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Abstract

Many neural network architectures are known
to be Turing Complete, and can thus, in prin-
ciple implement arbitrary algorithms. However,
Transformers are unique in that they can imple-
ment gradient-based learning algorithms under
simple parameter configurations. This paper pro-
vides theoretical and empirical evidence that (non-
linear) Transformers naturally learn to implement
gradient descent in function space, which in turn
enable them to learn non-linear functions in con-
text. Our results apply to a broad class of combi-
nations of non-linear architectures and non-linear
in-context learning tasks. Additionally, we show
that the optimal choice of non-linear activation
depends in a natural way on the class of functions
that need to be learned.

1. Introduction
Transformers (Vaswani et al., 2017) have been observed to
produce the correct output based on contextual demonstra-
tions provided in the prompt alone, a phenomenon com-
monly known as in-context learning (ICL) (Brown et al.,
2020). Understanding ICL and its underlying mechanism
may hold the key to explaining the success of the Trans-
former architecture, and has thus attracted great attention.

A promising conjecture is that Transformers learn in-context
by implementing algorithms in their forward pass (Akyürek
et al., 2022; von Oswald et al., 2023a; Ahn et al., 2023;
Zhang et al., 2023; Mahankali et al., 2023; von Oswald
et al., 2023b; Lin et al., 2023; Bai et al., 2023). A subset
of this work focuses on ICL for linear functions using lin-
ear Transformers (i.e., the attention module contains no
nonlinear activations). In this setting, there exists a simple
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parameter configuration under which the Transformer im-
plements gradient descent. Subsequently, (Ahn et al., 2023;
Zhang et al., 2023; Mahankali et al., 2023) verified the local
and global optimality of similar parameter configurations,
and Zhang et al. (2023) also showed convergence to this
parameter configuration when training the Transformer with
gradient descent.

The above works provide a convincing explanation of how
linear Transformers learn linear functions in context; their
theoretical conclusions are also well supported by exper-
iments (von Oswald et al., 2023a; Ahn et al., 2023). An
important aspect of this setting is that linear Transformers
are very well suited to learning linear functions—by simply
setting the Query and Key matrices to the identity matrix, a
single linear attention can implement one step of gradient
descent for the least squares loss.

But in real Transformers, emphnon-linear activations such
as softmax are very important; moreover, the training data
are more likely generated by complicated non-linear func-
tions. It is unclear whether there exists a similarly elegant
construction for non-linear Transformers that explains how
they could learn non-linear functions in context. These
observations raise two central motivating questions:

(Q1) What learning algorithms are implemented by
Transformers with non-linear activations?

(Q2) Can Transformers learn non-linear functions
of data in context?

This paper aims to answer both questions, so as to shed light
on the inner workings of Transformers, and in turn explain
why Transformers are such powerful learners.

More specifically, we simultaneously consider both non-
linear architectures—Attention modules with arbitrary non-
linear activations h̃ (e.g., softmax or ReLU) and non-linear
data—where labels are sampled from a non-linear process
(e.g., a Gaussian Process, or certain more general processes,
to be clarified later) conditioned on the covariates. Surpris-
ingly, we show that the answers to questions (Q1) and (Q2)
are deeply intertwined: there exists a simple parameter con-
figuration that makes Transformers implement gradient
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descent in function space; moreover, we show that this func-
tional gradient descent converges to the Bayes optimal pre-
dictor if the non-linearity of the attention module matches
the underlying data distribution. Beyond our construction,
we also provide theoretical and empirical evidence that
Transformers do indeed learn to implement functional gra-
dient descent via training. Our analysis applies to a broad
range of functions (such as labels generated from two layer
ReLU networks, see Ex. 8) and common architectures (such
as ReLU and Softmax Transformers, see Ex. 2, 3).

1.1. Summary of Contributions

The main contributions of this work are as follows:

1. In Proposition 3.1, we show that when the non-linearity
in the Attention module matches a kernel K, then Trans-
formers can implement gradient descent in function
space wrt the Reproducing Kernel Hilbert Space (RKHS)
metric induced by K. In Sections 3.1.1 and 3.1.2, we
discuss the connection between the construction in Propo-
sition 3.1 and several common Transformer variants. Our
result generalizes the least-squares gradient descent con-
struction from (von Oswald et al., 2023a).

2. In Proposition 3.4, we consider a general setting when
the data labels y(i) are generated from a Kernel Gaussian
Process. We show that when the non-linear module h̃
matches the generating kernel K, the functional gradient
descent construction converges to the Bayes optimal
predictor as the number of layers increases. In Section
3.3, we verify experimentally that the highest accuracy is
indeed achieved when the non-linear module matches
the generating kernel.

3. In Proposition D.1, we present a generalization of Propo-
sitions 3.1 and 3.4 to multi-head attention. A multi-head
Transformer with different activation h̃ per-head can im-
plement the Bayes-optimal functional gradient descent
algorithm for any RKHS that is obtainable by composition
of the kernels of each individual h̃.

4. We analyze the loss landscape of a Transformer on non-
linear data. In Theorem 4.5, we characterize certain sta-
tionary points of the in-context loss under a sparsity con-
straint on the value matrix. When h̃ coincides with a
kernel, this stationary point is exactly the functional
gradient descent construction of Proposition 3.1. We
verify empirically that this stationary point is consistently
learned during training.

5. In Theorem 4.6, we characterize stationary points of the in-
context loss without the sparsity constraint. Our proposed
stationary point implements an algorithm that interleaves
steps of covariate transformation with functional gradi-
ent descent. Once again, we verify empirically that the
stationary point is consistently learned during training.

6. Less importantly, but possibly of independent interest,

our experiments in Section 3.3 identify a simple scenario
where ReLU Transformers appears to out-perform soft-
max Transformers (and vice-versa).

In Table 1, we summarize the main theoretical results of
this paper, along with their key assumptions. We emphasize
that Theorems 4.5 and 4.6 apply to the commonly used
softmax and ReLU attentions.

1.2. Related Work

Garg et al. (2022) show experimentally that Transform-
ers can learn simple functions in context, including linear
functions, decision trees, and two layer neural networks.
Akyürek et al. (2022); Dai et al. (2022) propose that Trans-
formers learn in-context by implementing learning algo-
rithms. Building upon Akyürek et al. (2022), Lin et al.
(2023) propose more efficient constructions for a broader
range of learning algorithms. Bai et al. (2023) apply a simi-
lar technique to study the in-context reinforcement learning
problem. Independent of the ICL motivation, numerous
other authors have also studied the algorithmic power of
transformers (Pérez et al., 2021; Wei et al., 2022; Giannou
et al., 2023; Olsson et al., 2022).

Many of the above papers propose some form of construc-
tion (i.e., a specific parameter configuration), under which
the Transformer implements the desired algorithm. It is
however often unclear if the Transformer actually learns
these constructions during training. Motivated by the ques-
tion of “what do Transformers actually learn,” a line of
recent work turned their attention to linear Transformers
(Schlag et al., 2021; von Oswald et al., 2023a).

von Oswald et al. (2023a) devise a simple weight construc-
tion for the linear Transformer, which can be shown to
implement gradient descent (as well as a more sophisti-
cated algorithm known as GD++). Subsequently, Ahn et al.
(2023); Zhang et al. (2023); Mahankali et al. (2023) show
that for 1-layer Transformers, there exists a global minimum
of the in-context loss that closely resembles the construc-
tion in (von Oswald et al., 2023a). Zhang et al. (2023)
further show that training a 1-layer Transformer with gradi-
ent descent converges in polynomial time to the proposed
global minimum. For multi-layer Transformers, (Ahn et al.,
2023) show the local optimality of preconditioned GD and
preconditioned GD++, under different parameter sparsity
assumptions. We note that Assumptions 2.1 and 4.4 in this
paper closely parallel the parameter sparsity assumptions in
(Ahn et al., 2023). Furthermore, Theorems 4.5 and 4.6 can
be viewed as generalizations of Theorems 3 and 4 of (Ahn
et al., 2023) to non-linear architectures and functions. Fi-
nally, Theorem 5 of (Ahn et al., 2023) establishes the global
optimality of gradient descent for one-layer ReLU-activated
Transformers, which was shown in (Wortsman et al., 2023)
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Results x(i) y(i) h̃
Transformer
Parameters Basic Description

Prop. 3.1 None None h̃ a kernel None
Transformer can implement functional GD
in RKHS induced by kernel h̃.

Prop. 3.4 None K-GP (3.3) h̃ matches K None
Transformer prediction can be Bayes optimal
if h̃ matches K, with sufficient layers.

Thm. 4.5 Asm. 4.1 Asm. 4.2 Asm. 4.3
Asm. 4.4
& Aℓ = 0

Functional GD is stationary point of in-context
loss under Aℓ = 0 constraint.

Thm. 4.6 Asm. 4.1 Asm. 4.2 Asm. 4.3 Asm. 4.4
Characterizing stationary point of in-context
loss (unconstrained).

Table 1. Summary of main theoretical results and key assumptions

to perform comparably to softmax transformers on certain
tasks. More recently, (von Oswald et al., 2023b) studied
the ability of linear Transformers to perform auto-regressive
next-token prediction for sequential data. (Wu et al., 2023)
study the statistical complexity of ICL with a 1-layer lin-
ear Transformer for linear regression. (Huang et al., 2023)
uses a similar framework to study 1-layer softmax-activated
Transformers, when the covariates are all orthonormal.

Distinct from the above, another relevant line of work views
the attention module as a kernel operation, and proposes
alternatives to standard attention based on various kernels
(Tsai et al., 2019; Choromanski et al., 2020; Ali et al., 2021;
Nguyen et al., 2022b;a; Chi et al., 2022). In (Wright &
Gonzalez, 2021; Chen et al., 2023), authors consider the
connection between Transformers and asymmetric kernels.

2. Setup: ICL with non-linear Transformers

Input Data for In-Context Learning
We begin by defining the in-context learning problem. We
are given n demonstrations z(i) := (x(i), y(i)), for i = 1...n.
x(i) ∈ Rd are covariates and y(i) ∈ R are scalar labels.
We are also given a query x(n+1) ∈ Rd, an the goal is to
predict its label y(n+1), which is unobserved. In general,
X := [x(1) ... x(n+1)] ∈ Rd×(n+1) have joint distribution
PX . We assume that Y = [y(1)...y(n+1)] ∈ R1×n+1 have
joint distribution PY |X conditional on X . An important
example of PY |X is when y(i) = ϕ(x(i)) for some unknown
function ϕ. For instance, ϕ(x) = ⟨θ, x⟩ gives rise to linear
regression. We will discuss specific choices of PX and
PY |X in Sections 3.2 and 4.1. Thus the input of the in-
context learning problem is given by

Z0 =
[
z(1) z(2) · · · z(n) z(n+1)

]
(1)

=

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) 0

]
∈ R(d+1)×(n+1).

Transformers with general non-linear attention
We define the generalized attention module as

Attnh̃V,B,C(Z) := V ZMh̃ (BX,CX) , (2)

V ∈ R(d+1)×(d+1), B ∈ Rd×d, C ∈ Rd×d are the value,
query, and key parameter matrices respectively, and they

parameterize the attention. M :=

[
In×n 0
0 0

]
is a mask

matrix, and h̃ : Rd×(n+1)×Rd×(n+1) → R(n+1)×(n+1) de-
notes a matrix-valued function. The matrix X is shorthand
for [x(1) ... x(n+1)] ∈ Rd×(n+1), the first d rows of Z.

Note. The Attention definition in (2) differs from standard
attention, in that X should be replaced by Z. We discuss
in Section 2.1 how the common attention modules maps to
(2) under a sparsity assumption on the Query, Key matrices
(Assumption 2.1).

We construct a k-layer Transformer by stacking k layers of
the attention module (with residual). To be precise, let Zℓ

denote the output of the (ℓ− 1)th layer of the Transformer.
Then Zℓ+1 := Zℓ +Attnh̃Vℓ,Bℓ,Cℓ

(Zℓ), or equivalently:

Zℓ+1 = Zℓ + VℓZℓMh̃ (BℓXℓ, CℓXℓ) (3)

where Vℓ, Bℓ, Cℓ are the value, query and key matrices of the
attention module at layer ℓ. h̃ : Rd×(n+1) × Rd×(n+1) →
R(n+1)×(n+1) denotes a non-linear activation function.

Consider a k layer Transformer. For the rest of the paper, we
let V := {Vℓ}ℓ=0...k, B := {Bℓ}ℓ=0...k, C := {Cℓ}ℓ=0...k

denote collections of the attention parameters across layers.
For ℓ = 0 ... k + 1, define

TFℓ(x; (V,B,C)|z(1) ... z(n)) := [Zℓ](d+1),(n+1) , (4)

where Zi evolves as (3), initialized at
Z0 =

[
x(1) x(2) ··· x(n) x
y(1) y(2) ··· y(n) 0

]
.

We interpret TFℓ(x; (V,B,C)|z(1) ... z(n)) as “The predic-
tor for −y(n+1) at layer ℓ, given x(n+1) = x, conditioned
on demonstrations z(1) ... z(n), parameterized by weight ma-
trices V,B,C”. This definition is consistent with the setup
in (von Oswald et al., 2023a; Ahn et al., 2023).
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The In-Context Loss
Given the input Z0 and the Transformer parameterized by
V,B,C, we define the in-context loss as

f (V,B,C) (5)

=E
[(

TFk+1(x
(n+1); (V,B,C)|z(1) ... z(n)) + y(n+1)

)2]
:=E

[(
[Zk+1](d+1),(n+1) + y(n+1)

)2]
,

where expectation is taken over Z0 and y(n+1).

2.1. Examples of Attention Modules

To motivate definition (2), we show in Examples 1, 2, 3
below how the most common variants of the attention mod-
ule can be realized via specific choices of non-linearity h̃,
assuming the following sparsity constraints:

Assumption 2.1 (QK last column and row sparsity). For
Q,K ∈ R(d+1)×(d+1), there exist B,C ∈ Rd×d such that

Q =

[
B 0
0 0

]
and K =

[
C 0
0 0

]
.

In words, Assumption 2.1 restricts the last row/column of
Q,K to be 0; this restriction was considered in (von Oswald
et al., 2023a; Ahn et al., 2023). and is naturally satisfied by
the global minimum of 1-layer Linear Transformers in (Ahn
et al., 2023; Mahankali et al., 2023; Zhang et al., 2023).

Example 1 (Linear Transformer). The linear attention
module of (von Oswald et al., 2023a), with parameters
V,Q,K, is given by

AttnlinearV,Q,K(Z) := V ZMZ⊤Q⊤KZ.

