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Abstract

Video Question Answering (Video QA) is a
challenging task that requires models to accu-
rately identify and contextualize relevant infor-
mation within abundant video contents. Con-
ventional approaches attempt to emphasize re-
lated information in specific frames by consid-
ering the visual-question relationship. How-
ever, the absence of ground-truth of causal
frames makes such a relationship can only be
learned implicitly, leading to the “misfocus” is-
sue. To address this, we propose a novel train-
ing pipeline called “Spatial distillation And Re-
liable Causal frame localization”, which lever-
ages an off-the-shelf image QA model to make
the video QA model better grasp relevant in-
formation in temporal and spatial dimensions
of the video. Specifically, we use the visual-
question and answer priors from an image QA
model to obtain pseudo ground-truth of causal
frames and explicitly guide the video QA model
in the temporal dimension. Moreover, due to
the superior spatial reasoning ability of image
models, we transfer such knowledge to video
models via knowledge distillation. Our model-
agnostic approach outperforms previous meth-
ods on various benchmarks. Besides, it consis-
tently improves performance (up to 5%) across
several video QA models, including pre-trained
and non pre-trained models.

1 Introduction

Video question answering (Video QA) is an im-
portant field of research that requires machines
to identify occurrences or events such as scenes,
objects, temporal relationships, and causality in
videos. This task poses a critical challenge as
videos often contain a wealth of information that
is sparsely distributed, requiring machines to com-
prehend questions and correctly locate relevant in-
formation in order to provide accurate answers.
Recently, researchers have developed modules to
encourage machines to focus on frames crucial to
answer the question, which we term as “causal

frames” (Li et al., 2022b). Existing strategies typi-
cally implicitly acquire this knowledge merely rely-
ing on the interaction between video and question
without direct training objective, as manually anno-
tating frame-by-frame causal information for each
video is costly and impractical. Specifically, they
use either soft probability to focus on frames inside
the attention layers (Fu et al., 2021; Luo et al., 2020;
Piergiovanni et al., 2022; Wang et al., 2022; Zellers
et al., 2021; Li et al., 2020; Yang et al., 2021) or
hard selection mechanisms to train the video QA
model by selected frames (Li et al., 2022b,a; Buch
et al., 2022).

Despite the advancements made by these meth-
ods, video QA models still face a significant issue
we refer to as “misfocus” — focusing on irrelevant
or useless regions for answering a question — es-
pecially when the critical clue to causal frames is
absent in the question. This is particularly preva-
lent in questions that require an understanding of
temporal relationships or causality, as shown in
Figure 1 (a). In this temporal-related example, the
question prompt only refers to the object “orna-
ment” and the action “put ... on the tree”. Thus, in
Figure 1 (b), previous methods (Li et al., 2022b,a),
which rely on attention scores between the ques-
tion and visual features, often prioritize the first two
frames. However, to properly answer this question,
the machine needs to focus on the last two frames
showing a man patting a baby’s back, which is not
explicitly mentioned in the question and thus is dif-
ficult to be learned implicitly by existing methods.
This example highlights that video QA models can
barely locate useful spatial and temporal regions
in a video without the ground-truth causal frames
information. Quantitative evidence illustrating this
issue is provided in Section 4.1.1.

To overcome this issue, we propose “Spatial dis-
tillation And Reliable Causal frame localization”
(SpARC), a novel training strategy designed to en-
courage video QA models to focus on relevant parts
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Figure 1: Comparison of (b) Prior works and (c¢) Our works. (a) An example that requires understanding of
temporal relationship. (b) Previous work (Li et al., 2022b,a) focused on specific frames by interaction of video
and question through implicit learning, as ground-truth causal frames are not available. This approach often led to
models focusing on incorrect frames. (c) In contrast, our approach uses the visual-question and answer prior in
image QA model to generate reliable pseudo ground-truth of causal frames. This approach directly guides the video
QA model to focus on question-relevant frames, avoiding the “misfocus” issue.

of a video. We leverage the knowledge within
an off-the-shelf image QA model (Li et al., 2021)
to provide pseudo ground-truth of causal frames,
which can be used as an explicit signal to direct
the video QA model to better locate relevant infor-
mation in the video during training. As the knowl-
edge of causal frames is related to the temporal
dimension of the video, we refer to it as "temporal
guidance". In Figure 1 (c), for the last two frames,
a well-trained image QA model would predict “d”
as it is the only choice related to the input. The
frames that lead to the correct answer can be consid-
ered crucial to answering the question, therefore,
the pseudo ground-truth of causal frames. This
explicit information can then be used to provide
temporal guidance to the video QA model. Notice
that such guidance is only used in training phase;
model would process the entire video during infer-
ence. For more examples and practical predictions
of image QA model (Li et al., 2021), please refer
to Figure 3.

