Outlier Weighed Layerwise Sparsity (OWL ©9):
A Missing Secret Sauce for Pruning LLMs to High Sparsity

Lu Yin'?3 You Wu?® Zhenyu Zhang* Cheng-Yu Hsieh> Yaqing Wang® Yiling Jia’> GenLi® Ajay Jaiswal*
Mykola Pechenizkiy > Yi Liang® Michael Bendersky® Zhangyang Wang* Shiwei Liu’?

Abstract

Large Language Models (LLMs), renowned for
their remarkable performance across diverse
domains, present a challenge when it comes
to practical deployment due to their colossal
model size. In response to this challenge, efforts
have been directed toward the application of
traditional network pruning techniques to LLMs,
uncovering a massive number of parameters
that can be pruned in one-shot without hurting
performance. Building upon insights gained from
previous work, prevailing LLM pruning strategies
have consistently adhered to the practice of
uniformly pruning all layers at equivalent sparsity,
resulting in robust performance. However, this
observation stands in contrast to the prevailing
trends observed in the field of vision models,
where non-uniform layerwise sparsity typically
yields stronger results. To understand the
underlying reasons for this disparity, we conduct
a comprehensive study and discover a strong cor-
relation with the emergence of activation outliers
in LLMs, which are output features exhibiting
significantly greater magnitudes compared to
their counterparts. Inspired by this finding, we
introduce a novel LLM pruning methodology that
incorporates a tailored set of non-uniform layer-
wise sparsity ratios, termed as Qutlier Weighed
Layerwise sparsity (OWL). The sparsity ratio of
OWL is proportional to the outlier ratio observed
within each layer, facilitating a more effective
alignment between layerwise weight sparsity
and outlier ratios. Our empirical evaluation,
conducted across the LLaMA-V1/V2, Vicuna,
OPT, and Mistral, spanning various benchmarks,

"University of Surrey *Eindhoven University of Technology
3Google Research *University of Texas at Austin *University of
Washington ®Clemson University ’University of Oxford. Corre-
spondence to: Shiwei Liu <shiwei.liu@maths.ox.ac.uk>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

demonstrates the distinct advantages offered by
OWL over previous methods. For instance, OWL
exhibits a remarkable performance gain, surpass-
ing the state-of-the-art Wanda and SparseGPT
by 61.22 and 6.80 perplexity at a high sparsity
level of 70%, respectively, while delivering 2.6 x
end-to-end inference speed-up in the DeepSparse
inference engine. Code is available at https:
//github.com/luuyin/OWL.git.

1. Introduction

The remarkable performance exhibited by Large Language
Models (LLMs) across a diverse spectrum of applications
has ignited an unparalleled race among tech giants and aca-
demic institutions to build LLMs at the billion-parameter
scale (Brown et al., 2020; Touvron et al., 2023a;b; Brown
et al., 2020). The compelling performance of Large Lan-
guage Models (LLMs) demonstrated in various applica-
tions triggers an unprecedented competition of building
billion-level LLMs among tech giants and academic institu-
tions (Brown et al., 2020; Touvron et al., 2023a;b; Brown
et al., 2020). While their exceptional capabilities are undeni-
able, the colossal size and computational demands of these
models have also raised substantial concerns, particularly in
terms of financial expenditure and environment (Luccioni
et al., 2022; Patterson et al., 2021).

Network pruning (Mozer & Smolensky, 1989; Janowsky,
1989; LeCun et al., 1989; Han et al., 2015), as a long-
established model compression method, is expected to serve
as an effective solution for reducing the size of LLMs. How-
ever, network pruning usually favors a certain time of fine-
tuning or re-training to reacquire the original optimal per-
formance. Given the extensive text corpus and model size
associated with LLMs, conventional fine-tuning becomes
exceedingly challenging and less desirable. Fortunately,
recent endeavors have explored the possibility of LLM prun-
ing without the need for fine-tuning, showcasing that LLMs
contain a substantial number of parameters that can be re-
moved in a single step with minimal performance degra-
dation (Frantar & Alistarh, 2023; Sun et al., 2023; Jaiswal

https://github.com/luuyin/OWL.git
https://github.com/luuyin/OWL.git

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

LLaMA-7B LLaMA-13B LLaMA-30B
12 OWL (Ours) 1 R S PR . ©—- comspt S S S, W [~ e i |
,% ’ ==+ Uniform ,% 0.6 .g 0.6
~ 1.0 R~ 2
z 205 205
i 08 AL L L L g pp— . i 04 OWL (Ours) \é_ 0.4 OWL (Ours)
206 % =+ Uniform @ ==+ Uniform
2 203 203
£ 04 g 5
E 0.2 202
3 3 5
0.2 0.1 0.1
0.0+ . ' . ' . ' 0.0 b——— ' ' ' ' ' ' ' 0.0 L peeeee e e P TRSRERR —
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60
Layer Index Layer Index Layer Index

Figure 1: The demonstration of the OWL layerwise sparsity and Uniform layerwise sparsity at 70% sparsity. The bar chart
in the background corresponds to the Layerwise Outlier Distribution (LOD), as elaborated in Section 3.2

et al., 2023b; Ma et al., 2023). SparseGPT (Frantar & Al-
istarh, 2023) addresses the challenge of LLM pruning from
the perspective of layerwise reconstruction problem. In this
context, the primary goal is to minimize the output discrep-
ancy in terms of the reconstruction error between dense
and sparse LLMs. It adopts an iterative strategy to handle
the computational hurdle posed by the row-Hessian prob-
lem. Specifically, it employs the Optimal Brain Surgeon
(OBS) algorithm (Hassibi et al., 1993) to selectively prune
and update weights in a column-wise manner. Wanda (Sun
et al., 2023), on the other hand, introduces a novel pruning
metric that takes into account both the weight magnitudes
and their corresponding input activations. Remarkably, it
achieves performance on par with SparseGPT without rely-
ing on computationally expensive second-order information.
The effectiveness of Wanda stems from the emergence of
the outlier features residing within LLMs. These outliers,
which tend to be significantly larger than typical features, are
nonetheless crucial for optimizing LLM performance (Ko-
valeva et al., 2021; Puccetti et al., 2022; Timkey & van
Schijndel, 2021; Dettmers et al., 2022). Both SparseGPT
and Wanda exhibit appealing performance, showcasing their
ability to reduce model parameters by up to 50% while incur-
ring only a modest increase of perplexity (Sun et al., 2023).

It is worth noting that SparseGPT and Wanda unanimously
follow previous work on BERT pruning (Sanh et al., 2020;
Kurtic et al., 2022) and choose to prune LLMs with a uni-
form sparsity ratio per layer, i.e., each layer will be pruned
at the same sparsity. Such choice is reasonable for LLMs,
as the pruning process typically involves sorting the impor-
tance scores of weights. Conducting such sorting globally
across layers could become a computational bottleneck,
especially for models at the billion-parameter scale. Never-
theless, before it has been taken root that uniform layerwise
sparsity is the default choice for LLMs, we raise a timely
inquiry: are there any pivotal aspects that have been in-
advertently omitted in the context of favorable layerwise
sparsity ratios for LLM pruning?

Three reasons behoove us to pose the above research ques-

tion: First, it is widely acknowledged that within Trans-
former architectures, certain components hold greater sig-
nificance than others, and thus, they merit distinct treatment
during the pruning process (Wang & Tu, 2020; Bhojanapalli
et al., 2021); Second, a consensus view has been reached in
computer vision that non-uniform layerwise sparsity typi-
cally achieves stronger results than uniform sparsity (Liu
et al., 2022a; Lee et al., 2020); More importantly, LLMs
demonstrate astonishingly emergent behaviors (Wei et al.,
2022; Schaeffer et al., 2023; Dettmers et al., 2022) as model
size continuously scales up, a phenomenon distinct from
smaller-scale language models. These emergent behaviors
offer fresh insights into the domain of LLM pruning. For
instance, the existence of outlier features within LLMs, with
magnitudes up to 20 times larger than others, exerts a pro-
found influence across all Transformer layers (Kovaleva
et al., 2021; Dettmers et al., 2022).