Assume Q,K,B,C satisfy Assumption 2.1. By choos-
ing h̃(U,W ) := U⊤W , Attnh̃V BC from (2) equals
AttnlinearV QK .

Example 2 (ReLU Transformer). The ReLU attention
module, with parameters V,Q,K, is given by

AttnreluV,Q,K(Z) := V ZM relu
(
Z⊤Q⊤KZ

)
.

In the above, relu denotes element-wise ReLU function.
Assume Q,K,B,C satisfy Assumption 2.1. By choosing
h̃ (U,W ) = relu

(
U⊤W

)
, Attnh̃V BC from (2) equals

AttnreluV QK .

Example 3 (Softmax Transformer). The softmax attention
module, with parameters V,Q,K, is given by

Attnsoftmax
V,Q,K (Z) := V Zsoftmax

(
Z⊤Q⊤KZ

)
.

In the above, softmax : R(n+1)→(n+1) is the masked

softmax function:

[softmax(W )]ij =

{
exp(Wij)∑n

k=1 exp(Wkj)
for i ̸= n+ 1

0 for i = n+ 1
.

Let Q,K,B,C satisfy Assumption 2.1. Let us define

[
h̃ (U,W )

]
ij
:=


exp

(
[U⊤W ]

ij

)
∑n

k=1 exp([U⊤W ]kj)
for i ̸= n+ 1

0 for i = n+ 1
.

(6)

Then Attnh̃V BC from (2) equals Attnsoftmax
V QK . Note that

the mask matrix M from (2) is unnecessary here as
Mh̃(·) = h̃(·).

3. Transformers can implement gradient
descent in function space.

In this section, we show that under a choice of V,B,C and
h̃, the forward pass of the Transformer defined in (3) can
implement Kernel Regression for a kernel K. We present
the necessary background on RKHS in Section G.

We begin by defining “gradient descent in function space.”
Let H denote a Hilbert space of functions mapping from
Rd → R, equipped with the metric ∥·∥H. Let L(f) : H →
R denote some loss. The gradient descent of L(f) with
respect to ∥·∥H is defined as the sequence

fℓ+1 = fℓ − rℓ∇L(fℓ), (7)

where ∇L(f) := argmin∥g∥H=1
d
dtL(f + tg)

∣∣∣
t=0

, and rℓ

is a sequence of stepsizes.

3.1. Transformers can implement gradient descent in
function space.

The first main result of this section is Proposition 3.1 below,
which shows that a Transformer can implement the func-
tional descent sequence (7). We highlight that Proposition
3.1 works for any kernel K – as long as the choice of h̃
coincides with K. In Sections 3.1.1 and 3.1.2, we motivate
Proposition 3.1 using specific examples.

Proposition 3.1. Let K be an arbitrary kernel. Let H denote
the Reproducing Kernel Hilbert space induced by K. Let
z(i) = (x(i), y(i)) for i = 1 ... n be an arbitrary set of
in-context examples. Denote the empirical loss functional
by L(f) :=

∑n
i=1

(
f(x(i))− y(i)

)2
. Let f0 = 0 and let

fℓ denote the gradient descent sequence of L wrt ∥·∥H, as
defined in (7). Then there exist scalars stepsizes r′0 ... r

′
k

such that the following holds:

Let h̃ be the function defined as
[
h̃(U,W )

]
i,j

:=
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K
(
U (i),W (j)

)
, where U (i) and W (i) denote the ith column

of U and W respectively. Let Vℓ =

[
0 0
0 −r′ℓ

]
, Bℓ = Id×d,

Cℓ = Id×d. Then for any x := x(n+1), the Transformer’s
prediction for y(n+1) at each layer ℓ matches the prediction
of the functional gradient sequence (7) at step ℓ, i.e. for all
ℓ = 0 ... k,

TFℓ(x; (V,B,C)|z(1) ... z(n)) = −fℓ(x). (8)

We defer the proof of Proposition 3.1 to Appendix B. As
we verify in step (24) in the proof, the functional gradient
descent sequence (7) is equivalent to

fℓ+1(·) = fℓ(·) + r′ℓ

n∑
i=1

(
y(i) − fℓ(x

(i))
)
K(·, x(i)) (9)

for some stepsizes r′ℓ.

In Theorem 4.5, we show that above choices of Vℓ, Bℓ, Cℓ

form a stationary point of the Transformer training objective.
In Appendix H.2, we empirically verify that these parameter
choices are consistently learned in experiments. Below, we
show how Proposition 3.1 applies to two common settings.

3.1.1. CASE STUDY: LINEAR KERNEL

Consider the simplest setting of the Euclidean inner prod-
uct Kernel, i.e. Klinear(u,w) := ⟨u,w⟩. In this setting,
the choices of key, value, query matrices in Proposition 3.1
essentially match the constructions in (von Oswald et al.,
2023a; Ahn et al., 2023). It is also worth noting that func-
tional gradient descent in the RKHS induced by Klinear

in fact follows the same trajectory as (Euclidean) gradient
descent of the linear regression parameter; we provide a
short proof in Appendix I.2.

3.1.2. CASE STUDY: EXPONENTIAL KERNEL, AND
CONNECTION TO SOFTMAX ACTIVATION

We will now show that the construction in Proposition 3.1,
when K is the exponential kernel, bears remarkable similar-
ity to the softmax Transformer with identity weights.

Let K denote the exponential kernel with bandwidth
σ, i.e. K(x, x′) := exp

(
1
σ2 ⟨x, x′⟩

)
. Choosing[

h̃exp (U,W )
]
ij

:= K(Ui,Wj) (where Ui is the ith col-

umn of U ), and choose Transformer parameters Vℓ =[
0 0
0 −rℓ

]
, Bℓ =

1
σ Id×d, Cℓ =

1
σ Id×d.

Recall that fℓ(x(n+1)) denotes the Transformer’s prediction
for y(n+1) at layer ℓ. The h̃exp Transformer’s prediction at
each layer follows the functional gradient descent sequence
from (9).

On the other hand, recall from Example 3 the stan-
dard h̃softmax Transformer with h̃softmax defined in

(6). By choosing parameters Vℓ =

[
0 0
0 −rℓ

]
, Qℓ =[

1
σ Id×d 0
0 0

]
,Kℓ =

[
1
σ Id×d 0
0 0

]
, the softmax-activated

Transformer implements the update

fℓ+1(·) = fℓ(·) (10)

+ r′ℓτ(·)
n∑

i=1

(
y(i) − fℓ(x

(i))
)
K(·, x(i)),

where τ(·) = 1/
∑n

j=1 K
(
·, x(j)

)
is the normalization fac-

tor in softmax. Comparing (10) to (9), we see that the al-
gorithms implemented by h̃exp and h̃softmax Transformers
are very similar, with the only difference being the normal-
ization factor τ .
Remark 3.2. When ∥x(i)∥2 = 1 for all i = 1 ... n+ 1, the
exponential kernel is up to scaling equal to the RBF kernel.

3.2. Optimality of h̃ for matching K.

We will show in Proposition 3.4 below, that the functional
gradient descent algorithm (7), which is implemented by the
Transformer in Proposition 3.1, can in fact lead to a nearly
statistically optimal prediction when the non-linear activa-
tion h̃ matches the data distribution. We begin by defining a
general class of data distributions. Let K : Rd × Rd → R
denote a symmetric function. We define a conditional distri-
bution for Y |X as follows:

Definition 3.3 (K Gaussian Process). Given symmetric
K : Rd × Rd → R, we define the K Gaussian Process as
the conditional distribution

Y |X ∼ N (0,K+(X)),

where Y = [y(1) ... y(n+1)], X = [x(1) ... x(n+1)], and
Kij(X) := K

(
x(i), x(j)

)
. Let UDU⊤ be the Eigenvalue

decomposition of K(X). K+(X) := U |D|U⊤, where
|D|ii := |Dii| is entry-wise the absolute value of D.

Definition 3.3 generalizes the notion of a Gaussian process,
to when the ”metric” is given by the function K. In Example
7 from Section 4.1, we discuss a few concrete examples
of K Gaussian Processes. Note that Definition 3.3 does
not assume that K is a kernel (specifically, K may not be
PSD). However, if K is a kernel, then K is always positive
semidefinite, so that K+ = K.

In the following result, we see that when the data labels are
generated by a K-Gaussian Process for some kernel K, then
the Transformer prediction (4), for the construction from
Proposition 3.1, is statistically optimal if h̃ matches K:

Proposition 3.4. Let X = [x(1) ... x(n+1)], Y =
[y(1) ... y(n+1)]. Let K : Rd ×Rd → R be a kernel. Assume
that Y |X is drawn from the K Gaussian Process. Let the
attention activation [h̃(U,W )]ij := K (Ui,Wj). Consider
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the functional gradient descent construction in Proposition
3.1. As the layer number ℓ → ∞, the Transformer’s predic-
tion for y(n+1) at layer ℓ (4) approaches the Bayes (optimal)
estimator that minimizes the in-context loss (5).

We defer the proof of Proposition 3.4 to Appendix C. We
note a few caveats of Proposition 3.4:

1. The result guarantees optimality of h̃ = K in the limit of
ℓ → ∞. For finite ℓ, there may exist a better choice of h̃
that implements a more iteration-efficient algorithm. For
example, see discussion of Figure 2(b).

2. The construction in Proposition 3.1 sets the top-left d× d
block of Vℓ to 0 (i.e. Aℓ = 0). In practice, as see in
Theorem 4.6 and Figure 6, Aℓ is often a non-zero multiple
of Id×d. For this reason, a choice of h̃ that differs from K
may nonetheless recover the Bayes estimator.

3.3. Experiments for Proposition 3.4

To experimentally verify Proposition 3.4, we compare the
performance of different choices of h̃ against different
choices of generating kernel K. We present our findings in
Figures 1 and 2.

We consider three types of K Gaussian Processes:

Klinear(u,w) := ⟨u,w⟩ , Krelu(u,w) := relu(⟨u,w⟩),
Kexp(u,w) := exp (⟨x, y⟩) . (11)

For each choice of K above, we try Transformers with four
different types of non-linear attention module h̃.

[h̃linear(U,W )]ij := [U⊤W ]ij ,

[h̃relu(U,W )]ij := relu([U⊤W ]ij),

[h̃exp(U,W )]ij := exp([U⊤W ]ij),

[h̃softmax (U,W )]ij :=
exp

(
[U⊤W ]

ij

)
∑n

k=1 exp([U⊤W ]kj)
for i ̸= n+ 1

0 for i = n+ 1
. (12)

Note: Proposition 3.1 does not apply to h̃relu and h̃softmax

as they are not kernels. But we include them in our
experiments since they are widely used in practice.

The covariates x(i) are drawn iid from the unit sphere, and
the labels y(i) are drawn from one of the three K-Gaussian
Processes. In all plots, the loss values are taken after con-
vergence of training loss. Full experiment details are found
in Appendix H.1.

In all our Figures, we will show the loss of the Bayes Esti-
mator f bayes as a baseline. This represents the information-
theoretically optimal loss. Recall from (3.3) that Y |X ∼

N (0,K+(X)). Let K and K+ be as defined in Defini-
tion 3.3. Let

{
K̂, ν, µ

}
∈
{
Rd×d,Rd,R

}
be defined as[

K̂ ν
ν⊤ µ

]
:= K+. Let Ŷ ∈ Rn denote the vector of

y(1) ... y(n). Then the Bayes Estimator is defined as

f bayes(x(n+1)) := ν⊤K̂−1Ŷ . (13)

When K is a PSD kernel, K+ := K, and (13) is identical to
the Bayes estimator that we derive in (25) in the proof of
Proposition 3.4. When K is not PSD, (13) and (25) are not
equal, but (13) is nonetheless a well-defined estimator.

Figure 1 plots the in-context loss of a 3-layer Transformer
against number of demonstrations n ∈ {2, 4, 6, 8, 10, 12},
for different combinations of label-generating kernel K and
attention module h̃ (see (12)). Figure 2 plots the in-context
loss against number of layers L ∈ {1, 2, 3, 4, 5, 6, 7, 8}, for
n ∈ {14, 6}. We show the losses of different combinations
of K and h̃. We summarize key observations of interest
below:

1. Ignoring h̃softmax, the best prediction error is
achieved when the attention activation h̃ matches dis-
tribution K. From Figures 1(a), 1(b), 2(a), 2(c), 2(d): the
best accuracy is obtained when the attention activation h̃
matches K, as suggested by Proposition 3.4.

2. The h̃softmax attention is most accurate for Kexp la-
bels when number of layers (L) is small and context
length (n) is large. From Figure 1(c): for L = 3,
h̃softmax is more accurate than h̃exp on Kexp data for
n ∈ {6, 8, 10, 12, 14}. From Figure 2(b), when n = 14,
the gap between h̃softmax and h̃exp (for Kexp data) be-
comes very small for L ≥ 6. From Figure 2(d), when
n = 6, h̃exp is most accurate for Kexp data when L ≥ 5.

(a) We conjecture that h̃softmax implements an algorithm
that is more iteration efficient but less statistically effi-
cient than functional gradient descent. As each layer im-
plements a step of some algorithm, h̃softmax performs
well with few layers (steps), and performs relatively
poorly when number of samples is small.

(b) The relative performance of h̃softmax and h̃exp is con-
sistent with Proposition 3.4, which predicts that the
h̃exp Transformer approaches Bayes-optimal prediction
loss as number of layers increases. We also note that
h̃softmax is closely related to Kexp, as discussed at the
end of Example 3.1.2.

3. For each Transformer, the parameters learned are as
predicted in Theorem 4.6. See experiments in Section
H.3 for details.

Finally, we also note that the gap between h̃relu and the
Bayes estimator in Figure 2(a) is quite significant, and does

6
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not seem to decrease with number of layers. This is likely
because the Bayes estimator f bayes in (13) uses K̂ which
involves flipping eigenvalues on K. Such an operation may
not be easily implementable by single head Transformers.

3.4. Composing multiple attention heads

A powerful aspect of RKHS theory is the ability to form
complex kernels by composing simple ones via addition and
multiplication. Using this idea, we show, both theoretically
(Proposition D.1) and empirically (Figure 4), that multi-
head Transformers with different activations per-head
can attain much greater representation power; specifically,
they can attain optimal prediction loss for a large class
of K Gaussian Processes which are obtained from kernel
composition. Due to space constraints, we refer the readers
to Appendix D for the detailed discussion.

4. Optimization Landscape Results
In the previous section, we saw that Transformers can im-
plement functional gradient descent in its forward pass, and
that this implementation can be nearly statistical optimal.
However, does the Transformer learn to implement func-
tional gradient descent when training converges? To answer
this question, we analyze the optimization landscape of the
in-context loss, for the Transformer defined in (3).

