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ABSTRACT

Pseudo-label-based semi-supervised learning has recently emerged as an effec-
tive technique in various domains. In this paper, we present a comprehensive
theoretical analysis of the algorithm, significantly advancing our understanding
of its empirical successes. Our analysis demonstrates that the algorithm can
achieve a remarkable convergence rate of O(N−1/2) order, and we provide an
estimate of the sample complexity. We further investigate the algorithm’s per-
formance in scenarios with an infinite number of unlabeled data points, high-
lighting its effectiveness in leveraging large-scale unlabeled data. A key insight
of our study is that incorporating pseudo-labeled data can improve model train-
ing when correctly labeled data is more valuable than the interference caused
by mislabeled data, particularly for under-parameterized models that tend to ig-
nore the impact of incorrect labels. Experimental findings corroborate the ac-
curacy of our estimations. This study elucidates the strengths and limitations
of the pseudo-label-based semi-supervised learning algorithm, paving the way
for future research in this field. The code can be found at the anonymous URL
https://anonymous.4open.science/r/mycode_1-A2EE.

1 INTRODUCTION

Semi-supervised learning, which utilizes both labeled and unlabeled data, has garnered substantial
interest in recent years. Among the various methodologies, the pseudo-label-based semi-supervised
learning approach has demonstrated its effectiveness in numerous domains. This technique gener-
ates pseudo-labels for unlabeled data using a previously trained model, which are then combined
with the labeled data to train a new model (Lee, 2013). Recent advancements have seen pseudo-
label-based semi-supervised learning achieve unparalleled results across diverse domains, such as
(Xie et al., 2020; Guo & Li, 2022; Chen et al., 2020; Kumar et al., 2020; Wang et al., 2022; Sohn
et al., 2020; Zhang et al., 2021; Xu et al., 2021; Pham et al., 2021) in the CV field, (Meng et al.,
2019; Li et al., 2020; Hsu et al., 2023) in the NLP field, and (Ling et al., 2022; Zia et al., 2022; Dong
et al., 2022; Higuchi et al., 2021; Xu et al., 2020; Lugosch et al., 2022) in the speech field.

Despite these empirical triumphs, the theoretical understanding of pseudo-label-based semi-
supervised learning is still in its infancy. Earlier correlation analyses, such as those in (Carmon
et al., 2019; Raghunathan et al., 2020; Chen et al., 2020; Oymak & Gulcu, 2020), primarily focus on
linear models or Gaussian (near-Gaussian) data, which limits their contributions. (Wei et al., 2020)
showed that self-training and input-consistency regularization improve accuracy with ground-truth
labels. However, they did not address the convergence rate.

In this paper, we aim to bridge this gap by providing a comprehensive theoretical analysis of the
pseudo-label-based algorithm. To the best of our knowledge, this is the first study that offers a
clear characterization of the convergence rate for general settings without explicit constraints on the
network’s structure or the data distribution.

A central insight from our research indicates that integrating pseudo-labeled data can bolster model
training when the advantages gained from accurately labeled data outweigh the disruptions from
inaccurately labeled instances. This is particularly true in cases of under-parameterized or when ap-
propriate regularization techniques are applied. Notably, we found that under-parameterized models
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Figure 1: A toy under-parameterized experiment. The data are uniformly sampled within the range
[−1.3, 1.3]× [−1.3, 1.3] in the two-dimensional plane. The ground truth label for each data point is
determined as follows: if the point lies inside the unit circle, it is labeled as 1; otherwise, it is labeled
as 0. The training set consists of two parts: correctly labeled data, denoted as S, and randomly
labeled data, denoted as S̃. The labels in S̃ are assigned randomly with an equal probability for
labels 0 and 1. We train a three-layer fully connected neural network on the combined set S ∪ S̃ and
evaluate its performance on a separate test set. The size of S is fixed at n = 500, and we conduct
experiments with four different sizes of S̃: m = 50, 100, 200, 400. The changes in accuracy on S
are presented in (a), the accuracy on S̃ in (b), and the accuracy on the test set in (c). We observe that
the model tends to disregard the influence of the random data S̃ during training, as indicated by the
accuracy on S̃ being approximately 0.5. Moreover, the model performs well on the test set across
all the different settings.

tend to minimize the effects of incorrect labels. This is exemplified in a simplified scenario depicted
in Figure 1, where a model trained with a certain percentage of mislabeled data demonstrates a low
empirical error for the correctly labeled instances but shows a comparatively high empirical error
for the mislabeled ones. Essentially, the model “sidesteps” the inaccurately labeled data.

