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ABSTRACT

Deep neural networks trained with Empirical Risk Minimization (ERM) are prone
to rely on simple spurious features—features that are correlated with the target
but are not causally related to it. To mitigate this over-reliance, Deep Feature
Reweighting (DFR) has emerged as an efficient approach, which works by re-
training the last layer of an ERM model on a small reweighting dataset. While
effective, DFR requires group annotations to create the reweighting dataset, which
may be challenging and costly to obtain. Though subsequent works have proposed
ways to alleviate this constraint, existing methods still largely rely on group an-
notations for hyperparameter tuning to achieve robust performance. In this paper,
we present LACER, a method that improves group robustness without requiring
explicit group annotations for either training or model selection. LACER oper-
ates in two stages: first estimating group labels through a loss-weighted clustering
formulation that effectively identifies clusters corresponding to underrepresented
groups in the validation set, then leveraging these estimated labels for last-layer
retraining. Our results provide the empirical evidence that combining semantic
feature information with loss values enables effective group label estimation. We
validate LACER across multiple vision spurious correlations benchmarks, demon-
strating performance comparable to oracle last-layer retraining methods that uti-
lize ground-truth group annotations.

1 INTRODUCTION

Deep learning classifiers trained with empirical risk minimization (ERM) are known to rely heav-
ily on spurious features—attributes that exhibit correlation with the target class in the training data
but are not causally related to the true underlying predictive function. Consequently, these models
perform poorly on groups where the spurious correlations do not hold, leading to low worst-group
accuracy (WGA) (Beery et al., 2018; Geirhos et al., 2020). This behavior has been attributed to
ERM’s procedure of minimizing the average training loss. Due to the underrepresentation of mi-
nority groups in training data, coupled with the simplicity bias of SGD-based optimization algo-
rithms (Shah et al., 2020), models tend to exploit simple spurious correlations that dominate the
majority of training examples rather than learning robust features for classification.

Distributionally Robust Optimization (DRO) techniques enable learning group-robust models by
minimizing the worst-case loss over a set of pre-defined groups (Sagawa et al., 2020), rather than
the average loss as in ERM. However, the effectiveness of DRO methods is fundamentally lim-
ited by their reliance on explicit group annotations during training. Deep Feature Reweighting
(DFR) (Kirichenko et al., 2023) has emerged as an effective alternative that improves group robust-
ness by retraining only the last layer of an ERM trained model on a group-balanced reweighting
dataset, requiring group annotations for just a small held-out subset. Subsequent work (Qiu et al.,
2023; LaBonte et al., 2023) have further relaxed this constraint by eliminating the need for group
annotations during last-layer retraining, but still rely on a group-annotated validation set for hyper-
parameter tuning. Although this reduces the annotation burden, for some domains collecting group
labels is significantly costly or challenging.

In this work, we propose LACER (Loss-Aware Clustering for Effective Reweighting), a practical
approach based on last-layer retraining (LLR) that improves group robustness while requiring only
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knowledge of the total number of groups present in the dataset1—a significant relaxation compared
to prior approaches. LACER operates in two stages: first, we employ a novel loss-weighted clus-
tering technique to partition the feature space of a held-out set, effectively identifying clusters that
correspond to underlying groups. Next, we utilize these cluster assignments as proxy group labels
to construct a group-balanced reweighting dataset for last-layer retraining.

One of the key insights in our work is that we can reduce the amount of required prior knowledge
about the data by leveraging empirical observations from prior group robustness works. Specifically,
our method builds upon an observation noted in several prior works (Sohoni et al., 2022; Kirichenko
et al., 2023; Izmailov et al., 2022; Zhang et al., 2022; Yang et al., 2024, among others): represen-
tations of examples within the same group tend to cluster more closely together, and groups with
performance gaps are typically separable in the model’s feature embedding space. Moreover, minor-
ity groups under ERM exhibit systematically higher loss values (e.g., (Liu et al., 2021) and Qiu et al.
(2023) directly leverage this idea to de-bias models). By incorporating both ideas and leveraging
them in our clustering approach, LACER effectively discovers underlying group structure without
requiring explicit group annotations.