Contributions. Given the pivotal role that outliers play
in LLMs, coupled with the demonstrated effectiveness of
Wanda (Sun et al., 2023), our initial investigation centers
on a systematic examination of the impact of existing LLM
pruning methodologies on outliers. We uncover a strong
correlation between pruning efficacy and the retention ra-
tio of outliers: contemporary state-of-the-art LLM pruning
approaches, such as SparseGPT and Wanda, exhibit remark-
able preservation of outliers, even though the former was not
originally designed with this intent. Moreover, we conduct
an in-depth analysis of the distribution of outliers across
different layers and observe a notably non-uniform pat-
tern. This non-uniform distribution emerges as a valuable
indicator for the formulation of layerwise sparsity strategies
tailored specifically for LLMs. Building upon this newfound
insight, we introduce an LLM pruning paradigm character-
ized by a novel layerwise sparsity ratio, denoted as Outlier
Weighed Layerwise sparsity (OWL). OWL inherently as-
signs greater emphasis to layers housing a higher prevalence
of outliers, thereby facilitating more nuanced coordination
between sparsity in weight matrices and the presence of
outliers within the layer.

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

We conduct extensive experiments to evaluate the perfor-
mance OWL across a spectrum of LLMs, including LLaMA-
V1 (Touvron et al., 2023a), and OPT (Zhang et al., 2022),
from 7B to 65B. Our empirical results show that OWL con-
sistently outperforms existing top-performing LLM pruning
methods, particularly at high sparsity levels. For instance,
we observe significant improvements achieved by OWL over
Wanda with LLaMa-7B on WikiText (Merity et al., 2016a),
with perplexity reductions of more than 60 and 3300 perplex-
ity at sparsity levels of 70% and 80%, respectively. When
evaluated in the DeepSparse (DeepSparse, 2021) inference
engine, OWL delivers a 2.6 x - 3.9x end-to-end speedup on
CPUs with 70% - 90% sparsity.

Overall, our research provides a compelling counter-
argument to previous studies by highlighting the previously
overlooked yet crucial role of layerwise sparsity ratios in
LLM pruning. This change in perspective has enabled us
to push the boundaries of achievable one-shot LLM prun-
ing ratios to 70%. Note that while non-uniform layerwise
sparsity has been extensively explored in network pruning,
our paper represents the first effort to make it applicable
in LLM pruning, challenging the conventional belief that
uniform layerwise sparsity is the default and optimal choice
for LLM pruning.

2. Related Work

Pruning and LLM Pruning. Since the 1980s, network
pruning has been a well-established technique for sim-
plifying neural networks in various applications while
maintaining accuracy (Mozer & Smolensky, 1989; Han
etal., 2015; Mocanu et al., 2018; Wen et al., 2017; Lin et al.,
2019). However, when it comes to pruning Large Language
Models (LLMs), progress has been limited. Traditional
pruning typically requires a round of re-training to restore
performance, which can be challenging for LLMs. To
address this challenge, researchers have developed pruning
algorithms specifically tailored for LLM compression.
For example, Ma et al. (2023) explored structured sparse
LLMs using Taylor pruning to remove entire weight rows,
followed by LoRA fine-tuning (Hu et al., 2021). Recent
research has shifted toward unstructured pruning without
the need for fine-tuning, showing substantial advancements.
SparseGPT (Frantar & Alistarh, 2023) utilizes the Hessian
inverse for pruning and with subsequent weight updates
to reduce reconstruction error of dense and sparse weights,
while Wanda (Sun et al., 2023) produces a criterion
incorporating weight magnitude with their input activations,
aiming to preserve outlier features. Zhang et al. (2023)
extended dynamic sparsity (Mocanu et al., 2018; Evci et al.,
2020; Liu et al., 2021b) to efficiently fine-tune sparse LLM
without weight updating. Our work for the first time probes
the crucial role of non-uniform layerwise sparsity for LLM
pruning, making good progress in this field.

Layerwise Sparsity for Pruning. While it is common to
use uniform layerwise sparsity (Zhu & Gupta, 2017; Gale
et al., 2019) to prune language models (Sanh et al., 2020;
Kurtic et al., 2022), there is a well-established line of work
that explore non-uniform layerwise sparsity in terms of
pruning vision models. Mocanu et al. (2016) propose a non-
uniform and scale-free topology inspired from graph the-
ory, showing better performance than the dense counterpart
when applied to restricted Boltzmann machines. Follow-up
works significantly improve its scalability based on Erdds-
Rényi graph (Erdds & Rényi, 1959), extending to fully-
connected layers (Mocanu et al., 2018) and convolutional
layers (Evci et al., 2020; Liu et al., 2022a) as data-free
and feedforward-free layerwise sparsity. Another group of
work produces non-uniform sparsity by applying a global
threshold on every layer (Frankle & Carbin, 2019; Lee et al.,
2019; Wang et al., 2020; Lee et al., 2020; Liu et al., 2021a).
However, global pruning becomes extremely expensive and
inefficacious in the context of LLM pruning as shown in
Table 2. We also provide a comparison among the most
common layerwise sparsity for LLMs in Section 5, and all
of them fail to perform on LLMs.

Outliers in LLLMs. Recent studies have revealed certain
emergent characteristics unique to language models at scale.
Specifically, one intriguing trait of LLMs is the exhibition
of outlier features, which are the features with significantly
larger magnitudes than others (Kovaleva et al., 2021; Puc-
cetti et al., 2022; Timkey & van Schijndel, 2021; Dettmers
et al., 2022). Kovaleva et al. (2021) first discovered that a
very small number of outlier dimensions appears in the pre-
trained encoder layers of GPT-2. Puccetti et al. (2022) fur-
ther demonstrated that outliers are causally related to high-
frequency tokens in pre-training data. While constituting
only a very small portion of the entire feature dimensions,
these outliers play an imperative role in models’ predic-
tive performance. Given the importance of outliers, several
recent works have developed techniques to effectively quan-
tize LLMs with minimal performance drop (Dettmers et al.,
2022; Xiao et al., 2023; Lin et al., 2023). However, in
the context of LLM pruning, this unique characteristic has
scarcely been explored except for Sun et al. (2023). Our
work draws inspiration from the emergent outliers in LLMs,
and provides a new technique that leverages the distribution
of outliers to guide layerwise LLM pruning.

3. Outlier Weighed Layerwise Sparsity

In this section, we will introduce Outlier-Weighed Layer-
wise sparsity (OWL) step by step, from rationale to empiri-
cal studies, and eventually to our algorithm.

3.1. Rationale

The success of pruning in pre-LLM model compression
is closely intertwined with the feasibility of fine-tuning or

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

re-training. It has been observed that even the random re-
moval of components can ultimately restore the original
performance through adequate re-training (Liu et al., 2022a;
Mittal et al., 2019). However, fine-tuning encounters signifi-
cant challenges when applied to LLMs, rendering pruning
less effective. Notably, Wanda (Sun et al., 2023) achieves re-
markable performance by augmenting input activation with
weight magnitude, underscoring the critical importance of
preserving outlier features in LLM pruning. Considering
the vital role that outliers play in the context of LLMs (Ko-
valeva et al., 2021; Dettmers et al., 2022) and the success
of Wanda, we conjecture that the performance of different
pruning methods has a strong correlation with their ability
to preserve outlier features. To assess our conjecture, we
undertake several preliminary investigations outlined below
based on Layerwise Outlier Distribution.