In addition to temporal guidance, we also lever-
age the property that image models have superior
spatial comprehension capabilities (compared to
video models) (Lin et al., 2022; Kae and Song,
2020; Li et al., 2017; Lee et al., 2022). We treat
the predicted probabilities from an image model as
its spatial knowledge and then distill it to the video
model. Specifically, when the video QA model is
fed with a single image, it is expected to make a
similar prediction as the image QA model. This ap-
proach offers “spatial guidance”, making the video

QA model better attending to important spatial fea-
tures. By integrating both spatial and temporal
guidance, SpARC enhances the model’s ability to
comprehend videos and questions. Besides, unlike
methods (Arnab et al., 2021; Chen et al., 2022;
Ding et al., 2022) using modules or layer interac-
tions to handle spatial-temporal information, we
decouple the spatial and temporal approaches, mak-
ing our method model-agnostic.

We illustrate the effectiveness of SpARC on
several video QA benchmarks, including NExT-
QA (Xiao et al., 2021), its ATP-hard subset (Buch
et al., 2022), and AGQA2.0 (Grunde-McLaughlin
et al., 2022), which all require both spatial and
temporal understanding to answer questions accu-
rately. We also show the broad applicability of
SpARC by presenting consistent improvement (up
to 5%) on different video QA architectures, includ-
ing HGA (Jiang and Han, 2020) and VGT (Xiao
et al., 2022b). Furthermore, when integrated into
pre-trained video-language models, our method
still demonstrates its efficacy, whereas previous
model-agnostic work doesn’t show such success.

To summarize our contributions: (i) We ad-
dress the “misfocus” issue by leveraging the video-
question and answer priors in the image QA model
to provide explicit causal frame guidance to the
video QA model. (ii) Our model-agnostic approach
enhances models’ spatial-temporal compositional
reasoning ability by providing spatial and temporal
guidance from an image QA model during training.
(iii) Our method achieves superior performance



on various video QA benchmarks. Additionally,
in contrast to previous model-agnostic work that
shows inferior performance on pre-trained models,
SpARC has broader applicability by demonstrating
improvement in both pre-train and non pre-trained
video QA models.

2 Related Work

2.1 Image Question Answering

In recent times, visual-language (VL) tasks have
received significant attention, with image question
answering (image QA) (Antol et al., 2015) being
a notable task as it requires reasoning about both
textual comprehension and the understanding of
relative spatial information. In contrast to video-
based tasks, image QA task places a greater empha-
sis on fine-grained spatial reasoning ability, thereby
necessitating stronger spatial understanding ability.

Early work (Anderson et al., 2018; Santoro et al.,
2017; Norcliffe-Brown et al., 2018; Cadene et al.,
2019; Li et al., 2019a) extracted visual features by
object detection backbones such as Faster R-CNN
(Ren et al., 2015) and used graph-based or simple
cross-attention approaches to model object inter-
actions and improve reasoning capability. Recent
work (Li et al., 2019b, 2021; Bao et al., 2022; Kim
etal., 2021; Gan et al., 2020; Tan and Bansal, 2019)
incorporated transformer (Vaswani et al., 2017) ar-
chitecture to model the interactions between visual
and language information. These models utilized
cross-modal pre-training objectives such as image-
text matching (Li et al., 2019b, 2021; Bao et al.,
2022; Kim et al., 2021; Gan et al., 2020; Tan and
Bansal, 2019), word-patch alignment (Kim et al.,
2021; Gan et al., 2020), and masked object pre-
diction (Tan and Bansal, 2019) to guarantee that
model can handle both semantic understanding of
the question and spatial information in the image
correctly.

Regardless of the approach used (object-based or
transformer-based), the goal of prior research is to
ensure the accurate comprehension of relationships
between objects relevant to the posed questions.
This results in promising spatial understanding abil-
ities among existing image QA models.

2.2 Video Question Answering

Video question answering (video QA) (Zhong et al.,
2022; Xiao et al., 2021; Grunde-McLaughlin et al.,
2022) is also a highly challenging task among all
vision-language tasks. This is because video QA

necessitates both contextual comprehension of the
posed question and spatial-temporal compositional
reasoning capability of the given video. To tackle
this task, prevalent strategies used either graph neu-
ral network (GNN) (Jiang and Han, 2020; Xiao
et al., 2022b,a; Peng et al., 2021; Guo et al., 2021;
Seo et al., 2021) or transformer (Fu et al., 2022,
2021; Luo et al., 2020; Piergiovanni et al., 2022;
Wang et al., 2022; Zellers et al., 2021; Li et al.,,
2020; Yang et al., 2021, 2022) to achieve such rea-
soning ability.

GNN-based approaches constructed graphs
based on objects (Peng et al., 2021; Liu et al., 2021;
Seo et al., 2021), frames (Jiang and Han, 2020;
Liu et al., 2021; Guo et al., 2021), or clips (Jiang
and Han, 2020; Xiao et al., 2022a,b) to handle the
relationships between visual features and textual
cues. And transformer-based approaches would
employ a range of pre-training methods such as
video-caption matching (Fu et al., 2022, 2021; Luo
et al., 2020; Piergiovanni et al., 2022; Wang et al.,
2022), locating captions to video segments (Zellers
et al., 2021; Li et al., 2020), masked visual match-
ing (Fu et al., 2022, 2021; Luo et al., 2020), or even
direct pre-training on transformed question-answer
pair data (Yang et al., 2021, 2022). These dedi-
cated pre-trained objective are designed to enhance
models’ abilities for compositional reasoning.

