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Abstract

Randomized experiments are widely used to estimate causal effects across many
domains. However, classical causal inference approaches rely on independence
assumptions that are violated by network interference, when the treatment of one
individual influences the outcomes of others. All existing approaches require
at least approximate knowledge of the network, which may be unavailable or
costly to collect. We consider the task of estimating the total treatment effect
(TTE), the average difference between the outcomes when the whole population is
treated versus when the whole population is untreated. By leveraging a staggered
rollout design, in which treatment is incrementally given to random subsets of
individuals, we derive unbiased estimators for TTE that do not rely on any prior
structural knowledge of the network, as long as the network interference effects
are constrained to low-degree interactions among neighbors of an individual. We
derive bounds on the variance of the estimators, and we show in experiments that
our estimator performs well against baselines on simulated data. Central to our
theoretical contribution is a connection between staggered rollout observations and
polynomial extrapolation.

1 Introduction

A cornerstone of much of the classic causal inference literature is the stable unit treatment value
assumption (SUTVA), which posits that an individual’s potential outcome is a function only of their
assigned treatment; there are no spillover effects due to the treatment of others. Such an assumption
fails to account for the ways in which individuals interact in many real-world experimental settings.
For instance, new features rolled out on social networking sites such as LinkedIn may alter these
users’ behaviors, which in turn affect how their connections (who do not have access to the feature)
interact with the platform. Individuals receiving a vaccine against an infectious disease may reduce
the transmission probability of the disease to others they interact with. Implementing a different
pricing policy for a subset of individuals in an online marketplace such as Airbnb or a platform such
as Uber could impact the experience of other users, as they compete for the same resources or same
customers. Public health measures instituted in one city can limit travel to nearby communities,
indirectly affecting their health outcomes or transit related outcomes. These examples illustrate how
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network interference may arise naturally from the connectedness of our society. Unfortunately, the
standard causal inference techniques which do not account for network interference may result in
arbitrarily biased estimates.

As these issues come into greater focus, there is a growing research area in developing new tools for
causal inference under network interference, when the outcome of an individual can be affected by
the treatment of another. Many approaches either propose complex graph-based cluster randomized
designs, or require strong parametric assumptions on the network interference effects. A limitation
is that all these approaches require at least partial knowledge of the underlying network in order to
implement the randomization or to compute the estimator. While structural knowledge is available to
online social networks, other applications such as public health must reason about an unknown or
potentially transient network. The additional effort required to collect or model network structure is
both difficult and costly.

In this work, we explore the value of additional measurements which arise from a staggered rollout
randomized design, in which the treatments are administered over a span of a few timepoints. For
example, the experimentation team at LinkedIn may roll out an experiment over 5 days, increasing
the fraction of treated individuals according to a schedule of 1%, 2%, 5%, 10%, 20%, where it
continuously collects data and measurements before and during each day of the experiment. Not only
is this type of experiment easy to implement in such applications, it is often desirable to implement
treatments according to such a staggered rollout design as it allows the system to first ensure safety
of the proposed treatment on a smaller test group before implementing it on larger groups. This
type of experimental design is also common for trials involving healthcare and medicine due to the
requirement of certain safety considerations before testing for efficacy. A key contribution in our
work is that we show the additional measurements from a staggered rollout design enable graph
agnostic causal inference, lifting all requirements on knowledge of the network.

We focus on estimating the total treatment effect (TTE), informally defined as the difference in
average outcomes across the population between two scenarios: when all individuals are treated and
when no individuals are treated. It has also been referred to as the global average treatment effect
(GATE). The TTE is particularly pertinent to applications where the decision maker must choose
between entirely adopting the new treatment or remaining with the status quo. For example, LinkedIn
would like to choose a single news feed recommendation algorithm, and Airbnb and Uber would like
to choose a single dynamic pricing algorithm. We assume neighborhood interference, where each
individual is only affected by the treatments of its direct neighbors; this is only mildly restrictive as
the neighborhood can be defined with respect to an unknown network, which is neither used for the
estimator nor the randomized design.