3.2. Empirical Study

Layerwise Outlier Distribution (LOD). Our preliminary
studies are predominantly based on Layerwise Outlier
Distribution (LOD), a concept used to measure the
across-layer outlier distribution. Since we focus on weight
pruning in this paper, we opt to prioritize the weight outliers
instead of the activation outliers, which are identified as
weights whose outlier scores are at least M times larger
than the mean. The outlier score of weight is calculated
as the accumulation of all input features connected to that
weight, multiplied by its magnitude, which also serves as
the pruning metric used by Wanda (Sun et al., 2023). By
measuring the ratio of weight outliers in each layer, we can
obtain the LOD of the whole model.

To formalize our approach, let us consider the input of a
layer as X with dimensions (N x L, C},), where N and L
represent the batch and sequence dimensions, respectively;
and the weight matrix W has dimensions (Coy¢,Ciy).
The outlier score of weight W 5 is computed as A;; =
[IX5]l2 - [W 5|, which is the aggregation of all input fea-
tures connected to weight W ; 5, multiplied by its magni-
tude [W5|. Here, ||X]|2 is the {2 norm of input feature
connected to the weight. This computation is performed
across all N x L tokens. Subsequently, after obtaining the
outlier score for all weights, we proceed to calculate the
“outlier ratio” of A by identifying elements whose magni-
tude is M times greater than the averaged value in each
layer. We empirically find that M = 5 or M = 7 usually
works well to sketch the distribution of weight outliers. This
process enables us to derive a vector, denoted as LOD =
[DY, D2, ..., D"], where D' characterizes the outlier distri-
bution of layer /. That is,

Cout x\Cin _
S X (AL > M- A
Cincout

where A! is the mean of A! and I(-) is the indicator func-

Dl

ey

tion, returning 1 if Al‘lj is larger than M - A’ else 0. Based
on LOD, we conduct three empirical studies outlined be-
low to better understand the effect of current LLM pruning
approaches on outliers.

Empirical Study I: Dense LLMs vs. LOD. To investigate
whether sparsifying LLMs necessitates differential treat-
ment of individual layers, we employ LOD to gauge the
layerwise distribution of outliers within dense LLMs. If
LOD in dense LLMs exhibits a relatively uniform pattern,
it suggests that we do not need a non-uniform layerwise
sparsity ratio to preserve outliers, and vice versa. We assess
the LOD with LLaMA-7B, 13B, and 30B.

Table 1: Effects of various pruning methods on Layerwise
Outlier Distribution (LOD) and Perplexity with LLaMA-13B
on WikiText. LOD is calculated as the summation across all
layers with M = 7.

Sparsity | Method

| LOD (%) 1 | ALOD (%) 1 | Perplexity |

| Dense | 5432 | - ‘ 5.090
Wanda 5.716 0.284 55.900
70% SparseGPT 6.645 1.213 19.235
Magnitude 5.322 -0.110 84539.445
Wanda 5.433 0.001 8.761
60% SparseGPT 6.044 0.612 8.458
Magnitude 5.322 -0.110 229.451

Empirical Study II: Pruning Metric vs. LOD. We further
delve into the impact of different pruning metrics on LOD.
The primary objective of this study is to explore whether
there exists a robust correlation between the performance of
various pruning methods and their ability to preserve out-
liers. To achieve this, we aggregate the 1.OD values across
layers for various LLM pruning methods, including magni-
tude, Wanda, and SparseGPT, and compare them with their
dense counterparts. To mitigate the influence of pruning
on the mean of outlier score A, we use the pre-pruning
mean value to measure the outlier score after pruning. Sub-
sequently, the number of outlier weights after pruning is
then divided by the total number of weights (including both
zero and non-zero weights) to obtain the updated weight
outlier ratio. Doing so helps avoid the impact of pruning
on the mean outlier score, ensuring a precise evaluation of
alterations in the outlier ratio. All sparse models are pruned
with uniform layerwise sparsity. These experiments are
conducted using LLaMA-13B at sparsity levels of 60% and
70% with M = 7.

Empirical Study III: Pruning Granularity. It is well-
established that non-uniform or global layerwise sparsity of-
ten leads to more accurate sparser networks at high sparsity
than the uniform layerwise sparsity for pre-LLM pruning.
However, endeavors unanimously point out that uniform
sparsity is more favorable for LLM pruning. To provide
more insights into these two seemingly contradictory argu-
ments, we study the effect of various pruning granularities

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

Table 2: WikiText perplexity with LLaMA-7B of various
pruning granularity.

Method Layerwise | Output Sparsity

Uniform | Balanced | 10% 20% 30% 40% 50% 60% 70%
Wanda v v 5697 5817 5999 6.388 7.260 10 86
Wanda v X 5695 5819 6.029 6572 7.942 20 238
‘Wanda X X 14.117 3134 10293 10762 14848 17765 5147
Magnitude v v 5.803 6.018 6.622 8.041 13349 152 25304
Magnitude v X 5806 6.020 6.669 8.601 17.287 559 48419
Magnitude X X 5821 6.111 7.012 9.825 48.627 38335 29283

on LLMs. Specifically, we study two sets of pruning granu-
larities: (1) Across different layers, we compare the perfor-
mance of uniform pruning and global pruning; (2) Within
the same layer, we study the output-imbalanced sparsity
used by SparseGPT against the output-balanced sparsity
adopted by Wanda. Output-balanced sparsity eliminates the
same amount of weights for all outputs. We conduct exper-
iments with magnitude pruning and Wanda using LLaMA-
7B. While this part of the study is irrelevant to LOD, we
place it here due to the crucial role of pruning granularity.

Results: We present our findings from Study 1-3, in
Figure 1, Table 1, and Table 2, respectively. These
results provide positive support for our conjecture, and we
summarize the key observations below:

(D LoD of dense LLMs exhibits a highly non-uniform
distribution across layers. In essence, the distribution of
dense LLMs shown in Figure 1 loosely follows a “U” shape,
with notable proportions at both ends, while the central
region displays a monotonic descending trend. This finding
validates our conjecture that individual layers need unique
consideration during the pruning procedure. Employing
uniform pruning across all layers would inevitably disrupt
the outlier structure in layers characterized by a large outlier
ratio, such as those layers at the beginning or end of models.

2 The performance of sparse pruning methods on
LLMs is closely correlated with their ability to retain
outlier features. Leading pruning techniques like Wanda
and SparseGPT all excel in outlier, resulting in an overall
increase in LOD. In contrast, the naive baseline of magni-
tude pruning performs no better than random selection at
70% sparsity, as evidenced by a negative change of -0.110
in LOD, indicating the removal of important outliers. It is
interesting to see that despite SparseGPT not being explic-
itly designed for outlier preservation, it achieves the highest
LOD as well as performance, providing further insight into
the underlying reason for its success. The potential ex-
planation could be that the weight update involved within
SparseGPT contributes to the increase in LOD.