However, recent research indicated that many
existing work relied on superficial correlations be-
tween video-question pairs and answers (Li et al.,
2022b,a). Some models even performed worse than
answering questions by a single frame, as shown
in (Buch et al., 2022; Lei et al., 2022). Moreover, a
recent study (Lee et al., 2022) discovered that even
pre-trained models struggle with correctly handling
temporal information in videos. These findings sug-
gest that models may not acquire knowledge from
the correct regions during learning phase. We thus
propose using priors in the image model to guide
the video model in better locating spatial-temporal
information from videos.

3 Method

Due to the inaccessibility to the ground-truth of
causal frames, previous video QA work often en-
counters the “misfocus” issue, where machine er-
roneously focuses on irrelevant spatial and tempo-
ral contents. To address this, we propose a novel
training pipeline: “Spatial distillation And Reliable
Causal frame localization” (SpARC), which inte-



grates spatial and temporal (causal frame localiza-
tion) guidance to the video QA model. SpARC has
two main steps. First, we extract causal frame prior
and spatial knowledge from a well-trained image
QA model (Section 3.1) for subsequent guidance.
Second, we use this knowledge to guide video QA
model during training. To provide temporal guid-
ance, we use the causal frame knowledge to supply
explicit indication of causal frames (Section 3.2.1).
For spatial guidance, we distill the spatial knowl-
edge to enhance video QA model’s spatial reason-
ing capability (Section 3.2.2). An overview of the
pipeline is shown in Figure 2. Note that our method
only provides guidance in training phase. During
inference, the video QA model would process the
entire video without any explicit signal.

3.1 Extraction of Causal Frame Prior and
Spatial Knowledge

To acquire knowledge from the well-trained im-
age QA model, we feed each video frame into the
image QA model M7 and use the resulting pre-
dictions as causal frame prior and spatial knowl-
edge. For a given video-question pair, we input
each frame (image) Z; and the question Q to ob-
tain predicted probabilities for each answer can-
didate p, = Mz(Z, Q). The predictions of all
frames {pi1,p2,...,pn} are then used to identify
causal frames and provide spatial guidance during
the training phase of the video QA model. In open-
ended QA datasets, it’s typical to convert them to
multi-choice QA by creating a global answer set.
The answer candidates are collected from all an-
swers in training data that appear more than once
(Yang et al., 2021). Hence, we can still get the
predicted probability in open-ended datasets.

3.2 Spatial-Temporal Guidance
3.2.1 Temporal Guided

As illustrated in Section 1, we can use the image
QA model’s prediction to generate pseudo ground-
truth of frames that are crucial for answering the
given question. In the following part, we will de-
scribe how our approach incorporates these causal
frames in training phase of video model and han-
dle the unavailability of ground-truth labels during
inference in detail.

Guided Prediction. We use the predicted
probability of the correct answer as a measure
of the likelihood that the respective frame is a
causal frame. Specifically, given image QA pre-

dictions {p1,p2,...,pn} with corresponding fea-
tures { f1, fo, ..., fn} = V extracted from frames
{71,1,,...,T,}, we use a threshold ¢ to determine
whether a frame should be considered a causal
frame. Let pg; be the predicted probability of the
k-th frame for the i-th answer candidate, and let the
correct answer be the a-th answer candidate. The
causal portion of the video input, denoted as V.,
would be V. = {fx | pra > t, VE = 1..n} C V.
We then input V, into video QA model My, to ob-
tain “Guided Prediction” My (V,, Q).

We use “Guided Prediction” to ensure that model
learns the reasoning capability by only relevant
frames, thus avoiding misfocus issue and enhanc-
ing model’s performance. To achieve this, we op-
timize “Guided Prediction” to the ground-truth A
by cross-entropy:

Ly = CrossEntropy(My(Ve, Q), A).

Consistency. In the previous part, we made
the video QA model perform well when provid-
ing causal frames guidance. However, during in-
ference, such explicit guidance is not available
due to the lack of ground-truth answers. Conse-
quently, the model can only perceive the entire
video features ), which may contain irrelevant
frames. To ensure model’s performance under
this situation, we aim to make the prediction of
entire video (called “Whole Video Prediction”)
My (V, Q) be consistent with “Guided Prediction”
My(V,, Q). We achieve this by minimizing the
Kullback-Leibler divergence between these two
predictions, which we term as consistency loss L.:

»Cc = KL(MV(V7 Q)? MV(Vm Q))

This helps the model learn to identify and give less
focus on irrelevant frames; thus ensures promising
performance during inference and also improves
model’s temporal robustness.

