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Abstract

Traditional causal inference approaches leverage observational study data to determine an
individual’s outcome change due to a potential treatment, known as the Conditional Average
Treatment Effect (CATE). However, CATE is the comparison on the first moment and might
be insufficient in reflecting the full picture of treatment effects. As an alternative, estimating
the full potential outcome distributions could provide greater insights. However, existing
methods in estimating the potential outcome distributions often impose assumptions about
the treatment effect outcome distributions. Here, we propose Collaborating Causal Networks
(CCN), a novel methodology which goes beyond the estimation of CATE alone by learning the
full potential outcome distribution. Our proposed method facilitates estimation of the utility
of each possible treatment and permits individual-specific variation in utility functions (e.g.,
risk tolerance variability). CCN not only extends outcome estimation beyond traditional
risk difference, but also enables a more comprehensive decision making process through
definition of flexible comparisons. Under standard causal inference assumptions, we show
that CCN learns distributions that asymptotically capture the correct potential outcome
distributions. Furthermore, we propose an adjustment approach that is empirically effective
in alleviating sample imbalance between treatment groups in observational studies. Finally,
we evaluate CCN’s performance in multiple extensive experiments. We demonstrate CCN
learns improved distribution estimates compared to existing Bayesian and deep generative
methods as well as improved decisions on a variety of utility functions.

1 Introduction

Personalized medicine requires estimating how an individual’s intrinsic biological characteristics trigger
unique and heterogeneous responses to treatments (Yazdani & Boerwinkle, 2015). Under the causal inference
potential outcome framework (Imbens & Rubin, 2015), these treatment effects are characterized by the
difference between the conditional expectations of potential outcomes under different administered treatments,
known as the Conditional Average Treatment Effect (CATE). Since only the outcome for the assigned
treatment is observed, estimating CATE often requires inferring the missing potential outcomes (Ding &
Li, 2018). Recently, machine learning approaches have been applied to estimation of CATEs by extending
approaches such as Random Forests (Wager & Athey, 2018) and creating bespoke neural network frameworks
(Shalit et al., 2017; Shi et al., 2019).

However, CATEs do not necessarily align with optimal choices. In a decision theoretic framework, the
optimal decision maximizes the expected utility function U(γ) over the distribution of outcomes (Joyce,
1999). CATE is a special case with an identity utility function U(γ) = γ, but more general utility functions
require alternative estimation approaches. One approach to learn a decision maker is to optimize the function
with respect to transformed outcomes in accordance to the utility function as the objective function, known
as policy learning (Kallus & Zhou, 2018; Qian & Murphy, 2011). However, traditional policy learning
methods require the utility function to be pre-specified, whereas utility functions typically vary between
individuals Pennings & Smidts (2003). Defining proper losses with respects to complex decision criteria
could be challenging from both a theoretical as well as a computational standpoint. Moreover, if we also
want to account for an individual’s specific needs or to have a trained model generalize to new individuals
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with different utilities, traditional policy learning methods fall short. Previous efforts to estimate potential
outcome distributions include Bayesian Additive Regression Trees (BART) (Chipman et al., 2010; Hill,
2011), variational methods (Louizos et al., 2017), generalized additive models with location, shape and scale
(GAMLSS) (Hohberg et al., 2020), and techniques based on adversarial networks (Yoon et al., 2018; Ge
et al., 2020). Empirically, these techniques often impose explicit or implicit assumptions about the outcome
distributions (e.g., Gaussian errors), which may not match or align with the true data generating mechanism.

To address these issues, we propose a novel neural network-based approach, Collaborating Causal Networks
(CCN), to estimate the full potential outcome distributions, in turn providing flexible personalization and
valuable insights with regards to specific individuals. CCN modifies the structure of Collaborating Networks
(CN) (Zhou et al., 2021) to create a new causal framework that flexibly represents distributions. Under
standard causal inference assumptions, we prove that CCN asymptotically captures conditional potential
outcome distributions. We also introduce an adjustment method that alleviates effects of imbalance between
treatment groups, thus addressing a common confound that impairs model generalization. Empirically, this
adjustment method improves point estimates, distribution estimates, and decision-making.

We summarize the main contributions of our work below:

1. We propose the Collaborating Causal Networks (CCN) to estimate full potential outcome distributions.
2. We theoretically prove the asymptotic properties of CCN.
3. We propose an adjustment scheme that combines domain invariant, propensity-specific information

and propensity stratification to alleviate the effects of treatment group imbalance.
4. We propose and evaluate personalized utilities in decision making in causal inference, which is

practically more meaningful and addresses distinct user needs.
5. We empirically show that CCN improves conditional decisions in a potential outcomes framework.

2 Problem Statement

2.1 Notations

We define the covariates as X ∈ X ⊂ Rp. We assume a binary treatment condition and each unit is assigned
a treatment T ∈ {0, 1}. We choose the binary setup for clarity, and the multi-class case could be constructed
under the same framework. We let Y (0) ∈ R1 and Y (1) ∈ R1 represent the continuous potential outcomes
under the two treatments; Y (T ) is the observed outcome. We use lowercase letters with subscript i to denote
observations on each subject: {yi(1), yi(0), ti, yi(ti), xi}. Previously, a common goal is to estimate the CATE,
τ(xi) = E[Y (1)|X = xi] − E[Y (0)|X = xi]. In some of the existing literature, this is also referred to as the
Individual Treatment Effect (ITE), (Yao et al., 2018; Shalit et al., 2017). Due to the existence of unmeasured
features in practice, Vegetabile (2021) points out that τ(xi) is still an average, but taken over individuals
with same observed features. We adopt this rigor in definition and also describe the main objective of this
paper as to address the conditional causal inference.

Additionally, we wish to study a wider range of objectives beyond CATE. Specifically, our goal is to use the
incomplete data to infer the distributions on both potential outcomes, p(Y (0)|X) and p(Y (1)|X). Successful
estimation of these distributions enables us to explore personalized needs through the introduction of utility
functions U(γ) (Dehejia, 2005).

2.2 Utility Functions

We can vary the structure of utility functions to adapt to different levels of comparisons. They may be
described by four categories:

(i) unified utility: Eγ∼p(Y (1)|X)[U(γ)] − Eγ∼p(Y (0)|X)[U(γ)];

(ii) treatment-specific utility: Eγ∼p(Y (1)|X)[U1(γ)] − Eγ∼p(Y (0)|X)[U0(γ)];
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(iii) utility related to inherent feature: Eγ∼p(Y (1)|X)[U1(γ, X)] − Eγ∼p(Y (0)|X)[U0(γ, X)];

(iv) utility for personalized needs: Eγ∼p(Y (1)|X)[U1,i(γ, X)] − Eγ∼p(Y (0)|X)[U0,i(γ, X)].

From (i) to (iv), the scope of comparison is broadened. (iv) may or may not depend on X. A major distinction
between (iii) and (iv) is that, for subject with same feature X, (iv) allows the utility to differ in accordance to
personal preferences, which better aligns with the concept of personalized medicine. We note that U(γ) = γ
in (i) makes the objective CATE. Therefore, we view the incorporation of utility as forming a more general
framework.

(i), (ii) and (iii) may still be addressed and estimated directly by transforming outcomes in accordance to their
defined utilities (Kennedy, 2020). One shortcoming is that utility functions are often nonlinear in measured
outcomes in practice (Pennings & Smidts, 2003), and naively transforming the outcome such as for threshold
utility, U(γ) = 1γ>C could result in loss of information. On the contrary, estimating distributions not only
enables us to study (iv) but also retains all the information in the system during training.

Using estimated distributions to evaluate utility functions can be viewed as a two-step procedure or a
plug-in estimator, which might be less efficient than direct optimization in some cases (Bickel & Ritov, 2003).
However, its flexibility and adaptability in studying various types of utilities makes it advantageous for
practical purposes (Grunewalder, 2018).

2.3 Causal Assumptions

Like most causal methods, CCN relies on the standard strong ignorability and consistency assumptions
(Rosenbaum & Rubin, 1983; Hernan & Robins, 2020), to estimate the potential outcome distributions when
each datum only observes a single treatment outcome. They consist of three sub-assumptions:
Assumption 1 (Positivity or overlap). ∀X ∈ X ⊂ Rp, the probability of assignment to any treatment group
is bounded away from zero: 0 < Pr(T = 1|X) < 1.
Assumption 2 (Consistency). The observed outcome given a specific treatment is equal to its potential
outcome: Y |T, X = Y (T )|T, X.
Assumption 3 (Ignorability or Unconfoundedness). The potential outcomes are jointly independent of the
treatment assignment conditional on X: [Y (0), Y (1)] ⊥ T |X.

