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Abstract

Coreference resolution is the task of finding
expressions that refer to the same entity in a
text. Coreference models are generally trained
on monolingual annotated data but annotating
coreference is expensive and challenging. Hard-
meier et al. (2013) have shown that parallel
data contains latent anaphoric knowledge, but
it has not been explored in end-to-end neural
models yet. In this paper, we propose a sim-
ple yet effective model to exploit coreference
knowledge from parallel data. In addition to
the conventional modules learning coreference
from annotations, we introduce an unsuper-
vised module to capture cross-lingual coref-
erence knowledge. Our proposed cross-lingual
model achieves consistent improvements, up to
1.74 percentage points, on the OntoNotes 5.0
English dataset using 9 different synthetic par-
allel datasets. These experimental results con-
firm that parallel data can provide additional
coreference knowledge which is beneficial to
coreference resolution tasks.

1 Introduction

Coreference resolution is the task of finding expres-
sions, called mentions, that refer to the same entity
in a text. Current neural coreference models are
trained on monolingual annotated data, and their
performance heavily relies on the amount of anno-
tations (Lee et al., 2017, 2018; Joshi et al., 2019,
2020). Annotating such coreference information is
challenging and expensive. Thus, annotation data
is a bottleneck in neural coreference resolution.
Hardmeier et al. (2013) have explored parallel
data in an unsupervised way and shown that parallel
data has latent cross-lingual anaphoric knowledge.
Figure 1 shows a coreference chain in an English—
Chinese parallel sentence pair. “it”, “EMNLP
2022” in the English sentence, and “EMNLP 2022”,
““E”(it) in the Chinese sentence are coreferential
to each other. This cross-lingual coreference chain
suggests that parallel multilingual data could be us-

[EMNLP2022]is coming; [it]is atop-tier NLP conference.
[EMNLP 2022] B8 B, [E] 2 — T NLP SUigi RS .

Figure 1: A coreference chain in an English—Chinese
parallel sentence pair. Mentions in brackets are corefer-
ential to each other.

eful for training coreference models.

Parallel data has been applied to project coref-
erence annotations in non-neural coreference mod-
els (de Souza and Oridsan, 2011; Rahman and Ng,
2012; Martins, 2015; Grishina and Stede, 2015;
Novak et al., 2017; Grishina and Stede, 2017). In-
stead, we focus on neural coreference models and
ask the following main research question: Can par-
allel data advance the performance of coreference
resolution on English, where large amount of an-
notations are available?

We propose a cross-lingual model which exploits
cross-lingual coreference knowledge from parallel
data. As there is no annotated cross-lingual coref-
erence data, the model computes the coreference
scores between target spans and source spans with-
out any supervision. We conduct experiments on
the most popular OntoNotes 5.0 English dataset
(Pradhan et al., 2012). Given the English data, we
generate 9 different synthetic parallel datasets with
the help of pretrained neural machine translation
(NMT) models. The target languages consist of
Arabic, Catalan, Chinese, Dutch, French, German,
Italian, Russian, and Spanish. The experimental
results show that our cross-lingual models achieve
consistent improvements, which confirms that par-
allel data helps neural entity coreference resolution.

2 Coreference Models

2.1 neural-coref

Most neural coreference models are variants of
neural-coref (Lee et al., 2017), whose structure
is illustrated in Figure 2 (a). It consists of a text
encoder, a mention scorer, and a coreference scorer.
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Figure 2: Overview of (a) the conventional monolingual
coreference model and (b) our cross-lingual coreference
model using synthetic parallel data. The main differ-
ences are marked in red. The red block is a cross-lingual
coreference scorer which is expected to capture cross-
lingual coreference knowledge.

The final coreference clusters are predicted based
on the scores of these modules.