In Theorem 4.5, we show that the functional gradient de-
scent construction of Proposition 3.1 is a stationary point
of the in-context loss when we constrain the top left block
of the Value matrix to 0. In Theorem 4.6, we characterize
stationary points of the in-context loss for general Value
matrices. The stationary point implements a sophisticated
algorithm that interleaves functional gradient descent steps
with transformations of the covariates.

We provide experimental verification of both Theorem
4.5 and 4.6 in Sections H.2 and H.3. We present key assump-
tions in Sections 4.1 and 4.2. We note that both Theorem
4.5 and 4.6 apply to softmax and ReLU Transformers.

4.1. Distributional Assumptions

We will first state two assumptions on the distribution of co-
variates X and labels Y |X . We motivate these assumptions
with Examples 4-8. .

Recall the setup from Section 2. The input is Z0 ∈
R(d+1)×(n+1). Let X =

[
x(1) · · ·x(n+1)

]
∈ Rd×(n+1)

denote the first d rows of Z0. Let Y =
[
y(1) · · · y(n+1)

]
∈

R1×(n+1) denote the row vector of labels y(i)’s. Note that
the last row of Z0 has y(n+1) replaced by 0, and thus dif-
fers from Y . We will make an assumption each on the
distributions of X and Y respectively:

Assumption 4.1 (X distribution assumption). Let PX de-

note the distribution of X , i.e. PX is the joint distribution
over x(1) ... x(n+1). Furthermore, assume that there is a
symmetric invertible matrix Σ ∈ Rd×d such that for any
orthogonal matrix U , Σ1/2UΣ−1/2X

d
= X .

In Examples 4 and 5 below, we provide two common distri-
butions for x(i) which satisfy Assumption 4.1.

Example 4 (x(i) drawn from rotationally invariant dis-
tributions). Assumption 4.1 is satisfied when x(i) iid∼
N (0,Σ), or when x(i) = Σ1/2ξ(i), for ξ drawn uni-
formly from the unit sphere. This distribution of x(i)

has been considered in (Garg et al., 2022; Akyürek et al.,
2022; von Oswald et al., 2023a; Ahn et al., 2023; Zhang
et al., 2023; Mahankali et al., 2023).

Example 5 (x(i) drawn from Gaussian Mixture Models).
More generally, Assumption 4.1 can be satisfied even
when x(i) are not iid. Let µ ∼ N (0, I), and let x(i) = µ+

ξ(i), where ξ(i)
iid∼ N (0, I). This example can be further

generalized to contain two or more cluster means µ1, µ2

sampled independently (i.e. mixture of Gaussians).

Assumption 4.2 (Y |X distribution assumption). Condi-
tional on X =

[
x(1) ... x(n+1)

]
, Y =

[
y(1) ... y(n+1)

]
∈

R(n+1) has covariance matrix EY |X
[
Y ⊤Y

]
=: K(X),

where K(X) : Rd×(n+1) → R(n+1)×(n+1). Assume that
for all orthogonal matrix U ∈ Rd×d, K(Σ1/2UΣ−1/2X) =
K(X), where Σ is the same matrix from Assumption 4.1.

In Examples 6, 7, 8 below, we will discuss a few common
label distributions which satisfy Assumptions 4.2. Example
7 is of particular interest, as it is quite general, and is the
setting for all the experiments presented in Figures 1, 2, 3,
5, 6. Note that Example 6 is a special case of Example 7.

Example 6 (y(i) are linear functions of x(i)). One
example of Assumption 4.2 is when θ ∼ N (0, I),
y(i) =

〈
θ, ξ(i)

〉
, and x(i) = Σ1/2ξ(i). We can verify that

the covariance matrix K(X0) := E
[
Y ⊤Y

]
=

X⊤Σ−1/2 E
[
θθT

]
Σ−1/2X = X⊤Σ−1X =

K(Σ1/2UΣ−1/2X). This setting was considered
in (Ahn et al., 2023; Mahankali et al., 2023).

Example 7 (Rotationally Symmetric K Gaussian Process).
Recall the K Gaussian Process from Definition 3.3. Un-
der this definition, recall that Y ⊤|X ∼ N (0,K+(X)),
where [K(X)]ij := K

(
Σ−1/2x(i),Σ−1/2x(j)

)
, and

K+(X) takes an absolute value on the eigenvalues of
K(X). We verify that Assumption 4.2 holds if, for all
orthogonal matrix U , K(v, w) = K(Uv,Uw). This is
satisfied by the following common choices of K:
Klinear(u,w) := ⟨u,w⟩ , Krelu(u,w) := relu(⟨u,w⟩),
Kexp

σ (u,w) := exp
(
⟨x, y⟩ /σ2

)
. (14)
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Figure 1. Plot of log(test ICL loss) against number of in-context demonstrations. The labels are generated using a K Gaussian Process
(Definition 3.3) Each sub-figure corresponds to one of three choices of K, defined in (11). Each sub-figure contains 4 plots corresponding
to 4 choices of h̃, as defined in (12). Black line denotes Bayes Loss.
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Figure 2. Plot of log(test ICL loss) against number of layers. The
labels are generated using a K Gaussian Process (Definition 3.3),
for Krelu and Kexp as defined in (11). Each sub-figure contains 3
plots corresponding to three choices of h̃, as defined in (12).

Example 8 (Two-layer ReLU network.). Finally, we pro-
vide an example where Assumption 4.2 holds for a ran-
dom kernel. Consider the random two-layer ReLU classi-
fication function described in (Garg et al., 2022):

y(i) =
〈
θ2, relu

(
θ1x

(i)
)〉

, (15)

where θ1 ∈ Rd×m, θ2 ∈ Rm; assume θ1, θ2 are sampled
coordinate-wise, independently, from N (0, 1). Thus m
is the dimension of the hidden layer. We verify that this
satisfies Assumption 4.2 in Appendix I.1.

4.2. Architectural Assumptions

For the rest of this section, we will assume that the non-
linear map h̃ (U, V ) satisfies the following invariance:

Assumption 4.3. For any W,V ∈ Rd×(n+1) and for any

matrix S ∈ Rd×d with inverse S−1, the function h̃(·, ·)
satisfies h̃(W,V ) = h̃(S⊤W,S−1V ).

We verify that the three examples of h̃ from Examples {1,
2, 3} which implement {Linear, ReLU, Softmax}-activated
Transformers, all satisfy Assumption 4.3. We also assume
that Vℓ has the following sparsity pattern for ℓ = 0 ... k:
Assumption 4.4. For ℓ = 0 ... k, the value matrices Vℓ

which parameterize the Transformer layers in (3) satisfy

Vℓ =

[
Aℓ 0
0 rℓ

]
for some Ai ∈ Rd×d, ri ∈ R.

The same sparsity pattern was considered in (Ahn et al.,
2023) in studying multi-layer linear Transformers.

4.3. Theorem 4.5: Functional gradient descent is a
stationary point of (constrained) in-context loss.

We first study the stationary points of the optimization prob-
lem, under the constraint that Aℓ = 0 in Assumption 4.4.
This setting is interesting because of its connection to the
functional gradient descent construction in Proposition 3.1.
Theorem 4.5 (Informal Statement of Theorem E.1). Let
h̃ satisfy Assumption 4.3, Let

(
x(i), y(i)

)
i=1...n+1

have dis-
tributions satisfying Assumptions 4.1 and 4.2. Consider
the optimization problem minV,B,C f(V,B,C), for the in-
context loss f defined in (5), under the constraint that
V = {Vℓ}ℓ=0...k satisfies Assumption 4.4. Additionally
constrain Aℓ = 0 for ℓ = 0 ... k. Then there exist station-
ary points of the constrained optimization problem where,
for all ℓ = 0 ... k,

Bℓ = bℓΣ
−1/2 Cℓ = cℓΣ

−1/2, (16)

where bℓ, cℓ ∈ R.

The formal version of Theorem 4.5 is stated as Theorem E.1
in Appendix E; its proof is in Appendix E.1. We highlight
that the proposed stationary point exactly implements the
functional gradient descent construction of Proposition 3.1.

In the simplest case that Σ = I , we verify that (16) is, up to
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scaling, identical to the construction in Proposition 3.1.

More generally, when Σ is not identity, but [h̃ (U,W )]ij =
K(U (i),W (j)) for some kernel K (see Examples 1, 2), (16)
implement functional descent with respect to the RKHS
induced by K̃ (u,w) := K

(
Σ−1/2u,Σ−1/2w

)
. One can

view the kernel K̃ as a rescaled version of K.

Finally, in the case when h̃ does not coincide with a kernel,
(16) implements the following algorithm:

fℓ+1(x
(n+1)) = fℓ(x

(n+1)) (17)

+ r′ℓ

n∑
i=1

(
y(i) − fℓ(x

(i))
) [

h̃
(
Σ−1/2X0,Σ

−1/2X0

)]
i,(n+1)

where fℓ+1(x
(n+1)) is “the Transformer’s prediction for

y(n+1) at layer ℓ”, for ℓ = 0...k + 1. It is instructive to
compare (17) with (9).

4.4. Theorem 4.6: Characterizing the stationary points
of unconstrained in-context loss.

We now study stationary points of the optimization problem
under Assumption 4.4 (with arbitrary Aℓ’s). This setting is
considerably more general than the setting of Theorem 4.5.

Theorem 4.6 (Informal Statement of Theorem F.1). Con-
sider the same setup as Theorem 4.5, except do not con-
strain Aℓ = 0. Then there exist stationary points of the
constrained optimization problem where, for all ℓ = 0 ... k,

Aℓ = aℓI, Bℓ = bℓΣ
−1/2, Cℓ = cℓΣ

−1/2, (18)

where aℓ, bℓ, cℓ ∈ R.

The formal version of Theorem 4.6 is stated as Theorem
F.1 in Appendix F; the proof can be found in Appendix F.1.
Unlike in Theorem 4.5, the matrix Aℓ is not 0; thus the
covariates x(ℓ) are transformed each layer. If h̃ matches a
kernel K, we can verify (using same steps as Proposition
3.1) that the Transformer dynamics 3 implements an algo-
rithm that interleaves functional gradient descent steps with
transformations of the covariates. We refer the readers to
(58) in the proof of Theorem F.1 for an explicit description
of the algorithm implemented by (18).

We leave analysis of this algorithm as future work, but
we note that in the special case of h̃linear (see Example 1),
Theorem 4.6 implies Theorem 4 of (Ahn et al., 2023), which
is similar to the GD++ construction of (von Oswald et al.,
2023a). In the linear case, each covariate transformation
step can be shown to improve the condition number of the
optimization problem.

4.5. Experiments for Theorems 4.5 and 4.6

To verify experimentally that the stationary points in Theo-
rems 4.5 and 4.6 are indeed learned during training, we plot

the difference between each parameter matrix and its pre-
dicted value against training time. Figure below 3 illustrates
this convergence for a specific setup of (Kexp, h̃softmax).
We present more extensive experiments using different com-
binations of architecture h̃ and label distribution K in Fig-
ures 5 and 6 in Appendices H.2 and H.3 (where we also
provide full experiment details).
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Figure 3. Plots of log(dist(M, I)) for M = {A0, A1} ∪
Σ1/2

{
B⊤

0 C0, B
⊤
1 C1, B

⊤
2 C2

}
Σ1/2 against number of training

iterations, where dist(M, I) := minα
∥M−α·I∥
∥M∥F

. Data labels are
drawn from a Kexp-Gaussian Process. The network is a 3-layer
h̃softmax Transformer. Figure 3(a) uses the setting of Theorem
4.5, where we constrain Aℓ = 0. Figure 3(b) uses the setting of
Theorem 4.6, where Aℓ’s are unconstrained. We only verify B⊤C
because for any Λ ∈ Rd×d, (Bℓ, Cℓ) gives identical prediction as
(Λ⊤Bℓ,Λ

−1Cℓ). (See Remark E.2)

5. Future Directions

Representation Power via Composition: Using the idea
of kernel composition, we showed in Proposition D.1 that
a multi-headed Transformer can have significantly greater
representation power by combining parallel attention heads.
It will be interesting to also investigate the representation
power of composition across layers, i.e. sequential attention
heads. Another question is whether diverse activations have
similar benefits for practical tasks.
Optimal choice of non-linearity: In Section 3.3, we saw
how the optimal choice of non-linear activation can depend
on the function being learned. This may provide some
intuition for how to select the right non-linear activation in
practical settings.
Understanding functional gradient descent++ What is
the interpretation of the algorithm implemented in Theorem
4.6? In the linear setting, the action of the value matrix
improves the condition number of the GD objective (von
Oswald et al., 2023a), does a similar statement hold in the
non-linear setting?
Stronger Theoretical Guarantees: Can we show global
optimality, or even establish convergence guarantees, for
the stationary points in Theorem 4.5 and 4.6, in light of our
experimental observations?
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A. Reformulating the In-Context Loss
Lemma A.1. Let Z0 ∈ R(d+1)×(n+1) be the input to the Transformer (as defined in (1)):

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) 0

]
∈ R(d+1)×(n+1).

Let Z0 be the input of the Transformer without masking out y(n+1):

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

where y(n+1) =
〈
w⋆, x

(n+1)
〉
. Let Zℓ denote the output of the (ℓ− 1)th layer of the linear transformer initialized at Z0 (as

defined in (3)). Let Zℓ denote the output of the (ℓ− 1)th layer of the linear transformer initialized at Z0 (as defined in (3)).
Let f (V,Q,K) denote the in-context loss defined in (5), i.e.

f (V,Q,K) = EZ0

[(
[Zk+1](d+1),(n+1) + y(n+1)

)2]
. (19)

Let Vℓ satisfy Assumption 4.4. Then the in-context loss, defined in (5), has the equivalent form

f (A,B,C) := f (W ) = EZ0

[
Tr
(
(I −M)Y

⊤
k+1Y k+1 (I −M)

)]
,

where Y k+1 ∈ R1×n+1 is the (d+ 1)th row of Zk+1.

Proof. Let Xℓ ∈ Rd×(n+1) denote the first d rows of Zℓ and let Yℓ ∈ R1×(n+1) denote the last row of Zℓ. Under Assumption
4.4, we can verify the following useful equivalent form of (3):

Xℓ+1 = Xℓ +AℓXℓMh̃ (BℓXℓ, CℓXℓ) (20)

Yℓ+1 = Yℓ + rℓYℓMh̃ (BℓXℓ, CℓXℓ)

Let c ∈ R denote an arbitrary scalar. Let X0 := X0 and let Y 0 =
[
y(1) y(2) · · · y(n) y(n+1) + c

]
, i.e. Y 0 is Y 0 but

with c added to its last entry. Let Xℓ, Y ℓ evolve under identical dynamics as (20) (but with initialization at X0, Y 0):

Xℓ+1 = Xℓ +AℓXℓMh̃
(
BℓXℓ, CℓXℓ

)
Y ℓ+1 = Y ℓ + rℓY ℓMh̃

(
BℓXℓ, CℓXℓ

)
.