3.2.2 Spatial Guided

Besides providing temporal guidance, we also uti-
lize the superior spatial understanding of image
model (compared to video model) (Lin et al., 2022;
Kae and Song, 2020; Li et al., 2017). Our goal is
to distill such spatial knowledge from the image
model to the video model. In practice, it starts
with sending a randomly selected encoded feature
fi from frame Z; to the video QA model, which
means that the model can only perceive spatial
information. Given the same frame-level inputs,
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Figure 2: Spatial distillation And Reliable Causal frame localization (SpARC). Our novel training method
(SpARC) provides spatial-temporal guidance to the video QA model. (a) We use an off-the-shelf image QA model
to extract knowledge of causal frames and spatial understanding (Section 3.1). (b) For temporal guidance (Section
3.2.1), we use the pseudo ground-truth to identify causal frames and use them to obtain “Guided Prediction”.
Additionally, we use “Whole Video Prediction” to ensure temporal consistency of the prediction. (c) For spatial
guidance (Section 3.2.2), we randomly select a frame to obtain “Single Frame Prediction” that should be similar to

the image QA model’s prediction for that frame.

the video QA model’s prediction (called “Single
Frame Prediction”) My, ({fi}, Q) is expected to be
similar to that of image QA teacher Mz(Z;, Q).
To successfully distill the spatial knowledge, we
optimize video QA model by the following spatial-
distillation loss L:

Ls = CrossEntropy(My({fi}, Q), Mz(Z;, Q)).

3.2.3 Training Objectives

We only train the video QA model and freeze other
parts (e.g. , the feature extractor) in training phase.
The final optimization target L;.;,; combines the
above three training targets and is represented as
follows, where w,. and wg are hyper-parameters
standing for the weights of the consistency loss and
spatial-distillation loss:

Liotal = 'Cg +we - Lo+ ws - Ls.
4 Experiments

4.1 Preliminary

4.1.1 Quantification Result for Misfocus

To quantitatively illustrate the extent of the “mis-
focus" issue in previous work, we conducted a
small pilot experiment on the AGQA2.0 bench-
mark (Grunde-McLaughlin et al., 2022). For quan-
tification purposes, we employed the previous hard

selection work, IGV (Li et al., 2022b), as it allows
for easier verification of changes in the selection of
causal frames.

Specifically, we focused on questions containing
the terms “before” or “after" and interchanged these
terms (“before" to “after" and vice versa). If preced-
ing work correctly captured question-relevant infor-
mation in video, the chosen causal frames should
have differed due to the shift in temporal emphasis.
However, our findings reveal that 74.87% of in-
stances had identical predicted causal frames. This
provides compelling evidence that prior work is in-
sensitive to questions involving temporal informa-
tion and tend to focus on irrelevant video segments.

4.1.2 Capability of Image QA Model

To validate the reliability of causal frames provided
by the image QA model, we visualize the predic-
tions from ALBEF (Li et al., 2021) as shown in
Figure 3. Examples (a) and (b) pertain to ques-
tions that necessitate an understanding of temporal
relationships and causality, where the misfocus is-
sue tends to occur. Our results demonstrate that
the accurate predictions from the image QA model
align well with the causal frames. Additionally, we
showcase a qualitative result for a descriptive ques-
tion (Figure 3 (c¢)), where the image QA model’s
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Figure 3: Visualization of the image QA model’s prediction. We present examples of (a) temporal, (b) causal and
(c) descriptive questions. In each example, the grayed-out frames represent non causal frames verified by humans.
The prediction of the image QA model is shown below the image. These examples demonstrate that predictions of
the image QA model can effectively guide the video QA model to focus on causal frames.

prediction remains satisfactory.

The qualitative results indicate that the image
QA model can serve as a trustworthy pseudo
ground-truth provider, supplying guidance for
causal frames to the video QA model. Such guid-
ance can solve the issue that previous approaches
focused on unrelated frames due to a lack of
ground-truth of causal frames, leading to a skepti-
cal understanding of the video.

4.2 Settings

We present the benchmarks, video backbones, and
settings employed in the subsequent sections. De-
tailed implementation settings such as hyperparam-
eters used in training phase and time consume will
be elaborated upon in the supplementary material.

4.2.1 Benchmarks

We evaluate the capability of SpARC by multi-
ple video QA benchmarks: NExT-QA (Xiao et al.,
2021), its ATP-hard subset (Buch et al., 2022),
and AGQAZ2.0 (Grunde-McLaughlin et al., 2022).
NEXT-QA is a multi-choice benchmark that as-
sesses videos’ spatial, temporal, and descriptive as-
pects. The ATP-hard subset of NExT-QA contains
spatial and temporal questions that have been man-
ually verified to require information from multiple
frames to answer correctly. AGQAZ2.0 is a large
open-ended benchmark that necessitates spatial-
temporal compositional reasoning. We report all
the performance with accuracy(?).

4.2.2 Video QA Models

We test efficiency of SpARC on several types
of video QA backbones. These include GNN-
based architecture (employing on HGA (Jiang and
Han, 2020)) and transformer-based (Vaswani et al.,
2017) architecture (employing on VGT (Xiao et al.,
2022b)). In addition, due to the recent emergence
of large-scale video-language pre-training, we also
examine the efficacy of our work on pre-trained
VGT (Xiao et al., 2022b).

The reason we select one model from each main-
stream video QA architecture is that our approach
is not specifically tailored to address particular chal-
lenges within each type of video QA model archi-
tectures. Therefore, by demonstrating the efficacy
of our approach on an advanced model of each type,
we can demonstrate that even SOTA approaches
still encounter the misfocus issue and our method
offers a solution to alleviate the issue.