Related Work. In addressing the challenges that arise from network interference, a key tension
arises between the model assumptions and the simplicity and efficiency of the proposed estimator.
Previously proposed model assumptions can be generally classified into assumptions on exposure
functions [1, 2, 12, 14, 24], interference neighborhoods [3, 5, 18, 22], parametric structure [4, 6, 8, 9,
20], or a combination of these. Each of these assumptions lead to different solution concepts. All of
these approaches rely on knowledge of the network mediating the interference effects.

One class of approaches relies on assumptions about the network structure. They assume partial
interference, meaning that the population can be partitioned into disjoint groups, such that all network
interference effects can only occur within but not across the pre-specified groups [2, 5, 10, 13, 16, 17,
19, 23]. This assumption is motivated by scenarios where the network is naturally strongly clustered.
A natural solution is to randomize treatments over the groups jointly, such that each group is assigned
to be either fully treated or fully control. A drawback of this approach is that many networks are
well-connected such that there is no clear clustering of the network which does not cut a significant
fraction of the edges. The bias of standard estimators will scale with the number of edges that
cross between groups, leading to proposed cluster randomized designs that randomize over clusters
that are constructed to minimize the number of edges between clusters [8, 9]. Constructing good
clusters itself can be computationally intensive. Additionally some applications may prohibit such
nonuniform treatment assignment probabilities due to fairness considerations. Under neighborhood
interference assumptions, [21, 22] analyze the Horvitz-Thompson estimator alongside a cluster
randomized design, which involves both clustering the graph and computing probabilities of entire
neighborhoods being assigned to treatment or control over the distribution of clusterings, which is
computationally intensive. When one is willing to impose a distributional model on the network itself,
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[11] provides central limit theorem convergence results for a related but weaker estimand measuring
the change in outcomes under small perturbations of the fraction of treated individuals.

An alternate approach is to impose structure on the form of the network interference effects. The
most common assumption is that the network effects are linear with respect to a specified statistic
of the local neighborhood [4, 6, 7, 9, 15, 20]. The assumptions reduce the number of unknown
parameters in the model to a fixed dimension that does not grow with the population size, reducing
the inference task to linear regression. As a result, the natural solution is to use a least squares
estimate, shifting the focus to constructing randomized designs that minimize the variance of the
estimate. A limitation of this approach is that it requires the correct choice of the the statistic
governing the linearity, and it requires precise knowledge of the network structure to compute these
neighborhood statistics. Furthermore, it assumes knowledge of the relevant covariate types that
differentiate individual responses, or otherwise assumes homogeneity in the network effects.

The most similar work to our paper is the solution proposed in [25], which provides an estimator for
the TTE under a heterogeneous linear interference model [8], also referred to as the joint assumptions
of additivity of main effects and interference effects in [18]. Their estimator does not require
knowledge of the network, but requires measurements over two time steps. Our work generalizes
their results beyond linear to polynomial models, and we show that the staggered rollout experimental
design enables graph agnostic causal inference. The extension from linear to polynomial models
introduces the possibility of non-trivial interactions within the neighborhood set, adding complexity
to the model that necessitates a new analysis and algorithm.

Contributions. We show that under a staggered rollout experimental design, the task of estimating
the total treatment effect reduces to polynomial extrapolation, where the degree of the polynomial
is governed by the cardinality of interactions in the neighborhood interference model, bounded
above by the degree of the graph. Our approach is the first in the literature to propose an estimator
and randomized design that does not require any knowledge of the network structure, and yet is
unbiased and consistent. We provide variance bounds on the estimator, showing that the variance
only grows polynomially in the degree as opposed to the exponential growth that is exhibited in the
Horvitz-Thompson estimator under simple Bernoulli randomized designs. We provide experiments
that also illustrate that naively using regression models without allowing for heterogeneity could lead
to significant bias, whereas our estimator is unbiased with significantly lower variance than the bias
incurred due to a misspecified model. We are also the first to study the value of a staggered rollout
experimental design in the presence of network interference, and we believe the overall framework
could extend beyond polynomial models to other function classes, opening a new approach for
handling network interference while allowing for flexible heterogeneity in the network effects.

2 Setup

Consider a population of n individuals, and assume that the network interference can be represented
via an unknown directed graph with edge set E ⊂ [n] × [n]. An edge (j, i) ∈ E represents that
individual i is affected by the treatment assignment of individual j; as such, self-loops are expected.
The in-neighborhood of individual i is denoted by Ni = {j ∈ [n] : (j, i) ∈ E}, and we let din denote
the maximum in-degree, dout the maximum out-degree, and d = max{din, dout}. We posit that the
outcome of individual i as a function of the entire population’s exposure to treatment can be expressed
by the potential outcomes function Yi : {0, 1}n → R.

