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Abstract
Evaluating adversarial robustness amounts to find-
ing the minimum perturbation needed to have
an input sample misclassified. The inherent
complexity of the underlying optimization re-
quires current gradient-based attacks to be care-
fully tuned, initialized, and possibly executed
for many computationally-demanding iterations,
even if specialized to a given perturbation model.
In this work, we overcome these limitations by
proposing a fast minimum-norm (FMN) attack
that works with different `p-norm perturbation
models (p = 0, 1, 2,∞), is robust to hyperparam-
eter choices, does not require adversarial start-
ing points, and converges within few lightweight
steps. It works by iteratively finding the sample
misclassified with maximum confidence within
an `p-norm constraint of size ε, while adapting
ε to minimize the distance of the current sample
to the decision boundary. Extensive experiments
show that FMN significantly outperforms existing
attacks in terms of convergence speed and compu-
tation time, while reporting comparable or even
smaller perturbation sizes.

1. Introduction
Learning algorithms are vulnerable to adversarial examples,
i.e., intentionally-perturbed inputs aimed to mislead classifi-
cation at test time (Szegedy et al., 2014; Biggio et al., 2013).
While adversarial examples have received much attention,
evaluating the robustness of deep networks against them
remains a challenge. Having an arsenal of diverse attacks
that can be adapted to specific defenses is one of the most
promising avenues for increasing confidence in white-box
robustness evaluations (Carlini et al., 2019; Tramer et al.,
2020). While it may seem that the number of attacks is
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already large, most of them are just small variations of the
same technique, make similar underlying assumptions and
thus tend to fail jointly.

In this work, we focus on minimum-norm attacks for eval-
uating adversarial robustness, i.e., attacks that aim to mis-
lead classification by finding the smallest input perturbation
according to a given norm. Within the class of gradient-
based minimum-norm attacks, there are three main sub-
categories: (i) soft-constraint attacks, (ii) boundary attacks
and (iii) projected-gradient attacks. Soft-constraint attacks
like CW (Carlini & Wagner, 2017) optimize a trade-off
between confidence of the misclassified samples and pertur-
bation size. CW needs a sample-wise tuning of the trade-off
hyperparameter to find the smallest possible perturbation,
thus requiring many steps to converge. Boundary attacks
like BB (Brendel et al., 2019) or FAB (Croce & Hein, 2020b)
move along the decision boundary towards the closest point
to the input sample. These attacks converge within rela-
tively few steps, but may require an adversarial starting
point and need to solve expensive optimization problems in
each step. Finally, recent minimum-norm projected-gradient
attacks like DDN (Rony et al., 2019) perform a maximum-
confidence attack in each step under a given perturbation
budget ε, while iteratively adjusting ε to reduce the pertur-
bation size, however, DDN is specific to the `2 norm and
cannot be readily extended to other norms.

To overcome the aforementioned limitations, in this work we
propose a novel, fast minimum-norm (FMN) attack (Sect. 2),
which retains the main advantages of DDN while general-
izing it to different `p norms (p = 0, 1, 2,∞). We perform
large-scale experiments (Sect. 3), showing that FMN is able
to combine all desirable traits a good adversarial attack
should have, providing an important step towards improving
adversarial robustness evaluations. We conclude by dis-
cussing limitations and future research directions (Sect. 4).

2. Minimum-Norm Adversarial Examples
with Adaptive Projections

Problem formulation. Given an input sample x ∈ [0, 1]d,
belonging to class y ∈ {1, . . . , c}, the goal of an untargeted
attack is to find the minimum-norm perturbation δ? such
that the corresponding adversarial example x? = x+ δ? is
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Figure 1. Conceptual representation of the FMN attack algorithm.
The ε-step updates the constraint size ε to minimize its distance
to the boundary. The δ-step updates the perturbation δ with a
projected-gradient step to maximize misclassification confidence
within the current ε-sized constraint.

misclassified. This problem can be formulated as:

δ? ∈ arg min
δ

‖δ‖p , (1)

s.t. L(x+ δ, y,θ) < 0 , (2)
x+ δ ∈ [0, 1]d , (3)

where || · ||p indicates the `p-norm operator. The loss L in
the constraint in Eq. (2) is defined as:

L(x, y,θ) = fy(x,θ)−max
j 6=y

fj(x,θ) , (4)

where fj(x,θ) is the confidence given by the model f for
classifying x as class j, and θ is the set of its learned
parameters. Assuming that the classifier assigns x to
the class exhibiting the highest confidence, i.e., y? =
arg maxj∈1,...,c fj(x,θ), the loss function L(x, y,θ) takes
on negative values only when x is misclassified1. Finally,
the box constraint in Eq. (3) ensures that the perturbed sam-
ple x+ δ lies in the feasible input space.

Solution algorithm. To solve Problem (1)-(3), we reformu-
late it using an upper bound ε on ‖δ‖p:

min
ε,δ

ε , s.t. ‖δ‖p ≤ ε, (5)

and to the constraints in Eqs. (2)-(3). This allows us to
derive an algorithm that works in two main steps, similarly
to DDN (Rony et al., 2019), by updating the maximum
perturbation size ε separately from the actual perturbation
δ, as represented in Fig. 1. In particular, the constraint size
ε is adapted to reduce the distance of the constraint to the
boundary (ε-step), while the perturbation δ is updated using
a projected-gradient step to minimize the loss function L
within the given ε-sized constraint (δ-step). The complete
algorithm is given as Algorithm 1, while a more detailed
explanation of the two aforementioned steps is given below.

1This can be extended to the targeted case by modifying the
loss function in Eq. (4) as Lt(x, y′,θ) = maxj 6=y′ fj(x,θ) −
fy′(x,θ) = −L(x, y′,θ), i.e., changing its sign and using the
target class label y′ instead of the true class label y

Algorithm 1 Fast Minimum-norm (FMN) Attack

Input: x, the input sample; t, a variable denoting whether
the attack is targeted (t = +1) or untargeted (t = −1);
y, the target (true) class label if the attack is targeted
(untargeted); γ0 and γK , the initial and final ε-step
sizes; α0 and αK , the initial and final δ-step sizes; K,
the number of iterations.

Output: The minimum-norm adversarial example x?.

1: x0 ← x, ε0 = 0, δ0 ← 0, δ? ←∞
2: for k = 1, . . . ,K do
3: g ← t · ∇δL(xk−1 + δ, y,θ) // loss gradient
4: γk ← h(γ0, γK , k,K) // ε-step size decay
5: if L(xk−1, y,θ) ≥ 0 then
6: if adversarial not found yet then
7: εk = ‖δk−1‖p + L(xk−1, y,θ)/‖g‖q
8: else
9: εk = εk−1(1 + γk)

10: end if
11: else
12: if ‖δk−1‖p ≤ ‖δ?‖p then
13: δ? ← δk−1 // update best min-norm solution
14: end if
15: εk = min(εk−1(1− γk), ‖δ?‖p)
16: end if
17: αk ← h(α0, αK , k,K) // δ-step size decay
18: δk ← δk−1 + αk · g/‖g‖2
19: δk ← Πε(x0 + δk)− x0

20: δk ← clip(x0 + δk)− x0

21: xk ← x0 + δk
22: end for
23: return x? ← x0 + δ?

ε-step. This step updates the upper bound ε on the per-
turbation norm (lines 4-16 in Algorithm 1). The under-
lying idea is to increase ε if the current sample is not
adversarial (i.e., L(xk−1, y,θ) ≥ 0), and to decrease it
otherwise, while reducing the step size to dampen oscil-
lations around the boundary and reach convergence. In
the former case (ε-increase), the increment of ε depends
on whether an adversarial example has been previously
found or not. If not, we estimate the distance to the
boundary with a first-order linear approximation, and set
εk = ‖δk−1‖p+L(xk−1, y,θ)/||∇L(xk−1, y,θ)||q , being
q the dual norm of p. This approximation allows the attack
point to make faster progress towards the decision boundary.
Conversely, if an adversarial sample has been previously
found, but the current sample is not adversarial, it is likely
that the current estimate of ε is only slightly smaller than
the minimum-norm solution. We thus increase ε by a small
fraction as εk = εk−1 (1 + γk), being γk a decaying step
size. In the latter case (ε-decrease), if the current sample
is adversarial, i.e., L(xk−1, y,θ) < 0, we decrease ε as
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εk = εk−1 (1− γk), to check whether the current solution
can be improved. If the corresponding εk value is larger
than the optimal ‖δ?‖p found so far, we retain the best value
and set εk = ‖δ?‖p. To ensure convergence, the step size
γk is decayed with cosine annealing.