4.2.3 Image QA Model

We consider image QA model as the knowledge
source of causal frames and spatial understanding.
Although different architectures of the knowledge
source can be explored, we focus on using only AL-
BEF (Li et al., 2021) as our image QA model since
the effect of different architectures is not critical
for our approach.

In addition, to ensure the reliability of the pseudo
ground-truth for causal frames, a fine-tuning pro-
cess is required to avoid the domain shift between



Method | Causal Temp. Desc. | Total Method | Causal Temporal | Total
Co-Mem (Gao et al., 2018) | 45.85 50.02 54.38 |48.54 ATP (Buch et al., 2022) 38.40 36.50 |37.62
HCRN (Le et al., 2020) 47.07 49.27 54.02 |48.82 HGA (Jiang and Han, 2020) | 43.30 4530 |44.12
HME (Fan et al., 2019) 46.76 48.89 57.37|49.16 EIGV (Li et al., 2022a) 44.68 4396 |44.38
HGA (Jiang and Han, 2020) | 48.13 49.08 57.79 | 50.01 VGT (Xiao et al., 2022b) 46.70 47.59 |47.07
IGV (Liet al., 2022b) 48.56 51.67 59.64|51.34 VGT-PT (Xiao et al., 2022b) | 43.25 46.31 44.15
EIGV (Li et al., 2022a) 51.29 53.11 62.78|53.74 SPARC (w/ HGA) 45 65 4930 14716
ATP (Buch et al., 2022) 53.10 50.20 66.80 | 54.30
VGT (Xiao etal, 2022b) | 51.62 51.94 63.65]53.68 SPARC (w/ VGT) 46.78  49.30 147.82
? SpARC (w/ VGT-PT) 46.93 48.88 |47.73
SpARC (w/ HGA) 52.95 53.52 64.70|55.06
SpARC (w/ VGT) 5347 5393 65.1255.52 Table 3: Comparison with previous SOTAs on ATP-

Table 1: Comparison with prior SOTAs on NExT-
QA benchmark. SpARC (ours) surpasses previous non
video-language pre-trained state-of-the-arts, particularly
in the temporal and causal genre. (Model in brackets
means the video backbone we use)

Method | Binary Open | Total
PSAC (Li et al., 2019c¢) 48.87 31.63|40.18
HME (Fan et al., 2019) 4891 31.0139.89
HCRN (Le et al., 2020) 4797 36.34|42.11
HGA* (Jiang and Han, 2020) 50.89 39.25|45.03
IGV* (Lietal., 2022b) (w/ HGA) | 47.95 41.01|44.45
SpARC (w/ HGA) ‘ 51.65 42.32 ‘ 46.95

Table 2: Comparison with past SOTAs on AGQA2.0
benchmark. The results show that SpARC (with HGA
as video QA model) outperforms all prior non video-
language pre-trained work. (x: the result was obtained
by re-implementation using publicly available code)

image datasets and video datasets. For the detail
fine-tune approach and the specific hyperparame-
ters employed, please refer to the supplement.
Other Settings. During training, we also com-
bine existing mixup augmentation (Zhang et al.,
2017) and causal frames information provided by
image QA model to enhance the video QA model’s
performance and robustness. The detail and its
impact on pre-trained and non pre-trained model
will be discussed in Section 4.5. The detail of our
enhancement method and its impact compared to
original augmentation, we’ll discuss in supplement.

4.3 State-of-the-art Comparison

We primarily compare our approach to previ-
ous state-of-the-art methods without using video-
language pre-training. Our method with VGT as
the video model outperforms previous approaches
in NExT-QA, especially in temporal and causal as-
pects, as shown in Table 1. Similarly, SpARC
with HGA as the video QA backbone achieves
superior results in AGQA2.0 compared to previ-
ous work, as demonstrated in Table 2. Notably, in

hard set. SpARC (ours) consistently improves upon the
original training method across various video backbones
and demonstrates superior performance compared to
all previous work. (VGT-PT: pre-trained VGT model;
model in brackets means the backbone we use)

Method | Causal Temp. Desc. | Total
HGA (Jiang and Han, 2020) | 48.13 49.08 57.79 |50.01
+IGV (Li et al., 2022b) 48.56 51.67 59.64|51.34
+ EIGV (Liet al., 2022a) 51.29 53.11 62.78|53.74
+ SpARC (ours) 52.95 53.52 64.70 | 55.06
VGT (Xiao et al., 2022b) 51.62 51.94 63.65|53.68
+IGV* 50.56 52.84 63.20|53.34
+ EIGV* 51.84 52.88 64.27|54.20
+ SpARC (ours) 53.47 53.93 65.12|55.52
VGT-PT (Xiao et al., 2022b) | 52.78 54.54 67.26 | 55.70
+IGV* 50.89 53.74 64.41|53.99
+ EIGV* 52.33 53.26 65.34|54.75
+ SpARC (ours) 54.24 55.25 66.62|56.59

Table 4: Efficacy comparing to previous model-
agnostic work. Our method outperforms previous
model-agnostic work across both non pre-trained and
pre-trained video QA backbones. (x: results obtained
through re-implementation by public code; VGT-PT:
pre-trained VGT)

both benchmarks, our approach consistently out-
performs the original performance of video QA
backbones across all question types, demonstrat-
ing the effectiveness of our method in improving
performance of video QA models.