Our task is to estimate the total treatment effect (TTE), which represents the difference in average
outcomes when the entire population is fully under treatment as opposed to fully under control,
denoted as

TTE := 1
n

∑n
i=1

(
Yi(1)− Yi(0)

)
. (2.1)

We use z ∈ {0, 1}n to denote the treatment assignment vector, where zi = 1 if individual i is assigned
to treatment, and zi = 0 if i is assigned to control. By definition of E, it follows that the potential
outcomes functions satisfy neighborhood interference with respect to the graph defined by E.

Assumption 1 (Neighborhood Interference). Yi(z) only depends on the treatment of individuals in
Ni (including i). Equivalently, Yi(z) = Yi(z

′) for any z and z′ such that zj = z′j for all j ∈ Ni.
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Additionally, as the treatment variables zi are binary, any potential outcomes function satisfying
neighborhood interference can be written as a polynomial in the neighborhood treatment variables:

Yi(z) =
∑
S⊆Ni

aS
∏
j∈S

zj
∏

j′∈Ni\S

(1− zj′),

for some coefficients {aS}. We use the degree of the polynomial to quantify the complexity of the
model. In full generality, any model satisfying the neighborhood interference assumption will have
polynomial degree bounded by maxi |Ni|, the maximum in-degree of the graph. In this work we
consider the scenario where the polynomial degree may be significantly smaller than maxi |Ni|.
Assumption 2 (Low Polynomial Degree). The potential outcomes model has polynomial degree at
most β, i.e. there exist coefficients {ci,S}i∈[n],S⊆[n] such that for all i and z,

Yi(z) =
∑

S⊆Ni,|S|≤β

ci,S · I
(
S treated

)
=

∑
S⊆Ni,|S|≤β

ci,S
∏
j∈S

zj . (2.2)

The low-degree polynomial structure is perhaps better conceptualized as a constraint on the order
of interactions among neighbors of an individual, as the potential outcomes function is polynomial
with respect to the binary treatment vector. For general β, this assumption is not restrictive at all;
rather, a restriction is imposed by assuming a specific value for β, or more generally assuming that
β is much smaller than the graph degree. We interpret the parameter ci,S as the effect that treating
all individuals in S has on the outcome of individual i. The coefficient ci,∅ represents individual
i’s outcome when everyone is assigned to control (i.e. their baseline outcome); this is unaffected
by the treatment assignment. In the case of a singleton set S = {j}, we use the shorthand notation
cij := ci,{j}. It follows that the total treatment effect is the sum of all ci,S for nonempty subsets S,
i.e. TTE = 1

n

∑n
i=1

∑
S⊆Ni

1≤|S|≤β

ci,S .

The number of unknown parameters in this model are
∑

i∈[n]

∑β
k=0

(|Ni|
k

)
, which scales as ndβ .

When β = 1, the network effects resulting from treated neighbors is additive, and is also equivalent
to the heterogeneous linear outcomes model in [25]. This low degree assumption will not generally
admit threshold models or saturation models, both of which would require the degree of Yi to be |Ni|.
An example in which the polynomial degree may be smaller than the neighborhood size would be a
setting in which an individual’s neighborhood can be further partitioned into smaller subcommunities:
colleagues, university friends, high school friends, family, etc. Each subcommunity could have
an additive affect on the individuals’ outcome, but there may be nontrivial interactions among the
treatments of individuals in the subcommunities. The polynomial degree would be bounded by the
size of the largest subcommunity, which could be significantly smaller than the full neighborhood.
As another example, suppose that a social platform is testing a "hangout room" feature that provides
groups of up to 5 people a new environment to engage on the platform. One could posit a model with
β = 5, as the change in any individual’s usage on the platform can be attributed to experience with
the new feature, which takes place in groups of up to 5 users.

We let Ymax denote an upper bound on the absolute treatment effects for each individual, i.e.

Ymax := max
i∈[n]

∑
S⊆Ni,|S|≤β |ci,S |.