δ-step. This step updates δ (lines 17-21 in Algorithm 1).
The goal is to find the adversarial example that is misclas-
sified with maximum confidence (i.e., for which L is min-
imized) within the current ε-sized constraint (Eq. 5) and
bounds (Eq. 3). This amounts to performing a projected-
gradient step along the negative gradient of L. We consider
a normalized steepest descent with decaying step size α to
overcome potential issues related to noisy gradients while
ensuring convergence (line 18). The step size α is decayed
using cosine annealing. Once δ is updated, we project it
onto the given ε-sized `p-norm constraint via a projection
operator Πε (line 19), to fulfill the constraint in Eq. (5). The
projection is trivial for p = ∞ and p = 2. For p = 1, we
use the efficient algorithm by Duchi et al. (2008). For p = 0,
we retain only the first ε components of δ exhibiting the
largest absolute value. We finally clip the components of δ
that violate the bounds in Eq. (3) (line 20).

Adversarial initialization. Our attack can be initialized
from the input sample x, or from a point xinit belonging
either to a different class (untargeted attacks) or to the target
class (targeted attacks). When initializing the attack from
xinit, we perform a 10-step binary search between x and
xinit, to find an adversarial point closer to the boundary.

Differences with DDN. FMN applies substantial changes
to both the algorithm and the formulation of DDN. The main
difference is that (i) DDN always rescales the perturbation
to have size ε. This operation is problematic when using
other norms, especially sparse ones, as it hinders the ability
of the attack to explore the neighboring space and find a
suitable descent direction; (ii) FMN uses the logit difference
as the loss function L; (iii) FMN does not need an initial
value for ε, as ε is dynamically estimated; and (iv) γ is
decayed to improve convergence around better minimum-
norm solutions, by more effectively dampening oscillations
around the boundary. Finally, we include the possibility of
(v) initializing the attack from an adversarial point, which
can greatly increase the convergence speed.

3. Experiments
We report here an extensive experimental analysis involving
several state-of-the-art defenses and minimum-norm attacks,
covering `0, `1, `2 and `∞ norms. The goal is to empiri-
cally benchmark our attack and assess its effectiveness and
efficiency as a tool for adversarial robustness evaluation.

3.1. Experimental Setup

Datasets and models. We consider two commonly-used
datasets for benchmarking adversarial robustness of deep
neural networks, i.e., the MNIST handwritten digits and
CIFAR10. Following the experimental setup in Brendel et al.
(2019), we use a subset of 1000 test samples to evaluate the
considered attacks and defenses. We use a diverse selection
of models to thoroughly evaluate attacks under different
conditions. For MNIST, we consider the following four
models: M1, a 9-layer undefended ConvNet; M2, the robust
model by Madry et al. (2017), trained on `∞ attacks; M3,
the robust model by Rony et al. (2019), trained on `2 attacks;
and M4, the IBP Large Model by Zhang et al. (2020). For
CIFAR10, we consider three state-of-the-art robust models
from RobustBench (Croce et al., 2020): C1, the robust
model by Madry et al. (2017), trained on `∞ attacks; C2,
the defended model by Carmon et al. (2019), trained on `∞
attacks and additional unsupervised data; and C3, the robust
model by Rony et al. (2019), trained on `2 attacks.

