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Abstract

Video Question Answering (Video QA) is a001
challenging task that requires models to accu-002
rately identify and contextualize relevant infor-003
mation within abundant video contents. Con-004
ventional approaches attempt to emphasize re-005
lated information in specific frames by consid-006
ering the visual-question relationship. How-007
ever, the absence of ground-truth of causal008
frames makes such a relationship can only be009
learned implicitly, leading to the “misfocus” is-010
sue. To address this, we propose a novel train-011
ing pipeline called “Spatial distillation And Re-012
liable Causal frame localization”, which lever-013
ages an off-the-shelf image QA model to make014
the video QA model better grasp relevant in-015
formation in temporal and spatial dimensions016
of the video. Specifically, we use the visual-017
question and answer priors from an image QA018
model to obtain pseudo ground-truth of causal019
frames and explicitly guide the video QA model020
in the temporal dimension. Moreover, due to021
the superior spatial reasoning ability of image022
models, we transfer such knowledge to video023
models via knowledge distillation. Our model-024
agnostic approach outperforms previous meth-025
ods on various benchmarks. Besides, it consis-026
tently improves performance (up to 5%) across027
several video QA models, including pre-trained028
and non pre-trained models.029

1 Introduction030

Video question answering (Video QA) is an im-031

portant field of research that requires machines032

to identify occurrences or events such as scenes,033

objects, temporal relationships, and causality in034

videos. This task poses a critical challenge as035

videos often contain a wealth of information that036

is sparsely distributed, requiring machines to com-037

prehend questions and correctly locate relevant in-038

formation in order to provide accurate answers.039

Recently, researchers have developed modules to040

encourage machines to focus on frames crucial to041

answer the question, which we term as “causal042

frames” (Li et al., 2022b). Existing strategies typi- 043

cally implicitly acquire this knowledge merely rely- 044

ing on the interaction between video and question 045

without direct training objective, as manually anno- 046

tating frame-by-frame causal information for each 047

video is costly and impractical. Specifically, they 048

use either soft probability to focus on frames inside 049

the attention layers (Fu et al., 2021; Luo et al., 2020; 050

Piergiovanni et al., 2022; Wang et al., 2022; Zellers 051

et al., 2021; Li et al., 2020; Yang et al., 2021) or 052

hard selection mechanisms to train the video QA 053

model by selected frames (Li et al., 2022b,a; Buch 054

et al., 2022). 055

Despite the advancements made by these meth- 056

ods, video QA models still face a significant issue 057

we refer to as “misfocus” – focusing on irrelevant 058

or useless regions for answering a question – es- 059

pecially when the critical clue to causal frames is 060

absent in the question. This is particularly preva- 061

lent in questions that require an understanding of 062

temporal relationships or causality, as shown in 063

Figure 1 (a). In this temporal-related example, the 064

question prompt only refers to the object “orna- 065

ment” and the action “put ... on the tree”. Thus, in 066

Figure 1 (b), previous methods (Li et al., 2022b,a), 067

which rely on attention scores between the ques- 068

tion and visual features, often prioritize the first two 069

frames. However, to properly answer this question, 070

the machine needs to focus on the last two frames 071

showing a man patting a baby’s back, which is not 072

explicitly mentioned in the question and thus is dif- 073

ficult to be learned implicitly by existing methods. 074

This example highlights that video QA models can 075

barely locate useful spatial and temporal regions 076

in a video without the ground-truth causal frames 077

information. Quantitative evidence illustrating this 078

issue is provided in Section 4.1.1. 079

To overcome this issue, we propose “Spatial dis- 080

tillation And Reliable Causal frame localization” 081

(SpARC), a novel training strategy designed to en- 082

courage video QA models to focus on relevant parts 083
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(a) Video-Question Pair:

Q: What did the man do after 
putting the ornament on 
the tree ?

Looked down at ground
Moves his hand
Move to position
Puts his hand on the baby
Talks to the teddy bear
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✘Wrong Focused Frames 
(misfocus)

✓ Reasonable Focused Frames

(b) Previous Work:

What ... ?

Using Visual-Question and Answer Prior 

(c) Ours:

✘ Learn Implicitly

✓ Explicitly Guided

Figure 1: Comparison of (b) Prior works and (c) Our works. (a) An example that requires understanding of
temporal relationship. (b) Previous work (Li et al., 2022b,a) focused on specific frames by interaction of video
and question through implicit learning, as ground-truth causal frames are not available. This approach often led to
models focusing on incorrect frames. (c) In contrast, our approach uses the visual-question and answer prior in
image QA model to generate reliable pseudo ground-truth of causal frames. This approach directly guides the video
QA model to focus on question-relevant frames, avoiding the “misfocus” issue.

