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Abstract—In this paper we tend to study the stability of phase
retrieval for functions f ∈ Lp(R) ∩ L2(R), 1 ≤ p < 2 from their
decomposition coefficients on continuous frames in L2(R). As a
by-product, we prove a version of Hausdorff -Young inequality
for continuous frames.

Index Terms—Phase retrieval, continuous frame

I. INTRODUCTION

Phase retrieval brings together a number of problems where
an object is reconstructed from incomplete information. For
example, an element being decomposed over a system, but
the information about the phase of the coefficients is missing
and only their modulus if known). This problem, first appeared
in x-ray crystallography about a century ago, arises as well in
other fields of physics, such as for example astronomy, optics,
speech processing, diffraction imaging, computational biology
and others.

From the most general point of view, the problem of phase
retrieval consists in reconstructing a function f in a space X
from the phaseless information of some transform of f . Let
this transform be described by a linear operator T that maps
a vector space X to another space Y of either real or complex
functions and suppose that it has a bounded inverse.

The lack of phase information leads us to consider a
mapping

A : f 7→ |Tf |, (1)

(which is now non-linear) and we aim to reconstitute f from
Af data. In what follows, we start by an acquisition system
Φ = (φλ)λ∈Λ indexed by a set Λ (which is not necessarily
discrete); the mapping T represents the analysis operator of
Φ : (Tf)λ = (f, φλ), and the corresponding operator with
missing phase is denoted by AΦ.

In order to provide the well-posedness of the inverse prob-
lem, one needs the existence of a solution, or surjectivity
of AΦ, uniqueness, or injectivity of AΦ, and stability, i.e.
continuity of A−1

Φ . To fulfill the existence condition, it suffices
to put Y = Ran(T ). However, two other requirements are far
more tricky to fulfill :

AΦ is not injective: there is an ambiguity coming from
multiplying by a scalar of modulus 1:

AΦf = AΦ(cf) for any f ∈ X, |c| = 1. (2)

This could be fixed by reformulating the problem with respect
to the operator on the quotient space X̃ = X \{−1, 1}(X \S1

in complex case):

ÃΦ : X̃ → RΛ
+, x 7→ {|(x, φλ)|}λ∈Λ.

Then, the injectivity of the resulted operator ÃΦ can be
characterized via the complement property of Φ (introduced
in [1] for the case of discrete frames in infinite dimensions and
for the case of continuous frames in Banach spaces in [2]).
This property provides a necessary condition of uniqueness,
and this condition becomes also a sufficient one in real case :

Provided that the operator AΦ with the chosen represen-
tation system Φ is injective, one wonders then whether the
inverse operator A−1

Φ is continuously invertible. One can
distinguish between weak stability (when A−1

Φ is continuously
invertible on its range) and strong stability (when A−1

Φ is
uniformly continuously invertible on its range). While weak
stability is usually attained (see [3] in the case of semi-discrete
frame of Cauchy wavelets, and [2] in case of continuous
frames in Banach spaces), it is not quite so rosy as for strong
stability. In fact, it holds in finite dimension ( [1], [4]) but
no more in infinite dimensions neither for frames nor for
continuous frames ( [2]). This is proven via strong complement
property :

Definition 1.1: The system Φ = (φλ)λ∈Λ ⊂ X verifies
σ−strong complementary property in X if there exists σ > 0
such that for any subset S ⊂ Λ we have

max(AΦS
, AΦΛ\S ) ≥ σ,

which appears to be a necessary condition for the stability (and
also a sufficient one in the real-valued case) but unfortunately
it never holds in infinite dimension. Moreover, as proven in
[1], stability degrades while augmenting the dimension of the
space.

In that light, the results concerning the case of Fourier
transform ( [5]) sound rather optimistic. The author proposes
an estimate for function from L2(Rn) ∩ Lp(Rn), 1 ≤ p < 2
using the fact that if |f | and |g| are close in L2, f and g are
close in Lp then up to translations f and g are close in L2.
More generally, the following theorem holds:

Theorem 1.1: ( [5]) Let 1 ≤ p < 2 and f ∈ Lp(Rn) ∩
L2(Rn).Let us define hf : R≥0 → R≥0 by

hf (x) =

(
8

∫
|f̂(ξ)|≤10x

|f̂(ξ)|2 dξ

)1/2

+

{
x2 if p > 1;
0 if p = 1.



Then, for any g ∈ Lp(Rn) ∩ L2(Rn)

∥f − g∥2L2(Rn) ≤ 2∥|f̂ | − |ĝ|∥2L2(Rn) + hf (∥f − g∥Lp(Rn))

+2∥Im f̂ |f̂ |−1ĝ∥2L2(Rn)

In case when p = 1 and f has a real-valued Fourier transform
supported on a set of measure L, this result reads as follows:
for any g ∈ L1(Rn) ∩ L2(Rn)

∥f − g∥L2(Rn) ≤ 2∥|f̂ | − |ĝ|∥L2(Rn) + 30
√
L∥f − g∥L1(Rn)

+2∥Im ĝ∥L2(Rn).