Attacks. We compare our algorithm against different state-
of-the-art attacks for finding minimum-norm adversarial
perturbations across different norms: the Carlini & Wag-
ner (CW) attack (Carlini & Wagner, 2017), the Decoupling
Direction and Norm (DDN) attack (Rony et al., 2019), the
Brendel & Bethge (BB) attack (Brendel et al., 2019), and
the Fast Adaptive Boundary (FAB) attack (Croce & Hein,
2020b). All these attacks are defined on the `2 norm. BB
and FAB are also defined on the `1 and `∞ norms, and only
BB is defined on the `0 norm. We consider untargeted and
targeted attack scenarios, except for FAB, which is only
evaluated in the untargeted case.2

To ensure a fair comparison, we perform an extensive hy-
perparameter search for each of the considered attacks. We
consider dataset-level hyperparameter tuning, a scenario in
which we choose the same hyperparameters for all samples,
selecting the configuration that yields the best attack per-
formance on a smaller validation set. The hyperparameter
configurations considered for each attack are detailed in the
appendix.

Evaluation criteria. We evaluate the attacks along two
different criteria (additional experiments can be found in the
Appendix): (i) perturbation size measured as the median
‖δ?‖p on the test set; (ii) execution time, measured as the
average time spent per query (in milliseconds).

2FAB implements a substantially different attack in the targeted
case. The targeted version of FAB aims to find a closer untargeted
misclassification by running the attack a number of times, each
time targeting a different candidate class, and then selecting the
best solution (Croce & Hein, 2020b;a).
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Table 1. Median ‖δ?‖p value at Q = 1000 queries for targeted and untargeted attacks, with dataset-level hyperparameter tuning.
MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

`0 BB 12 152 52 145 20 179 39 183 28 44 32 29 65 33
Ours 9 33 18 15 16 48 28 55 11 17 16 25 38 32

`1 FAB 8.66 225.7 163.9 312.3 - - - - - - 20.48 - - -
BB 10.60 49.83 17.57 46.99 16.60 53.11 29.89 54.31 7.02 10.20 17.13 11.41 15.26 23.37

Ours 7.13 4.18 13.66 4.99 13.18 8.33 21.37 12.16 4.28 4.82 9.52 8.51 10.40 17.32

`2 FAB 1.54 1.59 2.81 16.30 - - - - 0.77 1.11 1.06 - - -
CW 1.63 5.15 3.71 - 2.50 - 4.72 - 0.86 1.00 0.99 1.36 2.90 1.55
BB 1.75 1.82 3.02 4.57 2.64 2.59 3.52 5.31 0.86 0.95 1.10 1.25 1.45 1.73

DDN 1.47 2.01 2.62 1.15 2.31 2.72 3.36 1.96 0.66 0.77 0.91 1.11 1.31 1.40
Ours 1.61 1.42 2.61 1.56 2.30 2.13 3.24 2.41 0.67 0.74 0.91 1.09 1.28 1.38

`∞ FAB .148 .365 .248 .900 - - - - .038 .052 .029 - - -
BB .159 .336 .243 .409 .223 .361 .280 .477 .044 .054 .029 .059 .074 .042

Ours .140 .357 .233 .408 .206 .426 .277 .434 .034 .042 .024 .057 .066 .037

Table 2. Average execution time (milliseconds / query) for each attack-model pair.
MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

`0 BB 10.76 11.85 10.19 12.02 60.88 62.17 62.31 57.74 46.51 50.31 50.43 99.71 105.28 103.53
Ours 5.15 4.87 5.87 9.70 5.14 4.75 5.85 9.71 26.26 30.54 30.89 26.13 30.26 30.81

`1 FAB 9.38 8.88 12.61 36.00 - - - - 84.04 108.91 108.64 - - -
BB 6.73 7.03 7.31 12.50 43.25 43.54 43.69 43.86 32.56 37.40 37.59 68.99 73.33 74.03

Ours 5.43 5.14 6.10 9.35 5.44 5.10 6.09 9.35 27.34 31.17 31.18 26.00 30.98 31.03

`2 FAB 10.22 10.13 13.45 36.72 - - - - 84.27 109.43 108.87 - - -
CW 4.22 4.09 5.17 10.07 4.23 4.14 5.15 10.06 25.90 31.32 31.31 25.78 31.32 31.30
BB 4.44 4.15 5.03 12.38 26.20 26.76 27.24 31.00 26.64 31.82 31.90 48.74 54.35 54.07