of a video. We leverage the knowledge within084

an off-the-shelf image QA model (Li et al., 2021)085

to provide pseudo ground-truth of causal frames,086

which can be used as an explicit signal to direct087

the video QA model to better locate relevant infor-088

mation in the video during training. As the knowl-089

edge of causal frames is related to the temporal090

dimension of the video, we refer to it as "temporal091

guidance". In Figure 1 (c), for the last two frames,092

a well-trained image QA model would predict “d”093

as it is the only choice related to the input. The094

frames that lead to the correct answer can be consid-095

ered crucial to answering the question, therefore,096

the pseudo ground-truth of causal frames. This097

explicit information can then be used to provide098

temporal guidance to the video QA model. Notice099

that such guidance is only used in training phase;100

model would process the entire video during infer-101

ence. For more examples and practical predictions102

of image QA model (Li et al., 2021), please refer103

to Figure 3.104

In addition to temporal guidance, we also lever-105

age the property that image models have superior106

spatial comprehension capabilities (compared to107

video models) (Lin et al., 2022; Kae and Song,108

2020; Li et al., 2017; Lee et al., 2022). We treat109

the predicted probabilities from an image model as110

its spatial knowledge and then distill it to the video111

model. Specifically, when the video QA model is112

fed with a single image, it is expected to make a113

similar prediction as the image QA model. This ap-114

proach offers “spatial guidance”, making the video115

QA model better attending to important spatial fea- 116

tures. By integrating both spatial and temporal 117

guidance, SpARC enhances the model’s ability to 118

comprehend videos and questions. Besides, unlike 119

methods (Arnab et al., 2021; Chen et al., 2022; 120

Ding et al., 2022) using modules or layer interac- 121

tions to handle spatial-temporal information, we 122

decouple the spatial and temporal approaches, mak- 123

ing our method model-agnostic. 124

We illustrate the effectiveness of SpARC on 125

several video QA benchmarks, including NExT- 126

QA (Xiao et al., 2021), its ATP-hard subset (Buch 127

et al., 2022), and AGQA2.0 (Grunde-McLaughlin 128

et al., 2022), which all require both spatial and 129

temporal understanding to answer questions accu- 130

rately. We also show the broad applicability of 131

SpARC by presenting consistent improvement (up 132

to 5%) on different video QA architectures, includ- 133

ing HGA (Jiang and Han, 2020) and VGT (Xiao 134

et al., 2022b). Furthermore, when integrated into 135

pre-trained video-language models, our method 136

still demonstrates its efficacy, whereas previous 137

model-agnostic work doesn’t show such success. 138

To summarize our contributions: (i) We ad- 139

dress the “misfocus” issue by leveraging the video- 140

question and answer priors in the image QA model 141

to provide explicit causal frame guidance to the 142

video QA model. (ii) Our model-agnostic approach 143

enhances models’ spatial-temporal compositional 144

reasoning ability by providing spatial and temporal 145

guidance from an image QA model during training. 146

(iii) Our method achieves superior performance 147
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on various video QA benchmarks. Additionally,148