Moreover, as it follows from the result shown in [13], the last
imaginary term can be removed :

Theorem 1.2: ( [13]) Let 1 ≤ p < 2, f ∈ L2(Rn)∩Lp(Rn).
Then for any g ∈ L2(Rn) ∩ Lp(Rn)

∥f−g∥22 ≤ ∥|f̂ |−|ĝ|∥22+cn,p|supp(f̂)∩supp(ĝ)|
p

2−p ∥f−g∥2p.

(the result shown in [13] is more general and concerns the
estimates in Bessel potential spaces).

A. Mathematical setup

Let Ω be a space with a positive σ−additive measure µ, X
be a space with a positive measure ν, H = L2(X, ν) be the
(complex) Hilbert space of square integrable functions on X
by measure ν with inner product (·, ·).

The following definition of continuous frames extends the
one of discrete frames for the cases when indices belong to a
measurable space, see [6], [7], [8]:

Definition 1.2: The mapping φ : Ω → H is called a
continuous frame with respect to (Ω, ν) if

• φ is weakly measurable (i.e. for any f ∈ H , ω 7→
(f, φω) = f̂(ω) is a measurable function on Ω);

• there exist constants 0 < a ≤ b < ∞ such that for any
f ∈ L2(Ω, ν)

a∥f∥2 ≤
∫
Ω

|(f, φω)|2 dν ≤ b∥f∥2.

The constants a and b are called frame bounds; if a = b then
the frame is called tight and if a = b = 1 then it is called
Parseval. For Ω = N and ν a counting measure, we fall into
the case of a discrete frame.

Besides apparent common properties, this extended def-
inition features as well some differences with respect to
the discrete framework; namely, continuous frames are not
necessarily norm bounded (see the corresponding example in
[9]).

B. Contributions.

In the next section, we will prove an estimate similar to the
one in Thm.1.1. We will as well prove a version of Hausdorff-
Young inequality for continuous frames, interesting in itself.

II. STABILITY

In what follows, let {φω}ω∈Ω be a continuous frame in
L2(X, ν) with constants a, b such that there exist r : 2 < r ≤
∞ and a measurable finite function M(ω) such that

∥φω∥r,ν ≤ M(ω) for a.e. ω ∈ Ω, (3)

with ∥φω∥r,ν being the norm in L2(X, ν). Suppose that for
any complex-valued function b(ω) such that b(ω)M(ω) ∈
L1(Ω, µ) the function b(ω)φω : Ω → Lr(X, ν) is measurable.
Let then s be defined by 1/r + 1/s = 1.

Lemma 2.1: Let f ∈ Lp(X, ν), s ≤ p ≤ 2; then the
coefficient function

f̂(ω) =

∫
X

f(x)φω(x) dν(x)

is a.e.finite and measurable on Ω.
Proof. For any f ∈ Lp(X, ν), let us decompose it as f =
f1 + f2 where

f2(x) =

{
f(x) if |f(x)| < 1
0 otherwise (4)

and f1(x) = f(x)− f2(x). This implies f1 ∈ Ls(X, ν), f2 ∈
L2(X, ν). Since

|f̂1(ω)| ≤ ∥f1∥s,ν∥φω∥r,ν < ∞,

|f̂2(ω)| ≤ ∥f2∥2,ν∥φω∥2,ν < ∞,

the function f̂(ω) = f̂1(ω) + f̂2(ω) is a.e.finite. Then,
there exists a sequence {gk}k of simple functions converging
to f1 in Ls(Ω, ν); the functions gk and f2 belong to L2

and thus ĝk and f̂2 are measurable (by the definition of a
continuous frame). The measurability of f̂ follows then from
the continuity of the scalar product.

The following theorem gives a version of Hausdorff-Young
inequality in the case of continuous frames and generalizes the
inequality from [10]. The proof is provided in the Appendix.

Theorem 2.1: Let {φω}ω∈Ω be a continuous frame verifying
(3). Let s satisfy 1

r + 1
s = 1, p verify s ≤ p ≤ 2 and q being

defined by s
p + 2−s

q = 1. Then for any f ∈ Lp(X, ν)∫
Ω

|f̂(ω)|qM2−q(ω)dµ(ω) ≤ b∥f∥qp,ν . (5)

Theorem 2.2: Let s ≤ p < 2 and f ∈ Lp(R) ∩ L2(R) . Let
{φω}ω∈Ω be a continuous frame verifying (3).