Given a document, the encoder first generates
representations for each token. Then the model cre-
ates a list of spans, varying the span width.! Each
span representation is the concatenation of 1) the
first token representation, 2) the last token represen-
tation, 3) the span head representation, and 4) the
feature vector, where the span head representation
is learned by an attention mechanism (Bahdanau
et al., 2015) and the feature vector encodes the
size of the span. Then the mention scorer, a feed-
forward neural network, assigns a score to each
span. Afterwards, the coreference scorer computes
how likely it is that a mention refers to each of the
preceding mentions.

During training, given a span ¢, the model
predicts a set of possible antecedents ) =
{¢,1,...,i — 1}, a dummy antecedent ¢ and pre-
ceding spans. The model generates a probability
distribution P(y;) over antecedents for the span
i, as shown in Equation 1 below. s(i,j) denotes
the coreference score between span pair ¢ and j.
The coreference loss is the marginal log-likelihood
of the correct antecedents. During inference, the
model first recognizes potential antecedents for
each mention, then it predicts the final coreference
clusters. More specifically, given a mention, the
model considers the preceding mention with the
highest coreference score as the antecedent.

P( ) es(ivyi) ( 1)
Yi) = < oiah
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"The number of generated spans is decided by hyper-
parameters, i.e., the maximum width of a span, the ratio of
entire span space, the maximum number of spans.

2.2 Cross-Lingual Model

We hypothesize that parallel data can provide addi-
tional coreference information which benefits learn-
ing coreference. As there is no supervision to the
target-side and cross-lingual modelling, we attempt
to transfer the source-side learned parameters to
the target-side unsupervised modules by adding ad-
ditional adapters, which has been shown efficient
and effective (Houlsby et al., 2019). Therefore, we
extend neural-coref by introducing a target-side
encoder, adapters for target-side mention scorer,
and cross-lingual coreference scorer, where each
adapter is a one-layer feed-forward neural network
with 500 hidden nodes. The overview of our cross-
lingual model is shown in Figure 2 (b).

For the target-side, we can use a shared cross-
lingual encoder or a target-side monolingual en-
coder. The coreference scorer computes corefer-
ence scores between target-side spans and source-
side spans. This is the key component to learn
cross-lingual coreference knowledge. The strat-
egy we follow is the same as that in neural-coref
during inference: Given a source mention, the tar-
get mention with the highest coreference score is
considered as the corresponding cross-lingual an-
tecedent.

Say the model has predicted a source mention
list My: {msg,, ms,,..., ms, } and a target men-
tion list M;: {my,, my,, . .., my, }. The model has
also generated a two-dimensional coreference score
matrix, where s;; represents the coreference score
between m, and m;;. We denote )(i) as the pos-
sible antecedent set of the source mention ¢. The
cross-lingual coreference loss is defined in Equa-
tion 2, where j = arg max s;; for a given 1.
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During training, the model learns to minimize
both the coreference loss and the cross-lingual
coreference loss £, with aratio 1 : 1. During in-
ference, we only employ the source-side modules,
which are trained with coreference supervision, to
predict coreference clusters.

3 Experiments

3.1 Data

We experiment with the OntoNotes 5.0 English
dataset. The number of documents for training,
development, and test is 2802, 343, and 348, re-
spectively. The data is originally from newswire,
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Data Flmention R Mlg ‘ FI R i FI R CE; e Fl Flavy  AFI
English 85.42 8031 8140 80.85 7131 7092 71.10 6581 7097 6830 7342 0
English-Arabic  86.13 8173 81.80 8177 7291 7177 7234 6785 7153 69.64 7458  LI6
English-Catalan  86.17 8138 8236 81.87 7255 7275 7265 6777 7219 6991 7481 139
English-Chinese  86.02 81.16 8243 8178 7191 7274 7232 6696 7217 6947 7453 LIl
English-Dutch 86.29 8153 82.84 8218  72.67 7331 7299 6836 7241 7033 7516 174
English-French  85.93 81.12 8215 81.63  72.06 7236 7220 6736 7131 6928 7437 095
English-German ~ 86.02 81.86 8128 81.56  73.06 70.82 7192 6742 7093 69.14 7420 078
English-talian 86.13 8171 8209 8190  72.82 7209 7245 6773 7160 69.61 7465 123
English-Russian  86.17 8238 8131 8184 7375 7062 7215 6794 7112 6949 7450  1.08
English-Spanish  86.21 8172 81.88 81.80  72.62 7188 7225 6788 7LI1 6945 7450  1.08