3 Collaborating Causal Networks

The CCN approach approximates the conditional distributions Y (0)|X and Y (1)|X. It uses a two-function
framework based on the Collaborating Networks (CN) method (Zhou et al., 2021). We choose to extend CN
to the causal setting because it automatically adapts to different distribution families, including non-Gaussian
distributions. We first give an overview of CN, then present CCN, and finally introduce our adjustment
strategies. Proofs of all theoretical claims are in Appendix A.

3.1 Overview of Collaborating Networks

CN estimates the conditional distribution, Y |X, with two neural networks: a network g(Y, X) to approximate
the conditional CDF, Pr(Y < y|X), and a network f(q, X) to approximate its inverse. Information sharing is
enforced by the fact that the CDF and its inverse are an identity mapping for any quantile q: g(f(q, x), x) = q.
The networks form a collaborative scheme with their respective losses,

g-loss : Eq,y,x

[
ℓ(1y<f(q,x), g(f(q, x), x))

]
, (1)

f-loss : Eq,x

[
(q − g(f(q, x), x))2]

. (2)

The quantile q is randomly sampled (e.g., q ∼ Unif(0, 1)). ℓ(·, ·) represents the binary cross-entropy loss.
The parameters for f and g are only updated with their respective losses.

When trained with equation 1 and equation 2, a fixed point of the optimization is at the true conditional
CDF and its inverse (Zhou et al., 2021). In this framework, g(·) is the main function which only relies on the
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Figure 1: 1(a) depicts how two sources of information could impact Y . 1(b) visualizes the FCCN network.
1(c) depicts how the trained g0 and g1 functions can be used to sketch the underlying CDFs of Y (0)|X and
Y (1)|X.

auxiliary function f(·) to extensively search and cover the full outcome space to attain optimality. On the
other hand, f(·)’s optimality depends on an optimal g(·), as it acquires information solely through inverting
g(·). Zhou et al. (2021) shows that f(·) can be replaced by other space searching tools, including prefixed
uniform distributions, which may result in a minor performance loss in favor of ease of optimization. This
ease of optimization can be especially beneficial when combining CN with other regularization terms.

Thus, we focus only on extending g(·) and g-loss for causal inference. We replace f(q, x) with a variable z as
a general form of a space searching tool, such as a uniform distribution covering the range of the observed
outcomes. We simplify the g-loss to

g-loss : Ey,x,z [ℓ(1y<z, g(z, x))] . (3)

In practice, equation 3 is replaced with an empirical approximation.

3.2 Causal Inference Formulation

Following the taxonomy of Künzel et al. (2019), CN can be extended to an “S-learner,” where the treatment
label is included as an additional covariate and thus is more scalable for multiple treatment groups, or to a
“T-learner,” where the outcome under each treatment arm is estimated separately.

Below, we give the T-learner extension of the CN. Its S-learner counterpart could be formulated similarly.
Based on equation 3, we define a network for each group g0(·) and g1(·), with the corresponding loss as
combining the losses of two groups.

g-loss∗ = Ey(t=0),x,z

[
ℓ(1y(t=0)<z, g0(z, x))

]
+ Ey(t=1),x,z

[
ℓ(1y(t=1)<z, g1(z, x))

]
. (4)

We call this framework the Collaborating Causal Networks (CCN). Under Assumptions 1, 2 and 3, CCN’s
fixed point solution and consistency still hold regardless of the treatment group imbalance.

To summarize, Assumption 2 connects the conditional distribution, Y |X, T , to the potential outcome
distribution Y (T )|X, T in each treatment space: p(X|T = 0) and p(X|T = 1). Assumption 1 guarantees that
despite the treatment group imbalance: p(X|T = 1) ̸= p(X|T = 1) ̸= p(x), each treatment space can still has
sufficient coverage of the full space p(x) given enough samples. Lastly, Assumption 3 generalizes the potential
outcome distributions from each space Y (T )|X, T to the full space Y (T )|X. Given our assumptions, we state:
Proposition 1 (Optimal solution for g0 and g1). When the support of the outcomes is a subset of the support
of z, or as z covers the whole outcome space, the functions g0 and g1 that minimize g-loss∗ are optimal when
they are equivalent to the conditional CDF of Y (0)|X = x and Y (1)|X = x, ∀x such that p(x) > 0.
Proposition 2 (Consistency of g0 and g1). Assume the ground truth CDF functions for T ∈ {0, 1} is Lipschitz
continuous with respect to both the feature X and the potential outcomes {Y (0), Y (1)}, and the support of the
outcomes is a subset of the support of z. Denote the ground truth functions as g∗

0 and g∗
1 . As n → ∞, the
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finite sample estimators gn
0 and gn

1 have the following consistency property: d(gn
0 , g∗

0) →P 0; d(gn
1 , g∗

1) →P 0
under some metrics d, such as the L1 norm.

Taken together, these propositions state that the CDF estimators g0 and g1 inherit the large sample properties
from CN for estimating potential outcome distributions. Detailed proofs are provided in Appendix A. Though
the consistency is only claimed for the true functions from Lipschitz family, we regard it to be a reasonable
assumption, as the Lipschitz family can provide good approximation to a wide range of functions (Sohrab,
2003), especially considering the boundedness of CDFs between (0, 1). In practice, our approximation functions
are represented by generic neural networks, which allow for additional flexibility.

3.3 Adjustment for Treatment Group Imbalance

One obstacle in observational studies is the treatment group imbalance, where the distributions of the covariate
spaces p(x|T = 0) and p(x|T = 1) differ significantly. It creates two major issues for causal predictions:
generalization over different treatment spaces and confounding effects. In the asymptotic regime (Proposition
2), this imbalance is less problematic since overlap (Assumption 1) ensures all regions with positive density
will eventually be densely covered with samples. For finite samples, this imbalance hurts inference. Thus, we
pair our method with an adjustment scheme to address this challenge.

We encode the covariates into a space that facilitates the generalization between spaces and adjusts for
confounding effects simultaneously. The new space is represented as S = [ϕW (X), ϕA(X), e(ϕA(X))]. Two
neural networks, ϕW (·) : Rp → RqW and ϕA(·) : Rp → RqA transform the input X ∈ Rp into qW - and
qA-dimensional latent spaces. In Figure 1(a), they correspond to two sources of information that possibly
impact the outcome. One is invariant between the treatment groups (domain invariant) and the other is
specific to the differences between the treatment spaces (domain specific) (Shalit et al., 2017; Ben-David
et al., 2010). The invariant component ϕW (·) finds a more balanced representation between spaces that
benefits generalization, while the specific component ϕA(·) controls for confounding effects through learning
the treatment assignment mechanism. Additionally, a neural network e(·) : RqA → [0, 1] uses the output of
ϕA(·) to predict the propensity of treatment assignment, Pr(T = 1|X = x). While e(ϕA(X)) seems redundant
given ϕA(X), including e(ϕA(X)) in the covariate space encourages propensity score stratification (Hahn
et al., 2020).

Domain-invariance is encouraged in the space ϕW (·) through a penalty on the Wasserstein distance (Wass-loss)
between the two treatment arms, and [ϕA(·), e(·)] is encouraged through a cross-entropy loss on the assigned
treatment labels (Assign-loss), as detailed in Sections 3.3.1 and 3.3.2, respectively. If both approaches were
encouraged by a single network, they would simply compete with each other. We denote the g-loss∗ trained
on this representation space as g-loss∗

pro. The representations [ϕW (·), ϕA(·), e(·))] with their respective losses
are incorporated as regularization terms. This framework is sketched in Figure 1, and the full loss can be
expressed as the sum of g-loss∗

pro,

L(g0, g1, ϕW , ϕA, e) = g-loss∗
pro(g0, g1, ϕW , ϕA, e) + αWass-loss(ϕW ) + βAssign-loss(ϕA, e). (5)

The tuning parameters α and β adjust the relative importance of the losses during learning. Empirically, we
have found performance to be robust to selection of these hyperparameter values.. We call this full adjustment
CCN (FCCN).