in contrast to previous model-agnostic work that149

shows inferior performance on pre-trained models,150

SpARC has broader applicability by demonstrating151

improvement in both pre-train and non pre-trained152

video QA models.153

2 Related Work154

2.1 Image Question Answering155

In recent times, visual-language (VL) tasks have156

received significant attention, with image question157

answering (image QA) (Antol et al., 2015) being158

a notable task as it requires reasoning about both159

textual comprehension and the understanding of160

relative spatial information. In contrast to video-161

based tasks, image QA task places a greater empha-162

sis on fine-grained spatial reasoning ability, thereby163

necessitating stronger spatial understanding ability.164

Early work (Anderson et al., 2018; Santoro et al.,165

2017; Norcliffe-Brown et al., 2018; Cadene et al.,166

2019; Li et al., 2019a) extracted visual features by167

object detection backbones such as Faster R-CNN168

(Ren et al., 2015) and used graph-based or simple169

cross-attention approaches to model object inter-170

actions and improve reasoning capability. Recent171

work (Li et al., 2019b, 2021; Bao et al., 2022; Kim172

et al., 2021; Gan et al., 2020; Tan and Bansal, 2019)173

incorporated transformer (Vaswani et al., 2017) ar-174

chitecture to model the interactions between visual175

and language information. These models utilized176

cross-modal pre-training objectives such as image-177

text matching (Li et al., 2019b, 2021; Bao et al.,178

2022; Kim et al., 2021; Gan et al., 2020; Tan and179

Bansal, 2019), word-patch alignment (Kim et al.,180

2021; Gan et al., 2020), and masked object pre-181

diction (Tan and Bansal, 2019) to guarantee that182

model can handle both semantic understanding of183

the question and spatial information in the image184

correctly.185

Regardless of the approach used (object-based or186

transformer-based), the goal of prior research is to187

ensure the accurate comprehension of relationships188

between objects relevant to the posed questions.189

This results in promising spatial understanding abil-190

ities among existing image QA models.191

2.2 Video Question Answering192

Video question answering (video QA) (Zhong et al.,193

2022; Xiao et al., 2021; Grunde-McLaughlin et al.,194

2022) is also a highly challenging task among all195

vision-language tasks. This is because video QA196

necessitates both contextual comprehension of the 197

posed question and spatial-temporal compositional 198

reasoning capability of the given video. To tackle 199

this task, prevalent strategies used either graph neu- 200

ral network (GNN) (Jiang and Han, 2020; Xiao 201

et al., 2022b,a; Peng et al., 2021; Guo et al., 2021; 202

Seo et al., 2021) or transformer (Fu et al., 2022, 203

2021; Luo et al., 2020; Piergiovanni et al., 2022; 204

Wang et al., 2022; Zellers et al., 2021; Li et al., 205

2020; Yang et al., 2021, 2022) to achieve such rea- 206

soning ability. 207

GNN-based approaches constructed graphs 208

based on objects (Peng et al., 2021; Liu et al., 2021; 209

Seo et al., 2021), frames (Jiang and Han, 2020; 210

Liu et al., 2021; Guo et al., 2021), or clips (Jiang 211

and Han, 2020; Xiao et al., 2022a,b) to handle the 212

relationships between visual features and textual 213

cues. And transformer-based approaches would 214

employ a range of pre-training methods such as 215

video-caption matching (Fu et al., 2022, 2021; Luo 216

et al., 2020; Piergiovanni et al., 2022; Wang et al., 217

2022), locating captions to video segments (Zellers 218

et al., 2021; Li et al., 2020), masked visual match- 219

ing (Fu et al., 2022, 2021; Luo et al., 2020), or even 220

direct pre-training on transformed question-answer 221

pair data (Yang et al., 2021, 2022). These dedi- 222

cated pre-trained objective are designed to enhance 223

models’ abilities for compositional reasoning. 224

However, recent research indicated that many 225

existing work relied on superficial correlations be- 226

tween video-question pairs and answers (Li et al., 227

2022b,a). Some models even performed worse than 228

answering questions by a single frame, as shown 229

in (Buch et al., 2022; Lei et al., 2022). Moreover, a 230

recent study (Lee et al., 2022) discovered that even 231

pre-trained models struggle with correctly handling 232

temporal information in videos. These findings sug- 233

gest that models may not acquire knowledge from 234

the correct regions during learning phase. We thus 235

propose using priors in the image model to guide 236

the video model in better locating spatial-temporal 237

information from videos. 238

3 Method 239

Due to the inaccessibility to the ground-truth of 240

causal frames, previous video QA work often en- 241

counters the “misfocus” issue, where machine er- 242

roneously focuses on irrelevant spatial and tempo- 243

ral contents. To address this, we propose a novel 244

training pipeline: “Spatial distillation And Reliable 245

Causal frame localization” (SpARC), which inte- 246
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grates spatial and temporal (causal frame localiza-247

tion) guidance to the video QA model. SpARC has248

two main steps. First, we extract causal frame prior249

and spatial knowledge from a well-trained image250

QA model (Section 3.1) for subsequent guidance.251

Second, we use this knowledge to guide video QA252

model during training. To provide temporal guid-253

ance, we use the causal frame knowledge to supply254

explicit indication of causal frames (Section 3.2.1).255

For spatial guidance, we distill the spatial knowl-256

edge to enhance video QA model’s spatial reason-257

ing capability (Section 3.2.2). An overview of the258

pipeline is shown in Figure 2. Note that our method259

only provides guidance in training phase. During260

inference, the video QA model would process the261

entire video without any explicit signal.262

3.1 Extraction of Causal Frame Prior and263

Spatial Knowledge264

To acquire knowledge from the well-trained im-265

age QA model, we feed each video frame into the266

image QA model MI and use the resulting pre-267

dictions as causal frame prior and spatial knowl-268

edge. For a given video-question pair, we input269

each frame (image) Ik and the question Q to ob-270

tain predicted probabilities for each answer can-271

didate pk = MI(Ik,Q). The predictions of all272

frames {p1, p2, ..., pn} are then used to identify273

causal frames and provide spatial guidance during274

the training phase of the video QA model. In open-275

ended QA datasets, it’s typical to convert them to276

multi-choice QA by creating a global answer set.277

The answer candidates are collected from all an-278

swers in training data that appear more than once279

(Yang et al., 2021). Hence, we can still get the280

predicted probability in open-ended datasets.281

3.2 Spatial-Temporal Guidance282

3.2.1 Temporal Guided283

As illustrated in Section 1, we can use the image284

QA model’s prediction to generate pseudo ground-285

truth of frames that are crucial for answering the286

given question. In the following part, we will de-287

scribe how our approach incorporates these causal288

frames in training phase of video model and han-289

dle the unavailability of ground-truth labels during290

inference in detail.291

Guided Prediction. We use the predicted292

probability of the correct answer as a measure293

of the likelihood that the respective frame is a294

causal frame. Specifically, given image QA pre-295

dictions {p1, p2, ..., pn} with corresponding fea- 296

tures {f1, f2, ..., fn} = V extracted from frames 297

{I1, I2, ..., In}, we use a threshold t to determine 298

whether a frame should be considered a causal 299

frame. Let pki be the predicted probability of the 300

k-th frame for the i-th answer candidate, and let the 301

correct answer be the a-th answer candidate. The 302

causal portion of the video input, denoted as Vc, 303

would be Vc = {fk | pka > t, ∀k = 1...n} ⊆ V . 304

We then input Vc into video QA model MV to ob- 305

tain “Guided Prediction” MV(Vc,Q). 306

We use “Guided Prediction” to ensure that model
learns the reasoning capability by only relevant
frames, thus avoiding misfocus issue and enhanc-
ing model’s performance. To achieve this, we op-
timize “Guided Prediction” to the ground-truth A
by cross-entropy:

Lg = CrossEntropy(MV(Vc,Q), A).

Consistency. In the previous part, we made
the video QA model perform well when provid-
ing causal frames guidance. However, during in-
ference, such explicit guidance is not available
due to the lack of ground-truth answers. Conse-
quently, the model can only perceive the entire
video features V , which may contain irrelevant
frames. To ensure model’s performance under
this situation, we aim to make the prediction of
entire video (called “Whole Video Prediction”)
MV(V,Q) be consistent with “Guided Prediction”
MV(Vc,Q). We achieve this by minimizing the
Kullback-Leibler divergence between these two
predictions, which we term as consistency loss Lc:

Lc = KL(MV(V,Q), MV(Vc,Q)).