DDN 3.42 3.33 4.30 8.59 3.42 3.35 4.32 8.60 24.14 29.62 29.48 23.61 29.61 29.52
Ours 4.46 4.42 5.48 9.15 4.50 4.44 5.47 9.09 24.88 30.22 30.08 25.39 30.21 30.04

`∞ FAB 10.85 10.61 14.05 36.23 - - - - 84.62 109.83 109.57 - - -
BB 14.26 16.36 13.51 15.44 38.61 38.87 36.39 34.85 61.34 62.36 62.63 83.70 87.64 88.90

Ours 4.25 4.33 5.30 9.17 4.33 4.23 5.31 9.10 24.84 30.15 30.01 24.78 30.19 30.03

3.2. Experimental Results

Perturbation size. Table 1 reports the median value of
‖δ?‖ at Q = 1000 queries, for all models, attacks and
norms. The values obtained confirm that our attack can
find smaller or comparable perturbations with those found
by the competing attacks, in most of the untargeted and
targeted cases, and that the biggest margin is achieved in the
`1 case. FMN is only slightly worse than DDN and BB in
a few cases, including `2-DDN on M4 and `∞-BB on M2.
The reason may be that these robust models exhibit noisy
gradients and flat regions around the clean input samples,
hindering the initial optimization steps of the FMN attack.

Execution time. The average runtime per query for each
attack-model pair, measured on a workstation with an
NVIDIA GeForce RTX 2080 Ti GPU with 11GB of RAM,
can be found in Table 2. Our attack is up to 2-3 times
faster, with the exception of DDN in the `2 case. This is
compensated by the fact that FMN finds better solutions.

4. Conclusions
This work introduces a novel minimum-norm attack that
combines all desirable traits to help improve current ad-
versarial evaluations: (i) finding smaller or comparable
minimum-norm perturbations across a range of models and
datasets; (ii) reducing runtime up to 3 times per query with
respect to competing attacks. FMN also works with differ-
ent `p norms (p = 0, 1, 2,∞) and it does not necessarily
require initialization from the target class.

We firmly believe that FMN will establish itself as a useful
tool in the arsenal of robustness evaluation. By facilitating
more reliable robustness evaluations, we expect that FMN
will foster advancements in the development of machine-
learning models with improved robustness guarantees.
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Appendix

A. Hyperparameters
We select the hyperparameters to be optimized for each
attack as recommended by the corresponding authors (Bren-
del et al., 2019; Carlini & Wagner, 2017; Croce & Hein,
2020b; Rony et al., 2019). For attacks that are claimed to
be robust to hyperparameter changes, like BB and FAB,
we follow the recommendation of using a larger number of
random restarts rather than increasing the number of hyper-
parameter configurations to be tested. In addition, as BB
requires being initialized from an adversarial starting point,
we initialize it by randomly selecting a sample either from
a different class (in the untargeted case) or from the target
class (in the targeted case). Finally, as each attack performs
operations with different levels of complexity within each
iteration, possibly querying the model multiple times, we set
the number of steps for each attack such that at least 1, 000
forward passes (i.e., queries) are performed. This ensures a
fairer comparison also in terms of the computational time
and resources required to execute each attack.

CW. This attack minimizes the soft-constraint version of
our problem, i.e., minδ ‖δ‖p + c ·min(L(x+δ, y,θ),−κ).
The hyperparameters κ and c are used to tune the trade-
off between perturbation size and misclassification confi-
dence. To find minimum-norm perturbations, CW requires
setting κ = 0, while the constant c is tuned via binary
search (re-running the attack at each iteration). We set
the number of binary-search steps to 9, and the maximum
number of iterations to 250, to ensure that at least 1, 000
queries are performed. We also set different values for
c, η ∈ {10−3, 10−2, 10−1, 1}.
DDN. This attack, similarly to ours, maximizes the mis-
classification confidence within an ε-sized constraint, while
adjusting ε to minimize the perturbation size. We consider
initial values of ε0 ∈ {0.03, 0.1, 0.3, 1, 3}, and run the at-
tack with a different number of iterations K ∈ {200, 1000},
as this affects the size of each update on δ.