3.3.1 Wass-loss to Alleviate the Covariate Space Imbalance (Domain Invariant)

The introduction of Wass-loss is motivated by CounterFactual Regression (CFR) implemented with the
Wasserstein distance (Shalit et al., 2017). CFR is a causal estimator based on representation learning
ϕW (·) : Rp → RqW . The goal is to find latent representations where p(ϕW (x)|T = 1) and p(ϕW (x)|T = 0)
are more balanced or domain invariant than the original space. We use the Wasserstein-1 distance, which
represents the total “work” required transform one distribution to another (Vallender, 1974). Through the
Kantorovich-Rubinstein duality Villani (2008), this distribution distance is,

W (Pa,Pb) = sup∥D∥L≤1 Ex∼Pa [D(x)] − Ex∼Pb
[D(x)].
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∥D∥L ≤ 1 represents the family of 1-Lipschitz functions. We approximate this distance by adopting the
approach of Arjovsky et al. (2017). This turns into the following min-max regime,

Wass-loss : max
D

min
ϕW

Et[(−1)tEx∼p(x|t)[D(ϕW (x)]].

D(·) is parameterized by a small neural network, and the Lipschitz constraint on D is enforced through
weight clipping. The Wass-loss penalizes differences in the latent space between the treatment and control
group, which improves generalization between groups.

3.3.2 Assign-loss and propensity stratification for confounding effects (Domain Specific)

The introduction of Assign-loss is inspired by Dragonnet (Shi et al., 2019), a deep learning method that
learns a latent representation for treatment assignment mechanism to control for confounding effects. It is
defined as a binary cross-entropy loss on predicting the treatment assignment label with e(ϕA(x)),

Assign-loss : −Et,x [t log(e(ϕA(x)) + (1 − t) log(1 − e(ϕA(x))] .

We additionally incorporate the estimated propensity e(ϕA(x)) directly into our covariate space. Using
propensity scores in the predictive model is a form of continuous stratification to reduce the bias of estimation
by facilitating information sharing within sample strata created by e(ϕA(x)) (Hahn et al., 2020).

4 Related Work

CATE estimation. A common approach to estimate CATEs with machine learning is matching, which
identifies pairs of similar individuals (Rubin, 1973; Rosenbaum & Rubin, 1983; Li & Fu, 2017; Schwab et al.,
2018). This idea motivates many tree-based methods that identify similar individuals within automatically-
identified regions of the covariate space (Liaw & Wiener, 2002; Zhang & Lu, 2012; Athey & Imbens, 2016;
Wager & Athey, 2018).

Deep learning methods are also common to predict CATEs. As previously mentioned, these include networks
with additional loss terms to encourage a treatment-invariant space (Johansson et al., 2020; 2016; Du et al.,
2019) and networks that explicitly encode treatment propensity information (Shi et al., 2019). Representation
learning can be combined with weighting strategies to enforce covariate balance (Assaad et al., 2021;
Hassanpour & Greiner, 2019; 2020a). Despite some of the resemblance in learning the feature embedding, this
manuscript performs extensive ablation study to support and justify that each of our adjustment components
leads to increased robustness. Additionally, these methods largely focus on estimating only the CATEs (with
some exceptions noted below), which may be insufficient to reflect the full picture of different treatment
regimes (Park et al., 2021). In contrast, CCN estimates full distributions to assess the utility and confidence
of a decision.

Potential outcome distribution sketching. Bayesian methods have been used to estimate outcome
distributions, including methods such as Gaussian Processes (Alaa & van der Schaar, 2017), Bayesian dropout
(Alaa et al., 2017), and Bayesian Additive Regression Trees (BART) (Chipman et al., 2010). BART has
gained popularity in recent years and has been the focus of further modifications, including variations to
account for regions with poor overlap (Hahn et al., 2020). However, Bayesian methods can suffer under model
mis-specification (Walker, 2013), such as mismatch between the assumed and true outcome distributions.
Bayesian methods have also been integrated with deep learning, such as the Causal Effect Variational
Autoencoder (CEVAE) and its extensions (Louizos et al., 2017; Jesson et al., 2020); hybrid architectures are
sometimes adopted to account for certain types of missing data mechanisms (Hassanpour & Greiner, 2020b).

Frequentist approaches can achieve flexible representations of distributions. A well-known adaptation is the
Generalized Additive Model with Location, Scale and Shift (GAMLSS), which estimates the parameters for a
baseline distribution with up to three transformations given a specific distribution family (Briseño Sanchez
et al., 2020; Hohberg et al., 2020). The CDF may also be estimated nonparametrically by adapting density
estimation methods such as nearest neighbors (Shen, 2019), which is less reliable in areas of treatment group
imbalance due to sparse samples. GAN-inspired methods, including GANITE (Yoon et al., 2018), can also
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learn non-Gaussian outcome distributions. There is emerging literature on conformal prediction in treatment
effect estimation (Lei & Candès, 2020; Chernozhukov et al., 2021). However, conformal prediction only learns
a specific level of coverage and its coverage probabilities are proven for marginal rather than conditional
distributions.

Policy learning and utility functions. A key purpose of estimating the conditional causal effect is to
serve decision making. A common strategy called policy learning is to express the policy as a function
of the feature space and learn the policy to optimize a pre-defined utility (Kallus & Zhou, 2018; Qian &
Murphy, 2011; Bertsimas et al., 2017; Beygelzimer & Langford, 2009). This involves transforming observed
outcomes in accordance to the pre-defined utility as the new objective for optimization. Traditionally, utilities
studied in policy learning are linear transformation of the potential outcomes, which can be described as
the difference between the benefit and cost (Athey & Wager, 2021). However, when we are presented with
threshold based utilities, transforming the observed outcomes may be subject to information loss according
to the Data Processing Inequality (Beaudry & Renner, 2012) (e.g., binarization of a continuous variable
greatly reduces information). Additionally, policy learning can only study one pre-specified utility at a time,
whereas a trained potential outcome distribution estimator can serve as a one-stop shop to explore a myriad
of personal utility functions.

5 Experiments

We follow established literature and use semi-synthetic scenarios to assess conditional causal effects. First, we
use the Infant Health and Development Program (IHDP) (Hill, 2011), where the outcome of each subject is
simulated under a standard Gaussian distribution with a heterogeneous treatment effect. This first situation
describes an ideal scenario for many methods, including BART. The second example is based on a field
experiment in India studying the impact of education (EDU). In this case, we synthesize each individual
outcome with heterogeneous effect and variability using a non-Gaussian distribution. The semi-synthetic
procedures are briefly outlined below with full details in Appendix B. We additionally provide evaluations on
a number of different synthetic outcome distributions to compare methods under different scenarios, including
multi-modal distributions and many different distribution families.

We include our base approach, CCN, and its adjusted version, FCCN. We compare it to existing approaches
that estimate potential outcome distributions, including Bayesian approaches (CEVAE (Louizos et al., 2017),
BART (Hill, 2011)), a frequentist approach, GAMLSS (Hohberg et al., 2020), and a GAN-based approach,
GANITE (Yoon et al., 2018). Causal Forests (CF) (Wager & Athey, 2018) is benchmarked for non-distribution
metrics as a popular recent CATE-only method. GAMLSS’s flexibility and strength in estimating distributions
is dependent on a close match to the true distribution families, which is rarely known in practice. However, we
evaluate GAMLSS where it is provided the closest possible distribution, meaning that GAMLSS is provided
more information than any other method. We also benchmark the proposed approaches against policy learning
approaches on decision-making metrics. To fully understand the impact of the various adjustments in FCCN
compared to CCN, we run ablation studies and evaluate the performance over a suite of hyperparameters for
tuning the adjustment.

Detailed specifications for all models are given in Appendix C. We use a standard neural network architecture
for CCN, but detail an alternative structure that enforces a monotonic constraint in Appendix D. Code to
replicate all experiments has been included, which will be released with an MIT license if accepted.

5.1 Metrics

We evaluate mean estimates via Precision in Estimation of Heterogenous Effect (PEHE) and the full
distribution by estimating the log-likelihood (LL) of the potential outcomes. LL is regarded as the key metric
since it evaluates full distributions. In addition, we evaluate how well each method makes decisions by the
Area Under the Curve (AUC) for chosen utility functions to show that improved distributional estimates lead
to improved decisions.
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Precision in Estimation of Heterogeneous Effect (PEHE): We adopt the definition in Hill (2011). For unit i
and the covariates xi, we have the CATE and its estimates as τ(xi) = E[Y (1)|X = xi] − E[Y (0)|X = xi] and

τ̂(xi). PEHE measures their distance: PEHE =

√
N∑

i=1
[(τ̂(xi) − τ(xi)]2/N .