Then for all i, (1) Xℓ = Xℓ and (2) Y ℓ − Yℓ =
[
0 0 · · · 0 c

]
.

Statement (1) can be verified via simple induction.

Statement (2) follows from Statement (1) and induction: suppose (2) holds for some i. By definition of M , Y ℓM has its
(n+ 1)th entry zeroed out, thus by the inductive hypothesis, Y ℓM = YℓM , and thus Y ℓ+1 = Yℓ+1 + [0 0 · · · 0 c].

The lemma statement then follows by choosing c = y(n+1): by (2) above,
[
Zk+1

]
(d+1),(n+1)

=:
[
Y k+1

]
(n+1)

=

[Yk+1](n+1) + y(n+1). Plugging the above into the in-context loss defined in (5) gives

f (V,Q,K) =EZ0

[(
[Zk+1](d+1),(n+1) + y(n+1)

)2]
=EZ0

[([
Zk+1

]
(d+1),(n+1)

)2]
=EZ0

[(∥∥∥(I −M)Y
⊤
k+1

∥∥∥)2]
=EZ0

[(
Tr
(
(I −M)Y

⊤
k+1Y k+1 (I −M)

))2]
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B. Proof of Proposition 3.1
We will first write down the explicit expression for (7). By Lemma G.3, for any f ∈ H, ∇L(f) =
−c
∑n

i=1

(
y(i) − f(x(i))

)
K(·, x(i)), thus (7) is equivalent to

fℓ+1(·) = fℓ(·) + r′ℓ

n∑
i=1

(
y(i) − fℓ(x

(i))
)
K(·, x(i)). (21)

See proof of Lemma G.3 for the explicit relation between r′ℓ and rℓ.

Let Xℓ and Yℓ denote the first d rows and the last row of Zℓ respectively, for any layer ℓ = 0 ... k + 1 and for any i = 0 ... n,

Y
(i)
ℓ = y(i) + TFℓ(x

(i); (V,B,C), z(1) ... z(n)). (22)

In words: ”y(i) − Y
(i)
ℓ is equal to the predicted label for x(n+1), if x(i) = x(n+1).” (22) follows immediately from (3), by

setting x(n+1) = x(i), and verifying that [Zℓ](d+1),i and [Zℓ](d+1),(n+1) have identical updates across layers ℓ = 0 ... k.

We will now prove the lemma statement by induction. For the input, [Z0](d+1),(n+1) := 0 = f0(x) by definition in (1), so
that (8) holds. Now assume that TFℓ(x; (V,B,C)|z(1) ... z(n)) = −fℓ(x) up to some layer ℓ.

By definition of the dynamics on Zi in (3), and plugging in our choice of V,B,C, we verify that

TFℓ+1(x; (V,B,C)|z(1) ... z(n))

=TFℓ(x; (V,B,C)|z(1) ... z(n))− rℓ

n∑
i=1

Y
(i)
ℓ

[
h̃ (X0, X0)

]
i,(n+1)

(23)

=TFℓ(x; (V,B,C)|z(1) ... z(n))− rℓ

n∑
i=1

Y
(i)
ℓ K(x(i), x) (24)

=− fℓ(x)− rℓ

n∑
i=1

(
y(i) − fℓ(x)

)
K(x(i), x)

=− fℓ+1(x).

In the above, the first line is by plugging in our choice of V,B,C into (3). The second line is by our assumption on h̃ in the
lemma statement. The third line is by inductive hypothesis, along with (22). The fourth line is by (21). This concludes the
proof.

C. Proof of Proposition 3.4
Let Ŷ ∈ Rn denote the vector of y(1) ... y(n). Let K̂ denote the top-left n× n block of K. Let ν ∈ Rn denote the vector

given by νi := Ki,n+1. i.e. K =:

[
K̂ ν
ν⊤ K(n+1),(n+1)

]
. By the formula for conditional Gaussian, we know that y(n+1),

conditioned on y(1) ... y(n), has Gaussian distribution with mean ν⊤K̂−1Ŷ . The Bayes estimator of y(n+1) is thus exactly
this mean, which is equivalent to

ν⊤K̂−1Ŷ =

n∑
j,k=1

K
(
x(n+1), x(j)

) [
K̂−1

]
jk

y(k). (25)

Consider the construction in Proposition 3.1, i.e. Bℓ = Cℓ = I , Vℓ =

[
0 0
0 −rℓ

]
. For simplicity, further assume that

rℓ = δ for all ℓ, where δ is some positive constant satisfying δ < ∥K̂∥2. For ℓ = 0 ... k, let y(i)ℓ := [Zℓ](d+1),i, and let

Ŷℓ :=
[
y
(1)
ℓ ... y

(n+1)
ℓ

]
. From (3), we verify that under the above choice of Transformer weights and ,

y
(i)
ℓ+1 = y

(i)
ℓ − δ

n∑
j=1

K
(
x(i), x(j)

)
y
(j)
ℓ ⇔ Ŷℓ+1 =

(
I − δK̂

)
Ŷℓ =

(
I − δK̂

)ℓ
Ŷ .
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Again by (3), we verify that y(n+1)
ℓ+1 = y

(n+1)
ℓ − δ

∑n
j=1 K

(
x(n+1), x(j)

)
y
(j)
ℓ . Rearranging terms gives y(n+1)

ℓ+1 = y
(n+1)
ℓ −

δν⊤Ŷℓ = −ν⊤
∑ℓ

k=0 Ŷk = −ν⊤
∑ℓ

k=0

(
I − δK̂

)k
Ŷk. By Taylor expansion, K̂−1 = δ

∑∞
ℓ=0

(
I − δK̂

)ℓ
. Thus as

ℓ → ∞, y(n+1)
ℓ+1 → ν⊤K̂−1Ŷ , which is the optimal estimator of y(n+1).

D. Composing multiple attention heads with different activations
Formally, we will consider Transformers with multi-head attention, defined by the following forward pass:

Zℓ+1 = Zℓ +

H∑
s=1

V s
ℓ ZℓMh̃s (Bs

ℓXℓ, C
s
ℓXℓ) . (26)

H denotes the number of heads in a layer, and {V s
ℓ , B

s
ℓ , C

s
ℓ }s=1...H denote the {value, key, query} matrices at layer ℓ for

head s. h̃s denotes the activation for head s, which could be different for each head. The difference between (26) and (3),
is the additional summation over multiple heads

∑H
s=1. Identical to to (4), we let TFℓ denote the Transformer’s prediction

for −y(n+1) at layer ℓ, given x(n+1) = x, conditioned on z(1)...z(n) as:

TFℓ(x; (V,B,C)|z(1) ... z(n)) := [Zℓ](d+1),(n+1) , (27)

where Zi evolves as (26), initialized at Z0 =
[
x(1) x(2) ··· x(n) x
y(1) y(2) ··· y(n) 0

]
. We now present Proposition D.1 which shows that a

single multi-head Transformer can perform (optimal) functional gradient descent with respect to a large class of RKHS
metrics. Its proof is very similar to Propositions 3.1 and 3.4, we present it in Appendix D.1.
Proposition D.1. Let

{
z(i)
}
i=1...n

denote the in-context examples and let L(f) be the empirical loss functional as defined
in Proposition 3.1. For s = 1...H , let Ks denote a PSD kernel function. Let K⋄ be a composite kernel, defined as
K⋄(u, v) :=

∑H
s=1 Ks (Gsu,Gsv), where Gs ∈ Rd×d are subject to the constraint that K⋄ must be PSD (but are otherwise

arbitrary). Let fℓ denote the functional gradient descent (7) of L(f), wrt the RKHS metric induced by K⋄.

(A) [Generalization of Proposition 3.1] Consider the multi-head Transformer with H heads, where the sth head has

activation defined as
[
h̃s (U, V )

]
ij

:= Ks
(
U (i),W (j)

)
. Let the Transformer’s parameters be V s

ℓ =

[
0 0
0 −rsℓ

]
,

Bs
ℓ = Gs, Cs

ℓ = Gs. Then there exist scalars {rsℓ}s=1...H,ℓ=0...k such that the following holds: For any x := x(n+1),
the Transformer’s prediction for y(n+1) at each layer ℓ matches the prediction of the functional gradient sequence fℓ
(27), i.e. for all ℓ = 0 ... k,

TFℓ(x; (V,B,C)|z(1) ... z(n)) = −fℓ(x). (28)

(B) [Generalization of Proposition 3.4] If we additionally assume that Y |X is drawn from the K⋄ Gaussian Process, then
as the number of layers ℓ → ∞, the Transformer’s prediction for y(n+1) at layer ℓ (28) approaches the Bayes (optimal)
estimator that minimizes the in-context loss (5).

Remarkably, a single multi-head Transformer can give the near-optimal predictions over a large class of data distributions,
even without a priori knowledge of the data distribution.

Figure 4 provides empirical verification of Proposition D.1: We plot the loss against number of layers for three kinds
of Transformers: 1-head with h̃linear activation, 1-head with h̃exp activation, 2-head with h̃linear activation on the
first head and h̃linear on the second head. Data labels are drawn from a K⋄ Gaussian Process, where K⋄(u, v) :=
αKlinear(G1u,G1v) + (1− α)Kexp(G2u,G2v). We observe the following

1. In Figure 4(a) and 4(a), we see that the 2-head Transformer can perform optimally on both Klinear and Kexp data.
Specifically: In Figure 4(a), K⋄ = Klinear (α = 1, G1 = G2 = I). The 2-head Transformer performs as well as the
h̃linear Transformer. In Figure 4(b), K⋄ = Kexp (α = 0, G1 = G2 = I). The 2-head Transformer performs as well as
the h̃exp Transformer.

2. In Figure 4(c), K⋄(u, v) := 1
2 (u1v1 + u2v2) +

1
2 exp

(
1
2 (u3v3 + u4v4 + u5v5)

)
, corresponding to choosing α = 1/2,

G1 = diag([1, 1, 0, 0, 0]) and G2 = diag([0, 0, 1, 1, 1]). For this choice of K⋄, the 2-head Transformer outperforms
both single-head Transformers.
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Note: the Transformer parameters re-trained for each dataset, so attention weights for 4(a), 4(b) and 4(c) are different.
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Figure 4. Plot of log(test ICL loss) against number of layers. Each sub-figure samples data from a different distribution (K⋄(u, v) :=
αKlinear(G1u,G1v)+(1−α)Kexp(G2u,G2v)). We compare the performance of three kinds of Transformers. The labels are generated
using a K⋄ Gaussian Process. Context length n = 14.

D.1. Proof of Proposition D.1

The proof of (A) is identical to the proof of Proposition 3.1 in Appendix B, up to step (23). We provide the remainder of the
proof below:

TFℓ+1(x; (V,B,C)|z(1) ... z(n))

=TFℓ(x; (V,B,C)|z(1) ... z(n))− rℓ

n∑
i=1

H∑
s=1

Y
(i)
ℓ

[
h̃s (GsX0, G

sX0)
]
i,(n+1)

=TFℓ(x; (V,B,C)|z(1) ... z(n))− rℓ

n∑
i=1

H∑
s=1

Y
(i)
ℓ Ks(Gsx(i), Gsx)

=TFℓ(x; (V,B,C)|z(1) ... z(n))− rℓ

n∑
i=1

Y
(i)
ℓ K⋄(x(i), x)

=− fℓ(x)− rℓ

n∑
i=1

(
y(i) − fℓ(x)

)
K⋄(x(i), x)

=− fℓ+1(x).

We highlight in red the differences from the proof of Proposition 3.1. We use the definition of h̃s and the definition
K⋄(u, v) :=

∑H
s=1 Ks(Gsu,Gsv).

The proof of (B) is entirely identical to proof of Proposition 3.4 in Appendix C, only replacing K by K⋄, and using (26)
instead of (3).

E. Theorem E.1: Functional Gradient Descent is locally optimal under Aℓ = 0 constraint.
The following is the formal statement of Theorem 4.5:
Theorem E.1. Let h̃ satisfy Assumption 4.3, let x(i)’s satisfy Assumption 4.1 with matrix Σ, and y(i)’s satisfy Assumption

4.2. With slight abuse of notation, let f(r,B,C) := f

(
V =

{[
0 0
0 rℓ

]}
ℓ=0...k

, B,C

)
, where f(V,B,C) is as defined

in (5). Let S ⊂ R(k+1)×d×d×2 denote a set of (Query, Key) matrices defined as follows: (B,C) ∈ S if and only if for all
ℓ ∈ {0 ... k}, there exist scalars bℓ, cℓ ∈ R such that Bℓ = bℓΣ

−1/2 and Cℓ = cℓΣ
−1/2. Then

inf
(r,B,C)∈Rk+1×S

k∑
ℓ=0

(∂rℓf(r,B,C))
2
+ ∥∇Bℓ

f(r,B,C)∥2F + ∥∇Cℓ
f(r,B,C)∥2F = 0, (29)

where ∇Bℓ
f denotes derivative wrt the Frobenius norm ∥Bℓ∥F (same for ∇Cℓ

).
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Remark E.2. By Assumption 4.3, for any invertible Λ ∈ Rd×d, f(r,B,C) = f(r,Λ⊤B,Λ−1C). Thus the same result
holds for SΛ =

{
Bℓ = bℓΛ

⊤Σ−1/2, Cℓ = cℓΛ
−1Σ−1/2

}
ℓ=0...k

.

E.1. Proof of Theorem E.1

Let r(0) ∈ R, (B(0), C(0)) ∈ S. Let us define the S-gradient-flow as

d

dt
rℓ(t) = −∂rℓf(r(t), B(t), C(t))

d

dt
Bℓ(t) = Ũℓ(t)

d

dt
Cℓ(t) = W̃ℓ(t), (30)

where for ℓ = 0 ... k, Ũ and W̃ are defined as

ũℓ(t) := −1

d
Tr
(
∇Bℓ

f(r(t), B(t), C(t))Σ1/2
)

Ũℓ(t) := ũℓ(t)Σ
−1/2

w̃ℓ(t) := −1

d
Tr
(
∇Cℓ

f(r(t), B(t), C(t))Σ1/2
)

W̃ℓ(t) := w̃ℓ(t)Σ
−1/2.