In semi-supervised learning situations, it is common to deal with vast amounts of unlabeled data,
potentially leading to a plethora of pseudo-labels. This is exactly the scene where our insight above
matches. A common scenario is when a model from a prior iteration produces an extensive set of
pseudo-labels for an unlabeled dataset. Even though a minor portion of these pseudo-labels might be
inaccurately labeled, leveraging these generated pseudo-labels to train an updated model results in
the model emphasizing the correct labels and dismissing the inaccuracies. As a result, the subsequent
model’s performance sees an enhancement.

Our contributions are manifold and are summarized as follows:

• Estimation of Convergence Rate: We derive an impressive convergence rate of
O(N−1/2) order for the pseudo-label-based semi-supervised learning algorithm. Our anal-
ysis sheds light on the factors contributing to its swift convergence, and experimental results
corroborate our estimates.

• Estimation of Sample Complexity: We provide an estimate of the sample complexity re-
quired to achieve the target convergence rate, offering guidelines for practical applications.
This insight illuminates the minimum quantity of unlabeled data necessary to reach the
desired performance, thus enabling a more efficient utilization of data resources in semi-
supervised learning.

• Investigation of Performance: We analyze the performance of the algorithm when the
number of unlabeled data points is infinite, underscoring its effectiveness in leveraging
large-scale unlabeled data. This analysis unveils the potential benefits and limitations of the
pseudo-label-based approach under varying data availability scenarios, further emphasizing
its practical implications.

The remainder of this paper is organized as follows: Section 2 introduces key preliminaries. Sec-
tion 3 introduces our key characterization of the model training recipe. Section 4 presents our main
results, including optimal population error rate, convergence rate, sample complexity, and perfor-
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mance evaluation. Section 5 discusses our experimental setup, datasets, and results. Section 6
reviews the literature on pseudo-label-based semi-supervised learning. Finally, Section 7 concludes
our work and discusses future research directions.

2 PRELIMINARIES

This section introduces the notations, definitions, and estimation tools that will be used throughout
the paper. These preliminaries are essential for understanding the subsequent theoretical analysis of
the pseudo-label-based semi-supervised learning algorithm.

2.1 NOTATION

We first define the notation that will be consistently used throughout this paper to ensure clarity. The
notation is summarized in Table 1.

Table 1: Notation

Notation Description Notation Description
k Number of classifications ES Empirical error rate on S
a Constant in proposition 4.1 ES̃ Empirical error rate on S̃
S Correctly labeled data ED Population error rate
S̃ Randomly labeled data E∗

D Optimal population error rate
p∗ Target convergence rate m Number of randomly labeled data
n Number of correctly labeled data N Total number of data (N = m+ n)
f0 Pseudo labeler f1 Output model

ε, δ̃, b Parameters in Definition 3.1

2.2 POPULATION ERROR ESTIMATION

Several approaches have been proposed to estimate the population risk associated with Deep Neural
Network (DNN) models. The most prevalent method involves calculating an upper bound for the
population error by considering the complexity of the hypothesis classes (Bartlett & Mendelson,
2002; Shalev-Shwartz & Ben-David, 2014; Hardt et al., 2016; Mukherjee et al., 2006; Allen-Zhu
et al., 2019; Neyshabur et al., 2015; 2017; Ma et al., 2018; Weinan et al., 2019). However, this
technique is typically customized to the specific model under examination. A new perspective in
this field was brought forth by (Garg et al., 2021).

3 QUANTIFYING MODEL BEHAVIOR

To conduct a comprehensive analysis, beyond just focusing on specific network architectures or
data distributions, it’s essential to have a general characterization of the training behavior of neural
network models. This is particularly crucial when considering the behavior of neural networks
trained on data that is mixed with noisy instances. In this subsection, we provide a mathematical
formulation that quantitatively captures the behavior of a model when trained on a dataset consisting
of both correctly labeled and randomly labeled data. This formulation primarily delves into the
model’s sensitivity to the randomly labeled training data. A higher accuracy on this subset implies a
greater vulnerability of the model to disturbances caused by these data instances.