Log Likelihood (LL): Log likelihood measures how well each method models potential outcome distributions. It
is normally based on evaluating the PDF functions at the observed points. However, closed-form distributions
are not directly available for sampling based approaches such as the variants of CCN and GANITE. Instead,
we approximate the LL by calculating the probability on a neighborhood of the realized outcome y, By,ϵ =

(y − ϵ, y + ϵ), where ϵ is a small positive value. LL =
1∑

t=0

N∑
i=1

log(P̂ r[Yi(t) ∈ Byi(t),ϵ|Xi = xi])/2N .

Asymptotically, the true distribution dominates in this evaluation, and this can be shown under the criterion
of Kullback–Leibler divergence (Kullback & Leibler, 1951) as N → ∞ and ϵ → 0. We define ϵ = 0.5 for IHDP
and ϵ = 0.2 for EDU to adjust for the scale of the outcomes.

Area Under the Curve (AUC): As mentioned in 2.2, personalized decisions can be described by the quantity:
τ(xi, U0,i, U1,i) = Eγ∼p(Y (1)|X=xi)[U0,i(γ, xi)] − Eγ∼p(Y (0)|X=xi)[U1,i(γ, xi)]. The optimal decision is based
on the sign of this contrast 1τ(xi,U0,i,U1,i), which is regarded as the true label. Then, using the estimated
contrast τ̂(xi, U0,i, U1,i) as the decision score, we can estimate the AUC by varying the decision threshold.

5.2 IHDP

The Infant Health and Development Program (IHDP) describes a randomized experiment and is converted to
an observational study by removing a nonrandom portion from the treatment group. We use the response
surface B in Hill (2011) for heterogeneous treatment effect. The study consists of 747 subjects (139 in the
treated group) with 19 binary and 6 continuous variables (xi ∈ R25). We utilize 100 replications of the data
for out-of-sample evaluation by following the simulation process of Shalit et al. (2017).

The quantitative results are summarized in Table 1. Overall, CCN outperforms other competing methods
in both mean and distribution metrics. The advantages of combining the adjustment strategy is evident as
FCCN improves over CCN by a large, clear margin. It is worth noting that LL calculated under the ground
truth model is -1.41, demonstrating that FCCN is highly effective in capturing the true distributions.

Table 1: Quantitative results on IHDP. Each metric’s mean and standard error are reported. FCCN
outperforms CCN in all metrics with statistical significance. *GANITE is only used for estimating the CATE
as it is relatively challenging to optimize for this small dataset according to Yoon et al. (2018).

Metrics/Method CCN FCCN GANITE CEVAE BART GAMLSS CF
PEHE 1.59 ± .16 1.13 ± .14 2.40 ± .40 2.60 ± .10 2.23 ± .33 3.00 ± .39 3.52 ± .57
LL -1.78± .02 -1.62± .02 * -2.82 ± .08 -1.99 ± .08 -2.34 ± .13 NA
AUC (Linear) .925 ± .011 .942 ± .010 .723 ± .017 .523 ± .008 .923 ± .009 .930 ± .10 .896 ± .009
AUC (Threshold) .913 ± .011 .935 ± .010 * .564 ± .010 .917 ± .009 .925 ± .10 NA

We evaluate two sets of utility functions: a linear utility U0(γ) = γ, U1(γ) = γ − 4 and a non-linear utility
with U0,i(γ, xi) = 1γ>E[Y (0)|X=xi] and U1,i(γ, xi) = 1γ>(E[Y (0)i|X=xi]+4), as the ATE for surface B is 4 (Hill,
2011). Table 1 shows AUC (Linear) and AUC (Non-Linear) corresponding to two utilities, demonstrating
that CCN’s improved distribution estimates contribute to more accurate decisions, despite the fact that a
homoskedastic Gaussian distribution is well matched to the specifications in BART and GAMLSS.

The evaluations of all these metrics can be regarded as a plug-in process for distribution estimators. We
notice that PEHEs of these distribution methods may not be as competitive as some of the state-of-the-art
CATE estimators (Shalit et al., 2017; Hassanpour & Greiner, 2020a), as optimizing the mean is simpler and
has an exact match with this metric. The strategy of estimating distributions can flexibly be adapted to
various comparisons with trained models.
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Comparison to Policy Learning. We next compare the proposed approaches to a policy learning approach,
specifically policytree (Sverdrup et al., 2021), with full details in Appendix F. Policy learning is limited to
pre-specified utility functions, so we set up two scenarios: one with a linear utility (U0(γ) = γ, U1(γ) = γ − 4),
and one with a threshold (binary) utility (U0(γ) = 1γ>E[Y (0)], U1(γ) = 1γ>E[Y (1)]). Since policytree only
outputs its predicted optimal treatment, we compare on accuracy (predicted vs true optimal treatment). On
the IHDP dataset, FCCN performs well on both with 88.6% and 87.72% accuracy, respectively. However,
policytree’s accuracy drops from 76.9% to 57.6% when we switch to the threshold utility, signifying how much
information is lost from the system by binarizing the outcomes.

5.3 EDU

The EDU dataset is based on a randomized field experiment in India between 2011 and 2012 (Banerji et al.,
2017; 2019). The experiment studies whether providing a mother with adult education benefits their children’s
learning. We define the binary treatment as whether a mother receives adult education and the continuous
outcome as the difference between the final and the baseline test scores. After the preprocessing described in
Appendix B, the sample size is 8,627 with 18 continuous covariates and 14 binary covariates, xi ∈ R32.

We create a semi-synthetic case over the two potential outcomes by the following procedures. We first
train two neural networks, fŷ0(·), fŷ1(·), on the observed outcomes for the control and treatment groups.
The uncertainty model for the control and treatment group are based on a Gaussian distribution and an
exponential distribution, respectfully, which helps showcase that CCN and FCCN can automatically adapt
to different distribution families. We represent si as an indicator of whether the mother has received any
previous education, as we hypothesize the variability is higher for the mothers not educated previously. Then
the potential outcomes are synthesized as,

Y (0)i|xi ∼ fŷ0(xi) + (2 − si)N(0, .52); Y (1)i|xi ∼ fŷ1(xi) + (2 − si)Exp(2).

The treatment group imbalance comes from two aspects. One is from a treatment assignment model with
propensity Pr(Ti = 1|xi) = 1/[1 + exp(−xT

i β)] where we assign large coefficients in β to add imbalance. The
other is from truncation, as we remove well-balanced subjects with estimated propensities in the range of
0.3 < Pr(Ti = 1|xi) < 0.7. We keep 1,000 samples for evaluation and use the rest for training. The full
procedure is repeated 10 times for variability assessment.

The utility function is customized for each subject to mimic personalized decisions. For subject i, U0,i(γ, xi) =
I(γ > vi), and U1,i(γ, xi) = I(γ > vi + 1 − si) where vi ∼ U(0, 1.5). The interpretation of this utility is
that different mothers have different expectations of their children’s improvements with threshold vi. For
the mothers without previous education, their expectations are higher by 1. This design coincides with the
expectation that the education should have a positive effect on outcomes in exchange for a finite cost, and we
would only invest in the intervention for a positive return. Results from this experiment are summarized
in Table 2. Both CCN-based methods flexibly model different distributions, with FCCN providing clear
improvement over CCN.

Table 2: Quantitative results on the EDU dataset. FCCN outperforms CCN in all metrics with statistical
significance.

Metrics/Method CCN FCCN GANITE CEVAE BART GAMLSS CF
PEHE .392 ± .049 .296 ± .042 1.253 ± .181 1.911 ± .351 .534 ± .042 .314 ± .053 1.022 ± .051
LL -2.178 ± .024 -2.125± .022 -5.092 ± .596 -3.558 ± .055 -2.443 ± .063 -2.250 ± .025 NA
AUC .933 ± .026 .953 ± .014 .760 ± .053 .622 ± .039 .906 ± .015 .941 ± .010 NA

Making an optimal decision is highly dependent on how close a method’s estimated distribution aligns with
the true values and all relevant heterogeneity. Thus, the AUCs follow their respective LLs with the CCN
based methods performing better. CEVAE has two facets of misspecification that hurt performance: (i) its
homogeneous Gaussian error, whereas the real outcomes come from heteroskedastic Gaussian or exponential
distributions, and (ii) it decodes the continuous covariates into a Gaussian distribution. Hence, CEVAE
captures the marginal distributions well but does not provide helpful personalized suggestions.
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Figure 2: Visualization of a random sample of EDU. FCCN closely follows the theoretical curve and the rest
diverge.
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(b) FCCN
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(c) GANITE

Figure 3: The estimated versus true 90% interval widths given the four combinations of T and S. GANITE
reflects the main trend of how uncertainties change with T and S. FCCN can clearly discern the four
scenarios by aligning its estimated interval widths and the true interval widths. Additional visualizations are
in Appendix J.