It follows that the magnitude of the outcomes Yi(z) are bounded by Ymax for any treatment vector z.
We let Lj denote the absolute effect or influence that individual j has on the population outcomes,

Lj :=
∑

i:j∈Ni

∑
S⊆Ni,|S|≤β,j∈S |ci,S |.

Our boundedness assumption and the finiteness of our network imply the boundedness of the Lj . We
denote the upper bound on the absolute effect or influence of any individual by Lmax := maxj

{
Lj

}
.

Randomized Experiment Design. As it may be costly and/or detrimental to expose the entire
population to treatment, we wish to estimate the total treatment effect after treating only a small
random subset of individuals. In particular we assume that there may be an experimental budget that
limits the proportion of individuals who may be treated. We will focus on two standard randomized
designs. In Bernoulli design, a treatment vector z is obtained by independently sampling each
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coordinate from a Bernoulli(p) distribution, so that the probability that a subset of individuals S are
all treated is p|S|. We assume that p > 1

n so that at least one individual is treated in expectation. In
completely randomized design, a treatment vector z is obtained by uniformly sampling a subset of
k individuals to treat for some fixed k. Here, the probability that a subset of individuals S are all
treated is

|S|−1∏
i=0

k − i

n− i
=:
[
k
n

]|S|
. (2.3)

Throughout the paper, we utilize a staggered rollout experimental design. Treatment is assigned to
individuals in T stages throughout the experiment. Overall, the individuals’ outcomes are measured
T +1 times: a baseline measurement before treatment, as well as a measurement after each treatment
round. We’ll use zt to denote the vector of treatment assignment in round t, and assume that each entry
zti is monotone increasing with t (individuals cannot be un-treated). This monotonicity requirement
introduces significant correlation between the treatment vectors. Monotonicity is a constraint in many
real-world scenarios where the experimental designer only has the option to introduce treatment to
new individuals. For example, treatments in medication trials can have life-altering, irreversible
effects, and the exposure of individuals to an advertising campaign cannot be “taken back.” In other
domains, such as the rollout of new interfaces on social media platforms, treatments are temporary or
reversible and it may make sense to remove the monotonicity requirement.

Another assumption we make is that observations of outcomes are perturbed by iid Gaussian noise.

Assumption 3. We observe Y obs
i,t = Yi(z

t) + εi,t for εi,t
iid∼ N(0, σ2).

3 Graph Agnostic Estimators under Staggered Rollout Design

To motivate the design of our estimators, we begin with a high-level view of estimating the total
treatment effect. We limit our attention to static networks. When we have no information about
the underlying causal network, we do not know how much of each individual’s neighborhood is
treated, so have no systematic way to predict what their potential outcome would be if the entire
population were treated. However, we can aggregate the average of the individuals’ outcomes to
obtain a meaningful statistic. In the following discussion we omit observation noise to make the
intuition for our estimator clear. Consider the expected population average outcomes where the
expectation is taken over the distribution of treatment vectors z sampled from a parameterized class
of distributions Dx, where D0 refers to the distribution that deterministically assigns all individuals
to control, and D1 refers to the distribution that deterministically assigns all individuals to treatment.
Consider the underlying expected outcome function FD : [0, 1] → R given by

FD(x) = E
[
1
n

∑n
i=1 Yi(z)

]
where the expectation is taken over the distribution of treatment vectors z ∼ Dx. By construction,
the TTE is exactly FD(1)− FD(0).

If we can implement a staggered rollout design where at stage t of the experiment, the marginal
distribution of the treatment vector is Dxt

, the observed average outcomes collected in the experiment
at stage t would give noisy estimates of FD(xt). Under this framing, our goal is to use these
measurements to extrapolate the value of FD(1). This provides a general framework for utilizing
staggered rollout design to simplify estimation of the total treatment effect.

The simplest class of distributions we can consider is the Bernoulli(p) randomized design, in which
each individual is independently assigned to treatment or control with probability p. For a degree-β
polynomial potential outcomes model, the expected outcome function under this design is polynomial
in the treatment probability p:

FB(p) = E
[ 1
n

n∑
i=1

Yi(z)
]
=

1

n

n∑
i=1

∑
S⊆Ni

|S|≤β

ci,S · E
[∏
j∈S

zj

]
=

1

n

n∑
i=1

∑
S⊆Ni

|S|≤β

ci,S · p|S|.