This helps the model learn to identify and give less 307

focus on irrelevant frames; thus ensures promising 308

performance during inference and also improves 309

model’s temporal robustness. 310

3.2.2 Spatial Guided 311

Besides providing temporal guidance, we also uti-
lize the superior spatial understanding of image
model (compared to video model) (Lin et al., 2022;
Kae and Song, 2020; Li et al., 2017). Our goal is
to distill such spatial knowledge from the image
model to the video model. In practice, it starts
with sending a randomly selected encoded feature
fi from frame Ii to the video QA model, which
means that the model can only perceive spatial
information. Given the same frame-level inputs,
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(a) Relevant Frame Prior and Spatial Knowledge Extraction
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(b) Temporal Guidance :
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Figure 2: Spatial distillation And Reliable Causal frame localization (SpARC). Our novel training method
(SpARC) provides spatial-temporal guidance to the video QA model. (a) We use an off-the-shelf image QA model
to extract knowledge of causal frames and spatial understanding (Section 3.1). (b) For temporal guidance (Section
3.2.1), we use the pseudo ground-truth to identify causal frames and use them to obtain “Guided Prediction”.
Additionally, we use “Whole Video Prediction” to ensure temporal consistency of the prediction. (c) For spatial
guidance (Section 3.2.2), we randomly select a frame to obtain “Single Frame Prediction” that should be similar to
the image QA model’s prediction for that frame.

the video QA model’s prediction (called “Single
Frame Prediction”) MV({fi},Q) is expected to be
similar to that of image QA teacher MI(Ii,Q).
To successfully distill the spatial knowledge, we
optimize video QA model by the following spatial-
distillation loss Ls:

Ls = CrossEntropy(MV({fi},Q), MI(Ii,Q)).

3.2.3 Training Objectives312

We only train the video QA model and freeze other
parts (e.g. , the feature extractor) in training phase.
The final optimization target Ltotal combines the
above three training targets and is represented as
follows, where wc and ws are hyper-parameters
standing for the weights of the consistency loss and
spatial-distillation loss:

Ltotal = Lg + wc · Lc + ws · Ls.

4 Experiments313

4.1 Preliminary314

4.1.1 Quantification Result for Misfocus315

To quantitatively illustrate the extent of the “mis-316

focus" issue in previous work, we conducted a317

small pilot experiment on the AGQA2.0 bench-318

mark (Grunde-McLaughlin et al., 2022). For quan-319

tification purposes, we employed the previous hard320

selection work, IGV (Li et al., 2022b), as it allows 321

for easier verification of changes in the selection of 322

causal frames. 323

Specifically, we focused on questions containing 324

the terms “before" or “after" and interchanged these 325

terms (“before" to “after" and vice versa). If preced- 326

ing work correctly captured question-relevant infor- 327

mation in video, the chosen causal frames should 328

have differed due to the shift in temporal emphasis. 329

However, our findings reveal that 74.87% of in- 330

stances had identical predicted causal frames. This 331

provides compelling evidence that prior work is in- 332

sensitive to questions involving temporal informa- 333

tion and tend to focus on irrelevant video segments. 334

4.1.2 Capability of Image QA Model 335

To validate the reliability of causal frames provided 336

by the image QA model, we visualize the predic- 337

tions from ALBEF (Li et al., 2021) as shown in 338

Figure 3. Examples (a) and (b) pertain to ques- 339

tions that necessitate an understanding of temporal 340

relationships and causality, where the misfocus is- 341

sue tends to occur. Our results demonstrate that 342

the accurate predictions from the image QA model 343

align well with the causal frames. Additionally, we 344

showcase a qualitative result for a descriptive ques- 345

tion (Figure 3 (c)), where the image QA model’s 346
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(b) Q: Why is the baby crawling on the floor at the beginning? GT: To get the bottle.

Go somewhere elseTo get the bottle

Put it down Wave

(a) Q: What did the man do after he finished playing the piano? GT: Wave.

(c) Q: What is the animal? GT: Dog.

Giraffe DogGiraffeDog Dog

Figure 3: Visualization of the image QA model’s prediction. We present examples of (a) temporal, (b) causal and
(c) descriptive questions. In each example, the grayed-out frames represent non causal frames verified by humans.
The prediction of the image QA model is shown below the image. These examples demonstrate that predictions of
the image QA model can effectively guide the video QA model to focus on causal frames.