It’s well-understood that a complete training process comprises three core components: the model,
the data, and the optimization. Hence, we refer to a specific combination of model, data, and op-
timizer as a ”training recipe.” Using this training recipe, we can derive the model. Essentially, our
focus is on characterizing this training recipe. We evaluate a training recipe applied to N data points.
Out of these N data points, n are correctly labeled (S), and m are randomly labeled (S̃).
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Definition 3.1. (N − (ε, δ̃, b) training recipe) A training recipe is defined as a N − (ε, δ̃, b) recipe
if we have:

m

n
≤ δ̃ < 1,m+ n = N (1)

Then we can procure a model f̂ by the recipe that fulfills:

ES(f̂) ≤ ε (2)

ES̃(f̂) ≥ 1− 1 + bε

k
(3)

In this definition, δ̃ is a positive parameter representing the ratio of randomly labeled data (m) to the
correct data (n), subject to the condition m

n ≤ δ̃ < 1. ε is a positive parameter signifying the model’s
error rate on the correctly labeled dataset S, and b is a non-negative parameter signifying the error
rate on the randomly labeled dataset S̃. This is indicative of the model’s sensitivity to disturbances
induced by the randomly labeled data.

4 MAIN RESULTS

This section presents a comprehensive theoretical exploration of the pseudo-label-based algorithm
for semi-supervised learning. Our analysis covers the optimal population error analysis, convergence
rate estimation, sample complexity analysis, and the algorithm’s performance analysis under infinite
unlabeled data.

4.1 OPTIMAL POPULATION ERROR

Our analysis commences by exploring the optimal population error associated with the pseudo-label-
based algorithm, which is vital for comprehending its capabilities and limitations. Initially, drawing
from (Garg et al., 2021), we present a corollary that offers a more streamlined framework for our
examination.
Proposition 4.1. For a f̂ trained by N−(ε, δ̃, b) training recipe, then with probability at least 1−δ,
f̂ satisfies

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)
+ ak

√
log

(
4
δ

)
m

(4)

where a is a constant and satisfies a < 4.

Furthermore, if the δ̃ satisfies

2k +
√
k +

δ̃√
k
< 2

√
2k (5)

then we have

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)
+ 2k

√
log

(
4
δ

)
m

(6)

We denote the optimal population error of model f̂ , trained by an N − (ε, δ̃, b) training recipe, as
E∗
D. We employ proposition 4.1 to derive the optimal population error, E∗

D. The term E∗
D quantifies

the population error when the model f̂ is trained on N correctly labeled data points. We have:

E∗
D = (1 + b)ε+ ak

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(7)

Proof sketch: We utilize proposition 4.1 to estimate E∗
D. A significant advantage of this approach is

its applicability to the general model. Note that our model, f̂ , is trained by an N − (ε, δ̃, b) training
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recipe, necessitating ES , ES̃ , and the permissible relative proportion of randomly labeled data, δ̃.
Therefore, on the N data points that are all correctly labeled, we can select at most m = δ̃

1+δ̃
N data

points as randomly labeled to estimate the model’s population error. At this point, the right-hand
side of inequality 4 reaches its minimum, providing the optimal population error estimate of f̂ . More
detailed derivations can be found in the Appendix.

Remark 4.2. We can also observe that E∗
D is optimal from another perspective, as it has the er-

ror rate order of O( 1√
N
), which is equal to the error rate order of Monte Carlo estimation. This

observation implies the reasonableness of our definition 3.1.

4.2 CONVERGENCE RATE ESTIMATION

In this section, we estimate the convergence rate of the pseudo-label-based algorithm. The con-
vergence rate is critical for evaluating the algorithm’s efficiency and effectiveness throughout the
learning process. Specifically, we consider an iteration where f0 is the preceding model, and f1
is the current model to be trained. Pseudo labels are generated by f0 and used to train f1. This
convergence rate estimation enables us to assess the efficacy of the method. Our main conclusion is
as follows:

Theorem 4.3 (Convergence Rate Estimation). For f1 trained by N − (ε, δ̃, b) training recipe, if

ED(f0) ≤
δ̃

1 + δ̃
(8)

then with at least (1− δ)2 probability, we have

p ≤ ak

(ED(f0)− E∗
D)

√
N

√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

−

√
δ̃ + 1

δ̃

 ·

√
log

(
4

δ

)
(9)

Here, a is the constant in proposition 4.1 and the definition of the convergence rate p is:

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

(10)