To implement a staggered rollout Bernoulli design with treatment probabilities p1 < p2 < . . . < pT
we independently sample ui ∼ U [0, 1] for each individual i. Then, for each t ∈ [T ], we define
treatment vector zt with zti = I

(
ui ≤ pt

)
. This both ensures that the marginal distribution of the
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treatment vector at stage t is equivalent to the Bernoulli(pt) randomized design, and that the treatment
assignments are monotone over the rounds.

Alternatively, we can consider a completely randomized design (CRD) in which we fix a number
of treated individuals k, and sample a subset of k individuals uniformly at random among all size
k subsets in the population. For a degree-β polynomial potential outcomes model, the expected
outcome function under this design is polynomial in the treated fraction k/n:

FC(
k
n ) = E

[ 1
n

n∑
i=1

Yi(z)
]
=

1

n

n∑
i=1

∑
S⊆Ni

|S|≤β

ci,S · E
[∏
j∈S

zj

]
=

1

n

n∑
i=1

∑
S⊆Ni

|S|≤β

ci,S ·
[
k
n

]|S|
.

To implement a complete staggered rollout design, we sample a treatment vector from CRD(k1) at
stage 1, and at stage t > 1, we sample a treatment vector from CRD(kt − kt−1) out of the remaining
untreated individuals. The marginal distribution of the treatment vector at state t will be equivalent to
the completely randomized design with parameter kt.

To construct our estimators, we will make use of the Lagrange interpolation formula.

Definition 1 (Lagrange Interpolation). Given a dataset
{
(xt, yt)

}T
t=0

with distinct x-coordinates,
the unique polynomial F of degree at most T with F (xt) = yt for each t is given by

F (x) =

T∑
t=0

ℓt,x(x) · yt, ℓt,x(x) =

T∏
s=0
s̸=t

x− xs

xt − xs
.

To estimate TTE, we require estimates of FB(x) or FC(x) at x ∈ [0, 1]. As both FB and FC have
degree at most β, they can be recovered from β+1 observations, requiring T = β rounds of treatment.
Given treatment targets x = (x0, x1, . . . xT ) with realized treatment schedule {zt ∼ Dxt}, we can
utilize Lagrange interpolation to derive the following polynomial interpolation (PI) estimator:

T̂TEPI(x) :=

{∑T
t=0

(
ℓt,x(1)− ℓt,x(0)

)(
1
n

∑n
i=1 Y

obs
i,t

)
x0 < x1 < . . . < xT ,

0 xt = xt−1 for some t ∈ [T ].
(3.1)

The separation into cases ensures that the Lagrange coefficients are well-defined. We assume that the
degree β is known such that the experimenter can select T = β. We also assume that x is monotone,
and define ∆x = mint=1..m

{
xt − xt−1

}
. We can apply this estimator in both the Bernoulli and

completely randomized design settings.

3.1 Theoretical Results and Discussion

For a potential outcomes model with degree β, we let the notation BRD(p) refer to a staggered rollout
Bernoulli design with distinct treatment probabilities p = (p0, p1, . . . , pβ). We let CRD(k) refer to a
staggered rollout completely randomized design with distinct treatment counts k = (k0, k1, . . . , kβ).
Theorem 2. Consider a potential outcomes model with degree β. Under a BRD(p) with p0 = 0, the
estimator T̂TEPI(p) is unbiased with variance

O
(

d2β2

n Y 2
max∆

−2β
p + σ2β

n ∆−2β
p

)
.

Theorem 3. Consider a potential outcomes model with degree β. Under a CRD(k) with k0 = 0, the
TTE estimator T̂TEPI(k/n) is unbiased with variance

O
(
β2 Y 2

max

(
d2

n + β2

k1

)
·
(

n
∆k

)2β
+

σ2β

n

(
n
∆k

)2β)
.

Proofs of both of these theorems are given in Appendix ??. Notably, families of networks with
d = o(log n) have variance asymptotically approaching 0. As such, our results can generally handle
sparse networks. A key technical piece of the analysis is handling the strong correlation in the
observations across measurements due to the monotonicity enforced by the staggered rollout design.
In the case of a linear potential outcomes model, we can strengthen both of these variance bounds,
which match the results from [25], differing only in an additive term coming from observation noise.
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Corollary 4. For a linear potential outcomes model:

• The estimator T̂TEPI(p) under BRD(0, p) has variance at most 1−p
np · L2

max +
2σ2

np2 .