prediction remains satisfactory.347

The qualitative results indicate that the image348

QA model can serve as a trustworthy pseudo349

ground-truth provider, supplying guidance for350

causal frames to the video QA model. Such guid-351

ance can solve the issue that previous approaches352

focused on unrelated frames due to a lack of353

ground-truth of causal frames, leading to a skepti-354

cal understanding of the video.355

4.2 Settings356

We present the benchmarks, video backbones, and357

settings employed in the subsequent sections. De-358

tailed implementation settings such as hyperparam-359

eters used in training phase and time consume will360

be elaborated upon in the supplementary material.361

4.2.1 Benchmarks362

We evaluate the capability of SpARC by multi-363

ple video QA benchmarks: NExT-QA (Xiao et al.,364

2021), its ATP-hard subset (Buch et al., 2022),365

and AGQA2.0 (Grunde-McLaughlin et al., 2022).366

NExT-QA is a multi-choice benchmark that as-367

sesses videos’ spatial, temporal, and descriptive as-368

pects. The ATP-hard subset of NExT-QA contains369

spatial and temporal questions that have been man-370

ually verified to require information from multiple371

frames to answer correctly. AGQA2.0 is a large372

open-ended benchmark that necessitates spatial-373

temporal compositional reasoning. We report all374

the performance with accuracy(↑).375

4.2.2 Video QA Models 376

We test efficiency of SpARC on several types 377

of video QA backbones. These include GNN- 378

based architecture (employing on HGA (Jiang and 379

Han, 2020)) and transformer-based (Vaswani et al., 380

2017) architecture (employing on VGT (Xiao et al., 381

2022b)). In addition, due to the recent emergence 382

of large-scale video-language pre-training, we also 383

examine the efficacy of our work on pre-trained 384

VGT (Xiao et al., 2022b). 385

The reason we select one model from each main- 386

stream video QA architecture is that our approach 387

is not specifically tailored to address particular chal- 388

lenges within each type of video QA model archi- 389

tectures. Therefore, by demonstrating the efficacy 390

of our approach on an advanced model of each type, 391

we can demonstrate that even SOTA approaches 392

still encounter the misfocus issue and our method 393

offers a solution to alleviate the issue. 394

4.2.3 Image QA Model 395

We consider image QA model as the knowledge 396

source of causal frames and spatial understanding. 397

Although different architectures of the knowledge 398

source can be explored, we focus on using only AL- 399

BEF (Li et al., 2021) as our image QA model since 400

the effect of different architectures is not critical 401

for our approach. 402

In addition, to ensure the reliability of the pseudo 403

ground-truth for causal frames, a fine-tuning pro- 404

cess is required to avoid the domain shift between 405
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Method Causal Temp. Desc. Total

Co-Mem (Gao et al., 2018) 45.85 50.02 54.38 48.54
HCRN (Le et al., 2020) 47.07 49.27 54.02 48.82
HME (Fan et al., 2019) 46.76 48.89 57.37 49.16
HGA (Jiang and Han, 2020) 48.13 49.08 57.79 50.01
IGV (Li et al., 2022b) 48.56 51.67 59.64 51.34
EIGV (Li et al., 2022a) 51.29 53.11 62.78 53.74
ATP (Buch et al., 2022) 53.10 50.20 66.80 54.30
VGT (Xiao et al., 2022b) 51.62 51.94 63.65 53.68

SpARC (w/ HGA) 52.95 53.52 64.70 55.06
SpARC (w/ VGT) 53.47 53.93 65.12 55.52

Table 1: Comparison with prior SOTAs on NExT-
QA benchmark. SpARC (ours) surpasses previous non
video-language pre-trained state-of-the-arts, particularly
in the temporal and causal genre. (Model in brackets
means the video backbone we use)

Method Binary Open Total

PSAC (Li et al., 2019c) 48.87 31.63 40.18
HME (Fan et al., 2019) 48.91 31.01 39.89
HCRN (Le et al., 2020) 47.97 36.34 42.11
HGA* (Jiang and Han, 2020) 50.89 39.25 45.03
IGV* (Li et al., 2022b) (w/ HGA) 47.95 41.01 44.45

SpARC (w/ HGA) 51.65 42.32 46.95

Table 2: Comparison with past SOTAs on AGQA2.0
benchmark. The results show that SpARC (with HGA
as video QA model) outperforms all prior non video-
language pre-trained work. (∗: the result was obtained
by re-implementation using publicly available code)

image datasets and video datasets. For the detail406

fine-tune approach and the specific hyperparame-407

ters employed, please refer to the supplement.408

Other Settings. During training, we also com-409

bine existing mixup augmentation (Zhang et al.,410

2017) and causal frames information provided by411

image QA model to enhance the video QA model’s412

performance and robustness. The detail and its413

impact on pre-trained and non pre-trained model414

will be discussed in Section 4.5. The detail of our415

enhancement method and its impact compared to416

original augmentation, we’ll discuss in supplement.417

4.3 State-of-the-art Comparison418

We primarily compare our approach to previ-419

ous state-of-the-art methods without using video-420

language pre-training. Our method with VGT as421

the video model outperforms previous approaches422

in NExT-QA, especially in temporal and causal as-423

pects, as shown in Table 1. Similarly, SpARC424

with HGA as the video QA backbone achieves425

superior results in AGQA2.0 compared to previ-426

ous work, as demonstrated in Table 2. Notably, in427

Method Causal Temporal Total

ATP (Buch et al., 2022) 38.40 36.50 37.62
HGA (Jiang and Han, 2020) 43.30 45.30 44.12
EIGV (Li et al., 2022a) 44.68 43.96 44.38
VGT (Xiao et al., 2022b) 46.70 47.59 47.07
VGT-PT (Xiao et al., 2022b) 43.25 46.31 44.15

SpARC (w/ HGA) 45.65 49.30 47.16
SpARC (w/ VGT) 46.78 49.30 47.82
SpARC (w/ VGT-PT) 46.93 48.88 47.73

Table 3: Comparison with previous SOTAs on ATP-
hard set. SpARC (ours) consistently improves upon the
original training method across various video backbones
and demonstrates superior performance compared to
all previous work. (VGT-PT: pre-trained VGT model;
model in brackets means the backbone we use)

Method Causal Temp. Desc. Total

HGA (Jiang and Han, 2020) 48.13 49.08 57.79 50.01
+ IGV (Li et al., 2022b) 48.56 51.67 59.64 51.34
+ EIGV (Li et al., 2022a) 51.29 53.11 62.78 53.74
+ SpARC (ours) 52.95 53.52 64.70 55.06

VGT (Xiao et al., 2022b) 51.62 51.94 63.65 53.68
+ IGV* 50.56 52.84 63.20 53.34
+ EIGV* 51.84 52.88 64.27 54.20
+ SpARC (ours) 53.47 53.93 65.12 55.52

VGT-PT (Xiao et al., 2022b) 52.78 54.54 67.26 55.70
+ IGV* 50.89 53.74 64.41 53.99
+ EIGV* 52.33 53.26 65.34 54.75
+ SpARC (ours) 54.24 55.25 66.62 56.59