We empirically validate LACER across three diverse image classification tasks, demonstrating im-
provements in worst-group accuracy compared to existing baselines. Through extensive ablations
on varying degrees of group imbalance in validation data, we show that LACER has particularly
strong advantage in scenarios with high group imbalance—a critical advantage given that validation
sets obtained by setting aside a subset of training data would likely exhibit such imbalances.

2 BACKGROUND

In this section, we formalize the problem of group robustness (§2.1) and review existing approaches
based on last-layer retraining, with a particular focus on Deep Feature Reweighting (§2.2).

2.1 GROUP ROBUSTNESS

We consider the group robustness setting (Sagawa et al., 2020), where each input datapoint x ∈ X is
associated with a class label y ∈ Y and a spurious attribute s ∈ S. The groups g ∈ G are defined by
combinations of class label and spurious attribute (G = Y×S). We consider scenarios with inherent
group imbalance in the training data distribution (Dtrain), where certain groups are highly represented
(majority groups) while others are significantly underrepresented (minority groups). Our focus is to
build classification models that maintain high accuracy across all groups, which we evaluate using
worst-group accuracy—the minimum accuracy across all groups G.

2.2 LAST-LAYER RETRAINING

Deep Feature Reweighting (DFR) (Kirichenko et al., 2023) demonstrated that group robustness can
be improved by retraining just the last layer of an ERM-trained model on a group-balanced reweight-
ing dataset. This approach was motivated by a key observation: while ERM models may rely heavily
on spurious features for classification, they still learn meaningful representations of the core predic-
tive features. Formally, given a model mθ = (fϕ, fψ) trained using standard ERM, where fϕ is
the feature extractor and fψ represents the last classifier layer, DFR freezes fϕ and retrains fψ on
a group-balanced reweighting dataset. While effective and efficient, DFR requires access to group
annotations to construct the reweighting dataset.

Subsequent works have explored various approaches to relax DFR’s requirement of group annota-
tions. One line of work proposes using class-balanced reweighting datasets for last-layer retraining,
though this approach shows reduced effectiveness when the held-out data exhibits high group imbal-
ance (LaBonte et al., 2023). Automatic Feature Reweighting (AFR) method introduces a weighted
loss for last-layer retraining which is designed to emphasize examples where the ERM model per-
forms poorly, thereby implicitly upweighting minority groups (Qiu et al., 2023). While this method
eliminates the need for group annotations during training, it still relies a group-annotated validation
set for hyperparameter tuning to achieve robust performance—a requirement that can be challenging
to satisfy in certain domains.

1For example, 2 groups per class in standard Waterbirds dataset.
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Algorithm 1 LACER: Loss Aware Clustering for Effective Reweighting

1: Input: Training set Dtrain, held out set Dval, a classifier decomposed as mθ = fϕ ◦ fψ , the
number of groups for each class c denoted as gc.

2: Output: Model mθ̂ = fϕ ◦ fψ̂ with improved group robustness compared to ERM baseline.
3: Stage 0: ERM Model checkpoint θ = (ϕ, ψ) trained using ERM until convergence on Dtrain.
4: Stage 1: Estimate group labels using loss-weighted clustering
5: for each class c, gc do
6: Ec ← {fψ(x) | (x, y) ∈ Dval, y = c} {Extract feature embeddings for class c.}
7: Weight each data point xi with wi = exp(−γyi pi) where pi is the softmax probability for

the correct class yi and γyi is the class dependent upweighting parameter.
8: Cluster Ec into gc clusters with weighted k-means clustering with weights wi.
9: Use the cluster labels zi as the estimated group labels for LLR.

10: end for
11: Stage 2: Last layer retraining

Perform LLR with ℓ1 regularization and use the estimated group labels zi to construct a group-
balanced reweighting dataset.

3 LACER: LOSS AWARE CLUSTERING FOR EFFECTIVE REWEIGHTING

We introduce LACER, a method for improving group robustness in scenarios where explicit group
annotations are unavailable. Our approach is built on two key empirical observations: (a) groups
that exhibit significant performance gaps are separable in the neural network’s feature space, and
(b) minority group samples tend to have higher loss values under the final ERM model. LACER
leverages these insights through a two-stage framework: (1) first estimating group labels using a
novel loss-weighted clustering approach (3.1), and (2) then using these estimated labels to retrain the
last layer fψ of an ERM model (3.2). The pseudocode for our algorithm is presented in Algorithm 1.