BB. This attack starts from a randomly-drawn adversarial
point, performs a 10-step binary search to find a point which
is closer to the decision boundary, and then updates the
point to minimize its perturbation size by following the
decision boundary. In each iteration, BB computes the
optimal update within a given trust region of radius ρ. We
consider different values for ρ ∈ {10−3, 10−2, 10−1, 1},
while we fix the number of steps to 1000. We run the attack
3 times by considering different initialization points, and
eventually retain the best solution.

FAB. This attack iteratively optimizes the attack point by
linearly approximating its distance to the decision bound-
ary. It uses an adaptive step size bounded by αmax and

an extrapolation step η to facilitate finding adversarial
points. As suggested by Croce & Hein (2020b), we tune
αmax ∈ {0.1, 0.05} and η ∈ {1.05, 1, 3}. We consider 3
different random initialization points, and run the attack for
500 steps each time, eventually selecting the best solution.

FMN. We run FMN for K = 1000 steps, using γ0 ∈
{0.05, 0.3}, γK = 10−4, and αK = 10−5. For `0,
`1, and `2, we set α0 ∈ {1, 5, 10}. For `∞, we set
α0 ∈ {101, 102, 103}, as the normalized `2 step yields
much smaller updates in the `∞ norm. For each hyper-
parameter setting we run the attack twice, starting from (i)
the input sample and (ii) an adversarial point.

B. Additional experiments
Evaluation criteria. We evaluate the attacks along four
different criteria: (i) perturbation size and (ii) robustness to
hyperparameter selection, measured as the median ‖δ?‖p on
the test set (for a fixed budget of Q queries and for sample-
and dataset-level hyperparameter tuning); (iii) execution
time, measured as the average time spent per query (in
milliseconds); and (iv) convergence speed, measured as the
average number of queries required to converge to a good-
enough solution (within 10% of the best value found at
Q = 1000).

Sample-level vs. Dataset-level tuning. In order to inspect
the capabilities of our attack, we consider two main sce-
narios: tuning the hyperparameters at the sample-level and
at the dataset-level. In the sample-level scenario, we se-
lect the optimal hyperparameters separately for each input
sample. In the dataset-level scenario, we choose the same
hyperparameters for all samples, selecting the configuration
that yields the best attack performance. While sample-level
tuning provides a fairer comparison across attacks, it is
more computationally demanding and less practical than
dataset-level tuning. In addition, the comparison allows us
to understand how robust attacks are to suboptimal hyperpa-
rameter choices.

Query-distortion (QD) curves. To evaluate each attack in
terms of perturbation size under the same query budget Q,
we use the so-called QD curves introduced by Brendel et al.
(2019). These curves report, for each attack, the median
value of δ? as a function of the number of queries Q. For
each givenQ value, the optimal δ? for each point is selected
among the different attack executions (i.e., using different
hyperparameters and/or initialization points, as described
in Sect. 3.1). In Fig. 2, we report the QD curves for the
MNIST and CIFAR10 challenge models (i.e., M2 and C1)
in the untargeted scenario. It is worth noting that our at-
tack attains comparable results in terms of perturbation size
across all norms, while significantly outperforming FAB and
BB in the `1 case. It typically requires also less iterations
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Figure 2. Query-distortion curves for MNIST (M2) and CIFAR10 (C1) models (untargeted scenario).

than the other attacks to converge. While the QD curves
show the complete behavior of each attack as Q increases, a
more compact and thorough summary of our evaluation is
reported in Table 3, according to the four evaluation criteria
described. The remaining curves, computed for all models,
can be found in the end of the Appendix.

Robustness to hyperparameter selection. The values re-
ported in the lower part of Table 3 show that, when using
dataset-level hyperparameter tuning, FMN outperforms the
other attacks in a much larger number of cases. This shows
that FMN is more robust to hyperparameter changes, while
other attacks like `0- and `1-BB suffer when using the same
hyperparameters for all samples.

Convergence speed. To get an estimate of the convergence
speed, we measure the number of queries required by each
attack to reach a perturbation size that is within 10% of
the value found at Q = 1000 queries (the lower the better).
Results are shown in Table 4. Our attack converges on par
with or faster than all other attacks for almost all models,
often requiring only half or a fifth as many queries as the
state of the art.