Next, we randomly draw a data sample and compare the estimated CDFs against the true CDFs in Figure 2
(see Figure S1 for additional samples). We find that CCN-based approaches are capable of faithfully recovering
the true conditional CDFs, whereas the other methods have gaps in their estimation. GAMLSS is accurate
on the control group but not the treatment group. This is partly due to gamlss package (Stasinopoulos et al.,
2021) not supporting the exponential distribution with location shift, so skewed normal is chosen as the
closest reasonable substitute. Overall, GAMLSS is flexible but requires precise specification on a case-by-case
basis, whereas CCN can robustly use the same approach. In our experiments for GAMLSS, we must choose
very close distributions and limit the uncertainty to the relevant variables or the package does not converge.
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(f) GAMLSS

Figure 4: Visualization of each method’s estimated density of the potential outcomes. Variants of CCN
outperform other methods with a clear margin. GANITE is aware of certain mixture here. As its objective
makes a trade-off between GAN loss and supervised loss, it is not guaranteed to approximate the true
distributions.

Lastly, we assess whether the heteroskedasticity of the outcomes is captured. The combination of S = 0, 1
and T = 0, 1 produces four uncertainty models. We visualize the predictive 90% interval widths in Figure
3. FCCN captures the bimodal nature of the interval widths. In contrast, GANITE only captures a small
fraction of the difference between the low and high variance cases. Both CEVAE (Louizos et al., 2017) and
BART (Hill, 2011) fail to capture the heteroskedasticity and are not shown. For GAMLSS, we explicitly
feed its uncertainty model with only T and S for it to converge effectively. It does not produce variability in
interval widths. In summary, the true interval widths for four combinations are 1.47, 1.64, 2.94 and 3.29,
while GAMLSS reports 0.92, 1.52, 3.37 and 3.37. Overall, CCN and its variants produce higher quality
ranges.

5.4 Additional Comparisons and Properties

In this section, we include several additional experiments to reflect other properties of CCN and its adjustment
to demonstrate their advantages in estimating the potential outcome distributions.

5.4.1 Estimating Multimodal Distributions

A fundamental reason that we choose to extend CN to estimate potential outcome distributions is its
adaptability to different outcome families. We demonstrate this with an example from a multi-modal
distribution. Many of other methods, including GAMLSS, BART, and CEVAE, cannot capture it with their
existing structure, whereas CCN, FCCN, and methods like GANITE can. To succinctly summarize this
experiment, only CCN and FCCN naturally adjust to the multi-modal space, as shown briefly in Figure
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4. GANITE is aware of the mixtures but does weight them well. The other algorithms do not capture the
mixture model. The data generating process is described in Appendix H.

5.4.2 Additional Distribution Tests

Next, we sketch out how different methods work on a variety of outcome distributions, including Gumbel,
Gamma, and Weibull distributions, with full details in Appendix G. The results in Table 3 are qualitatively
similar to the previously presented semi-synthetic cases, where CCN straightforwardly adapts to these
distributions and FCCN provides additional improvements. In fact, FCCN even slightly outperforms
GAMLSS even when GAMLSS is provided the true outcome distribution. When GAMLSS is given a flexible
but not perfectly matched outcome distribution, it does not come close to the CCN approach.

Table 3: The estimated LL under different simulated distributions.1 and 2 represent fitting GAMLSS with
the true family and heterosekdastic Gaussian, respectively.

True Value CCN FCCN BART GAMLSS1 GAMLSS2

Gumbel -2.87 -3.67 ± .02 -3.56 ± .02 -3.92 ± .06 -3.67 ± .02 -3.90 ± .05
Gamma -3.17 -3.83 ± .04 -3.74 ± .06 -3.97 ± .02 -3.77 ± .02 -3.95 ± .02
Weibull -2.87 -3.41 ± .02 -3.32 ± .03 -3.86 ± .12 -3.32 ± .04 -3.71 ± .09

5.4.3 Sample Size and Convergence
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Figure 5: Sample size and convergence rate.

As suggested in Proposition 2, CCN can asymptotically
estimate the optimal value given large sample size. We
create an example with the logistic distribution to visualize
it. The data generating process is described in Appendix I.

We vary the input data size and compare all methods on log-
likelihood in Figure 5. We note that CCN and its variants
can all approach the optimal value. All adjusted versions of
CCN present faster convergence rates with FCCN dominat-
ing the curve. Gaussian methods (CEVAE, BART) provide
more stable approximations in smaller samples. Due to
distributional mismatch, the optimal value can not be at-
tained by those methods. Though GAMLSS has the correct
family specification, it is restrained by the flexibility of the
additive model to approach the optimal value. GANITE progresses slower and needs over 15,000 samples to
generate competitive results.

5.4.4 Ablation Study

We include three components to account for the treatment group imbalance in our adjustment scheme. They
are the Assign-loss (Assignment), the Wass-loss (Wass), and the propensity stratification (PS). Below, we
inspect how CCN empirically benefits from each component. Additional details and visualizations can be
found in Appendix J.

Table 4 and 5 summarize the results on the evaluating metrics in both the IHDP and EDU datasets. Overall,
variants of CCN with adjustment more accurately estimate the potential outcomes. However, the aspects on
how these components contribute vary by their attributes. The propensity score stratification mainly facilitates
information sharing between strata (Lunceford & Davidian, 2004), hence it excels in the IHDP dataset
where the imbalance is caused by removing a specific subset from the treatment group. However, on the
conditional level, the stratification can be regarded as a form of aggregation, which might hinder the precision.
Hence, we do not see much gain in distribution based metrics or personalized decisions by solely including
the propensity. The Assign-loss overcomes the confounding effect by extracting representation relevant to
confounding effects, and we observe that it effectively increases the model performance in all metrics. The
combination of Assign-loss and propensity stratification displays the merits of these two approaches. The
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(c) Adding irrelevant covariates

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Coefficient of Propensity Model

3.5

3.0

2.5

2.0

1.5

 E
st

im
at

ed
 L

L
CCN
Assign
PS
Assign+PS
WASS
FCCN

(d) Varying the coefficient of the propensity model

Figure 6: The estimated LL in different scenarios. 6(a) demonstrates the differences in convergence speed
of CCN and its variants with increased sample size. 6(b) depicts the performance of CCN’s variants given
different values of tuning parameters. 6(c) and 6(d) exemplify that adding noises or treatment group imbalance
worsens the model performance. Under different circumstances, FCCN remains the most robust.

Wass-loss finds a representation that balances the treatment and control groups and improves both point
and distribution estimates in the two datasets. Nevertheless, it does not account for the domain specific
information (Shi et al., 2019). FCCN wins in all cases by a clear margin.

Table 4: Quantitative results on the IHDP dataset regarding different variants of CCN.
Metrics/Method CCN Wass Assign PS Assign+PS FCCN
PEHE 1.59 ± .16 1.32 ± .17 1.42 ± .25 1.15 ± .10 1.22 ± .15 1.13 ± .14
LL -1.78 ± .02 -1.65± .02 -1.64± .03 -1.67 ± .15 -1.65 ± .02 -1.62 ± .02
AUC (Linear) .925 ± .011 .938 ± .010 .940 ± .010 .918 ± .012 .940 ± .010 .942 ± .010
AUC (Threshold) .913 ± .011 .932 ± .011 .932 ± .011 .911 ± .012 .934 ± .011 .935 ± .010

Table 5: Quantitative results on the EDU dataset regarding different variants of CCN.
Metrics/Method CCN Wass Assign PS Assign+PS FCCN
PEHE .392 ± .049 .324 ± .046 .343 ± .041 .400 ± .052 .339 ± .039 .296 ± .042
LL -2.178 ± .024 -2.128± .020 -2.132± .023 -2.171 ± .024 -2.129 ± .029 -2.125 ± .022
AUC .933 ± .026 .951 ± .013 .946 ± .018 .932 ± .022 .952 ± .019 .953 ± .014

Moreover, we study different adjustment components in different scenarios in Figure 6. Figure 6(a) shows
that CCN and its variants all asymptotically approach the optimal value with FCCN being the quickest.
Figure 6(b) is made by varying the value of α or β. It suggests that too large or small tuning parameters are
more likely to hurt the models with only single adjustment component, while FCCN is more robust against it.
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Figure 6(c) describes a case where irrelevant dimensions with standard Gaussian distributions are added to
the covariate space. We observe that adding noise worsens the performance. The Assign-loss in this case is
more likely to overfit the propensity model with extra covariates containing noises only. Hence, adjustment
through WASS-loss is preferable. In Figure 6(d), we vary the propensity model by changing its coefficient.
Larger values represent less balanced space and larger confounding effects. In this setup, the Assign-loss is
slightly better when the imbalance is more extreme, as a balanced representation becomes more challenging
to obtain. Among them, FCCN is the most robust due to simultaneously considering the domain invariant
and specific information.