@ Pruning with coarser granularity results in dimin-
ished performance. In general, we observe a consistent
trend of improved perplexity as the pruning granularity be-
comes finer, transitioning from global layerwise sparsity
to uniform layerwise sparsity at the macro level, and from
output imbalanced sparsity to output balanced sparsity at the

LLaMA-7B

80 Wanda

70— SparseGPT

-#&- OWL w. SparseGPT
OWL w. Wanda

260
250
540
=¥
30
20
10

Sparsity

LLaMA-13B

Wanda
—— SparseGPT
10} ~#&= OWL w. SparseGPT
OWL w. Wanda

-1(‘) : : -;)(A) 60 70
Figure 2: WikiText validation perplexity of LLaMA-7B and
LLaMA-13B pruned by various approaches.

micro level. These findings align with the conclusions pre-
sented by Sun et al. (2023). This observation suggests the
importance of a nuanced design of pruning ratios to mitigate
aggressive sparsity differences among different components
in LLMs. This motivation led us to constrain the sparsity ra-
tio of each layer to fluctuate only around the target sparsity,
with a hyperparameter A introduced in Section 3.3.

3.3. Outlier Weighed Layerwise Sparsity (OWL)

The above empirical studies underscore the critical signif-
icance of preserving outliers in the context of LLM prun-
ing. Consequently, it becomes imperative to implement
layerwise pruning strategies that take into account the non-
uniform distribution of outliers across different layers. How-
ever, global pruning can be costly and lead to the collapse
of outliers, resulting in significant performance degradation.
On the other hand, uniform pruning does not adequately
consider the highly non-uniform distribution of outlier fea-
tures across various layers. This negligence inevitably dis-
rupts the structure of outliers in layers characterized by a
substantial outlier ratio, particularly at high sparsity levels.
Therefore, there is a need of an ideal layerwise sparsity
that aligns effectively with the layerwise outlier distribution
while maintaining computational and memory efficiency.

To address this issue, we propose a novel layerwise sparsity
ratio strategy, referred to as Qutlier-Weighed Layer-wise
sparsity (OWL) explicitly tailored for LLMs, which can
better coordinate with the outlier distribution by taking the
layerwise outlier ratio into consideration. Given a [l-layer
large language model with a target model sparsity .S, we aim
to calculate the target layerwise sparsity [S!, 52, ..., S™].
We first calculate .OD, D = [D', D?,..., D"], based on
the approach proposed in Section 3.2. Guided by the princi-
ple that layers with a higher proportion of outliers should

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

Table 3: WikiText validation perplexity of pruning methods for LLaMA-V1 family and OPT-6.7B at 70% sparsity. The best
performance method is indicated in bold, and the gain in perplexity achieved by OWL is highlighted in blue.

Method Layerwise | Weight LLaMA-V1 OPT
Sparsity | Update | 7B 13B 30B 65B 6.7B
Dense \ - | -]568 5.09 4.10 4.71 | 10.13
Magnitude \ Uniform \ X \ 48419.12 84539.45 9717.73 46.89 \ 290985.03
Wanda Uniform X 85.77 55.90 17.37 15.23 162.92
OWL w. Wanda Non-Uni X 24.55 61220 17.17 (-38.73) 10.75 (6.62) 8.61 (-6.62) | 40.22 (-120.70)
SparseGPT Uniform v 26.30 19.24 12.56 10.45 20.29
OWL w. SparseGPT | Non-Uni v 19.49 681y 14.55 469 10.28 (-2.28) 8.28 (-0.649) | 22.48 (2.19
have a lower sparsity, we set .S; oc 1 — D,. Additionally, = 2023). Magnitude pruning serves as a naive baseline for

we introduce a hyperparameter A which constrains the lay-
erwise sparsity to fall within a small range, specifically,
S; € [S — A\, S + A], while maintaining an average spar-
sity of S across all layers. This helps prevent excessive
differences in sparsity between layers, ensuring a robust per-
formance. This constraint is inspired by the insights gained
from “Empirical Study III” which highlight the detrimen-
tal impact of overly aggressive layerwise sparsity, akin to
global pruning, on sparse LLMs. To obtain a favorable num-
ber for A and M, we conduct a small hyperparameter sweep
within the range of A € [0.02, 0.05, 0.08, 0.1, 0.2] and for
M € [3,5,7, 10]. Note that we assign a distinct pruning
ratio for each Transformer block instead of each layer, as
the former provides better performance (see Appendix C
for more detail). The visualization of our layerwise sparsity
ratio is demonstrated in Figure 1, where we can see that the
layerwise sparsity level of OWL nuancedly aligns well with
the model’s LOD.

4. Experiments
4.1. Main Experiments

Models and Dataset. We assess OWL’s performance across
arange of LLMs, encompassing the LLaMA-V1 model fam-
ily (Touvron et al., 2023b) with parameter counts ranging
from 7 billion to 65 billion, as well as OPT-6.7B (Zhang
et al., 2022). Our evaluation protocol aligns with established
LLM pruning methodologies (Frantar & Alistarh, 2023; Sun
et al., 2023), encompassing assessments of language model-
ing proficiency and zero-shot capabilities of sparse LLMs.
Specifically, we measure the Perplexity metric on the Wiki-
Text (Merity et al., 2016b) validation dataset for language
modeling performance, and employ the Accuracy metric for
zero-shot evaluations on seven common sense benchmarks,
including BoolQ (Clark et al., 2019), RTE (Wang et al.,
2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2019), ARC Easy and Challenge (Clark et al.,
2018), and OpenbookQA (Mihaylov et al., 2018).

Baselines. We choose the three current LLM-pruning
baselines, including magnitude (Jaiswal et al., 2023b),
SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al.,

LLMs, with an expected sharp decline in performance at
modest sparsity levels, typically ranging from 10% to 30%.
SparseGPT and Wanda, on the other hand, are established
baselines known for their ability to maintain reasonable per-
formance even at relatively high sparsity levels, typically
around 50% to 60%. Notably, in contrast to our approach,
all baseline methods employ with uniform layerwise spar-
sity. We primarily focus on high sparsity levels, not falling
below 50%, as regions with low sparsity pose challenges
for existing sparse GPU kernels to outperform their dense
counterparts (Gale et al., 2020). To ensure equitable compar-
isons, we have employed the identical set of calibration data
as utilized by SparseGPT and Wanda for model pruning,
i.e., comprising 128 sequences with 2048 tokens for each,
randomly sampled from the first shard of the C4 (Raffel
et al., 2020) dataset. We incorporate OWL directly into
Wanda and SparseGPT, resulting in two variants: “OWL w.
Wanda” and “OWL w. SparseGPT”. The only distinction
between these variants lies in their layerwise sparsity ratios,
with OWL providing a more tailored layerwise sparsity in
this regard. Hyperparameters are shared in Appendix D.

Language Modelling. We first report the performance of
various LLM pruning methods on language modelling with
WikiText. The results is presented in Table 3 and Figure 2.
We summarize the key observation below:

(D OWL serves as a general layerwise sparsity method
suitable for various scenarios. As illustrated in Table 3,
OWL exhibits effectiveness across different pruning meth-
ods (such as Wanda and SparseGPT), architectural variants
(including LLaMA-V1 and OPT), and diverse model sizes
(ranging from 7B, 13B, 30B, to 65B parameters), resulting
in substantial reductions in perplexity scores. Notably, even
when applied to SparseGPT, a strong pruning method in-
corporating second-order information, OWL still achieves
significant perplexity reductions, exemplified by a reduction
of 6.81 for LLaMA-7B.