It follows by definition of Ũ and W̃ that (B(t), C(t)) ∈ S for all t. We will show that at any time t,

d

dt
f(r(t), B(t), C(t)) ≤−

k∑
ℓ=0

(∂rℓf(r(t), B(t), C(t)))
2

−
k∑

ℓ=0

∥∇Bℓ
f(r(t), B(t), C(t))∥2F −

k∑
ℓ=0

∥∇Cℓ
f(r(t), B(t), C(t))∥2F . (31)

Let ⟨A,B⟩Tr := Tr
(
A⊤B

)
. By definition of the dynamics in (30),

d

dt
f(r(t), B(t), C(t)) (32)

=

k∑
ℓ=0

∂rℓf(r(t), B(t), C(t)) · (−∂rℓf(r(t), B(t), C(t))) (33)

+

k∑
ℓ=0

〈
∇Bℓ

f(r(t), B(t), C(t)), Ũℓ(t)
〉
Tr

(34)

+

k∑
ℓ=0

〈
∇Cℓ

f(r(t), B(t), C(t)), W̃ℓ(t)
〉
Tr

. (35)

We immediately verify that (33) = −
∑k

ℓ=0 (∂rℓf(r(t), B(t), C(t)))
2. By (38) from Proposition E.3, applied separately to

each layer ℓ = 0 ... k,

(34) ≤
k∑

ℓ=0

⟨∇Bℓ
f(r(t), B(t), C(t)),−∇Bℓ

f(r(t), B(t), C(t))⟩Tr

=−
k∑

ℓ=0

∥∇Bℓ
f(r(t), B(t), C(t))∥2F .

Similarly, by (39) from Proposition E.3, applied separately to each layer ℓ = 0 ... k,

(35) ≤
k∑

ℓ=0

⟨∇Cℓ
f(r(t), B(t), C(t)),−∇Cℓ

f(r(t), B(t), C(t))⟩Tr

=−
k∑

ℓ=0

∥∇Cℓ
f(r(t), B(t), C(t))∥2F .
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Combining the above bounds gives (31). Suppose (29) does not hold. Then there exists a positive constant c > 0 such that
for all t,

k∑
ℓ=0

(∂rℓf(r(t), B(t), C(t)))
2
+ ∥∇Bℓ

f(r(t), B(t), C(t))∥2F + ∥∇Cℓ
f(r(t), B(t), C(t))∥2F ≥ c.

Then by (31), d
dtf(r(t), B(t), C(t)) ≤ −c for all t. This contradicts the fact that f(·) is bounded below by 0 (see (5)). Thus

we prove (29).

E.2. Key Lemmas

Proposition E.3. Let h̃ satisfy Assumption 4.3, let x(i)’s satisfy Assumption 4.1 with matrix Σ, and y(i)’s satisfy Assumption

4.2. Let V ∈ R(k+1)×(d+1)×(d+1) satisfy, for all ℓ = 0 ... k, Vℓ =

[
0 0
0 rℓ

]
, where rℓ are arbitrary scalars. Let

(B,C) ∈ R(k+1)×d×d×2 satisfy, for all ℓ = 0 ... k,

Bℓ = bℓΣ
−1/2 Cℓ = cℓΣ

−1/2, (36)

where bℓ, cℓ ∈ R are scalars. Let j ∈ {0 ... k} be an arbitrary but fixed layer index. For S ∈ Rd×d, let Bj(S) := Bj + S,
and let Bℓ(S) := Bℓ for ℓ ̸= j. Let B(S) := {Bℓ(S)}ℓ=0...k. Recall f(V,B,C) as defined in (5). Let R ∈ Rd×d be an
arbitrary matrix. Let

r̃ :=
1

d
Tr
(
RΣ1/2

)
R̃ := r̃Σ−1/2 (37)

Then

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

≤ d

dt
f(V,B(tR̃), C)

∣∣∣∣
t=0

. (38)

Similarly, let Cj(S) := Cj + S, and Cℓ(S) := Cℓ for ℓ ̸= j, and let C(S) := {Cℓ(S)}ℓ=0...k, then

d

dt
f(V,B,C(tR))

∣∣∣∣
t=0

≤ d

dt
f(V,B,C(tR̃))

∣∣∣∣
t=0

. (39)

Proof of Proposition E.3. The proof of (39) is identical to that of (38), so we only present the proof of (38).

Loss Reformulation: Let us consider the reformulation of the in-context loss f presented in Lemma 5. Specifically, let
Z0 be defined as

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

Let Zi denote the output of the (i− 1)th layer of the linear transformer (as defined in (3), initialized at Z0). For the rest
of this proof, we will drop the bar, and simply denote Zi by Zi. Let Xi ∈ Rd×(n+1) denote the first d rows of Zi and let

Yi ∈ R1×(n+1) denote the (d+1)th row of Zk. Under the assumption that Vℓ =

[
0 0
0 rℓ

]
in the lemma statement, we verify

that, for any ℓ ∈ {0 ... k},

Xℓ+1 = X0

Yℓ+1 = Yℓ + rℓYℓMh̃ (BℓXℓ, BℓXℓ) = Y0

i∏
ℓ=0

(
I + rℓMh̃ (BℓX0, CℓX0)

)
. (40)

By Lemma A.1, the in-context loss defined in (5) is equivalent to

f(V,B,C) = EZ0

[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

,
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where Yk+1 is as defined in (40). We will now verify (38)

We will introduce one more piece of notation: for any S ∈ Rd×d, let

G(X,S) :=

k∏
ℓ=0

(
I + rℓMh̃ (Bℓ(S)X,CℓX)

)
,

so that

f(V,B(S), C) =EZ0

[
Tr
(
(I −M)G(X,S)⊤Y ⊤

0 Y0G(X,S) (I −M)
)]

=EX0

[
Tr
(
(I −M)G(X,S)⊤K(X0)G(X,S) (I −M)

)]
,

where recall that K(X0) ∈ R(n+1)×(n+1) is as defined in Assumption 4.2. The second equality uses the assumption
on distribution of Y0 conditioned on X0, as specified in Assumption 4.2. Let U denote a uniformly randomly sampled
orthogonal matrix. Let UΣ := Σ1/2UΣ−1/2, so that U−1

Σ = Σ1/2U⊤Σ−1/2. Using the fact that X0
d
= UΣX0, we can verify

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

=
d

dt
EX0

[
Tr
(
(I −M)G(X0, tR)⊤K(X0)G(X0, tR) (I −M)

)]∣∣∣∣
t=0

=2EX0

[
Tr

(
(I −M)G(X0, 0)

⊤K(X0)
d

dt
G(X0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)G(UΣX0, 0)

⊤K(X0)
d

dt
G(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
. (41)

The last equality uses the assumption that K (UΣX) = K (X) from Assumption 4.2.

We will now show the following useful identities:

G(UΣX0, 0) = G(X0, 0) (42)

d

dt
G(UΣX0, tR)

∣∣∣∣
t=0

=
d

dt
G(X0, tU

⊤
Σ RUΣ)

∣∣∣∣
t=0

(43)

A useful intermediate identity is

BℓUΣ = bℓΣ
−1/2Σ1/2UΣ−1/2 = UBℓ

CℓUΣ = cℓΣ
−1/2Σ1/2UΣ−1/2 = UCℓ. (44)

In the above, we crucially use the assumed form of Bℓ, Cℓ from the (36). We can now verify (42), which follows almost
immediately from (44):

G(UΣX0, 0) =

k∏
ℓ=0

(
I + rℓMh̃ (BℓUΣX0, CℓUΣX0)

)
=

k∏
ℓ=0

(
I + rℓMh̃ (UBℓX0, UCℓX0)

)
=

k∏
ℓ=0

(
I + rℓMh̃ (BℓX0, CℓX0)

)
= G(X0, 0),

where the second equality uses (44), and the third equality uses the invariance of h̃ from Assumption 4.3.

We now begin the verification of (43). To do so, let Jh̃ : Rd×(n+1) → R(n+1)×(n+1) denote the Jacobian of h̃ wrt its
first argument, evaluated at (BℓX0, CℓX0). In more precise notation, for any U, V, T ∈ Rd×(n+1), Jh̃(U, V ) [T ] :=

18
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d
dt h̃ (U + T, V )

∣∣∣
t=0

. We verify the following useful identity: for any S ∈ Rd×d,

Jh̃(BℓUΣX0, CℓUΣX0) [SUΣX0]

=
d

dt
h̃ (UBℓX0 + tSUΣX0, UCℓX0)

∣∣∣∣
t=0

=
d

dt
h̃
(
BℓX0 + tU⊤SUΣX0, CℓX0

)∣∣∣∣
t=0

=Jh̃(BℓX0, CℓX0)
[
U⊤SUΣX0

]
, (45)

where the first equality is by (44), the second equality is by Assumption 4.3, the third equality is by definition of Jh̃. The
identity (43) then follows easily from chain rule and (45):

d

dt
G(UΣX0, tR)

∣∣∣∣
t=0

=

(
j−1∏
ℓ=0

(
I +Mh̃ (BℓUΣX0, CℓUΣX0)

))
MJh̃ (BjUΣX0, CjUΣX0) [tR]

 k∏
ℓ=j+1

(
I +Mh̃ (BℓUΣX0, CℓUΣX0)

)
=

(
j−1∏
ℓ=0

(
I +Mh̃ (BℓX0, CℓX0)

))
MJh̃ (BjUΣX0, CjUΣX0) [tR]

 k∏
ℓ=j+1

(
I +Mh̃ (BℓX0, CℓX0)

)
=

(
j−1∏
ℓ=0

(
I +Mh̃ (BℓX0, CℓX0)

))
MJh̃ (BjX0, CjX0)

[
tU⊤RUΣ

] k∏
ℓ=j+1

(
I +Mh̃ (BℓX0, CℓX0)

)
=

d

dt
G(UΣX0, tU

⊤RUΣ)

∣∣∣∣
t=0

In the above, the second equality uses (44) and Assumption 4.3. The third equality uses (45). The fourth equality again uses
chain rule. This concludes the proof of (43).

We will now continue from (41):

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

= (41) =2EX0,U

[
Tr

(
(I −M)G(UΣX0, 0)

⊤K
d

dt
G(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)G(X0, 0)

⊤K
d

dt
G(X0, tU

⊤RUΣ)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)G(X0, 0)

⊤K
d

dt
G(X0, tEU

[
U⊤RUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)G(X0, 0)

⊤K
d

dt
G(X0, tR̃)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(V,B(tR̃), C)

∣∣∣∣
t=0

In the above, the second equality is by plugging in (42) and (43). The third equality uses the fact that for any S,
d
dtG(X0, tS)

∣∣
t=0

is linear in S (and jointly continuously differentiable in both S and t). The fourth equality uses the
definition of R̃ from (37). This concludes the proof of (38).

F. Theorem F.1: characterizing local optimum when Aℓ are unconstrained.
The following is the formal statement of Theorem 4.6:
Theorem F.1. Let h̃ satisfy Assumption 4.3, let x(i)’s satisfy Assumption 4.1 with matrix Σ, and y(i)’s satisfy Assumption

4.2. With abuse of notation, let f(r,A,B,C) := f

(
V =

{[
Aℓ 0
0 rℓ

]}
ℓ=0...k

, B,C

)
, where f(V,B,C) is as defined in

(5).
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Let S ⊂ R(k+1)×d×d×3 denote a set of matrices defined as follows: (A,B,C) ∈ S if and only if for all ℓ ∈ {0 ... k}, there
exist scalars aℓ, bℓ, cℓ ∈ R such that Aℓ = aℓI,Bℓ = bℓΣ

−1/2 and Cℓ = cℓΣ
−1/2. Then

inf
(r,A,B,C)∈Rk+1×S

k∑
ℓ=0

(∂rℓf(r,A,B,C))
2
+ ∥∇Aℓ

f(r,A,B,C)∥2F + ∥∇Bℓ
f(r,A,B,C)∥2F + ∥∇Cℓ

f(r,A,B,C)∥2F = 0,

(46)

where ∇Aℓ
f denotes derivative wrt the Frobenius norm ∥Aℓ∥F (same for ∇Bℓ

and ∇Cℓ
).

Remark F.2. By Assumption 4.3, for any invertible Λ ∈ Rd×d, f(r,A,B,C) = f(r,A,Λ⊤B,Λ−1C). Thus the same result
holds for SΛ =

{
Aℓ = aℓI,Bℓ = bℓΛ

⊤Σ−1/2, Cℓ = cℓΛ
−1Σ−1/2

}
ℓ=0...k

.

F.1. Proof of Theorem F.1

Let r(0) ∈ R, (A(0), B(0), C(0)) ∈ S. Let us define the S-gradient-flow as

d

dt
rℓ(t) = −∂rℓf(r(t), A(t), B(t), C(t))

d

dt
Aℓ(t) = P̃ℓ(t)

d

dt
Bℓ(t) = Ũℓ(t)

d

dt
Cℓ(t) = W̃ℓ(t), (47)

where for ℓ = 0 ... k, P̃ , Ũ , and W̃ are defined as

p̃ℓ(t) := −1

d
Tr
(
Σ−1/2∇Pℓ

f(r(t), A(t), B(t), C(t))Σ1/2
)

P̃ℓ(t) := p̃ℓ(t)I

ũℓ(t) := −1

d
Tr
(
∇Bℓ

f(r(t), A(t), B(t), C(t))Σ1/2
)

Ũℓ(t) := ũℓ(t)Σ
−1/2

w̃ℓ(t) := −1

d
Tr
(
∇Cℓ

f(r(t), A(t), B(t), C(t))Σ1/2
)

W̃ℓ(t) := w̃ℓ(t)Σ
−1/2.

It follows by definition of P̃ , Ũ , and W̃ that (A(t), B(t), C(t)) ∈ S for all t. We will show that at any time t,

d

dt
f(r(t), A(t), B(t), C(t))

≤−
k∑

ℓ=0

(∂rℓf(r(t), A(t), B(t), C(t)))
2

−
k∑

ℓ=0

∥∇Aℓ
f(r(t), A(t), B(t), C(t))∥2F

−
k∑

ℓ=0

∥∇Bℓ
f(r(t), A(t), B(t), C(t))∥2F −

k∑
ℓ=0

∥∇Cℓ
f(r(t), A(t), B(t), C(t))∥2F . (48)
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Let ⟨A,B⟩Tr := Tr
(
A⊤B

)
. By definition of the dynamics in (47),

d

dt
f(r(t), A(t), B(t), C(t)) (49)

=

k∑
ℓ=0

∂rℓf(r(t), A(t), B(t), C(t)) · (−∂rℓf(r(t), A(t), B(t), C(t))) (50)

+

k∑
ℓ=0

〈
∇Aℓ

f(r(t), A(t), B(t), C(t)), P̃ℓ(t)
〉
Tr

(51)

+

k∑
ℓ=0

〈
∇Bℓ

f(r(t), A(t), B(t), C(t)), Ũℓ(t)
〉
Tr

(52)

+

k∑
ℓ=0

〈
∇Cℓ

f(r(t), A(t), B(t), C(t)), W̃ℓ(t)
〉
Tr

. (53)

We immediately verify that (50) = −
∑k

ℓ=0 (∂rℓf(r(t), A(t), B(t), C(t)))
2. By (71) from Proposition F.4, applied

separately to each layer ℓ = 0 ... k,

(51) ≤
k∑

ℓ=0

⟨∇Aℓ
f(r(t), A(t), B(t), C(t)),−∇Aℓ

f(r(t), A(t), B(t), C(t))⟩Tr

=−
k∑

ℓ=0

∥∇Bℓ
f(r(t), A(t), B(t), C(t))∥2F .