• The estimator T̂TEPI(k/n) under CRD(0, k) has variance at most n−k
(n−1)k · L2

max +
2σ2n
k2 .

Observe that the Bernoulli estimator does not incorporate any information about the realized treat-
ments. Notably, it does not account for the number of treated individuals. While this binomial
random variable concentrates around its mean (especially for large values of n), it fails to account for
significant deviations from this mean. Since this information is available at the time of estimation, it
can be incorporated into an estimator. We let k̂ = (k̂0 = 0, k̂1, . . . , k̂β) be the realized number of
treated individuals at each time step, and consider the estimator T̂TEPI(k̂/n).

Theorem 5. Consider a potential outcomes model with degree β. Under a staggered rollout
Bernoulli design with treatment probabilities p = (p0 = 0, . . . , pβ), T̂TEPI(k̂/n) has bias decaying

exponentially in n and variance O
(
β2 Y 2

max

(
d2

n + β2

p1n

)
·∆−2β

p + βσ2

n ∆−2β
p

)
.

A proof is given in Appendix ??. For large n, the performance of these three estimators will converge
to each other. While our theoretical variance bound in Theorem 5 does not show improvement upon
that from Theorem 2, our experimental results illustrate empirical improvements of this estimator.

Discussion. Our results illustrate a natural relationship between the complexity of the model (i.e. its
degree β) and the complexity of the randomized design and corresponding estimator; we require
T ≥ β, i.e. β + 1 outcome measurements, in order to construct an unbiased estimator. Intuitively,
each of these measurements allows us to quantify one “degree” of the network effects. Given an
overall treatment budget p = pT with a uniform treatment schedule where pt = tp/T , the difference
between treatment fractions is ∆p = p/T . As a result, for our setting in which T = β, the variance
scales as (β/p)2β , where β is always bounded above by the size of the neighborhood, i.e. graph
degree. In comparison, under a fully general neighborhood model, the Horvitz-Thompson estimator
has a variance that scales as O(1/npd), where d denotes the size of the largest neighborhood.

A practical question, critical to real-world experimental settings, is how one should determine the
degree β if it is not known in advance. Even if we have many measurements, it may not always be
wise to increase the degree of the interpolant, as this increases the magnitude of its slope outside of
the interpolating region [0, p]. When the expected number of treated individuals np is small relative
to the population size n (so p ≪ 1), the value of the interpolant at 1 will be highly sensitive to any
deviation of the later measurements from their expectation. On the other hand, choosing to fit a low
degree polynomial may lead to bias if the underlying network effects exhibit higher order interactions.
The study of the sensitivity of polynomial interpolation estimators under model misspecification in
our randomized experiment setting is a captivating direction for future work. In heuristic settings
we recommend choosing a conservative β erring on lower values, as is also common practice when
using polynomial regression in supervised learning settings.

The low polynomial structure is primarily used to show that the expected total outcomes function FD
is a low degree polynomial of the treatment fraction. As FD represents an expectation taken over
the population, where treatments are assigned uniformly at random, it is plausible that this function
varies in a smooth and simple way when the treatment level is changed. While the polynomial
class is not the only hierarchy of function classes to capture complexity, it is a fairly natural one.
However, continued study of this overall approach of interpolation for staggered rollout designs for
other function classes beyond polynomial would also be incredibly interesting and relevant.

In this work, we also limit our attention to static network effects, but extensions to incorporate
time-varying network effects or even time-varying network structures is an interesting direction
for future work. When the total treatment budget pT is small, such that a significant number of
individuals are observed under the baseline outcomes across all stages of the experiment, then we
could handle time-fixed effects via a simple modification of our estimator by using these baseline
individuals to estimate the time-fixed effects and subtracting them from the current estimator.
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4 Experiments

We provide simulations on synthetic data to illustrate the performance of our estimators relative to
existing estimators. For a population of n individuals, we generate random directed networks of n
nodes using a configuration model with in-degrees distributed as a power law with exponent 2.5, and
out-degrees evenly shared among individuals. For degree β, we construct the following potential
outcomes model:

Yi(z) = ci,∅ +
∑
j∈Ni

c̃ijzj +

β∑
ℓ=2

(∑
j∈Ni

c̃ijzj∑
j∈Ni

c̃ij

)ℓ

, (4.1)

where ci,∅ ∼ U [0, 1], c̃ii ∼ U [0, 1], and for i ̸= j, c̃ij = vj |Ni|/
∑

k:(k,j)∈E |Nk| for vj ∼ U [0, r],
where r denotes a hyperparameter that governs the relative magnitude of the network effects relative
to the direct effects. Essentially vj represents the magnitude of individual j’s influence, which is
then shared among its out-neighbors proportional to their in-degrees. For simplicity we assume no
observation noise in the experiments, i.e. σ = 0.

Other Algorithms. We benchmark our proposed estimators against least squares regression and
difference-in-mean estimators. As these estimators don’t utilized the staggered rollout design, we
evaluate them on the measurements taken at the last stage, T , of the experiment. We will use z to
denote the treatment vector at time T (suppressing the superscript). As a network sampled from a
configuration model does not exhibit clustering, the solutions that propose cluster randomized designs
perform poorly, and thus we omit them from the experiments.

The standard difference in means estimator is the difference between the average outcome of indi-
viduals assigned to treatment and the average outcome of individuals assigned to control, given by

T̂TEDM =

∑
i∈[n] ziYi(z)∑

i∈[n] zi
−
∑

i∈[n](1− zi)Yi(z)∑
i∈[n](1− zi)

. (4.2)

This estimator is biased under the presence of network interference. Note that T̂TEDM does not take
into account any information about each individual’s neighborhood.

A modification of the difference in means estimator incorporates knowledge of the number of treated
neighbors of each individual. Let Ui denote the number of individuals in Ni \ {i} assigned to
treatment, and let Ũi denote the number of neighbors individuals in Ni \ {i} assigned to control. This
estimator is given by

T̂TEDM(λ) =

∑
i∈[n] ziI(Ui ≥ λ)Yi(z)∑

i∈[n] ziI(Ui ≥ λ)
−
∑

i∈[n](1− zi)I(Ũi ≥ λ)Yi(z)∑
i∈[n](1− zi)I(Ũi ≥ λ)

, (4.3)

for some user-defined tolerance λ ∈ [0, 1]. This estimator only counts an individual’s outcome if at
least λ of the individual’s neighborhood is assigned to the same treatment as the individual itself. In
our experiments, we set λ = 0.75.

Finally we compare against least squares regression models of degree β, which posit that the potential
outcomes model can be described as

Yi(z) = g(zi, z̄i) =
(
ρ+

∑β
k=1 γk X

k
i

)
+ zi

(
ρ̃+

∑β−1
k=1 γ̃k X

k
i

)
, (4.4)

for some covariate Xi. In the two variations we consider, we set Xi equal to either the number
of treated neighbors or the proportion of treated neighbors, where we do not include i itself. The
two sets of coefficients (ρ, γ1, . . . γβ) and (ρ, γ̃1, . . . γ̃β) allow for the model to be different when
i is treated vs not treated, and the second summation only goes until β − 1 since we want to only
allow degree β interactions. The total number of coefficients in the model is 2β + 1. Least squares
regression finds the set of coefficients that minimizes the least squares predictive error on the dataset,
which consists of {zi, Xi, Yi(z)}i∈[n]. The estimated coefficients define an estimate for the function
ĝ. For the variation which uses the number of treated neighbors as the covariates, setting Xi = Ui,
the estimate is given by

T̂TELS-Num = 1
n

∑n
i=1(ĝ(1, |Ni| − 1)− ĝ(0, 0)). (4.5)
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(c) Varying treatment budget
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(d) Varying the model degree

Figure 1: Four graphs visualizing the performance of various TTE estimators as various parameters
are adjusted. The height of each graph depicts the experimental relative bias of the estimator and the
shaded width depicts the experimental standard deviation.

For the variation which uses the proportion of treated neighbors as the covariates, setting Xi =
Ui/(|Ni| − 1), the estimate is given by

T̂TELS-Prop = 1
n

∑n
i=1(ĝ(1, 1)− ĝ(0, 0)). (4.6)

As completely randomized design is more balanced than Bernoulli randomized design, we evaluate
all the benchmark algorithms under a completely randomized design.