) The benefits of OWL increase significantly as model
size decreases. There is a clear trend that the performance
gain of OWL monotonically increases as LLaMA-V1 scales
down from 65B to 7B. While the performance improvement

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

Table 4: Accuracies (%) for 7 zero-shot tasks with 70% sparsity using LLaMA-V1 family.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean
Dense 75.14 66.43 74.80 70.01 67.67 41.38 4140 62.40

Magnitude 38.29 52.71 24.68 51.46 26.98 22.35 25.80 34.61

7B Wanda 55.11 57.40 31.83 51.38 34.22 19.80 26.00 39.39
OWL w. Wanda 6248 58.48 44.79 58.72 45.03 26.19 29.60 46.47
SparseGPT 64.53 53.79 42.11 58.64 43.06 24.57 27.80 4493

OWL w. SparseGPT 67.13 53.43 48.56 62.03 4541 27.65 32.00 48.03

Dense 77.86 70.40 78.08 72.77 69.19 47.18 43.80 65.61

Magnitude 52.94 50.54 27.67 50.91 28.24 23.38 24.80 36.93

13B Wanda 61.71 52.71 34.31 52.33 37.16 20.90 29.60 41.25
OWL w. Wanda 62.69 52.71 51.03 63.14 49.54 28.67 3440 48.88
SparseGPT 6694 52.71 4791 62.90 45.03 27.99 3520 48.38

OWL w. SparseGPT 64.95 53.07 54.39 66.54 48.86 30.12 38.00 50.85

Dense 82.69 66.79 81.19 75.85 7348 50.77 44.60 6791

Magnitude 39.14 46.21 24.31 52.33 24.66 22.87 29.00 34.07

30B Wanda 66.12 57.76 58.84 67.32 59.26 33.11 40.20 54.66
OWL w. Wanda 6642 5235 62.94 69.30 61.83 3584 40.00 55.53
SparseGPT 66.51 63.90 60.38 69.85 58.54 33770 40.60 55.78

OWL w. SparseGPT 67.58 58.48 64.88 70.72 60.82 35.07 4220 57.11

Dense 84.86 69.68 82.94 77.35 75.08 5256 4420 69.52

Magnitude 52.17 54.87 49.87 56.67 49.71 30.63 38.80 47.53

65B Wanda 76.30 56.68 61.26 70.48 63.47 35.67 3940 57.61
OWL w. Wanda 80.12 58.84 66.16 73.56 6545 3993 4220 60.89
SparseGPT 80.64 59.57 66.42 72.61 60.52 38.57 40.80 59.88

OWL w. SparseGPT 82.63 67.15 68.52 75.06 60.10 39.59 39.00 61.72

Table 5: WikiText perplexity of “OWL w. SparseGPT” with
LoRA fine-tuning.

Method Model Sparsity Perplexity
Without FT 7B 0.7 19.49
With FT 7B 0.7 11.15
Without FT 13B 0.7 14.55
With FT 13B 0.7 9.0

Table 6: Comparison of time overhead used for computing
the pruning metric across layers of LLaMA (in seconds).

Method 7B 13B 30B 65B
SparseGPT 266 436 869 1395
OWL w. SparseGPT 268 438 870 1397
Wanda 03 04 1.1 1.8
OWL w. Wanda 03 05 12 2.0

of OWL .w Wanda for LLaMA-65B is already encouraging
i.e., 6.62, it achieves a remarkable gain of 61.22 for LLaMA-
7B, resulting in a reasonable 24.55 perplexity.

Zero-Shot Tasks. While perplexity is a widely used metric
for language modeling, it primarily serves as a statistical
measure of how confidently a language model predicts a text
sample and does not necessarily align with the quality of the
generated text (Jaiswal et al., 2023a). To draw more robust
conclusions, we conducted experiments to evaluate the zero-
shot ability of various sparse LLMs on diverse zero-shot
downstream tasks with prompting. These experiments were

performed using the LLaMA-V1 family at 70% sparsity,
and the results are presented in Table 4. It’s noteworthy
that OWL consistently improves accuracy across nearly all
settings, with very few exceptions on RTE dataset. For
example, OWL achieves an average perplexity gain of 4.72
and 2.19 over 7 tasks and 4 model sizes compared to Wanda
and SparseGPT alone, respectively. This result highlights
the promise of OWL still holds for more challenging tasks.

Fine-tuning Performance. We also explore the impact of
fine-tuning on the performance recovery of OWL. In align-
ment with Wanda, we utilize LoRA (Hu et al., 2021) as our
fine-tuning method and refrain from merging the adapter
back to preserve the sparse pattern. We fine-tune mod-
els pruned by “OWL + SparseGPT” using only a minimal
30,000 tokens from the C4 training dataset. Remarkably,
our results demonstrate that the perplexity drop caused by
aggressive pruning can be significantly narrowed through
a very short time of fine-tuning, reducing the perplexity
from 19.49 to 11.15 of LLaMA-7B and from 14.55 to 9.0
for LLaMA-13B. We anticipate achieving a significantly
lower perplexity by employing more advanced sparse fine-
tuning approaches (Zimmer et al., 2023), or by extending
the fine-tuning duration.

Pruning Efficiency. Since we utilize the pruning metric
of Wanda to determine our layerwise sparsity, the computa-

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

Table 7: End-to-end decode latency speedup of LLaMA-V2-7B-chat-hf using OWL with the DeepSparse (DeepSparse,

2021) inference engine.

Sparsity Dense 10% 20% 30% 40% 50% 60% 70% 80% 90%
Latency (ms) 213.83 216.86 221.62 218.01 167.54 121.25 10141 81.89 64.57 5424
Throughput (tokens/sec) 4.68 4.61 451 4.59 5.97 8.25 9.86 1221 1548 18.43
Speedup 1.0x 1.0x 1.0x 1.0x 1.3x 1.8x 2.1x 26x 33x 3.9x

Table 8: WikiText validation perplexity of LLaMA-7B with various layerwise sparsity using Wanda.

Sparsity/Perplexity 10% 20% 30% 40 % 50% 60% 70 % 80%
Global 14.11 3134 10293 10762 14848 17765 5147 39918.56
ER-plus 570 582 6.05 6.62 8.00 14.04 229.17 6013.91
ER 569 580 6.02 6.55 774 12,16 112.03 11151.18
Uniform 569 581 599 6.38 726 1070 8577 3499.88
OWL-inverse 572 583 6.04 6.51 8.03 26.05 82223 9616.08
OWL (ours) 570 580 6.01 6.39 7.22 9.35 24.54 1002.87

tional complexity of OWL is comparable to that of Wanda.
To demonstrate this, we measure the total pruning time,
excluding the forward pass process, following the method-
ology outlined by Sun et al. (2023). These results were
obtained using NVIDIA A100 GPUs. Our results in Table 6
indicate that OWL incurs negligible time overhead (maxi-
mum 2 seconds) relative to previous pruning approaches.

Inference Speedup. We analyze the speedup achieved
by OWL, as presented in Table 7. The reported speedups
correspond to end-to-end decode latency using LLaMA-V2-
7B-chat-hf in the DeepSparse inference engine (DeepSparse,
2021) on an Intel Xeon Platinum 8360Y CPU with 36
cores. It is evident that OWL delivers a significant inference
speedup compared to the dense model, reaching 2.6x at
70% sparsity. Notably, the speedup gain becomes even
more substantial with higher sparsity e.g., around 4x at
90% sparsity, showcasing additional motivation for future
endeavors targeting extreme sparsity.

4.2. More Advanced LLMs

Table 9: WikiText Perplexity of Various LLMs.

Sparsity

Method Models 60% 70% 80%

Wanda LLaMA-V2-7B | 11.63 57.10 3221.74
OWL w. Wanda | LLaMA-V2-7B | 10.30 29.07 523.30
Wanda Vicuna-7B 11.93 5798 2347.49
OWL w. Wanda Vicuna-7B 10.58 34.44 719.11
Wanda Mistral-7B 11.27 60.67 306.26
OWL w. Wanda Mistral-7B 10.29 41.02 220.89

To examine if the effectiveness of OWL is robust across
various LLMs, we also apply OWL to more advanced LLMs
including LLaMA-V2-7B-chat-hf (Touvron et al., 2023b),
Vicuna-7B, and Mistral-7B (Jiang et al., 2023). Table 9
further illustrates the efficacy and robustness of OWL as
a layerwise sparsity technique across a spectrum of Large

Language Models (LLMs). Moreover, Mistral appears to
preserve the perplexity better at high sparsity such as 80%.