Experiments on ImageNet. We expand further our experi-
ments by running an additional comparison between FMN
and a widely-used maximum-confidence attack, i.e., the Pro-
jected Gradient Descent (PGD) attack (Madry et al., 2017),
on two pretrained ImageNet models (i.e., ResNet18 and
VGG16), considering `1, `2 and `∞ norms. The hyperpa-
rameters are tuned at the dataset-level using 20 validation
samples. For FMN, we fix the hyperparameters as discussed

before, and only tune α0 ∈ {0.1, 1, 2, 8}, without using
adversarial initialization. For PGD, we tune the step size
α ∈ {0.001, 0.01, 0.1, 1, 2, 8}. We run both attacks for
Q = 1, 000 queries on a separate set of 1, 000 samples. The
success rates of both attacks at fixed ε values are reported in
Table 5. The results show that FMN outperforms or equals
PGD in all norms.

Table 5. Success rate (%) of FMN against PGD on ImageNet mod-
els.

ResNet18 VGG

`1 (ε = 1.0)
PGD 31.4 30.4
FMN 38.4 39.8

`2 (ε = 0.15)
PGD 61.7 61.4
FMN 65.8 66.2

`∞ (ε = 4 · 10−4)
PGD 51.0 49.0
FMN 55.2 49.0

C. Adversarial Examples
In Figs. 3-4, we report adversarial examples generated by all
attacks against model M2 and C2, respectively, on MNIST
and CIFAR10 datasets, in the untargeted scenario.

The clean samples and the original label are displayed in
the first row of each figure. In the remaining rows we show
the perturbed sample along with the predicted class and
the corresponding norm of perturbation ‖δ?‖p. It is worth
noting that the output class for different untargeted attacks
is not always the same, which might sometimes explain



Fast Minimum-norm Adversarial Attacks

Table 3. Median ‖δ?‖p value atQ = 1000 queries for targeted and untargeted attacks, with sample-level and dataset-level hyperparameter
tuning.

MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

Sample-level Hyperparameter Tuning

`0 BB 7 8 15 94 14 27 24 93 8 12 13 19 32 25
Ours 7 9 15 5 14 20 24 23 8 11 14 19 32 27

`1 FAB 6.60 3.08 14.23 109.4 - - - - 4.79 5.17 8.79 - - -
BB 6.26 5.81 13.16 5.44 12.42 10.38 20.41 6.25 3.75 4.29 8.62 8.04 10.93 15.71

Ours 5.57 2.95 12.04 1.96 12.20 6.75 18.79 7.31 3.04 3.43 8.26 7.07 9.40 15.24

`2 FAB 1.45 1.36 2.62 2.97 - - - - 0.66 0.72 0.94 - - -
CW 1.49 4.22 2.78 - 2.33 6.97 3.54 - 0.67 0.74 0.91 1.08 1.27 1.38
BB 1.43 1.34 2.61 1.61 2.27 2.04 3.23 1.79 0.63 0.70 0.91 1.07 1.26 1.38

DDN 1.46 1.71 2.56 0.79 2.29 2.20 3.27 1.33 0.64 0.73 0.91 1.09 1.29 1.39
Ours 1.41 1.23 2.50 0.94 2.28 1.89 3.19 1.85 0.61 0.69 0.91 1.03 1.21 1.38

`∞ FAB .138 .337 .233 .421 - - - - .033 .043 .025 - - -
BB .138 .330 .227 .402 .202 .355 .271 .403 .032 .041 .024 .055 .064 .037

Ours .134 .339 .226 .404 .201 .389 .272 .406 .032 .040 .024 .055 .063 .037

Dataset-level Hyperparameter Tuning

`0 BB 12 152 52 145 20 179 39 183 28 44 32 29 65 33
Ours 9 33 18 15 16 48 28 55 11 17 16 25 38 32

`1 FAB 8.66 225.7 163.9 312.3 - - - - - - 20.48 - - -
BB 10.60 49.83 17.57 46.99 16.60 53.11 29.89 54.31 7.02 10.20 17.13 11.41 15.26 23.37