Proof Sketch: For the pseudo-labels generated by f0, we denote the population loss of the f0 model
as ED(f0). This implies that among all N data points, there are approximately (1 − ED(f0))N
correctly labeled instances and ED(f0)N wrongly labeled instances. However, we cannot treat
the wrongly labeled instances in the generated pseudo-labels as random labels, since there may be
some structure in the wrong labels that prevents these errors from being uniformly distributed. To
circumvent this issue, in our analysis, we approximate the original algorithm by randomly selecting
a small number of pseudo-labels and re-randomizing their labels. We then use proposition 4.1 to
estimate the convergence rate. This approximation is akin to analyzing a slightly weakened version
of the pseudo-label semi-supervised learning algorithm, which further ensures the robustness of our
convergence rate estimation for the pseudo-label semi-supervised learning algorithm. Since the f1

is trained by the N − (ε, δ̃, b) recipe, we can select up to δ̃(1−ED(f0))−ED(f0)

(1+δ̃)(1−ED(f0))
N samples from the

pseudo-labels to re-randomize.

Compared with the setting in Subsection 4.1, where we have all correct labels, the allowable number
of re-randomized labels here is reduced due to the errors in pseudo-labels. A higher ED(f0) will
reduce the allowable number of re-randomized labels, thereby leading to a higher population error.
We can further derive that the population error of f1 satisfies:

ED(f1) ≤ (1 + b)ε+ ak

√
log

(
4

δ

)√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

≜ upper(f1) (11)

By estimating the numerator of equation 10, we arrive at our desired Theorem 4.3. This theorem
provides two significant insights into the convergence rate of the pseudo-label-based algorithm:

5



Under review as a conference paper at ICLR 2024

• The convergence rate is of order O(N− 1
2 ). This suggests that as the number of unlabeled

data, denoted as N , increases, the convergence rate improves, demonstrating a recipro-
cal square-root relationship. This implies that the greater the quantity of unlabeled data
available, the quicker we can anticipate our algorithm to converge to a solution. This is
a highly desirable property, especially in scenarios where large volumes of unlabeled data
are readily accessible.

• The term ED(f0) − E∗
D in the denominator indicates that as the population loss of the

preceding model, denoted as ED(f0), approaches the optimal population error E∗
D, the con-

vergence rate begins to decay. This means that the convergence rate is high when ED(f0)
is relatively large, that is, when the preceding model is far from optimal. As the model
improves and ED(f0) approaches E∗

D, the rate of improvement decelerates. This observa-
tion aligns with practical experiences in pseudo-label applications, where the boost will
gradually decrease.

4.3 SAMPLE COMPLEXITY ESTIMATION

In this section, we explore the sample complexity of the pseudo-label-based algorithm. This analysis
is vital for determining the minimum amount of unlabeled data required to achieve the desired
convergence rate. We outline the conditions on the number of unlabeled samples, N , necessary
to ensure that the convergence rate remains below the target rate, p∗, with a high probability. Our
primary result is presented as follows:

Theorem 4.4. For f1 trained by N − (ε, δ̃, b) training recipe, with at least (1− δ)2 probability, we
have

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ p∗ (12)

when

N ≥
(

ak

p∗(ED(f0)− E∗
D)

)2
√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

−

√
δ̃ + 1

δ̃

2

· log
(
4

δ

)
(13)

and

ED(f0) ≤
δ̃

1 + δ̃
(14)

Proof Sketch: The objective is to achieve the target convergence rate p∗ by ensuring the following
inequality holds:

ED(f1)− E∗
D

ED(f0)− E∗
D

≜ p ≤ p∗ (15)

We can derive:

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ upper(f1)− E∗
D

ED(f0)− E∗
D

≜ p̃ (16)

Therefore, to ensure that inequality 15 holds, the following condition must be satisfied:

p̃ ≤ p∗ (17)

By solving inequality equation 17, we reach the desired conclusion. More detailed reasoning is
provided in the Appendix.