We also evaluate SpARC on the ATP-hard subset
of NEXT-QA, which comprises questions requiring
multi-frame information. As presented in Table 3,
our approach surpasses previous work and consis-
tently achieves superior results across various video
QA backbones, even in pre-trained models. This
demonstrates the effectiveness of SpARC in en-
abling models to handle temporal information. We
observe that the pre-trained VGT performs worse
than the non pre-trained one, likely due to the lack
of temporal pre-training targets (Lee et al., 2022).
However, SpARC can address this issue and re-
handle multi-frame information accurately.
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| 51.62 5194 6365 |

53.68 | 52.78  54.54 67.26  |55.70

v 51.89  53.14 63.91
5224 5333 63.84
5249  51.79 64.84
51.93  53.67 65.84
53.15 5250 64.91
53.47  53.93 65.12

NEENEEN
SENEEN

v
v
v

54.25| 53.73  54.61 66.76 56.14
5448 | 54.02  54.42 66.48 56.19
54.30| 53.44  54.20 66.83 55.87
54.75| 53.89  55.06 67.54 56.49
54.88 | 53.78  54.61 66.62 56.14
55.52 | 5424  55.25 66.62 56.59

Table 5: Ablation study on both non pre-trained and pre-trained video-QA backbone (VGT). The performance
gain from each component in our pipeline. (T: temporal guidance, S: spatial guidance, Aug: use augmentation or

not, v': the component or augmentation is used)

Our performance across these three sets supports
the primary concept of our work: prior approaches
failed to handle video-question relationships ac-
curately due to a lack of focus on causal parts of
videos, particularly in questions requiring temporal
information (i.e. temporal relationship and causal-
ity questions). In contrast, our method can mitigate
this problem and lead to better performance.

4.4 Analysis of Effectiveness and Applicability

We compare SpARC to previous model-agnostic
approaches that enhance video QA model learning
by improving the localization of causal frames. We
incorporate these methods into both pre-trained and
non pre-trained video backbones and present the
results in Table 4.

In the case of non pre-trained models, both
SpARC and previous approaches show improve-
ments, but our method outperforms the previous
ones. However, when we incorporate the meth-
ods into pre-trained backbones, SpARC is the only
one that shows improvement. We speculate that
previous methods suffer a performance drop be-
cause their selected frames are unsatisfactory and
disrupt the video-language knowledge within the
pre-trained backbone. In contrast, our method can
offer proper guidance and enhance pre-trained mod-
els. These results show that SpARC provides better
improvement and has broader applicability.

4.5 Ablation Studies

We conduct a comprehensive study to evaluate the
efficiency of each component in our methods. The
results, as presented in Table 7, demonstrate that in-
corporating either temporal or spatial guidance can
improve model performance, regardless of whether
itis a pre-trained or non pre-trained video QA back-
bone. Combining both guidance can further en-
hance performance as they complement each other.

Additionally, the result shows that mixup (Zhang
et al., 2017) augmentation can boost the perfor-
mance of non pre-trained video QA model, while
its effect on the pre-trained model is limited. This
result is foreseeable since pre-trained model has
already been exposed to a large amount of video-
language data, meaning that the additional diversity
of training input can only have a slight impact.

Moreover, we observe that most of the compo-
nents in our method can elevate the performance
of the model in questions related to temporal rela-
tionships and causality in both pre-trained and non
pre-trained video QA backbones. However, these
components do not perform as well in descriptive
questions when incorporating to the pre-trained
model. We attribute this to the pre-trained objec-
tives in existing work, which mostly focuses on spa-
tial information and does not handle temporal infor-
mation adequately. Therefore, pre-trained models
would still benefit from our method to correctly
handle temporal information unless they have a
dedicated training target.

5 Conclusion

Our novel model-agnostic training approach, “Spa-
tial distillation And Reliable Causal frame local-
ization” (SpARC), solves the misfocus problem
encountered by existing methods that focus on
irrelevant frames. We use an off-the-shelf im-
age QA model to create pseudo ground-truth of
causal frames, which explicitly guides the video
QA model for better locating crucial information
and addresses the misfocus issue. In addition, we
leverage spatial knowledge in the image QA model
to guide the video QA model for better spatial un-
derstanding. SpARC outperforms previous work
on several benchmarks and shows consistent im-
provement across various video QA models, includ-
ing pre-trained ones.



6 Limitation and Potential Social Impact

6.1 Limitation

A major limitation of our work is that it requires
the use of an off-the-shelf image QA model with
satisfactory performance. It doesn’t have to be per-
fect, but its performance should not be significantly
worse. While this limitation doesn’t have a signifi-
cant impact on most existing benchmarks, there are
cases where it may make our approach challeng-
ing to implement. For instance, this could occur
in scenarios where the language used in video QA
is uncommon and it’s difficult to find an off-the-
shelf image QA model that aligns with that specific
language.