4.3. More Practical Applications of OWL

Although GPUs provide limited support for unstructured
sparsity, we highlight that OWL not only can be used to
determine the sparsity ratio for unstructured pruning but
also serves as a general approach to identify layer impor-
tance for LLMs, which exhibits substantial potential in many
important scenarios. This section provides some prelimi-
nary results for low-rank approximation of LLMs. You can
find more preliminary results across three more practical
scenarios including N:M sparsity, structured pruning, and
mixed-precision quantization in Appendix B.

Table 10: WikiText Perplexity of LLaMA-V1-7B Model.

Rank Reduction Ratio 0% 20% 30% 40% 50% 60%

Uniform - SVD 5.68 848 17.23 1909.34 13627.03 34354.9
OWL - SVD 5.68 825 1292 43.02 10707.41 20118.7

SVD Low-rank Approximation. We expanded the OWL
approach to incorporate low-rank compression as follows.
In alignment with the OWL methodology, we evaluate the
significance of each layer through the LoD. Subsequently,
we utilize these LoD scores to assign SVD compression
ratios to each layer. A higher LoD score signifies a layer
of greater importance, warranting reduced compression to
maintain its integrity. For any linear layer L equipped with
a weight matrix W € R%*% and a designated preserved
rank r, the compression ratio is defined by ﬁ, where dpin
is the lesser of d; and ds. In our evaluation, we present the
perplexity metrics on the LLaMA-V1 7B model without
any fine-tuning. The results clearly demonstrate that OWL-
SVD surpasses uniform SVD low-rank compression across
various rank reduction levels.

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

5. Analysis

Comparisons Among Various Layerwise Sparsity. We
compare OWL layerwise sparsity with multiple commonly
used layerwise sparsity, including Global: A global thresh-
old is uniformly applied to all layers to satisfy the overall
sparsity requirement, and the specific layerwise sparsity
is automatically adjusted based on this threshold. Uni-
form (Zhu & Gupta, 2017): Every layer is pruned with
the same target sparsity. Erdés-Rényi (ER) (Mocanu et al.,
2018): The sparsity of the convolutional layer is scaled pro-
portionally to 1 — ZZ:JQZ; where n! refers to the number
of neurons/channels in layer . ER-plus (Liu et al., 2022a):
ER-plus modifies ER by forcing the last layer as dense if it
is not while keeping the overall parameter count the same.
OWL-inverse: OWL-inverse metric is the inverse variant
of OWL, whose outlier ratio is 1 — LOD.

For this study, we apply Wanda to the LLaMA-7B model.
The results are presented in Table 8. It is noteworthy that
all approaches, except for the Global method, perform
satisfactorily when the sparsity level is at or below 40%.
This observation suggests that the region of low sparsity
does not provide significant distinctions for performance
comparison. However, as the sparsity level exceeds 50%,
discrepancies between the various approaches become
evident. Notably, the Uniform and OWL methods emerge
as the top-performing approaches, with OWL consistently
outperforming the former across all sparsity levels. On
the other hand, the ER family of methods appears to be
less suitable for LLM pruning. It’s worth mentioning
that the performance of OWL experiences a significant
decline when we invert its outlier ratio, underscoring the
effectiveness of LOD in identifying critical layers.

Vision Models. Moreover, we also evaluated OWL in vision
models with vision models in Appendix A. The performance
improvement of OWL on vision models is not as pronounced
as observed in LLMs, likely as outliers are not particularly
evident in vision models.

6. Conclusion

In this paper, we focus on a crucial aspect of LLM pruning
that has been overlooked by previous works — layerwise
sparsity ratios. Drawing inspiration from the emergence of
outliers, characterized by features exhibiting significantly
greater magnitudes compared to others, we introduced a
novel layerwise sparsity ratio, Outlier Weighed Layerwise
sparsity (OWL). OWL aligns the sparsity ratio with the out-
lier ratio of each layer to preserve outliers. Notably, our
approach demonstrates substantial performance gains, sur-
passing the state-of-the-art Wanda and SparseGPT by 61.22
and 6.80 perplexity points at 70% sparsity, respectively.
This work represents the first effort to make it applicable in
LLM pruning, opening up new avenues for the development

of specialized sparse algorithms that can further optimize
the deployment of LLMs in practical applications.

Acknowledgements

S. Liu is supported by the Royal Society with the Newton
International Fellowship. Part of this work used the Dutch
national e-infrastructure with the support of the SURF Co-
operative using grant no. NWO-2023.027/L1 and EINF-
2943/L1. Z. Wang is supported by the NSF Al Institute for
Foundations of Machine Learning (IFML) and a Google
Research Scholar Award. We extend our gratitude to Eldar
Kurtic for his invaluable effort in helping to measure the
real speedup of the DeepSparse engine.

Impact Statement

This paper focuses on pruning large language models
(LLMs). Through the implementation of effective layerwise
sparsity, we can achieve a reduction of up to 70% in the
parameters of SOTA LLMs while retaining their essential
functionality. Consequently, this advancement facilitates the
deployment of LLMs on resource-constrained devices, expe-
dites inference processes, and contributes to the sustainabil-
ity of Al technologies. The significant real speed-up demon-
strated in our study underscores the considerable advantages
of sparsity, extending beyond GPU to other commodity hard-
ware like CPU and FPGA. This encourages researchers to
broaden their focus beyond GPU-centric perspectives, fos-
tering a deeper exploration of the benefits of sparsity across
diverse hardware platforms. Moreover, our paper aligns
with the imperative of developing energy-efficient and ac-
cessible artificial intelligence systems, catering to a wide
array of applications and users.

References

Bhojanapalli, S., Chakrabarti, A., Veit, A., Lukasik, M.,
Jain, H., Liu, F,, Chang, Y.-W., and Kumar, S. Leveraging
redundancy in attention with reuse transformers. arXiv
preprint arXiv:2110.06821, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learn-
ers. Advances in neural information processing systems
(NeurlPs), 33:1877-1901, 2020.

Clark, C,, Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, L., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

DeepSparse. NeuralMagic DeepSparse Inference
Engine, 2021. URL https://github.com/
neuralmagic/deepsparse.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 248-255, 2009.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems (NeurlPs), 2022.

Erdds, P. and Rényi, A. On random graphs i. Publicationes
Mathematicae (Debrecen), 6:290-297, 1959.

Evci, U., Gale, T., Menick, J., Castro, P. S., and Elsen,
E. Rigging the lottery: Making all tickets winners. In
International Conference on Machine Learning (ICML),
pp- 2943-2952, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-

tional Conference on Learning Representations (ICLR),
2019.

Frantar, E. and Alistarh, D. Massive language models can
be accurately pruned in one-shot. In International Con-
ference on Machine Learning (ICML), 2023.

Gale, T., Elsen, E., and Hooker, S. The state of sparsity in
deep neural networks. arXiv preprint arXiv:1902.09574,
2019.

Gale, T., Zaharia, M., Young, C., and Elsen, E. Sparse gpu
kernels for deep learning. In SC20: International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, pp. 1-14. IEEE, 2020.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 1135-1143, 2015.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain
surgeon and general network pruning. In IEEE interna-
tional conference on neural networks, pp. 293-299. IEEE,
1993.