Table 1: F1 scores on mention detection (F'l,,¢ntion) and coreference resolution (£'1,,4) of the monolingual
model trained on English and cross-lingual models trained on 9 different synthetic parallel datasets. A F1 is the
improvement over the monolingual model. Bold numbers are the best scores in each column. F'1,,, scores of all
the cross-lingual models are statistically significant (t-test, p < 0.05).

magazines, broadcast news, broadcast conversa-
tions, web, conversational speech, and the Bible.
It has been the benchmark dataset for coreference
resolution since it is released. The annotation in
OntoNotes covers both entities and events, but with
a very restricted definition of events. Noun phrases,
pronouns, and head of verb phrases are considered
as potential mentions. Singleton clusters” are not
annotated in OntoNotes.

Given the English data, we use open access pre-
trained NMT models released by Facebook and the
Helsinki NLP group to generate synthetic parallel
data (Wu et al., 2019; Ng et al., 2019; Tiedemann
and Thottingal, 2020).

3.2 Experimental Settings

Our experiments are based on the code released
by Xu and Choi (2020).> We keep the original set-
tings and do not do hyper-parameter tuning. As
Xu and Choi (2020) have shown that higher-order,
cluster-level inference does not further boost the
performance on coreference resolution given the
powerful text encoders, we do not consider higher-
order inference in our experiments. Even though
the mention boundaries are provided in the data,
we still let the model learn to detect mentions by
itself. For evaluation, we follow previous studies
and employ the CONLL-2012 official scorer (Prad-
han et al., 2014, v8.01) to compute the F1 scores
of three metrics (M UC(Vilain et al., 1995), B3
(Bagga and Baldwin, 1998), C E AF,(Luo, 2005))
and report the average F1 score.

The baseline model is trained on monolingual
data while the cross-lingual models are trained on
synthetic parallel data. Note that we use the trained
monolingual model to initialize the source-side

2 An entity cluster that only contains a single mention.
*https://github.com/lxucs/coref-hoi

modules of the cross-lingual model. We mainly
employ cross-lingual pretrained models, the XLLM-
R base model, as our encoders, but we also explore
using two separate monolingual encoders. All the
models are trained for 24 epochs with 2 different
seeds, and the checkpoint that performs best on the
development set is chosen for evaluation. We only
report the average scores. Each model is trained on
a single Nvidia V100 GPU with 32GB memory.

3.3 Experimental Results

Table 1 shows the detailed scores of each model
on the OntoNotes 5.0 English test set. Compared
to the baseline model, which is trained only on
English data, our cross-lingual model trained on
different synthetic parallel datasets achieves con-
sistent and statistically significant (t-test, p < 0.05)
improvements, varying from 0.78 to 1.74 percent-
age points. The model trained on English-Dutch
achieves the best F1 performance on coreference
resolution. The model trained on English—Russian
achieves the best recall score on MUC and B3,

It is interesting to see that the model trained
on English—-German achieves the least improve-
ment, although German together with Dutch are
closer to English compared to other languages.
Meanwhile, the models trained on English—Arabic,
English—Chinese, English—Russian obtain moder-
ate improvements, even though Arabic, Chinese,
and Russian are more different from English.

In addition to the results on coreference resolu-
tion, we also report the mention detection results,
which are based on mention scores, i.e., the outputs
of mention scorers. Models trained on parallel data
are consistently superior to the monolingual model,
and the model trained on English—Dutch gets the
best F1 score of 86.29.

As Table 1 shows, our cross-lingual model,


https://github.com/lxucs/coref-hoi

which exploits parallel data, is superior to the
model trained only on monolingual data. This con-
firms that parallel data can provide additional coref-
erence knowledge to coreference models, which is
beneficial to coreference modelling, even if the
parallel data is synthetic and noisy.