By (56) from Proposition F.3, applied separately to each layer ℓ = 0 ... k,

(52) ≤
k∑

ℓ=0

⟨∇Bℓ
f(r(t), A(t), B(t), C(t)),−∇Bℓ

f(r(t), A(t), B(t), C(t))⟩Tr

=−
k∑

ℓ=0

∥∇Bℓ
f(r(t), A(t), B(t), C(t))∥2F .

Similarly, by (57) from Proposition F.3, applied separately to each layer ℓ = 0 ... k,

(53) ≤
k∑

ℓ=0

⟨∇Cℓ
f(r(t), A(t), B(t), C(t)),−∇Cℓ

f(r(t), A(t), B(t), C(t))⟩Tr

=−
k∑

ℓ=0

∥∇Cℓ
f(r(t), A(t), B(t), C(t))∥2F .

Combining the above bounds gives (48). Suppose (46) does not hold. Then there exists a positive constant c > 0 such that
for all t,

k∑
ℓ=0

(∂rℓf(r(t), A(t), B(t), C(t)))
2
+ ∥∇Aℓ

f(r(t), A(t), B(t), C(t))∥2F

+ ∥∇Bℓ
f(r(t), A(t), B(t), C(t))∥2F + ∥∇Cℓ

f(r(t), A(t), B(t), C(t))∥2F ≥ c.

Then by (48), d
dtf(r(t), A(t), B(t), C(t)) ≤ −c for all t. This contradicts the fact that f(·) is bounded below by 0 (see (5)).

Thus we prove (46).
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F.2. Key Lemmas

Proposition F.3. Let h̃ satisfy Assumption 4.3, let x(i)’s satisfy Assumption 4.1 with matrix Σ, and y(i)’s satisfy Assumption
4.2. Let (A,B,C) ∈ R(k+1)×d×d×3 satisfy, for all ℓ = 0 ... k,

Aℓ = aℓI Bℓ = bℓΣ
−1/2 Cℓ = cℓΣ

−1/2, (54)

where aℓ, bℓ, cℓ ∈ R are scalars. Let V ∈ R(k+1)×(d+1)×(d+1) satisfy, for all ℓ = 0 ... k, Vℓ =

[
Aℓ 0
0 rℓ

]
, where rℓ are

arbitrary scalars. Let j ∈ {0 ... k} be an arbitrary but fixed layer index. For S ∈ Rd×d, let Bj(S) := Bj + S, and let
Bℓ(S) := Bℓ for ℓ ̸= j. Let B(S) := {Bℓ(S)}ℓ=0...k. Recall f(V,B,C) as defined in (5). Let R ∈ Rd×d be an arbitrary
matrix. Let

r̃ :=
1

d
Tr
(
RΣ1/2

)
R̃ := r̃Σ−1/2 (55)

Then

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

≤ d

dt
f(V,B(tR̃), C)

∣∣∣∣
t=0

. (56)

Similarly, let Cj(S) := Cj + S, and Cℓ(S) := Cℓ for ℓ ̸= j, and let C(S) := {Cℓ(S)}ℓ=0...k, then

d

dt
f(V,B,C(tR))

∣∣∣∣
t=0

≤ d

dt
f(V,B,C(tR̃))

∣∣∣∣
t=0

. (57)

Proof of Proposition F.3. The proof of (57) is identical to that of (56), so we only present the proof of (56).
Loss Reformulation: Let us consider the reformulation of the in-context loss f presented in Lemma 5. Specifically, let
Z0 be defined as

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

Let Zℓ denote the output of the (i− 1)th layer of the linear transformer (as defined in (3), initialized at Z0). For the rest
of this proof, we will drop the bar, and simply denote Zℓ by Zℓ. Let Xℓ ∈ Rd×(n+1) denote the first d rows of Zℓ and let

Yℓ ∈ R1×(n+1) denote the (d+ 1)th row of Zk. Under the theorem’s assumption that Vℓ =

[
Aℓ 0
0 rℓ

]
, we verify that, for

any ℓ ∈ {0 ... k},

Xℓ+1 = Xℓ +AℓXℓMh̃ (BℓXℓ, CℓXℓ)

Yℓ+1 = Yℓ + rℓYℓMh̃ (BℓXℓ, BℓXℓ) = Y0

i∏
ℓ=0

(
I + rℓMh̃ (BℓX0, CℓX0)

)
. (58)

By Lemma 5, the in-context loss defined in (5) is equivalent to

f(V,B,C) = EZ0

[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

We will introduce one more piece of notation: Following (58), notice that for any layer i, Xi is a function of A,B,C,X0.
Since for this part of the proof, only B is variable (function of S), and A,C are fixed, we define Xi(X,S) to be ”the result
of evolving as (58), initialized at X0 = X , where Bi is replaced by Bi(S)”, i.e.

Xi+1(X,S) = Xi(X,S) +AiXi(X,S)Mh̃ (Bi(S)Xi(X,S), CiXi(X,S)) (59)

Let us also define

Gi(X,S) :=

i∏
ℓ=0

(
I + rℓMh̃ (Bℓ(S)Xℓ(X,S), CℓXℓ(X,S))

)
,
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so that

f(V,B(S), C) =EZ0

[
Tr
(
(I −M)Gk(X,S)⊤Y ⊤

0 Y0Gk(X,S) (I −M)
)]

=EX0

[
Tr
(
(I −M)Gk(X,S)⊤KGk(X,S) (I −M)

)]
,

where recall that K ∈ R(n+1)×(n+1) and Kij = K(Σ−1/2x(i),Σ−1/2x(j)) as defined in Assumption 4.2. The second
equality uses the assumption on distribution of Y0 conditioned on X0, as specified in Assumption 4.2. Let U denote
a uniformly randomly sampled orthogonal matrix. Let UΣ := Σ1/2UΣ−1/2, so that U−1

Σ = Σ1/2U⊤Σ−1/2. We will
repeatedly use the following identities:

BiUΣ = biΣ
−1/2Σ1/2UΣ−1/2 = UBi

CiUΣ = ciΣ
−1/2Σ1/2UΣ−1/2 = UCi (60)

Using the fact that X0
d
= UΣX0, we can verify

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

=
d

dt
EX0

[
Tr
(
(I −M)Gk(X0, tR)⊤K(X0)Gk(X0, tR) (I −M)

)]∣∣∣∣
t=0

=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K(X0)
d

dt
Gk(X0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)Gk(UΣX0, 0)

⊤K(X0)
d

dt
Gk(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
. (61)

The last equality uses the fact that K(UΣX0) = K(X0) by Assumption 4.2.

Henceforth, assume all d
dt occurs at t = 0, and we somtimes drop the explicit |t=0 notation to save space.

Xi and d
dtXi under random transformation of X0

In this part of the proof, we establish two important identities about the evolution of Xi under random rotation of its
arguments:

Xi (UΣX0, 0) = UΣXi (X0, 0) , (62)

d

dt
Xi (UΣX0, tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xi

(
X0, tU

⊤RUΣ

)∣∣∣∣
t=0

. (63)

We first verify (62) by induction. For i = 0, this identity holds by definition. Assume the identity holds for some i. Then
following (59),

Xi+1(UΣX0, 0) =Xi(UΣX0, 0) +AiXi(UΣX0, 0)Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

=UΣXi(X0, 0) + UΣAiXi(X0, 0)Mh̃ (BiUΣXi(X0, 0), CiUΣXi(X0, 0))

=UΣXi(X0, 0) + UΣAiXi(X0, 0)Mh̃ (BiXi(X0, 0), CiXi(X0, 0))

=UΣXi+1(X0, 0).

The second equality is by the inductive hypothesis, and the fact that Ai = aiI . The third equality uses (60) and Assumption
4.3.

Next, we verify (63). By definition of Xi(X0, S), the case for i ≤ j is simple:

d

dt
Xi(UΣX0, tR)

∣∣∣∣
t=0

= 0 = UΣ
d

dt
Xi(X0, tU

⊤RUΣ)

∣∣∣∣
t=0

. (64)

23



Transformers Implement Functional Gradient Descent to Learn Non-Linear Functions In Context

For i = j + 1, it follows from (59) and chain rule that

d

dt
Xj+1(UΣX0, tR)

=
d

dt
Xj(UΣX0, tR) +Aj

(
d

dt
Xj(UΣX0, tR)

)
Mh̃ (BjXj(UΣX0, 0), CjXj(UΣX0, 0)))

+AjXj(UΣX0, 0)M
d

dt
h̃

(Bj + tR)Xj(UΣX0, tR)︸ ︷︷ ︸
S(t)

, CjXj(UΣX0, tR)︸ ︷︷ ︸
T (t)

 . (65)

We will now apply Lemma F.5. Let S(t) := (Bj + tR)UΣXj(UΣX0, tR) and T (t) := CjUΣXj(UΣX0, tR). By (64), we
know that d

dtXj(UΣX0, tR)
∣∣
t=0

= 0. Thus, we can define S̃(t) := (Bj + tR)Xj(UΣX0, 0) and T̃ (t) := CjXj(UΣX0, 0).
Using (62) and (60), we verify that

S̃(t) = (Bj + tR)UΣXj(X0, 0) = U
(
Bj + tU⊤RUΣ

)
Xj(X0, 0)

T̃ (t) = (Cj + tR)UΣXj(X0, 0) = U
(
Cj + tU⊤RUΣ

)
Xj(X0, 0).

Let us therefore pick Γ := U . Applying Lemma F.5 and plugging into (65) gives

d

dt
Xj+1(UΣX0, tR)

=UΣ
d

dt
Xj

(
X0, tU

⊤RUΣ

)
+AjUΣ

(
d

dt
Xj

(
X0, tU

⊤RUΣ

))
Mh̃ (BjXj(X0, 0), CjXj(X0, 0)))

+AjUΣXj(X0, 0)M
d

dt
h̃

(Bj + tU⊤RUΣ

)
Xj(X0, 0)︸ ︷︷ ︸

Γ⊤S̃(t)

, CjXj(X0, 0)︸ ︷︷ ︸
Γ−1T̃ (t)


=UΣ

d

dt
Xj+1(X0, tU

⊤RUΣ),

where the first equality also uses (60) and (62) and (64).

Finally, we need to prove (63) for the i > j + 1 case. We will prove this by induction over i. The proof is very similar to the
i = j + 1 case:

d

dt
Xi+1(UΣX0, tR)

=
d

dt
Xi(UΣX0, tR) +Ai

(
d

dt
Xi(UΣX0, tR)

)
Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0)))

+AiXi(UΣX0, 0)M
d

dt
h̃

BiXi(UΣX0, tR)︸ ︷︷ ︸
S(t)

, CiXi(UΣX0, tR)︸ ︷︷ ︸
T (t)


=

d

dt
Xi(UΣX0, tR) +Ai

(
d

dt
Xi(UΣX0, tR)

)
Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0)))

+AiXi(UΣX0, 0)M
d

dt
h̃

U BiXi(X0, tU
⊤RUΣ)︸ ︷︷ ︸

S̃(t)

, U CiXi(X0, tU
⊤RUΣ)︸ ︷︷ ︸

T̃ (t)


=UΣ

d

dt
Xi+1(X0, tU

⊤RUΣ).

In the second equality, we apply Lemma F.5 with Γ = U . We use the inductive hypothesis to verify that S̃′(0) = S′(0) and
T̃ ′(0) = T ′(0). This concludes the proof of (63).
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G and d
dtG under random transformation of X0

In this part of the proof, we establish two important identities about the evolution of G under random rotation of its
arguments:

Gi(UΣX0, 0) = Gi(X0, 0), (66)

d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=
d

dt
Gi

(
X0, tU

⊤RUΣ

)∣∣∣∣
t=0

. (67)

(66) is an immediate consequence of (62):

Gi(UΣX0, 0) :=

i∏
ℓ=0

(
I + rℓMh̃ (BℓXℓ(UΣX0, 0), CℓXℓ(UΣX0, 0))

)
=

i∏
ℓ=0

(
I + rℓMh̃ (BℓXℓ(X0, 0), CℓXℓ(X0, 0))

)
=Gi(X0, 0),

where the second equality uses (62), (60) and Assumption 4.3.

To verify (67), we first verify the following recursive relationship:

Gi (UΣX0, S)

=
(
I + riMh̃ (Bi(S)Xi(UΣX0, S), CiXi(UΣX0, S))

)
Gi−1 (UΣX0, S)

⇒ d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=

(
d

dt

(
I + riMh̃ (Bi(tR)Xi(UΣX0, tR), CiXi(UΣX0, tR))

))
Gi−1 (UΣX0, tR)

+
(
I + riMh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

) d

dt
Gi−1 (UΣX0, tR) . (68)

We will analyze the two terms in (68) separately:

d

dt

(
I + riMh̃ (Bi(tR)Xi(UΣX0, tR), CiXi(UΣX0, tR))

)
=I + riM

d

dt
h̃ (Bi(tR)Xi(UΣX0, tR), CiXi(UΣX0, tR)) .

Let S(t) := Bi(tR)Xi(UΣX0, tR) and T (t) := CiXi(UΣX0, tR). Let S̃(t) := UBi(tU
⊤RUΣ)Xi(X0, tU

⊤RUΣ) and
T̃ (t) := UCiXi(X0, tU

⊤RUΣ). We verify that

S(0) =BiXi(UΣX0, 0) = UBi (X0, 0) = S̃(0)

T (0) =CiXi(UΣX0, 0) = UCi (X0, 0) = T̃ (0).