Then for all g ∈ Lp(R) ∩ L2(R)

∥f − g∥22 ≤ 2∥|f̂ | − |ĝ|∥22 + (hf (∥f − g∥p)

+ b∥f − g∥2p + 2∥Imf̂ |f̂ |−1ĝ∥22
(hf being defined in the same way as in Thm 1.1).
Proof. First, since {φω}ω∈Ω is a continuous frame in L2(Rn),
for any f, g ∈ Rn

∥f − g∥22 ≤ 1

a

∫
Rn

|f̂(ω)− ĝ(ω)|2 dµ(ω).



Let us fix ε = ∥f − g∥p and split the integral into three parts:∫
Rn

|f̂(ω)− ĝ(ω)|2 dµ(ω) =∫
|f̂(ω)|≥M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω)+

∫
|f̂(ω)|≤M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω) =

∫
|f̂(ω)| ≥ M(ω)ε

|f̂(ω) − ĝ(ω)| ≤ M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω)+

∫
|f̂(ω)| ≥ M(ω)ε

|f̂(ω) − ĝ(ω)| ≥ M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω)+

∫
|f̂(ω)|≤M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω) = I1 + I2 + I3.

First term. The estimation of the first term is the same as
for the case of Fourier transform thus we do not reproduce it
here:

I1 ≤ ∥|f̂ | − |ĝ|∥22 +
6

5
∥Imf̂ |f̂ |−1ĝ∥22.

Second term. Denoting by Ω1 the integration domain :

Ω1 = {ω ∈ R : |f̂(ω)| ≥ M(ω)ε,

∣∣∣∣∣ f̂(ω)− ĝ(ω)

M(ω)

∣∣∣∣∣ ≥ ε},

one has (by Holder inequality with q/2, q/(q − 2))

I2 =

∫
Ω1

|f̂(ω)− ĝ(ω)|2 dµ(ω) =∫
Ω1

|f̂(ω)− ĝ(ω)|2|M(ω)|2 dµ(ω)

|M(ω)|2
=∫

Ω1

|f̂(ω)− ĝ(ω)|2 dα(ω)

|M(ω)|2
≤(∫

Ω1

(
|f̂(ω)− ĝ(ω)|

M(ω)

)q

dα(ω)

) 2
q

(α(Ω1))
1− 2

q .

Using the theorem 2.1, we get

∫
Ω1

εqM2(ω) dµ(ω) ≤
∫
Ω1

(
|f̂ − ĝ|
M(ω)

)q

M2(ω) dµ(ω)

≤ b∥f − g∥qp

which results in

α(Ω1) =

∫
Ω1

M2(ω) dω ≤ 1

εq
b∥f − g∥qp = b.

Thus, using once more theorem 2.1, one gets

I2 ≤

(∫
Ω1

(
|f̂(ω)− ĝ(ω)|

M(ω)

)q

dα(ω)

) 2
q

b1−
2
q

≤

(∫
Rn

(
|f̂(ω)− ĝ(ω)|

M(ω)

)q

dα(ω)

) 2
q

b1−
2
q

≤ b
2
q ∥f − g∥2pb

1− 2
q = b∥f − g∥2p.

Third term.

I3 =

∫
|f̂(ω)|≤M(ω)ε

|f̂(ω)− ĝ(ω)|2 dµ(ω) ≤

8

∫
|f̂(ω)|≤M(ω)ε

|f̂(ω)|2 dµ(ω)+

2

∫
|f̂(ω)|≤M(ω)ε

||f̂(ω)| − |ĝ(ω)||2 dµ(ω)

≤ 8

∫
|f̂(ω)|≤M(ω)ε

|f̂(ω)|2 dµ(ω) + 2∥|f̂ | − |ĝ|∥22.

APPENDIX.

Proof of Theorem 2.1. One can define a measure α on X by
taking α(A) =

∫
A
M2(ω) dω for any measurable subset A of

X . This measure is σ−finite. Then for any f ∈ L2(X, ν) we
have∫

X

∣∣∣∣∣ f̂(ω)M(ω)

∣∣∣∣∣
2

dα(ω) =

∫
Ω

∣∣∣f̂(ω)∣∣∣2 dµ(ω) ≤ b∥f∥22,ν ,

and for any f ∈ Ls(X, ν)∣∣∣∣∣ f̂(ω)M(ω)

∣∣∣∣∣ = 1

M(ω)

∣∣∣∣∫
X

f(x)φω(x) dν(x)

∣∣∣∣
≤ 1

M(ω)
∥f∥s,ν∥φ(ω)∥r,ν ≤ ∥f∥s,ν a.e. on Ω.

The operator

TM : f 7→ f̂(ω)

M(ω)

is of strong type (2, 2) and of strong type (s,+∞). Since for
θ = 1− 2

q one has

1

p
=

1− θ

2
+

θ

s
,
1

q
=

1− θ

2
,

by Riesz-Thorin theorem TM is of strong type (p, q) , i.e.

∥TMf∥q,α ≤ b1/q∥f∥p,ν for any f ∈ Lp(X, ν).
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