3.1 LOSS-WEIGHTED CLUSTERING

The first stage of our approach involves estimating the group labels for the held-out validation
dataset Dval. Our approach builds on the observation that groups within a class exhibiting sig-
nificant performance discrepancy must have distinguishable feature representations (Sohoni et al.,
2022)—otherwise, the classifier would achieve similar accuracy across groups. While this suggests
that groups should be separable in the feature space, standard k-means clustering—which minimizes
average reconstruction error—often fails to identify clusters corresponding to minority groups due
to their underrepresentation in the validation set (Dval).

To address this limitation, we propose a loss-weighted clustering approach that leverages loss values
from the ERM checkpoint to inform cluster assignments. Specifically, our formulation upweights
samples with higher loss values, enabling better identification of clusters that correspond to minority
groups—which typically exhibit higher losses under the ERM model.

Specifically, for each class c, we first extract the feature embedding Ec using the frozen feature
extractor fϕ for all validation samples belonging to that class. We then assign weights to each
datapoint xi based on its loss under the ERM model:

wi = exp(−γyi pi). (1)

Here pi is the softmax probability assigned to the correct class yi by the ERM checkpoint, and
γyi is a class-dependent parameter that determines the degree to which points with higher loss are
upweighted. We adopt this weight formulation in equation 1 from AFR (Qiu et al., 2023) which
uses it to reweight examples directly for last-layer retraining, while we use these weights to modify
k-means clustering. While AFR sometimes relies on validation group labels to tune the hyperparam-
eter γ, we utilize the silhouette score (Rousseeuw, 1987) to automatically tune the hyper-parameter
in an unsupervised way. This automated tuning is motivated by the observation that the optimal
value of γyi should result in well-separated clusters that correspond to minority and majority groups
within each class.

3
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Table 1: Comparison of last-layer retraining methods on Waterbirds & Urbancars. We report
the average worst-group accuracy over 5 independent runs, with columns showing different imbal-
ance ratios (minority size to majority size) in the validation set Dval. DFR represents the oracle
performance with access to ground truth group annotations, while other methods operate without
explicit group labels. AFR results are shown for three fixed values of γ, the upweighting parame-
ter. Our method, LACER, achieves competitive performance across all settings while only requiring
metadata knowledge of the number of groups present in data, demonstrating effective improvement
in group robustness with minimal supervision.

Method Waterbirds Urbancars

0.1 0.15 0.2 1.0 0.1 0.15 0.2 1.0

ERM 73.3 73.3 73.3 73.3 25.9 25.9 25.9 25.9
DFR (Kirichenko et al., 2023) 80.1 85.2 88.2 92.3 81.1 80.9 84.6 84.8

CB LLR (LaBonte et al., 2023) 69.9 76.2 82.0 92.5 70.2 73.1 74.5 85.2
AFR (γ = 1.0) (Qiu et al., 2023) 76.8 80.1 83.7 92.3 52.0 57.7 64.6 86.4
AFR (γ = 2.0) (Qiu et al., 2023) 78.7 82.3 86.8 91.6 72.6 76.0 80.6 85.2
AFR (γ = 3.0) (Qiu et al., 2023) 80.3 83.4 88.2 85.6 78.5 78.7 81.4 69.2

k-Means Clustering + LLR 66.6 79.3 83.9 92.3 70.7 72.8 72.8 84.9
LACER (Ours) 83.7 87.4 89.1 92.6 73.9 77.7 78.2 84.3

In practice, prior to cluster the datapoints, we apply UMAP dimensionality reduction (McInnes et al.,
2018). The dimensionality reduction hyperparameters are decided automatically using silhouette
scores, with details provided in the Appendix B.

Cluster-averaged silhouette score. The standard silhouette score (Rousseeuw, 1987) measures
how well each datapoint is clustered with similar samples, calculated as the average silhouette co-
efficient across all datapoints. In practice, we observe that this aggregate metric tends to overlook
the clustering quality of smaller clusters, which typically correspond to minority groups underrep-
resented in the held-out dataset. To address this limitation, we propose a cluster-averaged silhouette
score (CAS) that first computes the silhouette score for each cluster independently and then averages
these scores across clusters. This modification ensures equal importance to all clusters regardless of
their size, making it particularly suitable for scenarios with significant group imbalance. Formally,
given clusters {C1, . . . , Ck}, we define the silhouette score SILCi

for cluster i as:

SILCi
=

1

|Ci|
∑
j∈Ci

SIL(xj), (2)

where SIL(xj) is the silhouette coefficient for datapoint xj . The cluster-averaged silhouette score
SILCAS is then computed as:

SILCAS =
1

k

k∑
i=1

SILCi
, (3)

where k is the number of clusters (i.e., the number of groups in the dataset).