6.2 Potential Social Impact

Our work enables video-language models to learn
through guided processes, leading to a more ac-
curate understanding of the relationship between
video and language. This approach has the poten-
tial to inspire the development of methods rooted
in our approach, ultimately leading to the creation
of interpretable video QA models. These advance-
ments would yield a positive impact if video QA
services emerge in the future, as they could enhance
the trustworthiness of such services and mitigate
potential instances of discrimination.
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A Implementation Details

A.1 Fine-tuning Image Model

To ensure the reliability of the pseudo ground-truth
for causal frames, we need to fine-tune the off-
the-shelf image QA model due to the domain shift
between image datasets and video datasets. The
typical image-language models (Li et al., 2021; Bao
et al., 2022) involve three components: a visual en-
coder (Dosovitskiy et al., 2020) that extracts visual
information and represents it in a latent space, a
text encoder (Vaswani et al., 2017) to transform
semantic information into a latent space represen-
tation, and a visual-text interaction module that
locates spatial information from the question to re-
trieve the correct answer. We freeze both encoders
and only fine-tune the visual-text interaction mod-
ule for a few epochs. This transfers the knowledge
of the image QA model to the target dataset and
helps prevent overfitting. Refer to Section A.4 for
specific hyperparameters.

A.2 Temporal Guided Mixup

Inspired from (Li et al., 2022a), we enhance mixup
(Zhang et al., 2017) by leveraging question-relevant
information. In the original mixup augmentation,
the input video-question pair (V, Q) and ground-
truth answer A are transformed to (V*, Q*) and
A*. Our approach is to modify only the question-
relevant input while keeping the non-relevant part



Hyperparameters NEXT-QA (HGA) NEXT-QA (VGT) AGQA2.0 (HGA)
Learning Rate 1074 107° 1074
Training Epochs 60 10 10
Number of Frames 16 32 8

Batch Size 256 14 256
Using Augmentation v 4 X

a in Mixup 0.1 0.1 -

[ in Mixup 0.1 0.1 -

Table 6: Hyperparameters for all experiments. Including NExT-QA (Xiao et al., 2021) benchmark (with HGA
(Jiang and Han, 2020) and VGT (Xiao et al., 2022b) as video QA model) and AGQA2.0 (Grunde-McLaughlin et al.,

2022) benchmark (with HGA).

intact. Since the model shouldn’t rely on the infor-
mation from the non-causal part of the video, the
ground-truth remains A4*.

Using the image QA priors, we split the video
into a question-relevant part (causal) V. and a
question-irrelevant part (non-causal) V,,. By mod-
ifying only the causal part of the video, the aug-
mented video-question pair becomes (V},V,,, Q*).
With these augmented inputs ({V,V,,}, Q*) and
outputs (A*), we then train the model using our
SpARC pipeline. This variation of mixup augmen-
tation is referred to as Temporal Guided Mixup
(TGM). The effectiveness of TGM and the original
mixup method is compared in Section B.2.

A.3 Frames Used for Knowledge Extraction

In video QA models that use a frame-based fea-
ture extractor (He et al., 2016; Xie et al., 2017),
the frames sent to the image QA model for obtain-
ing predicted probabilities would be identical to
the frames used in the video QA model. However,
some video QA approaches may employ a clip-
based feature extractor. In this case, we choose the
first frame of each clip and feed it into image model
to obtain predicted probabilities, which serve as the
knowledge for the corresponding clip. It is possi-
ble to raise concerns about the impact of spatial
guidance in SpARC. However, since each clip has
a very short duration (usually less than 1 second),
it provides minimal temporal information. Hence,
our spatial distillation approach would still work
effectively under such circumstance.

A.4 Settings for Fine-tuning Image Model

As mentioned in Section A.l, we conduct fine-
tuning on the cross-modal module of ALBEF (Li
et al., 2021) before utilizing it as the knowledge
source. Specifically, we fine-tune the model for
5 epochs using the Adam optimizer with a learn-
ing rate of 2 x 107° and a weight decay of 0.01
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across all datasets. Regarding the input images, we
uniformly sample 8 frames (in AGQAZ2.0 (Grunde-
McLaughlin et al., 2022)) or 16 frames (in NExT-
QA (Xiao et al., 2021)) for each video. These
frames are then resized to a resolution of 384 x 384
before being processed by the model.

A.5 Settings for Training Video Models

To ensure a fair comparison, we adopt the same
architecture configuration as the original setting
in HGA (Jiang and Han, 2020) and VGT (Xiao
et al., 2022b). Besides, we utilize the same input
features provided by these works, which are pub-
licly available. Regarding the loss setting, we set
the weights of both consistency loss w,. and spatial-
distillation loss w; to 1 in all experiments. The
training process utilizes the Adam optimizer, and
the specific hyperparameters vary depending on
the benchmarks and video QA models used. For
a detailed list of the hyperparameters, please re-
fer to Table 6. Note that the hyperparameters «, 3
represent the parameters used in the mixing ratio
(sampled from Beta distribution) A ~ Beta(a, 3)
for mixup augmentation (Zhang et al., 2017).