By chain rule,

S′(0) =

(
d

dt
Bi(tR)

)
Xi(UΣX0, 0) +Bi

d

dt
Xi(UΣX0, tR)

=

(
d

dt
Bi(tR)

)
UΣXi(X0, 0) +BiUΣ

d

dt
Xi(X0, tU

⊤RUΣ)

=U

(
d

dt
Bi(tU

⊤RUΣ)

)
Xi(X0, 0) + UBi

d

dt
Xi(X0, tU

⊤RUΣ)

=S̃′(0).
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The second equality follows from (62) and (63). The third equality uses (60), as well as the fact that U⊤ d
dtBi(tR)UΣ =

d
dtBi(tU

⊤RUΣ); this is because for i ̸= j, both sides are 0, and for i = j, d
dtBj(tR) = R.

Similarly, we verify that

T ′(0) =Ci
d

dt
Xi(UΣX0, tR)

=UCi
d

dt
Xi(X0, tU

⊤RUΣ)

=T̃ ′(0).

Applying Lemma F.5 with Γ = U gives

d

dt

(
I + riMh̃ (Bi(tR)Xi(UΣX0, tR), CiXi(UΣX0, tR))

)
=

d

dt

(
I + riMh̃

(
Bi(tU

⊤RUΣ)Xi(X0, tU
⊤RUΣ), CiXi(X0, tU

⊤RUΣ)
))

.

Using (60) and Assumption 4.3 and the inductive hypothesis, the second term of (68) satisfies(
I + riMh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

) d

dt
Gi−1 (UΣX0, tR)

=
(
I + riMh̃ (BiXi(X0, 0), CiXi(X0, 0))

) d

dt
Gi−1

(
X0, tU

⊤RUΣ

)
.

Combining the above identities for each term of (68), we conclude that

d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=
d

dt
Gi

(
X0, tU

⊤RUΣ

)∣∣∣∣
t=0

.

This concludes the proof of (67).

Putting everything together:
We will now conclude the proof of (56). Plugging in (66) and (67) into (61) gives

d

dt
f(V,B(tR), C)

∣∣∣∣
t=0

=2EX0,U

[
Tr

(
(I −M)Gk(UΣX0, 0)

⊤K
d

dt
Gk(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tU

⊤RUΣ)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tEU

[
U⊤RUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tR̃)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(V,B(tR̃), C)

∣∣∣∣
t=0

The third equality uses the fact that d
dtGk(X0, tS)

∣∣
t=0

is linear in S for any S. The fourth equality is by (55). This
concludes the proof of (56).

Proposition F.4. Let h̃ satisfy Assumption 4.3, let x(i)’s satisfy Assumption 4.1 with matrix Σ, and y(i)’s satisfy Assumption
4.2. Let (A,B,C) ∈ R(k+1)×d×d×3 satisfy, for all ℓ = 0 ... k,

Aℓ = aℓI Bℓ = bℓΣ
−1/2 Cℓ = cℓΣ

−1/2, (69)
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where aℓ, bℓ, cℓ ∈ R are scalars. Let V ∈ R(k+1)×(d+1)×(d+1) satisfy, for all ℓ = 0 ... k, Vℓ =

[
Aℓ 0
0 rℓ

]
, where rℓ are

arbitrary scalars. Let j ∈ {0 ... k} be an arbitrary but fixed layer index. For S ∈ Rd×d, let Aj(S) := Aj + S, and let

Aℓ(S) := Aℓ for ℓ ̸= j. Let A(S) := {Aℓ(S)}ℓ=0...k. Let Vℓ(S) :=

{[
Aℓ(S) 0

0 rℓ

]}
and V (S) = {Vℓ(S)}ℓ=0...k. Let

f(V,B,C) e as defined in (5). Let R ∈ Rd×d be an arbitrary matrix. Let

r̃ :=
1

d
Tr
(
Σ−1/2RΣ1/2

)
R̃ := r̃I (70)

Then

d

dt
f(V (tR), B,C)

∣∣∣∣
t=0

≤ d

dt
f(V (tR̃), B, C)

∣∣∣∣
t=0

. (71)

Proof. Proof of Proposition F.4.
Loss Reformulation: Let us consider the reformulation of the in-context loss f presented in Lemma 5. Specifically, let
Z0 be defined as

Z0 =

[
x(1) x(2) · · · x(n) x(n+1)

y(1) y(2) · · · y(n) y(n+1)

]
∈ R(d+1)×(n+1),

Let Zi denote the output of the (i− 1)th layer of the linear transformer (as defined in (3), initialized at Z0). For the rest
of this proof, we will drop the bar, and simply denote Zi by Zi. Let Xi ∈ Rd×(n+1) denote the first d rows of Zi and

let Yi ∈ R1×(n+1) denote the (d + 1)th row of Zk. Under the assumption that Vℓ =

[
Aℓ 0
0 rℓ

]
, we verify that for all

i ∈ {0 ... k}:

Xi+1 = Xi +AiXiMh̃ (BiXi, CiXi)

Yi+1 = Yi + riYiMh̃ (BiXi, BiXi) = Y0

i∏
ℓ=0

(
I + rℓMh̃ (BℓX0, CℓX0)

)
. (72)

By Lemma 5, the in-context loss defined in (5) is equivalent to

f(V,B,C) = EZ0

[
Tr
(
(I −M)Y ⊤

k+1Yk+1 (I −M)
)]

We will introduce one more piece of notation: Following (72), notice that for any layer i, Xi is a function of A,B,C,X0.
Since for this part of the proof, only A is variable (function of S), and B,C are fixed, we define Xi(X,S) to be ”the result
of evolving as (72), initialized at X0 = X , where Ai is replaced by Ai(S)”, i.e.

Xi+1(X,S) = Xi(X,S) +Ai(S)Xi(X,S)Mh̃ (BiXi(X,S), CiXi(X,S)) (73)

Let us also define

Gi(X,S) :=

i∏
ℓ=0

(
I + rℓMh̃ (BℓXℓ(X,S), CℓXℓ(X,S))

)
,

so that

f(V (S), B, C) =EZ0

[
Tr
(
(I −M)Gk(X,S)⊤Y ⊤

0 Y0Gk(X,S) (I −M)
)]

=EX0

[
Tr
(
(I −M)Gk(X,S)⊤KGk(X,S) (I −M)

)]
,

where recall that K ∈ R(n+1)×(n+1) and Kij = K(Σ−1/2x(i),Σ−1/2x(j)) as defined in Assumption 4.2. The second
equality uses the assumption on distribution of Y0 conditioned on X0, as specified in Assumption 4.2. Let U denote
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a uniformly randomly sampled orthogonal matrix. Let UΣ := Σ1/2UΣ−1/2, so that U−1
Σ = Σ1/2U⊤Σ−1/2. We will

repeatedly use the following identities:

BiUΣ = biΣ
−1/2Σ1/2UΣ−1/2 = UBi

CiUΣ = ciΣ
−1/2Σ1/2UΣ−1/2 = UBi (74)

Using the fact that X0
d
= UΣX0, we can verify

d

dt
f(V (tR), B,C)

∣∣∣∣
t=0

=
d

dt
EX0

[
Tr
(
(I −M)Gk(X0, tR)⊤K(X0)Gk(X0, tR) (I −M)

)]∣∣∣∣
t=0

=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K(X0)
d

dt
Gk(X0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)Gk(UΣX0, 0)

⊤K(X0)
d

dt
Gk(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
. (75)

The last equality uses the fact that K(UΣX0) = K(X0) by Assumption 4.2.

Henceforth, assume all d
dt occurs at t = 0, and we somtimes drop the explicit |t=0 notation to save space.

Xi and d
dtXi under random transformation of X0

In this part of the proof, we establish two important identities about the evolution of Xi under random rotation of its
arguments:

Xi (UΣX0, 0) = UΣXi (X0, 0) , (76)

d

dt
Xi (UΣX0, tR)

∣∣∣∣
t=0

= UΣ
d

dt
Xi

(
X0, tU

−1
Σ RUΣ

)∣∣∣∣
t=0

. (77)

We first verify (76) by induction. For i = 0, this identity holds by definition. Assume the identity holds for some i. Then
following (59),

Xi+1(UΣX0, 0) =Xi(UΣX0, 0) +Ai(0)Xi(UΣX0, S)Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

=UΣXi(X0, 0) + UΣAi(0)Xi(X0, S)Mh̃ (BiUΣXi(X0, 0), CiUΣXi(X0, 0))

=UΣXi(X0, 0) + UΣAi(0)Xi(X0, S)Mh̃ (BiXi(X0, 0), CiXi(X0, 0))

=UΣXi+1(X0, 0).

The second equality is by the inductive hypothesis, and the fact that Ai = aiI . The third equality uses (60) and Assumption
4.3.

Next, we verify (63). By definition of Xi(X0, S), the case for i ≤ j is simple:

d

dt
Xi(UΣX0, tR)

∣∣∣∣
t=0

= 0 = UΣ
d

dt
Xi(X0, tU

−1
Σ RUΣ)

∣∣∣∣
t=0

. (78)

For i = j + 1, it follows from (59) and chain rule that

d

dt
Xj+1(UΣX0, tR)

=
d

dt
Xj(UΣX0, tR) +

(
d

dt
Aj(tR)

)
Xj(UΣX0, 0)Mh̃ (BjXj(UΣX0, 0), CjXj(UΣX0, 0)))

+Aj(0)

(
d

dt
Xj(UΣX0, tR)

)
Mh̃ (BjXj(UΣX0, 0), CjXj(UΣX0, 0)))

+Aj(0)Xj(UΣX0, 0)M
d

dt
h̃ (BjXj(UΣX0, 0), CjXj(UΣX0, 0)) . (79)
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We can simplify each term on the RHS above separately:

By (74), the first, third and fourth terms are 0. By definition of Aj , d
dtAj(tR) = R. Furthermore, using (78), (74) and

Assumption 4.3, the second term simplifies to UΣU
−1
Σ RUΣXj(X0, 0)Mh̃ (BjXj(X0, 0), CjXj(X0, 0))). Therefore,

d

dt
Xj+1(UΣX0, tR) =UΣU

−1
Σ RUΣXj(X0, 0)Mh̃ (BjXj(X0, 0), CjXj(X0, 0)))

=UΣ
d

dt
Xj+1(X0, tU

−1
Σ RUΣ).

We have thus verified (77) for i ≤ j + 1. For i > j + 1, we will use proof by induction. Assume (77) holds for all ℓ ≤ i for
some i ≥ j + 1. Then for i+ 1,

d

dt
Xi+1(UΣX0, tR)

=
d

dt
Xi(UΣX0, tR) +

(
d

dt
Ai(tR)

)
Xi(UΣX0, 0)Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0)))

+Ai(0)

(
d

dt
Xi(UΣX0, tR)

)
Mh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0)))

+Ai(0)Xi(UΣX0, 0)M
d

dt
h̃

BiXi(UΣX0, tR)︸ ︷︷ ︸
S(t)

, CiXi(UΣX0, tR)︸ ︷︷ ︸
T (t)

 .

Since i ≥ j + 1, we know that d
dtAi(tR) = 0, so the second term on RHS is 0. By the inductive hypothesis and (77), and

Ai(0) = aiI , and Assumption 4.3, the third RHS term can be simplified to be
UΣAi(0)

(
d
dtXi

(
X0, tU

−1
Σ RUΣ

))
Mh̃ (BiXi(X0, 0), CiXi(X0, 0))). Finally, to simplify the last RHS term, we apply

Lemma F.5. Let S(t) := BiXi(UΣX0, tR) and T (t) := CiXi(UΣX0, tR). Let S̃(t) := UBiXi

(
X0, tU

−1
Σ RUΣ

)
and

T̃ (t) := UCiXi

(
X0, tU

−1
Σ RUΣ

)
. Let Γ := U . Then d

dt h̃ (BiXi(UΣX0, tR), CiXi(UΣX0, tR)) =
d
dt h̃
(
BiXi(X0, tU

−1
Σ RUΣ), CiXi(X0, tU

−1
Σ RUΣ)

)
. Put together, we conclude that

d

dt
Xi+1(UΣX0, tR) = UΣ

d

dt
Xi+1(X0, tU

−1
Σ RUΣ).

We thus complete the proof of (77).

G and d
dtG under random transformation of X0

In this part of the proof, we establish two important identities about the evolution of G under random rotation of its
arguments:

Gi(UΣX0, 0) = Gi(X0, 0), (80)

d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=
d

dt
Gi

(
X0, tU

−1
Σ RUΣ

)∣∣∣∣
t=0

. (81)

(80) is an immediate consequence of (76):

Gi(UΣX0, 0) :=

i∏
ℓ=0

(
I + rℓMh̃ (BℓXℓ(UΣX0, 0), CℓXℓ(UΣX0, 0))

)
=

i∏
ℓ=0

(
I + rℓMh̃ (BℓXℓ(X0, 0), CℓXℓ(X0, 0))

)
=Gi(X0, 0),

where the second equality uses (76), (74) and Assumption 4.3.
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To verify (81), we first verify the following recursive relationship:

Gi (UΣX0, S)

=
(
I + riMh̃ (Bi(S)Xi(UΣX0, S), CiXi(UΣX0, S))

)
Gi−1 (UΣX0, S)

⇒ d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=

(
d

dt

(
I + riMh̃ (BiXi(UΣX0, tR), CiXi(UΣX0, tR))

))
Gi−1 (UΣX0, tR)

+
(
I + riMh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

) d

dt
Gi−1 (UΣX0, tR) . (82)

We will analyze the two terms in (82) separately:

d

dt

(
I + riMh̃ (BiXi(UΣX0, tR), CiXi(UΣX0, tR))

)
=I + riM

d

dt
h̃ (BiXi(UΣX0, tR), CiXi(UΣX0, tR)) .

Let S(t) := BiXi(UΣX0, tR) and T (t) := CiXi(UΣX0, tR). Let S̃(t) := UBiXi(X0, tU
−1
Σ RUΣ) and T̃ (t) :=

UCiXi(X0, tU
−1
Σ RUΣ). We verify that

S(0) =BiXi(UΣX0, 0) = UBi (X0, 0) = S̃(0)

T (0) =CiXi(UΣX0, 0) = UCi (X0, 0) = T̃ (0)

S′(0) =Bi
d

dt
Xi(UΣX0, tR) = UBi

d

dt
Xi(X0, tU

−1
Σ RUΣ) = S̃′(0)

T ′(0) =Bi
d

dt
Xi(UΣX0, tR) = UBi

d

dt
Xi(X0, tU

−1
Σ RUΣ) = T̃ ′(0),

where the last two equalities use (77) and (74). Applying Lemma F.5 with Γ = U gives

d

dt

(
I + riMh̃ (Bi(tR)Xi(UΣX0, tR), CiXi(UΣX0, tR))

)
=

d

dt

(
I + riMh̃

(
BiXi(X0, tU

−1
Σ RUΣ), CiXi(X0, tU

−1
Σ RUΣ)

))
.