As outlined in our theorem 4.4, there exists an inverse square relationship between the sample com-
plexity and the target convergence rate. Specifically, as the target convergence rate p∗ decreases, the
requisite number of data N increases. This relationship can be intuitively understood as follows:
aiming for a faster convergence rate p∗ inherently necessitates a larger number of pseudo samples
N . This is due to the fact that more pseudo samples offer more information for the algorithm to learn
and adjust its parameters, thereby accelerating its convergence to the optimal solution. This under-
standing is vital for the design and implementation of pseudo-label-based algorithms as it enables
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researchers and practitioners to balance the trade-off between the desired speed of convergence and
the available pseudo-data resources. The sample complexity analysis enhances our understanding of
the algorithm’s data requirements. We further explore the algorithm’s performance when the number
of unlabeled data points is infinite, shedding light on its capabilities.

4.4 ANALYSIS OF THE INFINITE UNLABELED DATA SCENARIO

In this section, we investigate the behavior of the pseudo-label-based semi-supervised learning al-
gorithm when an infinite number of unlabeled data points are present. By analyzing the algorithm’s
performance under this limitation, we aim to underscore the strengths of the method.

Firstly, from equation 7, we have:

E∗
D ≜ (1 + b)ε+ ak

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(18)

And for f1 trained by N − (ε, δ̃, b) training recipe, with a probability of at least 1− δ, we have 11:

ED(f1) ≤ (1 + b)ε+ ak

√
log

(
4

δ

)√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

(19)

As N approaches infinity, we can establish the following relationship between the population risk
of f1 and the optimal population risk E∗

D:

lim
N→+∞

ED(f1)

E∗
D

= 1 (20)

Given these findings, we can now present the following theorem:

Theorem 4.5. For f1 trained by N − (ε, δ̃, b) training recipe, if ED(f0) <
δ̃

1+δ̃
then with at least

1− δ probability, we have:

lim
N→+∞

ED(f1)

E∗
D

= 1 (21)

This result has significant implications for the pseudo-label-based semi-supervised learning algo-
rithm. It demonstrates that as the number of unlabeled data points increases, the performance of the
algorithm converges to the optimal population error in one iteration, thus showcasing the effective-
ness of the algorithm when leveraging a large amount of unlabeled data. The examination of the
infinite unlabeled data scenario underscores the algorithm’s adaptability under various conditions.

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETUP

In this section, we describe the experimental setup designed to validate our theoretical findings,
particularly on the convergence rate estimation. Despite the inherent challenges, experiments are
conducted on real-world datasets using the widely-adopted ResNet architecture He et al. (2016). To
ensure that the convergence rate estimation in Theorem 4.3 is less than 1 (thus making it meaningful),
additional modifications are made to the CIFAR-10 and FashionMNIST datasets:

(a) The 10-class classification problem is transformed into a 2-class problem. Specifically, for
CIFAR-10, images of airplanes, cars, birds, cats, and deer are labeled as 0, whereas images of
dogs, frogs, horses, ships, and trucks are labeled as 1. For FashionMNIST, T-shirt, trouser, pullover,
dress, and coat images are labeled as 0, while sandal, shirt, sneaker, bag, and ankle boot images are
labeled as 1.

7



Under review as a conference paper at ICLR 2024

(b) Data augmentation techniques, such as random horizontal flip and random crop, are employed
to obtain more samples. Specifically, 240,000 samples (four times the original dataset size) from
CIFAR-10 and 180,000 samples (three times the original dataset size) from FashionMNIST are
generated using data augmentation.

(a) (b)

Figure 2: Estimation of ε and b for the training recipe on (a) CIFAR-10 and (b) FashionMNIST
datasets. The blue line represents the model’s error rate on the correctly labeled part of the training
set (ES ), and the red line represents the model’s error rate on the randomly labeled part of the training
set (ES̃ ).

The training recipe employs a ResNet model composed of three layers of BasicBlock units with
output channels of 16, 32, and 64, subsequently succeeded by a final linear projection layer. Each
BasicBlock features two Conv2d layers with 3x3 kernels, trailed by BatchNorm2d layers. The
optimization hyperparameters are established as follows: a learning rate (LR) of 0.1, momentum of
0.9, weight decay of 1e-4, and a mini-batch size set to 128. The model undergoes training for 200
epochs on two 3090 GPUs over a few hours. Refer to the Appendix for more detailed information.

5.2 VALIDATION OF CONVERGENCE RATE ESTIMATION

This section presents the results of the experiments, which validate the convergence rate estimation.
First, the N − (ε, δ̃, b) for the training recipe on the two datasets needs to be estimated respectively.
A strategy is adopted in which models are trained on N data, including a δ̃ proportion of randomly
labeled data S̃, and then the error rate ES on the correctly labeled part of the training set and the error
rate ES̃ on the randomly labeled part are measured, thereby estimating ε and b. The experimental
results are shown in Figure 2. The blue line represents the model’s ES , and the red line represents
the model’s ES̃ . In both experiments, ES̃ remains close to 0.5, indicating that this part of the data
has a minor impact on the model’s final generalization error.