4 Analysis

4.1 Unsupervised Cross-Lingual Coreference

To further explore what the unsupervised corefer-
ence resolution module can learn, we check the
cross-lingual mention pairs predicted by the cross-
lingual coreference scorer.

ParCorFull is an English—German parallel cor-
pus annotated with coreference chains. We first
feed the data to the model and let the model predict
English—-German mention pairs. We go through the
these pairs quickly and find that some of these pairs
are coreferential, some of these pairs are transla-
tion pairs, but most of them are irrelevant. As the
coreference chains in English and German are not
aligned, we cannot conduct quantitative evaluation.

Alternatively, we evaluate the ability of the
model to capture cross-lingual coreference knowl-
edge using a synthetic mention pair set: an English—
English mention pair set. Now we have “aligned”
coreference chains, and we can evaluate the men-
tion pairs automatically. Specifically, we first train
a cross-lingual model with English—English syn-
thetic data, and we then feed the OntoNotes 5.0
English validation set to the model, both the source
and target sides, to predict English—English men-
tion pairs.

The model predicts 18,154 pairs in total, includ-
ing 131 mention pairs that are the same mention,
1,257 mention pairs that are coreferential, and 758
mention pairs with the same surface. This indicates
that the model is able to resolve some cross-lingual
coreference. However, since the cross-lingual mod-
ule is trained without any supervision, most of pre-
dicted mention pairs are not coreferential.

Table 2 shows some correctly predicted coref-
erential mention pairs, in English—English and
English-German settings. We can tell that our
cross-lingual models are not simply generating a
pair of two identical mentions, but coreferential
mentions as well, which is different from word
alignment. These mention pairs support our hy-
pothesis that the cross-lingual model can capture
cross-lingual coreference knowledge.

Source Mentions(English) Target Mentions(English/German)

Hong Kong the city ’s
It the Supreme Court
he 28-jihriger Koch (28-Year-Old Chef)

The 19-year-old American gymnast ~ Simone Biles

Table 2: Examples of correct coreferential mention
pairs predicted by the cross-lingual coreference model,
in English-English, English—German settings.

4.2 Separate Monolingual Encoders

Multilingual pretrained models suffer from the
curse of multilinguality which makes them less
competitive as monolingual models. Thus, we re-
place the unified cross-lingual encoder (XLM-R)
with two separate monolingual encoders. The base-
line is a monolingual model trained with Span-
BERT, and the cross-lingual model is trained with
SpanBERT and BERT on source- and target-side
text, on the English—-German synthetic dataset.

Our experimental results show that models em-
ploying SpanBERT perform much better, which
is consistent with previous findings by Joshi et al.
(2020). The monolingual model achieves 77.26
F1 score on the OntoNotes 5.0 English test set.
Our cross-lingual model obtains an even higher F1
score, 77.79, which is statistically significant (t-test,
p=0.044). Thus, our proposed model is applicable
to settings with separate monolingual encoders.

The improvement on SpanBERT is smaller than
that on XLM-R. One explanation is that SpanBERT
is already very powerful and parallel data provides
less additional knowledge. Another explanation
is that the target-side encoder, a BERT model, is
much weaker than the SpanBERT, which makes
it more difficult to learn the cross-lingual corefer-
ence.

5 Conclusions and Future Work

In this paper, we introduce a simple yet effective
cross-lingual coreference resolution model to learn
coreference from synthetic parallel data. Compared
to models trained on monolingual data, our cross-
lingual model achieves consistent improvements,
varying from 0.78 to 1.74 percentage points, on the
OntoNotes 5.0 English dataset, which confirms that
parallel data benefits neural coreference resolution.

We have shown that the unsupervised cross-
lingual coreference module can learn limited coref-
erence knowledge. In future work, it would be in-
teresting if we can provide the model some aligned
cross-lingual coreference knowledge for supervi-
sion, to leverage parallel data better.
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