200

to the baseline model, which is trained only on 201

English data, our cross-lingual model trained on 202

different synthetic parallel datasets achieves con- 203

sistent and statistically significant (t-test, p < 0.05) 204

improvements, varying from 0.78 to 1.74 percent- 205

age points. The model trained on English–Dutch 206

achieves the best F1 performance on coreference 207

resolution. The model trained on English–Russian 208

achieves the best recall score on MUC and B3. 209

It is interesting to see that the model trained 210

on English–German achieves the least improve- 211

ment, although German together with Dutch are 212

closer to English compared to other languages. 213

Meanwhile, the models trained on English–Arabic, 214

English–Chinese, English–Russian obtain moder- 215

ate improvements, even though Arabic, Chinese, 216

and Russian are more different from English. 217

In addition to the results on coreference resolu- 218

tion, we also report the mention detection results, 219

which are based on mention scores, i.e., the outputs 220

of mention scorers. Models trained on parallel data 221

are consistently superior to the monolingual model, 222

and the model trained on English–Dutch gets the 223

best F1 score of 86.29. 224

As Table 1 shows, our cross-lingual model, 225
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which exploits parallel data, is superior to the226

model trained only on monolingual data. This con-227

firms that parallel data can provide additional coref-228

erence knowledge to coreference models, which is229

beneficial to coreference modelling, even if the230

parallel data is synthetic and noisy.231

4 Analysis232

4.1 Unsupervised Cross-Lingual Coreference233

To further explore what the unsupervised corefer-234

ence resolution module can learn, we check the235

cross-lingual mention pairs predicted by the cross-236

lingual coreference scorer.237

ParCorFull is an English–German parallel cor-238

pus annotated with coreference chains. We first239

feed the data to the model and let the model predict240

English–German mention pairs. We go through the241

these pairs quickly and find that some of these pairs242

are coreferential, some of these pairs are transla-243

tion pairs, but most of them are irrelevant. As the244

coreference chains in English and German are not245

aligned, we cannot conduct quantitative evaluation.246

Alternatively, we evaluate the ability of the247

model to capture cross-lingual coreference knowl-248

edge using a synthetic mention pair set: an English–249

English mention pair set. Now we have “aligned”250

coreference chains, and we can evaluate the men-251

tion pairs automatically. Specifically, we first train252

a cross-lingual model with English–English syn-253

thetic data, and we then feed the OntoNotes 5.0254

English validation set to the model, both the source255

and target sides, to predict English–English men-256

tion pairs.257

The model predicts 18,154 pairs in total, includ-258

ing 131 mention pairs that are the same mention,259

1,257 mention pairs that are coreferential, and 758260

mention pairs with the same surface. This indicates261

that the model is able to resolve some cross-lingual262

coreference. However, since the cross-lingual mod-263

ule is trained without any supervision, most of pre-264

dicted mention pairs are not coreferential.265

Table 2 shows some correctly predicted coref-266

erential mention pairs, in English–English and267

English–German settings. We can tell that our268

cross-lingual models are not simply generating a269

pair of two identical mentions, but coreferential270

mentions as well, which is different from word271

alignment. These mention pairs support our hy-272

pothesis that the cross-lingual model can capture273

cross-lingual coreference knowledge.274

Source Mentions(English) Target Mentions(English/German)

Hong Kong the city ’s
It the Supreme Court
he 28-jähriger Koch (28-Year-Old Chef)
The 19-year-old American gymnast Simone Biles

Table 2: Examples of correct coreferential mention
pairs predicted by the cross-lingual coreference model,
in English–English, English–German settings.

4.2 Separate Monolingual Encoders 275

Multilingual pretrained models suffer from the 276

curse of multilinguality which makes them less 277

competitive as monolingual models. Thus, we re- 278

place the unified cross-lingual encoder (XLM-R) 279

with two separate monolingual encoders. The base- 280

line is a monolingual model trained with Span- 281

BERT, and the cross-lingual model is trained with 282

SpanBERT and BERT on source- and target-side 283

text, on the English–German synthetic dataset. 284

Our experimental results show that models em- 285

ploying SpanBERT perform much better, which 286

is consistent with previous findings by Joshi et al. 287

(2020). The monolingual model achieves 77.26 288

F1 score on the OntoNotes 5.0 English test set. 289

Our cross-lingual model obtains an even higher F1 290

score, 77.79, which is statistically significant (t-test, 291

p=0.044). Thus, our proposed model is applicable 292

to settings with separate monolingual encoders. 293

The improvement on SpanBERT is smaller than 294

that on XLM-R. One explanation is that SpanBERT 295

is already very powerful and parallel data provides 296

less additional knowledge. Another explanation 297

is that the target-side encoder, a BERT model, is 298

much weaker than the SpanBERT, which makes 299

it more difficult to learn the cross-lingual corefer- 300

ence. 301

5 Conclusions and Future Work 302

In this paper, we introduce a simple yet effective 303

cross-lingual coreference resolution model to learn 304

coreference from synthetic parallel data. Compared 305

to models trained on monolingual data, our cross- 306

lingual model achieves consistent improvements, 307

varying from 0.78 to 1.74 percentage points, on the 308

OntoNotes 5.0 English dataset, which confirms that 309

parallel data benefits neural coreference resolution. 310

We have shown that the unsupervised cross- 311

lingual coreference module can learn limited coref- 312

erence knowledge. In future work, it would be in- 313

teresting if we can provide the model some aligned 314

cross-lingual coreference knowledge for supervi- 315

sion, to leverage parallel data better. 316
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