For the experiment on the CIFAR-10 dataset, we set δ̃ = 0.3, and after training, we measured
ES = 0.0456 and ES̃ = 0.4789, as shown in Figure 2a. Thus, we obtained suitable ε = 0.0465, and
b = 0.906. For the experiment on the FashionMNIST dataset, we set δ̃ = 0.35, and after training,
we measured ES = 0.024 and ES̃ = 0.4908, as shown in Figure 2b. Thus, we obtained suitable
ε = 0.024, and b = 0.77.

We obtained f0 with a test error of 0.183 on CIFAR-10 and a test error rate of 0.095 on FashionM-
NIST, and set δ to 0.05 as a small probability for estimating the convergence rate by Theorem 4.3.
To provide a more intuitive demonstration, we converted the estimated convergence rates into an
estimation of the population error (test error) for the obtained model f1. The estimations indicated
that the estimated population error for f1 on CIFAR-10 should be lower than 0.166 (the green line in
Subfigure 3a), and on FashionMNIST, it should be lower than 0.091 (the green line in Subfigure 3b).
These estimates align well with the actual experimental results, as demonstrated in Figure 3.
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(a) (b)

Figure 3: Comparison of Estimated and Actual Test Errors: (a) CIFAR-10 Experiment; (b) Fashion-
MNIST Experiment. The green line represents the estimated error. It is observable that the estimates
on both datasets align well with the actual experimental results.

6 RELATED WORK

In this section, a concise overview of the theoretical analysis literature in the field of semi-supervised
learning algorithms is provided. The effectiveness of pseudo label, a simple yet potent semi-
supervised learning method, in achieving robust accuracy levels comparable to the high standard
accuracy obtained using a similar quantity of labeled examples, was highlighted by the work of
Carmon et al. (2019). Chen et al. (2020) demonstrated that the reliance on spurious features can be
inhibited by using entropy minimization on unlabeled target data. Oymak & Gulcu (2020) under-
scored the advantages of excluding low-confidence samples, showing that iterations of self-training
can improve model accuracy, even when trapped in sub-optimal fixed points. However, the analyses
presented in Carmon et al. (2019), Raghunathan et al. (2020), Chen et al. (2020), and Oymak &
Gulcu (2020) primarily focus on linear models or data that is Gaussian or near-Gaussian.

More recently, Wei et al. (2020) established that self-training and input-consistency regularization
can achieve high accuracy relative to ground-truth labels, deriving sample complexity guarantees for
neural networks. Nevertheless, the convergence rate was not discussed in Wei et al. (2020). Despite
the valuable insights offered by these studies, there are still areas left unaddressed in the theoretical
analysis of pseudo-label-based semi-supervised learning algorithms, especially concerning the con-
vergence rate and the applicability to various neural network architectures. In contrast, our study
presents a comprehensive theoretical analysis of the pseudo-label-based semi-supervised learning
algorithm, filling the gaps in the current body of literature, specifically concerning the convergence
rate and the applicability to a wide variety of neural network models.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we have made significant contributions to understanding the convergence rates and
sample complexity of pseudo-label-based semi-supervised algorithms. Our analysis demonstrates
that the algorithms can attain an impressive convergence rate of O(N−1/2) order. Experimental
results corroborate the accuracy of our estimation. Furthermore, we provide an estimate of the
sample complexity and assess the algorithms’ performance with an infinite amount of unlabeled
data, showcasing its effectiveness in leveraging large quantities of unlabeled data. We posit that our
work establishes a solid foundation for future studies in this field.

However, our current work has certain limitations. A primary challenge lies in the efficient and
cost-effective estimation of the N − (ε, δ̃, b) parameters that dictate the behavior of algorithms. The
estimation of these parameters is vital as they directly influence the estimation of the convergence
rate and sample complexity. In our future work, we aim to undertake a more extensive analysis,
specifically focusing on the relationship between (ε, δ̃, b) and N , which will enable us to devise
strategies for estimating these parameters more effectively. This endeavor will further augment the
significance of our work.
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A APPENDIX A: SUPPLEMENTARY PROOFS

To facilitate the understanding of this appendix, we restate Proposition 3.1.