Hu, E. J, Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

10

Jaiswal, A., Gan, Z., Du, X., Zhang, B., Wang, Z., and Yang,
Y. Compressing llms: The truth is rarely pure and never
simple. arXiv preprint arXiv:2310.01382, 2023a.

Jaiswal, A., Liu, S., Chen, T., and Wang, Z. The emergence
of essential sparsity in large pre-trained models: The
weights that matter. arXiv preprint arXiv:2306.03805,
2023b.

Janowsky, S. A. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. 1., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kovaleva, O., Kulshreshtha, S., Rogers, A., and Rumshisky,
A. Bert busters: Outlier dimensions that disrupt trans-
formers. arXiv preprint arXiv:2105.06990, 2021.

Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M.,
Fineran, B., Goin, M., and Alistarh, D. The optimal bert
surgeon: Scalable and accurate second-order pruning for
large language models. arXiv preprint arXiv:2203.07259,
2022.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
In Advances in Neural Information Processing Systems
(NeurlPS), pp. 598-605, 1989.

Lee, J., Park, S., Mo, S., Ahn, S., and Shin, J. Layer-adaptive
sparsity for the magnitude-based pruning. arXiv preprint
arXiv:2010.07611, 2020.

Lee, N., Ajanthan, T., and Torr, P. Snip: Single-shot network
pruning based on connection sensitivity. In International
Conference on Learning Representations (ICLR), 2019.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for Ilm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang,
F., and Doermann, D. Towards optimal structured cnn
pruning via generative adversarial learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2790-2799, 2019.

Liu, S. and Wang, Z. Ten lessons we have learned in the
new” sparseland”: A short handbook for sparse neural
network researchers. arXiv preprint arXiv:2302.02596,
2023.

Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou,
H., Shen, L., Pechenizkiy, M., Wang, Z., and Mocanu,
D. C. Sparse training via boosting pruning plasticity with

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

neuroregeneration. In Advances in Neural Information
Processing Systems (NeurlPS), 2021a.

Liu, S., Yin, L., Mocanu, D. C., and Pechenizkiy, M. Do we
actually need dense over-parameterization? in-time over-
parameterization in sparse training. In International Con-
ference on Machine Learning, pp. 6989-7000. PMLR,
2021b.

Liu, S., Chen, T., Chen, X., Shen, L., Mocanu, D. C., Wang,
Z., and Pechenizkiy, M. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for
sparse training. arXiv preprint arXiv:2202.02643, 2022a.

Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T.,
and Xie, S. A convnet for the 2020s. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11976-11986, 2022b.

Luccioni, A. S., Viguier, S., and Ligozat, A.-L. Estimating
the carbon footprint of bloom, a 176b parameter language
model. arXiv preprint arXiv:2211.02001, 2022.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016a.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016b.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can
a suit of armor conduct electricity? a new dataset
for open book question answering. arXiv preprint
arXiv:1809.02789, 2018.

Mittal, D., Bhardwaj, S., Khapra, M. M., and Ravindran,
B. Studying the plasticity in deep convolutional neural
networks using random pruning. Machine Vision and
Applications, 30(2):203-216, 2019.

Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M.,
and Liotta, A. A topological insight into restricted
boltzmann machines. Machine Learning, 104(2):243—
270, Sep 2016. ISSN 1573-0565. doi: 10.1007/

$10994-016-5570-z. URL https://doi.org/10.

1007/s10994-016-5570~-z.

Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H.,
Gibescu, M., and Liotta, A. Scalable training of arti-
ficial neural networks with adaptive sparse connectivity
inspired by network science. Nature Communications, 9:
1-12, 2018.

11

Mozer, M. C. and Smolensky, P. Skeletonization: A tech-
nique for trimming the fat from a network via relevance
assessment. In Advances in Neural Information Process-
ing Systems (NeurlIPS), pp. 107-115, 1989.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-
M., Rothchild, D., So, D., Texier, M., and Dean, J. Car-
bon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

Puccetti, G., Rogers, A., Drozd, A., and Dell’Orletta, F.
Outliers dimensions that disrupt transformers are driven
by frequency. arXiv preprint arXiv:2205.11380, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485-5551, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. arXiv preprint arXiv:1907.10641, 2019.

Sanh, V., Wolf, T., and Rush, A. M. Movement prun-
ing: Adaptive sparsity by fine-tuning. arXiv preprint
arXiv:2005.07683, 2020.

Schaeffer, R., Miranda, B., and Koyejo, S. Are emergent
abilities of large language models a mirage? arXiv
preprint arXiv:2304.15004, 2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Sun, W., Zhou, A., Stuijk, S., Wijnhoven, R., Nelson, A. O.,
Corporaal, H., et al. Dominosearch: Find layer-wise fine-
grained n: M sparse schemes from dense neural networks.

Advances in neural information processing systems, 34:
20721-20732, 2021.

Tang, C., Ouyang, K., Wang, Z., Zhu, Y., Ji, W., Wang,
Y., and Zhu, W. Mixed-precision neural network quanti-
zation via learned layer-wise importance. In European
Conference on Computer Vision, pp. 259-275. Springer,
2022.

Timkey, W. and van Schijndel, M. All bark and no
bite: Rogue dimensions in transformer language mod-
els obscure representational quality. arXiv preprint
arXiv:2109.04404, 2021.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347-10357. PMLR,
2021.

https://doi.org/10.1007/s10994-016-5570-z
https://doi.org/10.1007/s10994-016-5570-z

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F,, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wang, A., Singh, A., Michael, J., Hill, F, Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, C., Zhang, G., and Grosse, R. Picking winning
tickets before training by preserving gradient flow. In
International Conference on Learning Representations
(ICLR), 2020.

Wang, W. and Tu, Z. Rethinking the value of transformer
components. arXiv preprint arXiv:2011.03803, 2020.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Wen, W., He, Y., Rajbhandari, S., Zhang, M., Wang, W.,
Liu, F,, Hu, B, Chen, Y., and Li, H. Learning intrinsic
sparse structures within long short-term memory. arXiv
preprint arXiv:1709.05027, 2017.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning (ICML), pp. 38087-
38099. PMLR, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
arXiv preprint arXiv:1905.07830, 2019.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhang, Y., Zhao, L., Lin, M., Sun, Y., Yao, Y., Han, X,,
Tanner, J., Liu, S., and Ji, R. Dynamic sparse no training:
Training-free fine-tuning for sparse llms. arXiv preprint
arXiv:2310.08915, 2023.

Zhu, M. and Gupta, S. To prune, or not to prune: explor-
ing the efficacy of pruning for model compression. In
International Conference on Learning Representations
Workshop (ICLRW), 2017.

12

Zimmer, M., Andoni, M., Spiegel, C., and Pokutta, S. Perp:
Rethinking the prune-retrain paradigm in the era of llms.
arXiv preprint arXiv:2312.15230, 2023.

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

A. Vision Model Pruning

In this appendix, we study if the promise of OWL also holds for vision models. We apply OWL to two commonly used
modern vision models, i.e., ConvNeXt-Base (Liu et al., 2022b) and DeiT-Base (Touvron et al., 2021) and evaluate them on
the ImageNet-1K dataset (Deng et al., 2009). We adopt Wanda as the pruning approach and compare OWL with uniform
layerwise sparsity. All models are pruned in one shot without fine-tuning.

Table 11: Top-1 accuracy of sparse vision models on ImageNet-1K.