6 Discussion

Here, we propose Collaborating Causal Networks (CCN): a novel framework to estimate conditional potential
outcome distributions, backed by theoretical proofs and paired with an adjustment method that rectifies
treatment group imbalance. Our experiments demonstrate that CCN automatically adapts to a variety of
outcomes, including exponential family distributions and multi-modal distributions. Empirically, we show that
CCN is effective in inferring full potential outcomes. Additionally, incorporation of our proposed adjustment
technique in FCCN is relatively robust with regard to treatment group imbalance in semi-synthetic and
synthetic experiments. We note that improving distribution estimates leads to improved decision-making even
without a priori access to utility functions by comparing to policy learning. In all of our evaluations, FCCN
meets or exceeds the current state-of-the-art methodology for potential outcomes distribution estimation,
and asymptotically approaches our theoretical claims.
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A Proofs of Propositions 1 and 2

Zhou et al. (2021) assumes that the covariate distributions are the same for training and generalization for
CN. In observational studies, the training spaces p(x|T = 1) and p(x|T = 0) differ from the evaluation space
p(x). Hence, the central challenge of migrating CN’s properties to CCN is to show its robustness to the
covariate space mismatch.

First, we explore the properties of CN and CCN under the presence of covariate space mismatch. Second, we
expand on how CCN with standard causal assumptions can overcome the covariate space mismatch in causal
setups.

To make this section self complete, we restate the two propositions from the main article. Note that they are
both claimed on the full covariate space, ∀x such that p(x) > 0.

Proposition 1 (Optimal solution for g0 and g1). When the support of the outcomes is a subset of the support
of z, or as z covers the whole outcome space, the functions g0 and g1 that minimize g-loss∗ are optimal when
they are equivalent to the conditional CDF of Y (0)|X = x and Y (1)|X = x, ∀x such that p(x) > 0.

Proposition 2 (Consistency of g0 and g1). Assume the ground truth CDF functions for T ∈ {0, 1} is
Lipschitz continuous with respect to both feature X and the potential outcomes, and that the support of the
outcomes is a subset of the support of z. Denote the ground truth as g∗

0 and g∗
1 . As n → ∞, the finite sample

estimators gn
0 and gn

1 have the following consistency property: d(gn
0 , g∗

0) →P 0; d(gn
1 , g∗

1) →P 0 under some
metric d such as L1 norm and with the space searching tool z being able to cover the full outcome space.

A.1 Claims from Zhou et al. (2021) with and without Space Mismatch

We first restate two similar propositions in CN under the non-causal setting where there is no space mismatch
between the training and the evaluation spaces.
Proposition S1 (Optimal solution for g from Zhou et al. (2021)). Assume that f(q, x) approximates the
conditional qth quantile of Y |X = x (inverse CDF, not necessarily perfect). If f(q, x) spans R1, then a g
minimizing equation 1 is optimal when it is equivalent to the conditional CDF, or Y |X = x ∼ g(Y, x), ∀x
such that p(x) > 0.
Proposition S2 (Consistency of g from Zhou et al. (2021)). Assume the true CDF function g∗ satisfies
Lipschitz continuity with respect to x and outcome y. As n → ∞, the finite sample estimator gn has the
following consistency property: d(gn, g∗) →P 0 under some metric d such as L1 norm and with f capable of
searching the full outcome space.

Proposition S1 demonstrates that a fixed point solution estimates the correct distributions. Proposition S2
states that the optimal learned function asymptotically estimates the true distributions.

However, they do not answer whether these properties hold on a new space that differs from the original
training space. We address this existing limitation by developing Proposition S3 which shows that these
properties can still be retained given a certain type of space mismatch. For generality, we define the training
space as p(x) and the new space as p′(x).
Proposition S3 (The dependency of CN on p(x)). If the conditional outcome distribution p(Y |X = x)
remains invariant between p(x) and p′(x) (covariate shift), and p(x) > 0 =⇒ p′(x) > 0, the solutions in
Propositions S1 and the consistency in Proposition S2 also generalize to the new space where p′(x) > 0.

Proof of Proposition S3. With the Propositions S1 and S2, we observe that g estimates the conditional
distribution of Y |X = x in the space where p(x) > 0. Next we generalize it to a new space p′(x). Given the
condition p(x) > 0 =⇒ p′(x) > 0, for any x in evaluation space with p′(x) > 0, it is covered in the training
space where p(x) > 0. From Proposition S1 and S2, we know that for such x, the optimum can be obtained.
The covariate shift assumption on the invariance of outcome distributions then guarantees that the optimum
of such x in the training space is also the optimum in the new space. Therefore, each point x in the new
space with p′(x) > 0 can obtain their optimum through training the model on the training space p(x). We
claim that the optimum remains invariant when we generalize from p(x) to p′(x).
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A.2 Overcoming Covariate Space Mismatch for CCN

Proposition S3 enables us to extend CN’s optimum to new spaces given two conditions: the covariate shift
and the space overlap p(x) > 0 =⇒ p′(x) > 0. Our main task is to show how they hold in the causal settings.

First, we give a weaker version of Propositions 1 and 2 as a direct result from Proposition S1 and S2 without
accounting for the mismatch between the training and generalization spaces.
Claim S1 (Potential outcome distributions on each treatment space). Given all the conditions in Proposition
S1 and S2, an optimal solution for g0 and g1 in g-loss∗ in equation 4 are the true CDFs of Y (0)|X = x, T =
0, ∀x, such that p(x|T = 0) > 0; and Y (1)|X = x, T = 1, ∀x, such that p(x|T = 1) > 0. The finite sample
estimators gn

0 and gn
1 can also consistently estimate these CDFs.

Discussion on Claim S1. We only discuss the first part of Claim S1 for T = 0 without loss of generality,
while optimizing g0 only involves updating parameters using batches with t = 0. The other group can be
shown with identical steps.

A direct conclusion from Propositions S1 and S2 is that the optimal g0 is the fixed point solution, and finite
sample estimator gn

0 consistently estimates the true CDF of Y |X = x, T = 0, ∀x, such that p(x|T = 0) > 0.
This is claimed for the full conditional distribution Y |X = x, T = 0 rather than for the potential outcome
Y (0). By virtue of the treatment consistency (Assumption 2), the following two outcomes are identically
distributed: Y |X = x, T = 0 ⇐⇒ Y (0)|X = x, T = 0 . Therefore, we can successfully establish the
estimators for potential outcome distributions, but currently limited to each treatment subspace.

As mentioned above, we need two conditions to generalize Claim S1 back to the full space with density
p(x). The covariate shift has been explicitly described in (Johansson et al., 2020), and can be induced by
Assumption 3.
Lemma S1 (Covariate Shift). Both potential outcome distributions p(Y (0)|X = x) and p(Y (1)|X = x) are
independent of the covariate space in which they are located.

Discussion on Covariate Shift. The ignorability states that [Y (0), Y (1)] ⊥ T |X, which implies that

P (Y (0), Y (1)|X, T = 0) = P (Y (0), Y (1)|X, T = 1) = P (Y (0), Y (1)|X).

This supports that the potential outcome distributions are invariant to the treatment groups.

We next show the condition of the space overlap.
Lemma S2 (Positivity relating to the space overlap). Under Assumption 1, the equivalent condition holds:
p(x) > 0 ⇐⇒ p(x|T = 0) > 0, and p(x) > 0 ⇐⇒ p(x|T = 1) > 0.

Proof of Lemma S2. The positivity in Assumption 1 claims that ∀x, 0 < Pr(T = 1|x) < 1. Then for each x
where p(x) > 0, we can find a constant 1 > Cx > 0 that satisfies Pr(T = 1|x) > Cx.

By Bayes rule, p(x|T = 1) = Pr(T = 1|x)p(x)/Pr(T = 1) > Cxp(x) > 0. Then p(x) > 0 =⇒ p(x|T = 1) > 0.
From the other direction, if p(x|T = 1) = Pr(T = 1|x)p(x)/Pr(T = 1) > 0, each component on the right
hand side needs to be positive. Therefore, p(x|T = 1) > 0 =⇒ p(x) > 0. We can use the same procedure to
verify the condition for T = 0.