Corollary A.1. Suppose f̂ is trained using the N−(ε, δ̃, b) training recipe. Then, with a probability
of at least 1− δ, f̂ satisfies the following inequality:

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)
+ ak

√
log

(
4
δ

)
m

(22)

where a < 4 is a constant.

Additionally, if δ̃ satisfies

2k +
√
k +

δ̃√
k
< 2

√
2k (23)

then we have

ED(f̂) ≤ ES(f̂) + (k − 1)

(
1− k

k − 1
ES̃(f̂)

)
+ 2k

√
log

(
4
δ

)
m

(24)

Optimal Population Error We denote the population error when the model f̂ is trained by an
N − (ε, δ̃, b) training recipe on N correctly labeled data points as E∗

D. This represents the optimal
population error of the pseudo-label semi-supervised learning algorithm. Using Corollary A.1, we
derive:

E∗
D = (1 + b)ε+ ak

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(25)

Proof. Training f̂ with an N − (ε, δ̃, b) recipe accounts for ES , ES̃ , and δ̃, which is the allowed
proportion of randomly labeled data. The second term in Corollary A.1 is related to the performance

on randomly labeled data S̃. The third term, ak
√

log( 4
δ )

m , decreases as m increases.

For an N − (ε, δ̃, b) training recipe, the maximum m satisfies

m

n
= δ̃,

m+ n = N,
(26)

which yields

m =
δ̃

1 + δ̃
N,

n =
1

1 + δ̃
N.

(27)

Subsequently, we obtain

ED(f̂) ≤ (1 + b)ε+ ak

√
log

(
4

δ

)
1√
δ̃

1+δ̃
N

(28)

The right-hand side of the equation is E∗
D.

Estimation of Convergence Rate We proceed to prove our result concerning the estimation of the
convergence rate:
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Theorem A.2 (Estimation of Convergence Rate). For a model f1 trained utilizing the N−(ε, δ̃, b)
training recipe, if

ED(f0) ≤
δ̃

1 + δ̃
, (29)

then, with a probability of at least (1− δ)2, we have

p ≤ ak

(ED(f0)− E∗
D)

√
N

√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

−

√
δ̃ + 1

δ̃

 ·

√
log

(
4

δ

)
, (30)

where a is the constant from proposition 4.1, and the convergence rate p is defined as:

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

. (31)

Let ED(f0) denote the population error of model f0. This means there are approximately (1 −
ED(f0))N correctly labeled instances and ED(f0)N incorrectly labeled instances out of all N data
points. However, these incorrectly labeled instances are not random labels as they might arise from
structured errors.

To tackle this, we approximate the original algorithm in our analysis by choosing a small fraction
of pseudo-labels randomly and re-randomizing their labels. This approach allows us to analyze a
slightly weakened version of the pseudo-label semi-supervised learning algorithm, enabling us to
use proposition 4.1 to estimate the convergence rate, as well as strengthen our convergence rate
estimation.

Proof. Given a model f1 trained using the N − (ε, δ̃, b) recipe, the quantity of data selected for
re-random labeling, m, satisfies

m+ ED(f0)(N −m)

(1− ED(f0))(N −m)
≤ δ̃, (32)

which gives

m ≤ δ̃(1− ED(f0))− ED(f0)

(1 + δ̃)(1− ED(f0))
N, (33)

and

ED(f0) ≤
δ̃

1 + δ̃
. (34)

Equation 33 implies that at most δ̃(1−ED(f0))−ED(f0)

(1+δ̃)(1−ED(f0))
N data can be chosen from the N generated

pseudo-labels for re-random labeling. Next, according to Corollary A.1, we train f1 with at least a
1− δ probability as

ED(f1) ≤ (1 + b)ε+ ak

√
log

(
4

δ

)√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

. (35)

We define

upper(f1) ≜ (1 + b)ε+ ak

√
log

(
4

δ

)√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

, (36)

and we have
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p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ upper(f1)− E∗
D

ED(f0)− E∗
D

. (37)

Let C ≜ ED(f0)− E∗
D to simplify the expression, we then obtain:

p ≤ upper(f1)− E∗
D

C
. (38)