Results and Discussion. For each population size n, we sample G networks from the distribution
described above. For each configuration of parameters in the experiment, we sample N treatment
schedules {z0, . . . , zβ} from our parameterized distribution class (Bernoulli or CRD) compute the
TTE using each estimator. For each estimator, we plot the relative bias of the TTE estimates averaged
over the results from these GN samples and normalized by the magnitude of the TTE. The width
of the shading in the figures depicts the standard deviation across the GN estimates. We ran all
experiments on a Linux-based machine with 20 CPU(s) and 10 cores. The experiments for the linear
setting took 8.3 minutes and the experiments with varying polynomial degree took 4.6 minutes.

In Figure 1, we visualize the effect of four network/estimator parameters on the quality of each of
the five TTE estimators (the four described above, and our CRD estimator with treatment targets
kt =

tk
β ). Specifically, we consider the effects of the population size (n), the maximum proportion of

treated individuals (k/n), the degree of the potential outcomes model (β), and the ratio between the
network and direct effects (r). Each of the plots fixes three of these parameters and varies the fourth.
Specific settings of the parameters are listed on each plot.
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(b) Varying treatment budget

Figure 2: Two graphs visualizing the performance of our proposed TTE estimators as the size of the
population (n) or treatment budget (k/n) is varied. The height of each graph depicts the experimental
relative bias of the estimator and the shaded width depicts the experimental standard deviation. The
blue and the green plots essentially overlap.

In Figure 1, our estimator (in blue) is unbiased as expected and the variance decreases as n and k/n
increases. However, the other estimators remain significantly biased, with higher variances than ours,
regardless of treatment budget or population size. As the ratio r increases the network effects become
more significant relative to the direct effect, and thus the bias of other estimators also increases. As a
sanity check, when the ratio is close to 0, all estimators are unbiased as there are no network effects.

In Figure 2, we compare the variants of our estimator, evaluating T̂TEPI(k/n) under CRD and
evaluating T̂TEPI(p) and T̂TEPI(k̂/n) under Bernoulli(p) randomized design, where pt = tp/β and
k̂ is the vector of realized treatment counts. The estimators T̂TEPI(k/n) and T̂TEPI(k̂/n) perform
nearly identically. T̂TEPI(k̂/n) has lower variance than T̂TEPI(p), which is intuitive as it performs
polynomial interpolation on the realized treatment fraction rather than the expected treatment fraction.
We include additional experiments for higher degree models in Appendix ??.

An additional point of comparison for these estimators is their computational complexity. Here, the
most natural comparison is between our estimators and least squares, as these are the only approaches
that make use of the various rounds of outcome measurements. Since our estimators require only
an aggregated measurement of the individual’s outcomes, the O(β2) runtime of the interpolation
is asymptotically dominated by the O(nβ) time to read in the outcome measurements. The least
squares methods fit O(β) parameters and have time complexity O(β2n).

5 Conclusion

We propose a new approach for causal inference under network interference which performs signifi-
cantly better than existing approaches without requiring knowledge of the graph. In particular, the
additional measurements from a staggered rollout design enable us to reduce the task of estimating
total treatment effect to that of polynomial interpolation. We show that under a flexible class of low
degree polynomial potential outcomes our estimator is unbiased with variance scaling as O(1/n).
Future directions include how to optimally perform model selection when β is unknown, and gen-
eralizing to a dynamic setting by incorporating time-dependent noise to the model, considering
time-varying effects, or allowing for time-varying networks. The staggered rollout design framework
has implications towards estimation under other model classes beyond polynomial, such as sublinear
or monotone functions, under which one may be able to construct bounds on TTE.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See the end of section 3.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] This is

implied by the limitations of our work–because causal inference is applied to societal
problems, problems such as model misspecification can have negative consequences.
We comment on this at the end of section 3.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] All proofs are included

in the appendices.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] see Section 4
for details on how we got the results. Code and data to reproduce results is included in
supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] See Figure 1. The shading indicates experimental
standard deviation over all samples.
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(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the results and discussion
paragraph in Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

All the code we used will be accessible via the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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