Ours 7.13 4.18 13.66 4.99 13.18 8.33 21.37 12.16 4.28 4.82 9.52 8.51 10.40 17.32

`2 FAB 1.54 1.59 2.81 16.30 - - - - 0.77 1.11 1.06 - - -
CW 1.63 5.15 3.71 - 2.50 - 4.72 - 0.86 1.00 0.99 1.36 2.90 1.55
BB 1.75 1.82 3.02 4.57 2.64 2.59 3.52 5.31 0.86 0.95 1.10 1.25 1.45 1.73

DDN 1.47 2.01 2.62 1.15 2.31 2.72 3.36 1.96 0.66 0.77 0.91 1.11 1.31 1.40
Ours 1.61 1.42 2.61 1.56 2.30 2.13 3.24 2.41 0.67 0.74 0.91 1.09 1.28 1.38

`∞ FAB .148 .365 .248 .900 - - - - .038 .052 .029 - - -
BB .159 .336 .243 .409 .223 .361 .280 .477 .044 .054 .029 .059 .074 .042

Ours .140 .357 .233 .408 .206 .426 .277 .434 .034 .042 .024 .057 .066 .037

Table 4. Number of queries required by each attack to reach a perturbation size that is within 10% of the value obtained at Q = 1000.

MNIST CIFAR10

Untargeted Targeted Untargeted Targeted
Model M1 M2 M3 M4 M1 M2 M3 M4 C1 C2 C3 C1 C2 C3

`0 BB 22 43 68 114 30 443 71 376 497 372 58 384 500 85
Ours 22 82 38 182 27 165 46 145 48 71 37 271 146 70

`1 FAB 44 242 152 569 - - - - 124 220 72 - - -
BB 24 314 83 391 45 614 233 722 674 570 34 526 464 206

Ours 21 363 34 631 25 243 37 336 48 85 31 89 130 38

`2 FAB 14 60 40 532 - - - - 18 28 14 - - -
CW 110 799 335 - 100 913 469 - 67 39 33 56 144 42
BB 20 24 20 337 21 61 20 692 22 23 22 26 27 29

DDN 12 136 15 474 12 149 26 670 13 20 4 18 19 18
Ours 16 94 16 190 11 136 16 188 28 23 7 25 29 13

`∞ FAB 36 50 44 11 - - - - 50 50 54 - - -
BB 19 17 20 5 24 17 22 5 20 24 21 27 33 29

Ours 9 10 22 5 27 8 26 5 22 15 14 20 29 34

differences in the perturbation sizes. An example is given in
Fig. 4b, where the sample in the fourth column, labeled as
“ship”, is perturbed by most of the attacks towards the class

“airplane”, while in our case it outputs the class “dog” with
a much smaller distance.
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Figure 3. Adversarial examples on MNIST dataset.
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Figure 4. Adversarial examples on CIFAR10 dataset.
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D. Additional query-distortion Curves
We already introduced in sect. B the query-distortion curves
as an efficiency evaluation metric for the attacks. We report
here the complete results for all models, in targeted and
untargeted scenarios.

On the MNIST dataset, our attacks generally reach smaller
norms with fewer queries, with the exception of M2 (Figs. 5-
6), where it seems to reach convergence more slowly than
BB in `0 and `∞. In `2, the CW attack is the slowest to
converge, due to the need of carefully tuning the weighting
term, as described in Sect. 1.

On the CIFAR10 dataset (Figs. 7-8), our attack always ri-
vals or outperforms the others, with the notable exception
of DDN for the `2 norm, which sometimes finds smaller
perturbations more quickly, as also shown in Table 4.
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Figure 5. Query-distortion curves for untargeted (U) attacks on the M1, M2, M3, and M4 MNIST models.
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Figure 6. Query-distortion curves for targeted (T) attacks on the M1, M2, M3 and M4 MNIST models.
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Figure 7. Query-distortion curves for untargeted (U) attacks on the C1 (top), C2 (middle), and C3 (bottom) CIFAR10 models.
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Figure 8. Query-distortion curves for targeted (T) attacks on the C1 (top), C2 (middle), and C3 (bottom) CIFAR10 models.