Table 4: Efficacy comparing to previous model-
agnostic work. Our method outperforms previous
model-agnostic work across both non pre-trained and
pre-trained video QA backbones. (∗: results obtained
through re-implementation by public code; VGT-PT:
pre-trained VGT)

both benchmarks, our approach consistently out- 428

performs the original performance of video QA 429

backbones across all question types, demonstrat- 430

ing the effectiveness of our method in improving 431

performance of video QA models. 432

We also evaluate SpARC on the ATP-hard subset 433

of NExT-QA, which comprises questions requiring 434

multi-frame information. As presented in Table 3, 435

our approach surpasses previous work and consis- 436

tently achieves superior results across various video 437

QA backbones, even in pre-trained models. This 438

demonstrates the effectiveness of SpARC in en- 439

abling models to handle temporal information. We 440

observe that the pre-trained VGT performs worse 441

than the non pre-trained one, likely due to the lack 442

of temporal pre-training targets (Lee et al., 2022). 443

However, SpARC can address this issue and re- 444

handle multi-frame information accurately. 445
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T S Aug. Non-pretrained Backbone Pre-trained Backbone
Causal Temporal Descriptive Total Causal Temporal Descriptive Total

51.62 51.94 63.65 53.68 52.78 54.54 67.26 55.70

✓ 51.89 53.14 63.91 54.25 53.73 54.61 66.76 56.14
✓ 52.24 53.33 63.84 54.48 54.02 54.42 66.48 56.19

✓ 52.49 51.79 64.84 54.30 53.44 54.20 66.83 55.87
✓ ✓ 51.93 53.67 65.84 54.75 53.89 55.06 67.54 56.49
✓ ✓ 53.15 52.50 64.91 54.88 53.78 54.61 66.62 56.14
✓ ✓ ✓ 53.47 53.93 65.12 55.52 54.24 55.25 66.62 56.59

Table 5: Ablation study on both non pre-trained and pre-trained video-QA backbone (VGT). The performance
gain from each component in our pipeline. (T: temporal guidance, S: spatial guidance, Aug: use augmentation or
not, ✓: the component or augmentation is used)

Our performance across these three sets supports446

the primary concept of our work: prior approaches447

failed to handle video-question relationships ac-448

curately due to a lack of focus on causal parts of449

videos, particularly in questions requiring temporal450

information (i.e. temporal relationship and causal-451

ity questions). In contrast, our method can mitigate452

this problem and lead to better performance.453

4.4 Analysis of Effectiveness and Applicability454

We compare SpARC to previous model-agnostic455

approaches that enhance video QA model learning456

by improving the localization of causal frames. We457

incorporate these methods into both pre-trained and458

non pre-trained video backbones and present the459

results in Table 4.460

In the case of non pre-trained models, both461

SpARC and previous approaches show improve-462

ments, but our method outperforms the previous463

ones. However, when we incorporate the meth-464

ods into pre-trained backbones, SpARC is the only465

one that shows improvement. We speculate that466

previous methods suffer a performance drop be-467

cause their selected frames are unsatisfactory and468

disrupt the video-language knowledge within the469

pre-trained backbone. In contrast, our method can470

offer proper guidance and enhance pre-trained mod-471

els. These results show that SpARC provides better472

improvement and has broader applicability.473

4.5 Ablation Studies474

We conduct a comprehensive study to evaluate the475

efficiency of each component in our methods. The476

results, as presented in Table 7, demonstrate that in-477

corporating either temporal or spatial guidance can478

improve model performance, regardless of whether479

it is a pre-trained or non pre-trained video QA back-480

bone. Combining both guidance can further en-481

hance performance as they complement each other.482

Additionally, the result shows that mixup (Zhang 483

et al., 2017) augmentation can boost the perfor- 484

mance of non pre-trained video QA model, while 485

its effect on the pre-trained model is limited. This 486

result is foreseeable since pre-trained model has 487

already been exposed to a large amount of video- 488

language data, meaning that the additional diversity 489

of training input can only have a slight impact. 490

Moreover, we observe that most of the compo- 491

nents in our method can elevate the performance 492

of the model in questions related to temporal rela- 493

tionships and causality in both pre-trained and non 494

pre-trained video QA backbones. However, these 495

components do not perform as well in descriptive 496

questions when incorporating to the pre-trained 497

model. We attribute this to the pre-trained objec- 498

tives in existing work, which mostly focuses on spa- 499

tial information and does not handle temporal infor- 500

mation adequately. Therefore, pre-trained models 501

would still benefit from our method to correctly 502

handle temporal information unless they have a 503

dedicated training target. 504

5 Conclusion 505

Our novel model-agnostic training approach, “Spa- 506

tial distillation And Reliable Causal frame local- 507

ization” (SpARC), solves the misfocus problem 508

encountered by existing methods that focus on 509

irrelevant frames. We use an off-the-shelf im- 510

age QA model to create pseudo ground-truth of 511

causal frames, which explicitly guides the video 512

QA model for better locating crucial information 513

and addresses the misfocus issue. In addition, we 514

leverage spatial knowledge in the image QA model 515

to guide the video QA model for better spatial un- 516

derstanding. SpARC outperforms previous work 517

on several benchmarks and shows consistent im- 518

provement across various video QA models, includ- 519

ing pre-trained ones. 520
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6 Limitation and Potential Social Impact521