A.6 Computational Efficiency

We present the time cost of the NeXT-QA bench-
mark (Xiao et al., 2021). Extracting causal frame
knowledge for the entire dataset using ALBEF (Li
et al., 2021) takes 12 hours on a single NVIDIA
GeForce RTX 3090. During training, we use a sin-
gle NVIDIA Tesla P100, taking approximately 5
hours with VGT (Xiao et al., 2022b) as video QA
backbone and around 6 hours with HGA (Jiang
and Han, 2020). The inference time for the entire
dataset on both video QA models is under 10 min-
utes on a single NVIDIA Tesla P100. It’s worth
noting that the time consumption may slightly vary
based on CPU efficiency.



(a)Q: Where is this place? GT: Desert.

Desert Outside a house

(b)Q: Why did the man stretch his arms out
at the start of the video while kneeling down? GT: To dig out sand.

% —

To dig out sand To play To dig out sand To play To dig out sand

Figure 4: Additional visualization of the image QA model’s prediction. In each example, the grayed-out frames
represent non causal frames verified by humans. The prediction of the image QA model is shown below the image.
(a) Location recognition question. (b) An example where the image QA model’s predictions misalign with the actual
causal frames.

B Additional Experimental Results performance compared to the original mixup aug-
. Lo mentation. This improvement is observed in both
B.1 Additional Qualitative Results the pre-trained and non pre-trained video models.

We present additional visualizations of predictions ~ These findings indicate that our enhancement of
from ALBEF (Li et al., 2021) in Figure 4. In ad- the original mixup augmentation generates more di-
dition to the questions discussed in the main pa-  verse training samples and thus boosts the model’s
per, we include additional descriptive question that understanding of video information.

require understanding of locations (Figure 4 (a)). C Insichts Behi Meth
This examples also support the idea that the im- nsights Behind our Method

age QA model can provide reliable indications of  C,1 Insights of Using Correct Answer

causal frames. .
Some might wonder why we employ the correct an-

swer to indicate the pseudo ground-truth of causal
frames, as opposed to directly using ranking or
applying a threshold to select frames with high con-
fidence scores as causal frames. We illustrate the
rationale behind our approach through the follow-
ing example.

Consider a video where a man sits down, raises
his hand, and stands up; a question asks “What
does the man do before raising hand". The im-
age model would assign high probabilities to “sit",
“raise hand", and “stand" for the beginning, middle,
and end frames respectively. Without ground-truth
information, using methods like top-k or thresh-
We conduct ablation studies to compare the effi-  old by highest probability would hard to figure out
ciency of Temporal Guided Mixup (TGM) and the  causal part and lead to a misfocus. This example
original mixup augmentation (Zhang et al., 2017)  underscores the significance of employing ground-
when integrated into our spatial-temporal guided  truth annotations for the identification of causal
approach, SpARC. The studies are performed using  frames.
both pre-trained and non pre-trained VGT models
(Xiao et al., 2022b) as the video QA backbones. C.2 Why Using Hard Selection Guidance

The results, presented in Table 7, demonstrate ~ To the best of our understanding, we pioneer the
that incorporating TGM yields slightly improved  utilization of insights from an image QA model to

Despite the overall positive results, Figure 4 (b)
reveals that the predictions from image model may
sometimes slightly deviate from the actual causal
frames. However, even with this imperfection,
the image model still directs the video model’s
attention to the first and third frames, which are
crucial for answering the question. This example
shows that despite occasional imperfect guidance
of causal frames, the image model still provides
valuable guidance to help the video model better
handle spatial-temporal information.

B.2 Efficacy of Temporal Guided Mixup
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S Au Non-pretrained Backbone Pre-trained Backbone
& Causal Temporal Descriptive | Total | Causal Temporal Descriptive | Total

normal 52.80  51.56 65.41 5448 | 54.11  53.48 66.90 56.01

TGM (ours) || 53.15  52.50 64.91 54.88 | 53.78  54.61 66.62 56.14

v" normal 53.64  53.63 64.98 55.50 | 54.73  52.92 66.98 56.18
v' TGM (ours) || 53.47  53.93 65.12 55.52| 5424  55.25 66.62 56.59

SRNENENI

Table 7: Ablation study of Temporal Guided Mixup (TGM). We contrast the effectiveness of our improved
augmentation (TGM) with the original mixup augmentation and our enhanced augmentation leads to a slight
performance improvement. (T: temporal guidance, S: spatial guidance, Aug: use augmentation or not, v': the
component is used, normal: original mixup, TGM: temporal guided mixup)

inform the learning process of a video QA model.
There are plenty ways to utilize such knowledge
prior, and among them, we choose to hard select
causal frames to guide video model. This facilitates
a more straightforward validation of the selected
causal frames, providing qualitative support for our
claims and approach. As we establish the viability
of image QA model guidance, it lays the foundation
for subsequent researchers to extend our work and
explore further applications of such causal frame
priors (e.g. soft guidance).
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