Using (74) and Assumption 4.3 and the inductive hypothesis, the second term of (82) satisfies

(
I + riMh̃ (BiXi(UΣX0, 0), CiXi(UΣX0, 0))

) d

dt
Gi−1 (UΣX0, tR)

=
(
I + riMh̃ (BiXi(X0, 0), CiXi(X0, 0))

) d

dt
Gi−1

(
X0, tU

−1
Σ RUΣ

)
.

Combining the above identities for each term of (82), we conclude that

d

dt
Gi (UΣX0, tR)

∣∣∣∣
t=0

=
d

dt
Gi

(
X0, tU

−1
Σ RUΣ

)∣∣∣∣
t=0

.

This concludes the proof of (67).

Putting everything together:
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We will now conclude the proof of (71). Plugging in (80) and (81) into (75) gives

d

dt
f(V (tR), B,C)

∣∣∣∣
t=0

=2EX0,U

[
Tr

(
(I −M)Gk(UΣX0, 0)

⊤K
d

dt
Gk(UΣX0, tR)

∣∣∣∣
t=0

(I −M)

)]
=2EX0,U

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tU

⊤RUΣ)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tEU

[
U⊤RUΣ

]
)

∣∣∣∣
t=0

(I −M)

)]
=2EX0

[
Tr

(
(I −M)Gk(X0, 0)

⊤K
d

dt
Gk(X0, tR̃)

∣∣∣∣
t=0

(I −M)

)]
=

d

dt
f(V (tR̃), B,C)

∣∣∣∣
t=0

The third equality uses the fact that d
dtGk(X0, tS)

∣∣
t=0

is linear in S for any S. The fourth equality is by (70). This
concludes the proof of (71).

Lemma F.5. Let S(t), T (t), S̃, T̃ : R → Γ ∈ Rd×d, denote arbitrary continuously differentiable, matrix-valued, functions
of time. Assume that S(0) = S̃(0), T (0) = T̃ (0), S′(0) = S̃′(0) and T ′(0) = T̃ ′(0) (i.e. have the same time derivative at
t = 0). Let Γ ∈ Rd×d be an arbitrary invertible matrix. Then for any h̃ satisfying Assumption 4.3,

d

dt
h̃ (S(t), T (t))

∣∣∣∣
t=0

=
d

dt
h̃
(
Γ⊤S̃(t),Γ−1T̃ (t)

)∣∣∣∣
t=0

Proof. Let Jh̃
1 and Jh̃

2 denote the Jacobians of h̃(A,B)[·] with respect to A and B respectively. Then

d

dt
h̃ (S(t), T (t))

∣∣∣∣
t=0

=Jh̃
1 (S(0), T (0)) [S′(0)] + Jh̃

2 (S(0), T (0)) [T ′(0)]

=Jh̃
1
(
S̃(0), T̃ (0)

)
[S̃′(0)] + Jh̃

2
(
S̃(0), T̃ (0)

)
[T̃ ′(0)]

=Jh̃
1
(
S̃(0), T̃ (0)

)
[Γ⊤S̃′(0)] + Jh̃

2
(
S̃(0), T̃ (0)

)
[Γ−1T̃ ′(0)]

=
d

dt
h̃
(
Γ⊤S̃(t),Γ−1T̃ (t)

)∣∣∣∣
t=0

.

The third equality follows from Assumption 4.3.

G. Background on RKHS
In this section we introduce a number of results from RKHS literature which we use in several proofs.

Theorem G.1 ((Wainwright, 2019) Theorem 12.11, Kernel Reproducing Property). Given any positive semidefinite kernel
function K, defined on the cartesian product space X × X , there is a unique Hilbert space H in which the kernel satisfies
the reproducing property: for any x ∈ X , the function K(·, x) belongs to H, and satisfies the relation

⟨f,K(·, x)⟩H = f(x)

Theorem G.2 ((Schölkopf et al., 2001) Theorem 1, Nonparametric Representer Theorem). Given X , positive semi-definite
kernel K over X × X , a set of m training samples (x1, y1) ... (xm, ym) ∈ X × R, a strictly monotonically increasing
real-valued function g on [0,∞], an arbitrary cost function c : (X × R2)m → R. Then any f ∈ H minimizing the
regularized risk functional

c ((x1, y1, f(x1)) ... (xm, ym, f(xm))) + g(∥f∥H)

31



Transformers Implement Functional Gradient Descent to Learn Non-Linear Functions In Context

admits a representation of the form

f(·) =
m∑
i=1

αiK(·, xi)

Finally, we establish the explicit form of steepest descent in Hilbert space. The proof is quite standard (see e.g. Martin’s
241B lecture 6), and we include it for completeness.

Lemma G.3 (Steepest Descent in Hilbert Space). Given any f ∈ H, let g∗ denote the steepest descent direction of the
weighted empirical least-squares loss wrt ∥·∥H, i.e.

g∗ := argmin
g∈H,∥g∥H=1

d

dt

n∑
i=1

(
y(i) − (f + tg)(x(i))

)2∣∣∣∣∣
t=0

.

Then g∗(·) = c
∑n

i=1

(
y(i) − f(x(i))

)
K(·, x(i)) for some scalar c ∈ R+ (we give explicit expression for c in the proof).

Proof. Using the method of Lagrangian multipliers, there exists some λ for which the above is equivalent to

g∗ =argmin
g∈H

d

dt

n∑
i=1

(
y(i) − (f + tg)(x(i))

)2
+ λ ∥g∥2H

∣∣∣∣∣
t=0

=argmin
g∈H

n∑
i=1

−2y(i)g(x(i)) + λ ∥g∥2H .

The second line is by simple algebra.

Applying Theorem G.2 with f := g and g(r) := λ
2 r

2, we know that g∗(·) =
∑n

i=1 αiK(·, x(i)), for some α ∈ Rn. Using
this together with Theorem G.1, we can write

∥g∥2H =

n∑
i,j=1

αiαj

〈
K(·, x(i)),K(·, x(j))

〉
H
=

n∑
i,j=1

αiαjK(x(i), x(j)).

Thus g∗(·) =
∑n

i=1 α
∗K(·, x(i)). Let Y, F ∈ Rn be defined such that Yi = y(i) and Fi = f(x(i)). Then

α∗ =argmin
α∈Rn

n∑
i,j=1

−2(y(i) − f(x(i)))αjK(x(i), x(j)) + λαiαjK(x(i), x(j))

= argmin
α∈Rn

−2 ((Y − F ))
⊤ Kα+ λα⊤Kα.

Taking ∇α = 0, we get α∗ ∝ (Y − F ). Recall that our original constraint is α⊤Kα = 1, it follows that

α∗ =
1

(Y − F )⊤K(Y − F )
(Y − F ).

This implies that g∗(·) = 1
(Y−F )⊤K(Y−F )

∑n
i=1

(
y(i) − f(x(i))

)
K
(
·, x(i)

)
, which concludes our proof.

Note that the choice of α∗ is in fact not unique when rank(K) < n. To see this, let b ∈ Rn be such that b ̸= 0,Kb = 0.
Then by the same argument above, ∥∥∥∥∥

n∑
i=1

biK(·, x(i))

∥∥∥∥∥
2

H

= b⊤Kb = 0,

so that
∑n

i=1 [α
∗ + b]i K(·, x(i)) =

∑n
i=1 [α

∗]i K(·, x(i)), where equality is in the sense of ∥·∥H.
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For intuition, let us consider the reduction of Lemma G.3 to the linear regression setting. Let θ(t) : R → Rd denote the
gradient flow of the parameter θ with respect to the empirical least-squares loss

∑n
i=1

(
y(i) −

〈
θ(t), x(i)

〉)2
in Euclidean

norm. It follows that

d

dt
θ(t) =2

n∑
i=1

(y(i) −
〈
θ(t), x(i)

〉
)x(i)

=2

n∑
i=1

X(Y −X⊤θ(t)).

Now let ft(x) := ⟨x, θ(t)⟩, and let F denote the vector with Fi = ft(x
(i)) =

[
X⊤θ(t)

]
i
. Then d

dtft(x) =

−2
∑n

i=1 [Y − F ]i K(·, x(i)), which is equal to the direction in Lemma G.3.

H. Experiments
H.1. Experiment Details

The following are common to all experiments in this paper:

We train the Transformer to minimize the in-context loss given in (5).

Covariate Distribution
The covariates x(i) = Σ1/2ξ(i), where ξ(i) are sampled iid from the unit sphere. The dimension is d = 5. The covariance
matrix Σ = UTDU , where U is a uniformly random orthogonal matrix that changes across seeds, and D is a fixed diagonal
matrix with entries (1, 1, 0.25, 2.25, 1).

Label Distribution
Conditioned on x(i)’s, the labels y(i) are jointly sampled from the K Gaussian Process (see Definition 3.3). We consider
three choices of kernels: Klinear(u, v) = ⟨u, v⟩, Krelu(u, v) = relu (⟨u, v⟩), and Kexp(u, v) = exp(⟨u, v⟩) (as defined
(11)).

Transformer Architecture
Unless otherwise stated, we train a three-layer linear Transformer (see (3)), where the matrices are initialized by i.i.d.
Gaussian matrices. We consider three different choices of nonlinearity h̃: linear, ReLU and softmax, defined in (12) (see also
Examples 1, 2 and 3). The Transformer is parameterized by (rℓ, Aℓ, Bℓ, Cℓ)ℓ=0,1,2. (the value matrix Vℓ is parameterized
by the Aℓ, rℓ, see Assumption 4.4).

Training Algorithm
We train the Transformer using ADAM with gradient clipping. Each gradient step is computed from a minibatch of size
30000, and we resample the minibatch every 10 steps. All plots are averaged over 3 runs with different U (i.e. Σ) sampled
each time, and different seeds for sampling training data.

H.2. Experiment for Theorem 4.5

In Figure 5 below, we present empirical verification of Theorem 4.5. In addition to the setup in Appendix H.1, we additionally
constrain Aℓ = 0 for each layer ℓ. The number of demonstrations n = 30.

To verify that the parameters are indeed converging to the predicted stationary point in Theorem 4.5, we plot
dist

(
Σ1/2B⊤

i CiΣ
1/2, I

)
, for i = 0, 1, 2. The normalized Frobenius norm distance: dist(M, I) := minα

∥M−α·I∥
∥M∥F

,

(equivalent to choosing α := 1
d

∑d
i=1 M [i, i]). This is essentially the projection distance of M/∥M∥F onto the space of

scaled identity matrices.

We only verify B⊤C because the network is overparameterized, and for any Λ ∈ Rd×d, (Bℓ, Cℓ) gives identical prediction
as (Λ⊤Bℓ,Λ

−1Cℓ). (See also Remark E.2 after Theorem E.1). It appears that in most cases, the matrices are converging to
identity, which is the stationary point in Theorem 4.6. This demonstrates that Theorem E.1 holds across a broad combination
of K and h̃.

We note that in the case of Figure 5(c) and 5(i), a few of the parameter matrices appear to asymptote at around 0.2 distance
to identity. It is unclear if this is due to optimization difficulties, or due to convergence to stationary points different from
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that proposed in Theorem 4.5.
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Figure 5. Plots of log(dist(M, I)) for M = Σ1/2
{
B⊤

0 C0, B
⊤
1 C1, B

⊤
2 C2

}
Σ1/2 against number of training iterations. Each plot

coincides with a different experiment setup, where we vary the generating distribution and the architecture. The subplot title is (K, h̃),
where K defines a Gaussian Process for labels, as described in Definition 3.3, and h̃ is the non-linear map in the Transformer’s attention
module. In all cases, the corresponding matrix appears to be converging to identity, which is the stationary point from Theorem 4.5.

H.3. Experiments for Theorem 4.6

In this section, we present empirical verification of Theorem 4.6. The experiment setup is as described in Appendix H.1.
The number of demonstrations n = 30. The metric for measuring distance to identity is same as described in Section H.2,
i.e. dist(M, I) := minα

∥M−α·I∥
∥M∥F

.

Similar to Appendix H.2, it appears that in most cases the matrices are converging to identity, which is the stationary point
in Theorem 4.6. We note that in the case of Figure 6(b), a few of the parameter matrices appear to asymptote at around 0.2
distance to identity. It is unclear if this is due to optimization difficulties, or due to convergence to stationary points different
from that proposed in Theorem 4.6.
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Figure 6. Plots of log(dist(M, I)) for M ∈ {A0, A1} ∪
{
Σ1/2B⊤

i CiΣ
1/2

}
i=0,1,2

against number of training iterations. Each plot

coincides with a different experiment setup, where we vary the generating distribution and the architecture. The subplot title is (K, h̃),
where K defines a Gaussian Process for labels, as described in Definition 3.3, and h̃ is the non-linear map in the Transformer’s attention
module. The definitions of each K and h̃ can be found in (11) and (12) respectively. In all cases, the corresponding matrix appears to be
converging to identity, which is the stationary point from Theorem 4.6.

I. Miscellaneous Proofs
I.1. Verification of Example 8

Following the distributional assumption on θ1, θ2, we verify that

[K(X)]ij := E
[
y(i)y(j)

]
=Eθ1,θ2

[
relu

(
θ1x

(i)
)⊤

θ2θ
⊤
2 relu

(
θ1x

(j)
)]

=Eθ1

[
relu

(
θ1x

(i)
)⊤

relu
(
θ1x

(j)
)]

.
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Similarly, we verify that [K(UX)]ij−Eθ1

[
relu

(
θ1Ux(i)

)⊤
relu

(
θ1Ux(j)

)]
= Eθ1

[
relu

(
θ1x

(i)
)⊤

relu
(
θ1x

(j)
)]

, because

θ1U
d
= θ1.

I.2. Functional Gradient Descent for Euclidean Inner Product Kernel

Let θ ∈ Rd be the linear regression parameter to learn. Let R(θ) :=
1

2

n∑
i=1

(〈
x(i), θ

〉
− y(i)

)2
denote the empirical least

squares loss. Let θk denote the kth iterate of gradient descent with stepsize r′k, thus

θk+1 = θk − r′k∇R(θk).

Let fk(x) := ⟨θk, x⟩. Notice that ∇R(θk) = −
∑n

i=1

(
y(i) − fk(x

(i))
)
x(i), so that

fk+1(x) =fk(x) + r′k

n∑
i=1

(
y(i) − fk(x

(i))
)〈

x(i), x
〉

which is exactly the same as (7) (or more specifically, (9)), by noting that
〈
x(i), x

〉
= K(x(i), x).
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