6.1 Limitation522

A major limitation of our work is that it requires523

the use of an off-the-shelf image QA model with524

satisfactory performance. It doesn’t have to be per-525

fect, but its performance should not be significantly526

worse. While this limitation doesn’t have a signifi-527

cant impact on most existing benchmarks, there are528

cases where it may make our approach challeng-529

ing to implement. For instance, this could occur530

in scenarios where the language used in video QA531

is uncommon and it’s difficult to find an off-the-532

shelf image QA model that aligns with that specific533

language.534

6.2 Potential Social Impact535

Our work enables video-language models to learn536

through guided processes, leading to a more ac-537

curate understanding of the relationship between538

video and language. This approach has the poten-539

tial to inspire the development of methods rooted540

in our approach, ultimately leading to the creation541

of interpretable video QA models. These advance-542

ments would yield a positive impact if video QA543

services emerge in the future, as they could enhance544

the trustworthiness of such services and mitigate545

potential instances of discrimination.546
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A Implementation Details 809

A.1 Fine-tuning Image Model 810

To ensure the reliability of the pseudo ground-truth 811

for causal frames, we need to fine-tune the off- 812

the-shelf image QA model due to the domain shift 813

between image datasets and video datasets. The 814

typical image-language models (Li et al., 2021; Bao 815

et al., 2022) involve three components: a visual en- 816

coder (Dosovitskiy et al., 2020) that extracts visual 817

information and represents it in a latent space, a 818

text encoder (Vaswani et al., 2017) to transform 819

semantic information into a latent space represen- 820

tation, and a visual-text interaction module that 821

locates spatial information from the question to re- 822

trieve the correct answer. We freeze both encoders 823

and only fine-tune the visual-text interaction mod- 824

ule for a few epochs. This transfers the knowledge 825

of the image QA model to the target dataset and 826

helps prevent overfitting. Refer to Section A.4 for 827

specific hyperparameters. 828

A.2 Temporal Guided Mixup 829

Inspired from (Li et al., 2022a), we enhance mixup 830

(Zhang et al., 2017) by leveraging question-relevant 831

information. In the original mixup augmentation, 832

the input video-question pair (V,Q) and ground- 833

truth answer A are transformed to (V∗,Q∗) and 834

A∗. Our approach is to modify only the question- 835

relevant input while keeping the non-relevant part 836

11



Hyperparameters NExT-QA (HGA) NExT-QA (VGT) AGQA2.0 (HGA)

Learning Rate 10−4 10−5 10−4

Training Epochs 60 10 10
Number of Frames 16 32 8
Batch Size 256 14 256
Using Augmentation ✓ ✓ ✗
α in Mixup 0.1 0.1 -
β in Mixup 0.1 0.1 -

Table 6: Hyperparameters for all experiments. Including NExT-QA (Xiao et al., 2021) benchmark (with HGA
(Jiang and Han, 2020) and VGT (Xiao et al., 2022b) as video QA model) and AGQA2.0 (Grunde-McLaughlin et al.,
2022) benchmark (with HGA).