3.2 STEP 2: LAST LAYER RETRAINING

Last-layer retraining (LLR) has proven effective in improving group robustness of ERM-trained
models. In the second stage of our algorithm, we leverage the estimated group labels from the
first stage (§3.1) to construct a group-balanced reweighting dataset for LLR. For the retraining pro-
cess, we follow the standard hyperparameter settings from DFR (Kirichenko et al., 2023), using
ℓ1-regularization (λ as the regularization strength), with details provided in the Appendix A.

4 EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed algorithm on standard benchmarks for
group robustness.

4
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Table 2: Comparison of last-layer retraining methods on CelebA using ResNet and ConvNeXT
architectures. We report the average worst-group accuracy (WGA) across give different runs. K-
Means refers to standard k-means clustering for group label estimation followed by LLR. While
LACER improves the WGA of the original ERM model on ResNet, it does not match the per-
formance of other baseline approaches. However, with the stronger ConvNeXT feature extractor,
LACER achieves performance comparable to the oracle DFR.

Model ERM DFR CB LLR AFR K-Means LACER
γ = 1 γ = 2 γ = 3

ResNet 43.7 89.5 68.4 79.2 85.2 80.6 72.0 73.3

ConvNeXT 46.3 90.7 73.4 82.5 85.6 78.0 91.4 90.7
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(b) UrbanCars

Figure 1: Comparison of worst-group accuracy (WGA) across varying minority group propor-
tions in the validation set for (a) Waterbirds and (b) UrbanCars datasets. DFR represents oracle
performance with ground truth annotations, while other methods operate without explicit group la-
bels. LACER achieves competitive performance with the best-performing AFR variants across all
proportions while only requiring metadata knowledge of the number of groups, demonstrating its
effectiveness in scenarios where explicit group annotations are not viable.

Datasets. We evaluate LACER on three image classification benchmarks: (a) Waterbirds (Sagawa
et al., 2020), (b) CelebA (Liu et al., 2015) and (b) UrbanCars (Li et al., 2023). The Waterbirds
dataset requires classifying birds as either waterbirds or landbirds, where the background (water
or land) serves as the spurious feature. CelebA involves hair color prediction with gender as the
spurious attribute. UrbanCars presents a more challenging scenario with multiple spurious features
per class: the task is to classify cars as either urban or country vehicles, where both the background
and co-occurring objects serve as spurious features.

Setup. Following Kirichenko et al. (2023), we use a ResNet-50 model (He et al., 2016) pretrained
on ImageNet-1k (Russakovsky et al., 2015) as our base architecture. For CelebA, we additionally
experiment with a stronger ConvNeXT model (Liu et al., 2022) pre-trained on ImageNet-22k and
fine-tuned on ImageNet-1k. For all experiments, we train the feature extractor fϕ using the standard
training subset and use Dval for last-layer retraining across all baselines. We report average worst-
group accuracy over five random seeds.

Baselines. We compare LACER against several LLR approaches that do not require explicit group
annotations: (1) ERM-trained base model, (2) class-balanced LLR (LaBonte et al., 2023), which
retrains using a class-balanced reweighting dataset, (3) AFR (Qiu et al., 2023) with different fixed
values of γ, and (4) LLR using group labels estimated through standard k-means clustering. We
compare against DFR (Kirichenko et al., 2023) as an oracle baseline that uses ground truth annota-
tions for LLR.
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Results. In Table 1, we present results on Waterbirds (Sagawa et al., 2020) and UrbanCars (Li
et al., 2023), varying the ratio of minority-to-majority examples in validation data Dval. In realistic
scenarios where validation data is a random subset of all available data, it is likely that this ratio
will be highly skewed. On Waterbirds, LACER shows the strongest performance out of all methods,
outperforming even DFR on highly skewed validation sets. On the more challenging UrbanCars
dataset, LACER demonstrates competitive performance, however, it is outperformed by AFR with
γ = 3. Figure 1 provides a more comprehensive comparison across a wider range of minority-to-
majority ratios.