Sparsity
Method Model 50% 60% 0% 80%
Wanda ConvNeXt-Base 82.72 80.55 68.18 6.44
OWL w. Wanda ConvNeXt-Base 82.76 80.53 68.28 6.32
Wanda DeiT-Base 78.23 71.14 4920 6.86

OWL w. Wanda DeiT-Base 7840 71.76 54.24 7.98

Our findings in Table 11 reveal that OWL enhances the accuracy of sparse DeiT models in contrast to Wanda. However, for
ConvNeXt models, it seems that OWL does not necessarily bring benefits to ConvNeXt (neither increases nor degrades
accuracy). Overall, it seems that the performance improvement of OWL on vision models is not as pronounced as observed
LLMs. Our hypothesis here is that the phenomenon of outliers is not particularly evident in vision models. According
to Puccetti et al. (2022), outliers in LLMs are causally related to high-frequency tokens in pre-training data. These high-
frequency tokens are more prevalent in textual datasets but are relatively scarce and challenging to identify within vision
datasets. Hence, the phenomenon of outliers, crucial in OWL’s effectiveness, may not be as evidently present or impactful
within the domain of vision models, contributing to the differing performance improvements between LLMs and vision
models.

B. More Practical Applications of OWL

OWL serves as a general approach to identify layer importance for LLMs, which exhibits substantial potential in many
hardware-friendly scenarios. To examine this, we explore OWL in three hardware-friendly regimes, including N:M sparsity,
structured pruning, and mixed-precision quantization. The preliminary results are shown below.

B.1. N:M Sparsity

Following DominoSearch (Sun et al., 2021), we choose a mixed N:8 sparsity configuration. Instead of employing a uniform
N value across all layers, we allow individual layers to have distinct N values while maintaining the overall parameter count
constant. We use OWL to determine the optimal value of N for individual layers. The results are presented in Table 12. It is
evident that OWL consistently enhances performance compared to uniform N:M sparsity. Remarkably, in high sparsity
scenarios like 3:8 and 2:8 sparsity, OWL demonstrates significant improvements with 2x and 8 x perplexity reductions over
the uniform baseline, respectively.

Table 12: Perplexity of mixed N:M sparsity (N refers to non-zero weights) with LLaMA-7B on WikiText.

Method N:M Sparsity Structure Perplexity
Wanda 4:8 8.57
OWL w. Wanda Mixed 4:8 8.55
Wanda 3:8 42.56
OWL w. Wanda Mixed 3:8 21.49
Wanda 2:8 2962.00
OWL w. Wanda Mixed 2:8 331.37

13

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

B.2. Structured Pruning

Instead of pruning individual weights, structured pruning involves the selective removal of an entire group of weights, which
are more amenable to hardware speedup, including weight blocks, neurons, filters/channels, and attention heads (Liu &
Wang, 2023). We adhere to the recent methodology introduced in LLM Pruner (Ma et al., 2023), wherein entire neurons and
attention heads are removed. This action facilitates the direct acceleration of pruned LLMs on GPUs or TPUs. We replace
the uniform layerwise sparsity used by LLM pruner with the non-uniform layerwise sparsity discovered by OWL. Table 13
again demonstrates that OWL achieves preferable performance compared to the uniform layerwise sparsity in the context of
structured pruning.

Table 13: Perplexity of Structure Pruning with LLaMA-7B on WikiText and PTB.

Dataset Pruning Method Layerwise Sparsity 20% 40% 60% 80%

WikiText LLM Pruner Uniform 19.09 30.39 90.02 1228.17
WikiText LLM Pruner OWL 18.57 28.65 76.99 321.64
PTB LLM Pruner Uniform 29.51 6690 192.06 1691.87
PTB LLM Pruner OWL 28.82 5322 150.16 502.07

B.3. Mixed-Precision Quantization

Leveraging our non-uniform layerwise sparsity, we can enhance mixed-precision quantization by assigning higher precision
to layers exhibiting more outliers. Following the approach outlined in (Tang et al., 2022), we utilize OWL to assign different
bit precision to different layers, thereby facilitating a mixed-precision quantization strategy. Our baseline here involves
selecting layers randomly and based on the L; norm of weights. It is evident that OWL also serves as a valuable indicator
for selecting important layers in mixed-precision quantization, leading to improved quantization performance as shown in

Table 14.

Table 14: Perplexity of mixed-precision quantization with LLaMA-7B on WikiText.

Method Precision Perplexity
Same Bit-width 2 Bit 104151.84
Same Bit-width 3 Bit 25.82
Same Bit-width 4 Bit 6.29
Select with random Mixed 3/4 Bit 12.04
Select with Ly norm Mixed 3/4 Bit 14.61
Select with OWL Mixed 3/4 Bit 9.09
Select with random Mixed 2/3/4 Bit 11455.54
Select with L; norm Mixed 2/3/4 Bit 13959.422
Select with OWL Mixed 2/3/4 Bit 190.28
Select with random Mixed 2/4 Bit 14817.12
Select with L; norm Mixed 2/4 Bit 33670.214
Select with OWL Mixed 2/4 Bit 7505.60

14

Outlier Weighed Layerwise Sparsity: A Missing Secret Sauce for Pruning LLLMs to High Sparsity

C. Per-Block Vs. Per-Layer

As we mentioned before, we assign a distinct pruning ratio for each Transformer block instead of each layer. To provide
more insights about this option, we provide the performance comparison between these two options and report their
layerwise sparsity respectively. We report the sparsity ratio of 7 FC layers including g proj, k_proj, v.proj, oproj,
gate_proj,down_proj,and up_proj of layers 1, 2, 15, 30, and 31. We found that applying OWL in a per-layer manner
leads to sub-optimal performance (Perplexity: 86.285 vs 24.55). We can see that applying OWL in a per-layer manner will
lead to nearly uniform sparsity of certain layers across Transformer blocks, such as v_proj, gate_proj, and up_pro3j,
which might be undesirable for LLM pruning.

Table 15: Layerwise sparsity of LLaMA-7B pruned with per-layer OWL (Sparsity: 70%, Perplexity:86.285).

Layer gproj k_oproj vproj o-proj gateproj downproj up-proj

1 0.613 0.613 0.613 0.613 0.613 0.613 0.613
2 0.641 0.641 0.641 0.641 0.641 0.641 0.641
5 0.608 0.608 0.608 0.608 0.608 0.608 0.608
30 0.760 0.760 0.760 0.760 0.760 0.760 0.760
31 0.721 0.721 0.721 0.721 0.721 0.721 0.721

Table 16: Layerwise sparsity of LLaMA-7B pruned with per-block OWL (Sparsity: 70%, Perplexity:24.55).

Layer gproj kproj vproj o-proj gateproj downproj up-proj

1 0.639 0.638 0.691 0.598 0.710 0.696 0.713
2 0.680 0.677 0.707 0.679 0.711 0.703 0.713
15 0.698 0.693 0.710 0.706 0.709 0.703 0.712
30 0.705 0.704 0.713 0.663 0.710 0.657 0.712
31 0.702 0.701 0.712 0.670 0.710 0.621 0.711

D. Hyperparameters
In this section, we share the hyperparameters used to reproduce the results in our experiments in Table 17.

Table 17: Hyperparameters used to obtain the results in this paper.

Model M A
LLaMA-7B 5 8%

LLaMA-13B 7 8%
LLaMA-30B 5 8%
LLaMA-65B 5 20%

OPT-6.7B 10 8%

15

	Introduction
	Related Work
	Outlier Weighed Layerwise Sparsity
	Rationale
	Empirical Study
	Outlier Weighed Layerwise Sparsity (OWL)

	Experiments
	Main Experiments
	More Advanced LLMs
	More Practical Applications of OWL

	Analysis
	Conclusion
	Vision Model Pruning
	More Practical Applications of OWL
	N:M Sparsity
	Structured Pruning
	Mixed-Precision Quantization

	Per-Block Vs. Per-Layer
	Hyperparameters