intact. Since the model shouldn’t rely on the infor-837

mation from the non-causal part of the video, the838

ground-truth remains A∗.839

Using the image QA priors, we split the video840

into a question-relevant part (causal) Vc and a841

question-irrelevant part (non-causal) Vn. By mod-842

ifying only the causal part of the video, the aug-843

mented video-question pair becomes (V∗
c ,Vn,Q∗).844

With these augmented inputs ({V∗
c ,Vn},Q∗) and845

outputs (A∗), we then train the model using our846

SpARC pipeline. This variation of mixup augmen-847

tation is referred to as Temporal Guided Mixup848

(TGM). The effectiveness of TGM and the original849

mixup method is compared in Section B.2.850

A.3 Frames Used for Knowledge Extraction851

In video QA models that use a frame-based fea-852

ture extractor (He et al., 2016; Xie et al., 2017),853

the frames sent to the image QA model for obtain-854

ing predicted probabilities would be identical to855

the frames used in the video QA model. However,856

some video QA approaches may employ a clip-857

based feature extractor. In this case, we choose the858

first frame of each clip and feed it into image model859

to obtain predicted probabilities, which serve as the860

knowledge for the corresponding clip. It is possi-861

ble to raise concerns about the impact of spatial862

guidance in SpARC. However, since each clip has863

a very short duration (usually less than 1 second),864

it provides minimal temporal information. Hence,865

our spatial distillation approach would still work866

effectively under such circumstance.867

A.4 Settings for Fine-tuning Image Model868

As mentioned in Section A.1, we conduct fine-869

tuning on the cross-modal module of ALBEF (Li870

et al., 2021) before utilizing it as the knowledge871

source. Specifically, we fine-tune the model for872

5 epochs using the Adam optimizer with a learn-873

ing rate of 2 × 10−5 and a weight decay of 0.01874

across all datasets. Regarding the input images, we 875

uniformly sample 8 frames (in AGQA2.0 (Grunde- 876

McLaughlin et al., 2022)) or 16 frames (in NExT- 877

QA (Xiao et al., 2021)) for each video. These 878

frames are then resized to a resolution of 384×384 879

before being processed by the model. 880

A.5 Settings for Training Video Models 881

To ensure a fair comparison, we adopt the same 882

architecture configuration as the original setting 883

in HGA (Jiang and Han, 2020) and VGT (Xiao 884

et al., 2022b). Besides, we utilize the same input 885

features provided by these works, which are pub- 886

licly available. Regarding the loss setting, we set 887

the weights of both consistency loss wc and spatial- 888

distillation loss ws to 1 in all experiments. The 889

training process utilizes the Adam optimizer, and 890

the specific hyperparameters vary depending on 891

the benchmarks and video QA models used. For 892

a detailed list of the hyperparameters, please re- 893

fer to Table 6. Note that the hyperparameters α, β 894

represent the parameters used in the mixing ratio 895

(sampled from Beta distribution) λ ∼ Beta(α, β) 896

for mixup augmentation (Zhang et al., 2017). 897

A.6 Computational Efficiency 898

We present the time cost of the NeXT-QA bench- 899

mark (Xiao et al., 2021). Extracting causal frame 900

knowledge for the entire dataset using ALBEF (Li 901

et al., 2021) takes 12 hours on a single NVIDIA 902

GeForce RTX 3090. During training, we use a sin- 903

gle NVIDIA Tesla P100, taking approximately 5 904

hours with VGT (Xiao et al., 2022b) as video QA 905

backbone and around 6 hours with HGA (Jiang 906

and Han, 2020). The inference time for the entire 907

dataset on both video QA models is under 10 min- 908

utes on a single NVIDIA Tesla P100. It’s worth 909

noting that the time consumption may slightly vary 910

based on CPU efficiency. 911
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(a) Q: Where is this place? GT: Desert.

Desert Outside a house

(b) Q: Why did the man stretch his arms out
at the start of the video while kneeling down? GT: To dig out sand.

To playTo dig out sandTo dig out sand To play To dig out sand

Figure 4: Additional visualization of the image QA model’s prediction. In each example, the grayed-out frames
represent non causal frames verified by humans. The prediction of the image QA model is shown below the image.
(a) Location recognition question. (b) An example where the image QA model’s predictions misalign with the actual
causal frames.

B Additional Experimental Results912

B.1 Additional Qualitative Results913

We present additional visualizations of predictions914

from ALBEF (Li et al., 2021) in Figure 4. In ad-915

dition to the questions discussed in the main pa-916

per, we include additional descriptive question that917

require understanding of locations (Figure 4 (a)).918

This examples also support the idea that the im-919

age QA model can provide reliable indications of920

causal frames.921

Despite the overall positive results, Figure 4 (b)922

reveals that the predictions from image model may923

sometimes slightly deviate from the actual causal924

frames. However, even with this imperfection,925

the image model still directs the video model’s926

attention to the first and third frames, which are927

crucial for answering the question. This example928

shows that despite occasional imperfect guidance929

of causal frames, the image model still provides930

valuable guidance to help the video model better931

handle spatial-temporal information.932

B.2 Efficacy of Temporal Guided Mixup933

We conduct ablation studies to compare the effi-934

ciency of Temporal Guided Mixup (TGM) and the935

original mixup augmentation (Zhang et al., 2017)936

when integrated into our spatial-temporal guided937

approach, SpARC. The studies are performed using938

both pre-trained and non pre-trained VGT models939

(Xiao et al., 2022b) as the video QA backbones.940

The results, presented in Table 7, demonstrate941

that incorporating TGM yields slightly improved942

performance compared to the original mixup aug- 943

mentation. This improvement is observed in both 944

the pre-trained and non pre-trained video models. 945

These findings indicate that our enhancement of 946

the original mixup augmentation generates more di- 947

verse training samples and thus boosts the model’s 948

understanding of video information. 949

C Insights Behind our Method 950

C.1 Insights of Using Correct Answer 951

Some might wonder why we employ the correct an- 952

swer to indicate the pseudo ground-truth of causal 953

frames, as opposed to directly using ranking or 954

applying a threshold to select frames with high con- 955

fidence scores as causal frames. We illustrate the 956

rationale behind our approach through the follow- 957

ing example. 958

Consider a video where a man sits down, raises 959

his hand, and stands up; a question asks “What 960

does the man do before raising hand". The im- 961

age model would assign high probabilities to “sit", 962

“raise hand", and “stand" for the beginning, middle, 963

and end frames respectively. Without ground-truth 964

information, using methods like top-k or thresh- 965

old by highest probability would hard to figure out 966

causal part and lead to a misfocus. This example 967

underscores the significance of employing ground- 968

truth annotations for the identification of causal 969

frames. 970

C.2 Why Using Hard Selection Guidance 971

To the best of our understanding, we pioneer the 972

utilization of insights from an image QA model to 973
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T S Aug. Non-pretrained Backbone Pre-trained Backbone
Causal Temporal Descriptive Total Causal Temporal Descriptive Total

✓ normal 52.80 51.56 65.41 54.48 54.11 53.48 66.90 56.01
✓ TGM (ours) 53.15 52.50 64.91 54.88 53.78 54.61 66.62 56.14
✓ ✓ normal 53.64 53.63 64.98 55.50 54.73 52.92 66.98 56.18
✓ ✓ TGM (ours) 53.47 53.93 65.12 55.52 54.24 55.25 66.62 56.59

Table 7: Ablation study of Temporal Guided Mixup (TGM). We contrast the effectiveness of our improved
augmentation (TGM) with the original mixup augmentation and our enhanced augmentation leads to a slight
performance improvement. (T: temporal guidance, S: spatial guidance, Aug: use augmentation or not, ✓: the
component is used, normal: original mixup, TGM: temporal guided mixup)

inform the learning process of a video QA model.974

There are plenty ways to utilize such knowledge975

prior, and among them, we choose to hard select976

causal frames to guide video model. This facilitates977

a more straightforward validation of the selected978

causal frames, providing qualitative support for our979

claims and approach. As we establish the viability980

of image QA model guidance, it lays the foundation981

for subsequent researchers to extend our work and982

explore further applications of such causal frame983

priors (e.g. soft guidance).984
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