Table 2 presents results comparing LACER against baselines on CelebA Liu et al. (2015) using
both ResNet and ConvNeXT architectures. Unlike Waterbirds and UrbanCars, the validation set in
CelebA has natural group imbalance, so we do not vary the group proportions. With ResNet, LACER
improves upon the ERM baseline (from 43.7% to 73.3% WGA) but similar to other baselines is not
competitive with the oracle DFR. Using the stronger ConvNeXT architecture, LACER achieves
performance (90.7%) matching DFR (90.7%), outperforming other baselines.

5 RELATED WORKS

DFR (Kirichenko et al., 2023) demonstrated that group robustness can be improved by retraining
the last layer on a group-balanced reweighting dataset, but requires group annotations for the entire
held-out set. Subsequent works have attempted to relax this annotation requirement through differ-
ent approaches. A recent work (Qiu et al., 2023) proposed using a weighted loss during last-layer
retraining that emphasizes high-loss examples, thereby implicitly upweighting minority groups. An-
other recent proposal (LaBonte et al., 2023) leverages predictive differences between ERM-trained
models and auxiliary regularized models to create balanced reweighting datasets. However, while
these approaches eliminate the need for group annotations during training, they still require access to
a group-annotated validation set for hyperparameter tuning—a requirement that can be prohibitive
in many real-world scenarios.

Our work is also closely related to GEORGE (Sohoni et al., 2022), which estimates group la-
bels through clustering and uses these estimates for group DRO (Sagawa et al., 2020). While
we build upon this clustering-based approach, LACER differs in several key aspects. First, un-
like GEORGE which performs complete model retraining, our approach follows the more efficient
last-layer retraining paradigm. Second, GEORGE employs over-clustering to discover minority
groups—potentially creating multiple clusters corresponding to majority groups—whereas LACER’s
loss-weighted clustering directly enables balanced group discovery. Additionally, while GEORGE
alternates between using UMAP or loss components depending on the benchmark for clustering, our
approach effectively combines both sources of information in its clustering formulation.

6 DISCUSSION

In this work, we presented LACER, a simple and effective improvement for last-layer retraining for
group robustness by combining two key insights: groups with performance disparities are separable
in the feature space, and minority examples typically have higher loss values under the final ERM
checkpoint. LACER significantly enhances our ability to build group robust models in domains
where group annotations are restricted due to cost, privacy or fairness concerns. Through extensive
experiments, we demonstrated our approach’s effectiveness in improving group robustness across
varying degrees of imbalance, with particularly strong performance in scenarios with high group
imbalance in the data distribution.

There are several important limitations of our work. First, while LACER reduces annotation re-
quirements compared to prior approaches, it still relies on the knowledge of the number of groups
present in the dataset. This requirement could limit applicability in scenarios without knowledge of
the underlying spurious correlations or group structure in the data.

Future work could explore extending our clustering approach to automatically discover spurious
correlations and the number of groups. Additionally, while we demonstrated LACER’s effectiveness
on image classification tasks, exploring its applicability to other domains such as text could further
broaden its impact.
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A LAST-LAYER RETRAINING

Last-layer retraining (LLR) has proven effective in improving group robustness of ERM-trained
models. In the second stage of our algorithm, we leverage the estimated group labels from the first
stage (§3.1) to construct a group-balanced reweighting dataset for LLR.

Following DFR, we apply ℓ1 regularization to encourage sparse solutions and eliminate irrelevant
features. We tune the regularization hyperparameter (λ) by splitting the validation set in half and use
one half to tune the regularization strength. After identifying the optimal regularization strength, we
train 20 different logistic regression models using distinct group-balanced reweighting datasets and
average the weights of the learned models to ensure robust performance.

B CLUSTERING DETAILS

Following the recommendation by McConville et al. (2021), we apply UMAP for dimensionality
reduction preceding clustering. We explore two sets of hyperparameters: embedding dimensions
of {10, 15} and number of neighbors of {5, 10}. The optimal configuration is selected based on
the silhouette score. More details about these parameters can be found here in UMAP Developers
(2025).
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