Substituting upper(f1) and E∗
D from Equations 36 and 25, and rearranging terms, we get:

p ≤
ak

√
log

(
4
δ

) [√ (1+δ̃)(1−ED(f0))

δ̃(1−ED(f0))−ED(f0)
−

√
δ̃

1+δ̃

]
C
√
N

. (39)

We can rewrite the term in the square root on the right side of equation 39 as:

√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)
=

√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

, (40)

Substituting equation 40 into equation 39, the inequality simplifies to:

p ≤
ak

√
log

(
4
δ

) [√
δ̃+1

δ̃− ED(f0)

1−ED(f0)

−
√

δ̃+1
δ̃

]
C
√
N

, (41)

Further simplification yields

p ≤ ak

(ED(f0)− E∗
D)

√
N

√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

−

√
δ̃ + 1

δ̃

 ·

√
log

(
4

δ

)
, (42)

Sample Complexity Estimation In this paragraph, we present the proof for the sample complexity
estimation.
Theorem A.3. Given a function f1 trained by the N − (ε, δ̃, b) training recipe, we have, with at
least (1− δ)2 probability,

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ p∗ (43)

when

N ≥
(

ak

p∗(ED(f0)− E∗
D)

)2
√√√√ δ̃ + 1

δ̃ − ED(f0)
1−ED(f0)

−

√
δ̃ + 1

δ̃

2

· log
(
4

δ

)
(44)

and

ED(f0) ≤
δ̃

1 + δ̃
(45)

Theorem A.3 specifies the conditions on the number of unlabeled samples, N , necessary to ensure
that the convergence rate stays below the target rate, p∗.

We start by introducing the following lemma:
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Lemma A.4. Given a function f1 trained with the N − (ε, δ̃, b) training recipe, and positive con-
stants c1 and c2 such that E∗

D + c1 ≤ ED(f0) ≤ E∗
D + c2. If N satisfies

N ≥
(

ak

p∗c1

)2
√√√√ δ̃ + 1

δ̃ − E∗
D+c2

1−E∗
D−c2

−

√
δ̃ + 1

δ̃

2

log

(
4

δ

)
(46)

and

ED(f0) ≤
δ̃

1 + δ̃
(47)

then, with at least (1− δ)2 probability, we have

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ p∗ (48)

Proof. According to Equations 35 and 36, for a function f1 trained with the N − (ε, δ̃, b) training
recipe, we have with at least 1− δ probability,

ED(f1) ≤ (1 + b)ε+ ak

√
log

(
4

δ

)√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

≜ upper(f1) (49)

From this, we can derive:

p ≜
ED(f1)− E∗

D

ED(f0)− E∗
D

≤ upper(f1)− E∗
D

ED(f0)− E∗
D

≜ p̃ (50)

Therefore, to ensure that inequality 48 holds, the following condition must be satisfied:

p̃ ≤ p∗ (51)

From equation 50, we can further derive:

upper(f1)− E∗
D ≤ p∗(ED(f0)− E∗

D) (52)

Substituting equation 35 into equationeq:7 and simplifying yields:√
(1 + δ̃)(1− ED(f0))

δ̃(1− ED(f0))− ED(f0)

1√
N

≤ p∗
ED(f0)− E∗

D

ak
√

log
(
4
δ

) (53)

Rearranging equation 52 with E∗
D + c1 ≤ ED(f0) ≤ E∗

D + c2 gives us the following inequality about
N :

N ≥
(

ak

p∗c1

)2
√√√√ δ̃ + 1

δ̃ − E∗
D+c2

1−E∗
D−c2

−

√
δ̃ + 1

δ̃

2

log

(
4

δ

)
(54)

This completes the proof of Lemma A.4.

Finally, by choosing c1 = c2 = ED(f0)− E∗
D in Lemma A.4, we obtain Theorem A.3.

A.1 TRAINING RECIPE DETAIL

Our implementation utilizes a ResNet architecture, which is structured with four ResNet blocks.
Each block comprises a pair of convolutional layers with 3x3 kernels, as depicted in Figure 4. The
model is fine-tuned using a mini-batch size of 128, spanning a total of 200 epochs. The learning rate
and momentum are set at 0.1 and 0.9, respectively. Weight decay is regulated at a rate of 1× 10−4.
Training checkpoints are stored every 10 epochs. Data loading is executed with four workers, and
the model’s performance is assessed on a validation set.
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Figure 4: Model architecture
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