With Lemma S2 and S2 satisfying the conditions in Proposition S3, we acquire that the space mismatch
given the standard causal assumptions is the specific type that does not impact the large sample properties
of CCN. As a result, Propositions 1 and 2 naturally follow. Thus, under the standard assumptions in causal
inference, CCN will capture the full potential outcome distributions. This procedure is not limited to a binary
treatment condition and is extendable to multiple treatment setups.

19



Under review as submission to TMLR

B Semi-synthetic Data Generation

B.1 IHDP

We focus on making our simulation results comparable to other causal methods’ published results. The
simulation replications for the IHDP data are downloaded directly from https://github.com/clinicalml/
cfrnet, which are used to generate the results of WASS-CFR (Shalit et al., 2017) and CEVAE (Louizos
et al., 2017). The dataset does not contain personally identifiable information or offensive content.

B.2 Education Data

The raw education data are downloaded from the Harvard Dataverse1, which consist of 33,167 observations
and 378 variables. The dataset does not contain personally identifiable information or offensive content. We
pre-process the data such as by combining repetitive information, deleting covariates with over 2,5000 missing
values. Then we end up with a clean dataset containing 8,627 observations.

The function fŷ1(·) and fŷ0(·) are learned from the observed outcomes for the treatment and control groups.
They are both designed as single-hidden-layer neural networks with 32 units and sigmoid activation functions
(Han & Moraga, 1995). A logistic regression model with coefficient β = [β1, ..., β28] and propensity score
Pr(T = 1|X = xi) = 1

1+exp(−x′
i
β) are used to generate treatment labels and mimic a observational study.

The coefficients are randomly generated as βi ∼ U(−0.8, 0.8).

C Detailed Method Implementations

All Python-based methods: CCN, CEVAE and GANITE are run on a single NVIDIA P100 GPU; the R-based
methods, BART, CF, and GAMLSS are run on a Intel(R) Xeon(R) Gold 6154 CPU.

CCN and FCCN

The implementation of CCN and all its variants are based on the code base for CN Zhou et al. (2021), which
is provided at https://github.com/thuizhou/Collaborating-Networks with the MIT license. Functions
g0 and g1 follow the structures of g in Zhou et al. (2021). We implement the full collaborating structure and
find the optimization to be harder when added with regularization terms. Therefore, we fix f as a uniform
distribution covering the range of the observed outcomes. It is called the g-only in Zhou et al. (2021), and is
easier to optimize with only marginal loss in accuracy.

In FCCN, we introduce two latent representation ϕA(·) and ϕW (·). We set their dimensions to 25. They are
both parametrized through a neural network with a single hidden layer of 100 units. The Wasserstein distance
in Wass-loss is learned through D(·) which is a network with two hidden layers of 100 and 60 units per
layer. We adopt the weight clipping strategy with threshold: (-0.01,0.01) to maintain its Lipschitz constraint
(Arjovsky et al., 2017). The hyper-parameter α and β are tuned for FCCN according to the log-likelihood
calculated upon the observed outcomes. We propose a few candidate values for α and β as: 5e-3, 1e-3, 5e-4,
1e-4, 5e-5, 1e-5, as we do not want these values to be too large to overtake the main part of the loss that
learns the distribution. Then we do grid search to determine the hyper-parameters. Based on the results on
the first few simulations, we fix α=5e-4 and β=1e-5 in IDHP and α=1e-5 and β=5e-3 in EDU. We find this
specification to consistently improve the performance over regular CCN.

To assess the potential outcome distributions, and take expectation over a defined utility function, we draw
3,000 samples for each test data point with the learned g0 and g1.

The code for CCN and its adjustment will be public on Github with the MIT license when the manuscript is
accepted.

BART (Chipman et al., 2010) The implementation of BART uses the R package BayesTree (Chipman
& McCulloch, 2016) with GPL (>= 2) license. We use the default setups in its model structure. Chipman
et al. (2007) suggest that BART’s performance with default prior is already highly competitive and is not

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/19PPE7
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highly dependent on fine tuning. We set the burn-in iteration to 1,000. We draw 1,000 random samples per
individual to access their posterior predicted distributions, as the package stores all the chain information
and is not scalable for large data.

CEVAE (Louizos et al., 2017)

The CEVAE is implemented with the publicly available code from https://github.com/rik-helwegen/
CEVAE_pytorch/. We follow its default structure in defining encoders and decoders. The latent confounder
size is 20. The optimizer is based on ADAM with weight decay according to Louizos et al. (2017). We use
their recommended learning rate and decay rate in IHDP. In EDU dataset, the learning rate is set to 1e-4,
and the decay rate to 1e-3 after tuning. We draw 3,000 posterior samples to access the posterior distributions.

GANITE (Yoon et al., 2018) The implementation of GANITE is based on https://github.com/
jsyoon0823/GANITE with the MIT license. The model consists of two GANs: one for imputing missing
outcomes (counterfactual block) and one for generating the potential outcome distributions (ITE block).
Within each block, they have a supervised loss on the observed outcomes to augment the mean estimation of
the potential outcomes. We use the recommended specifications in Yoon et al. (2018) to train the IHDP data.
In the EDU dataset, the hyper-parameters for the supervised loss are set to α =2 (counterfactual block) and
β =1e-3 (ITE block) after tuning.

CF (Wager & Athey, 2018) The implementation of CF uses the R package grf Tibshirani et al. (2020)
with GPL-3 license. We specify the argument tune.parameters=“all” so that all the hyper-parameters are
automatically tuned.

GAMLSS (Hohberg et al., 2020) The implementation of GAMLSS uses the R package gamlss Rigby &
Stasinopoulos (2005) with GPL-3 license. Since the method uses likelihood to estimate its parameters and
often does not converge under complex models, we feed its location, scale and shape models with relevant
variables only. In location models, we fit all continuous variables with penalized splines. In scale and shape
models, we use relevant variables in their linear forms. The choice is based on a balanced consideration of the
representation power and model’s stability.

D Enforcing a Monotonicity Constraint

The learned CCN should have a monotonic property that g(x, z + ϵ) ≥ g(x, z), ∀ϵ ≥ 0. In our experiments,
this condition is learned with a standard neural network architecture with our training scheme. We do not
see any non-trivial violations of this requirement.

If required, though, this scheme can be enforced by modifying the neural network structure. One way of
accomplishing this goal is to use a neural network with the form,

g(x, z) =
J∑

j=1
softmax(gw

x (x))jσ(gb
x(x)j + exp(ga

x(x)j)z).

Here, σ(·) represents the sigmoid function. gw
x , gb

x, and ga
x are all neural networks that map from the input

space to a J-dimensional vector, Rp → RJ . In this case, the formulation of the outcome is still highly flexible
but becomes an admixture of sigmoid functions. As the multiplier on z is required to be positive, each
individual sigmoid function is monotonically increasing as a function of z. Because the weight on each sigmoid
is positive, this creates a full monotonic function as a function of z.

We implement this structure and find that it is competitive with a more standard architecture but is more
difficult to optimize. As it is not empirically necessary to implement this strategy, we prefer the standard
architecture in our implementations.

E Additional CDF Visualizations

We provide additional visualizations for the estimated potential outcome distributions with each method
in Figure S1 based on another data point, which agrees with the results visualized in Figure 2. The two
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variants of CCN are capable of capturing the main shape of the true CDF curves, including the asymmetry
of the exponential distribution, with higher fidelity. GAMLSS is less accurate in the treatment group due to
using skewed normal for the exponential distribution with location shifts. GANITE’s two-GAN structures
are highly reliant on data richness for accurate predictions (Yoon et al., 2018), so it falls short in cases with
greater treatment group imbalance. CEVAE captures the overall marginal distribution for the potential
outcomes as shown in Figure 1(g), but fails to discern the heterogeneity in conditional distributions in figure
S1(f). BART provides reasonable estimates but struggles with the misspecification by its Gaussian form.

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

True Y(0)
True Y(1)
Est Y(0)
Est Y(1)

(a) CCN

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

(b) FCCN

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

(c) GANITE

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

(d) BART

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

(e) GAMLSS

1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

(f) CEVAE

5 0 5
0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

ed
 C

D
F

Marginal Y(0)
Marginal Y(1)
Est Y(0)
Est Y(1)

(g) CEVAE

Figure S1: Visualization of each method’s estimated CDFs. The two variants of CCN give good distribution
estimates. Other methods give less accurate estimates. By comparing the posterior distributions of CEVAE
against the conditional distribution and marginal distribution of the ground truth in S1(f) and S1(g), we
conclude that CEVAE primarily captures the marginal distribution in this study.

F Policy Learning

In decision making, the core difference between a traditional policy learning method and a distribution
learning method is whether the utility is determined in advance. Though a policy learning method can tailor
decisions based on different utilities, it is at the cost of fitting a new model towards each proposed utility.
Regardless of the inconvenience in computation, we discuss below another shortcoming of traditional policy
learning methods. To train a traditional policy learning approach, the first step is often to convert the raw
outcome to the observed utility. While this is less problematic for bijective transformations, it might incur
information loss if we deal with discretized utilities.

To demonstrate, we compare FCCN to policytree with its published package (Athey & Wager, 2021; Sverdrup
et al., 2021) on IHDP. We propose two types of utilities. They are the linear utility, U0(γ) = γ, U1(γ) = γ − 4,
and the threshold utility, U0(γ) = 1γ>E[Y (0)], U1(γ) = 1γ>E[Y (1)]. Since the policytree package only outputs
the decision, we use accuracy as the metric. The results are summarized in Table S1. FCCN consistently
makes more correct decisions. The information loss in the threshold utility negatively impacts policytree. We
note that a threshold utility drastically reduces the available information by converting a continuous scale to
a binary scale.

Fundamentally, these two methods are different and they address similar problems from different perspectives.
There might be some possibilities that we could combine their merits. Hence, we will consider exploring their
interactions more in future work.
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Table S1: Comparing the accuracy of policy learning between FCCN and policytree.
Utility/Method FCCN % policytree %
Linear 88.60 ± 1.09 76.86 ± 1.03
Threshold 87.72 ± 1.19 57.64 ± .71
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Figure S2: The limited propensity score
overlap between two treatment groups. This
indicates a severe treatment group imbal-
ance.

To further illustrate CCN’s potential to model different types of
distributions with high fidelity, we simulate potential outcomes
from three extra distributions to assess its adaptability. To
compare, we include GAMLSS, BART, CCN and FCCN. The
assessment is based on log likelihood (LL) to reflect the closeness
to the true distributions. We simulate the covariate spaces and
treatment labels with the following procedures:

Covariates:

xi = (x1,i, · · · , x10,i)⊺, xj,i
i.i.d.∼ , N(0, 1);

Treatment assignment:

Pr(Ti = 1|xi) = 1
1 + exp(−x⊺

i β) , β = (0.8, ..., 0.8)⊺

Given the magnitude of β, we have created a covariate space with limited overlap between two treatment
groups as shown in Figure S2. With limited sample size, it also helps us evaluate the robustness of our
method when positivity in Assumption 1 is possibly violated. Then we specify three scenarios with sufficient
nolinearity added to the potential outcome generating processes. We generate 2,000 data points in each case,
and the variability assessment is based on 5-fold cross validations.

Gumbel Distribution:
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10∑

j=6
xj,i)

∣∣∣∣∣∣, 2

√√√√√
∣∣∣∣∣∣cos(

5∑
j=1

xj,i) + sin(
10∑

j=6
xj,i)

∣∣∣∣∣∣ + .2
)

;

Y (1)i|xi ∼ Weibull
(

5

√√√√√
∣∣∣∣∣∣cos(

5∑
j=1

xj,i) + sin(
10∑

j=6
xj,i)

∣∣∣∣∣∣, 2

√√√√√
∣∣∣∣∣∣sin(

5∑
j=1

xj,i) + cos(
10∑

j=6
xj,i)

∣∣∣∣∣∣ + .2
)

.
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H Estimating Multimodal Distributions

We use the following steps to generate the data from a multimodal distribution.

Covariates: xi
i.i.d.∼ N(0, 1);

Treatment assignment: Pr(Ti = 1) = 1xi>0;

Mixture parameter: ϕi ∼ i.i.d, Bernoulli(0.5);

Potential outcomes: Y (0)i|xi ∼ ϕiN(−2, 1)+(1−ϕi)N(2, 1)+xi, Y (1)i|xi ∼ ϕiN(6, 1.52)+(1−ϕi)Exp(1)+xi.

The control group is a mixture of two Gaussian distributions, and the treatment group is a mixture of
Gaussian and exponential distributions. The mixture information is not given to any model, and we simply
use their original form to approximate the distributions. Each model is trained using 1,600 simulated samples.

I Sample Size and Convergence

We create an example with the logistic distribution to visualize the performance of models with respect to
sample size. We simulate 40,000 samples in total and hold out 2,000 for evaluation based on log likelihood
(LL) with the following procedures:

Covariates:xi = (x1,i, x2,i, x3,i)⊺, xj,i
i.i.d.∼ N(0, 1);

Treatment assignment: Pr(Ti = 1|xi) = 1
1 + exp(−x⊺

i β) , β = (2, 2, 2)⊺

Scale Parameter: σi = |x1,i + x2,i + x3,i| + .5
Location Parameter: µ(0)i = sin(x1,iπ + x2,iπ) + sin(x3,iπ), µ(1)i = cos(x1,iπ + x2,iπ) + cos(x3,iπ)
Potential Outcomes: Y (0)i|xi ∼ Logistic(µ(0)i, σi), Y (1)i|xi ∼ Logistic(µ(1)i, σi)

J Ablation Study

First, we provide an additional visualization in Figure S3 to reflects how well each adjustment can improve
the the uncertainty estimates in EDU dataset. FCCN not only captures the heteroskedasticity, but also
reduces uncertainty by exhibiting narrower bar in plots.

J.1 An Additional Imbalance Adjustment Study

Then, we give another motivating example to visualize the added robustness with our adjustment scheme. The
visualizations in Figure 6(b), 6(c) and 6(d) are also based on this data example. We use the same covariate
space and treatment assignment mechanism in Appendix G. However, we posit a nonstandard distribution
with its location model as a trigonometric function, and outcome uncertainty model as a heterosekdastic Beta
distribution. We generate 2,000 data points in total, with 8/2 split for training and testing. The detailed
synthetic procedure for the outcomes is described below:

Y (0)i|xi ∼ Beta
( 5∑

j=1
|xj,1|

5 ,

10∑
j=6

|xj,1|

5

)
+ sin

( 10∑
j=1

xj,i

)
; Y (1)i|xi ∼ Beta

( 10∑
j=6

|xj,1|

5 ,

5∑
j=1

|xj,1|

5

)
+ cos

( 10∑
j=1

xj,i

)
.

We visualize the performance of different adjustment schemes in scatter plots where x axis corresponds to
each point’s true propensity score, a measurement of imbalance. Figure S4 depicts the absolute difference
between the inferred CATEs and true CATEs. Lower vertical positions represent lower errors. We observe
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(b) Wass
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(c) Assignment
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(d) PS
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(e) Assignment+PS
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(f) FCCN

Figure S3: The true 90 % interval widths versus the estimated 90 % interval widths given the four
combinations of T and S with all variants of CCN. FCCN not only captures the heteroskedasticity, but also
reduces the uncertainty by exhibiting narrower bar in plots.

that the performance deteriorates in each method if a point is close to two boundaries (extreme propensity
scores), which is the area that generally struggles the most in observational studies. Compared with the
baseline CCN, each adjustment scheme by itself lowers the error to some extent. Among them, WASS-CCN,
Assign-CCN and FCCN are able to reduce the average error by over 50 %. The propensity stratification
(PS) can effectively reduce bias when there is more homogeneity within each stratum. However, severe
imbalance in this case only gives homogeneity in the strata where propensity is around 0.5. Hence, PS
provides limited benefits. In contrast, WASS-loss and Assign-loss seek new representations to either rectify
group level imbalance or exclude confounding effects. They prove to be more effective in the regions of
imbalance, which represent the majority of the data points.
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(c) Assign
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(d) PS
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(e) Assign+PS
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(f) FCCN

Figure S4: The scatter plot of the propensity scores (x-axis) versus the absolute difference between the true
CATEs and their estimates (y-axis). Among them, WASS-CCN, Assign-CCN and FCCN are able to reduce
the average error by over 50%.
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(e) Assign+PS
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(f) FCCN

Figure S5: The scatter plot of the propensity scores (x-axis) versus the estimated log-likelihood (LL) (y-axis).
Collectively, the Assign-loss and Wass-loss contribute to making FCCN more robustly estimate distributions
than any single component does.
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