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Abstract

Embeddings are often difficult for humans to interpret, raising potential safety concerns.
To address this, we analyze embeddings from different data structures such as words, sen-
tences, and graphs, and interpret them in an understandable manner. This study investi-
gates the algebraic relations, specifically additive, between pairs of vectors that represent
entities known to be similar across a particular feature. To this end, we apply two methods:
(1) Correlation-based Linearity Detection, which measures the correlation between known
attributes of objects and their embeddings, and (2) Additive Compositionality Detection,
which decomposes embeddings into an additive combination of vectors representing specific
attributes. Embeddings are evaluated from various models, layers, and training stages to
explore their capacity to encode compositional relationships. Sentence embeddings, for ex-
ample, can be interpreted as the sum of underlying conceptual components. Similarly, word
embeddings can be interpreted as capturing a combination of semantic and morphological
information. Graph embeddings in recommender systems reflect the sum of a user’s demo-
graphic attributes. In all three types of data, the relationships between structured entities
are encoded as vector operations in embeddings, with a simple operation such as addition
playing a central role in expressing compositionality. Code will be publicly available on
GitHub upon acceptance.

1 Introduction

The representation of entities, concepts, and relations as vector embeddings is a foundational technique in
machine learning (Mikolov et al., 2013a;b). Despite their broad success, embeddings often lack interpretabil-
ity. One approach to improving interpretability involves examining the compositionality of embeddings: if
embeddings can be understood as a function of known, interpretable representations, the information they
encode becomes more accessible. Recent studies have explored compositionality in various contexts, includ-
ing sentence embeddings (Hewitt & Manning, 2019), word embeddings (Mikolov et al., 2013a), and graph
embeddings (Bose & Hamilton, 2019), as well as broader aspects of neural network structures related to
interpretability (Lepori et al., 2023). In particular, sentence embeddings and graph embeddings have shown
evidence of a particularly simple, additive form of compositionality (Xu et al., 2023; Guo et al., 2023), though
this has been observed primarily in limited scenarios.

Word embeddings map words into continuous vector spaces based on their contextual relationships, capturing
semantic analogies like king - man + woman ≈ queen (Mikolov et al., 2013b). Sentence embedding, performed
using neural networks like BERT (Devlin et al., 2018), GPT (Brown, 2020) or Llama (Touvron et al., 2023),
extends this idea by creating embeddings for entire sentences rather than individual words. It is again
reasonable to ask if they display the compositional property. In this case the analogue of king - man + woman
≈ queen would be Cat ate mouse - mouse + bird ≈ cat ate bird. Similarly, an interesting question is how
graph embeddings capture relationships, like user preferences in bipartite graphs, and encode demographic
features such as age or gender. More generally, embeddings represent objects through a relationship function
or measurable features, defining a vector space that encodes relational or attribute-based information.

Motivation Understanding whether embedding vectors can be decomposed into distinct semantic com-
ponents is a fundamental challenge for interpretability. If these embeddings can be broken down into parts
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corresponding to linguistic inflection, word composition, or collections of attributes, then simple operations
such as vector addition may reliably reveal underlying semantic or structural changes. While extensive
research has documented additive properties in word embeddings, less is known about whether sentence
and graph embeddings exhibit similar behavior. Our work addresses this gap by investigating the extent
to which vector addition reflects genuine semantic composition, both in final embeddings and across the
internal structure of Transformer models.

Our Contributions Although the decomposition methods we use were introduced in previous work (Xu
et al., 2023; Guo et al., 2023), our current study makes several novel contributions:

• Novel Analysis of Linearity: We rigorously assess how much of the semantic and structural infor-
mation in embeddings can be explained by additive, linear components. Our analysis quantifies the
degree of linearity present in embedding spaces, providing insight into how interpretable features
emerge from models that are otherwise highly non-linear.

• Extensive Cross-Domain Experiments: We evaluate a diverse array of embeddings—including static
word embeddings (e.g., Word2Vec), sentence embeddings from Transformer-based models (e.g.,
BERT, GPT, Llama), and knowledge graph embeddings used in recommender systems. Our ex-
periments cover multiple model layers and training stages, revealing how the strength of additive
signals varies with model complexity and over time.

• Quantitative Findings: Our results demonstrate, for example, that the strength of additive signals
in SBERT embeddings increases by up to 15% in mid-level layers before declining in upper lay-
ers where task-specific representations dominate. For graph embeddings, the correlation between
user behavior and demographic information at later training stages (300 epochs) is 1.5 times higher
than at earlier stages (5 epochs), with both stages significantly outperforming the random baseline.
Additionally, our analysis shows that word embeddings can be decomposed into distinct morpholog-
ical and semantic subcomponents, and that graph embeddings encode user attributes via additive
operations.

Building on methods from (Xu et al., 2023) and (Guo et al., 2023), we examine the extent of additive
compositionality across a range of embedding types, including sentence, word, and graph embeddings, as
well as those derived from large language models. For sentences, we focus on pretrained embeddings from
Transformer-based architectures, namely GPT (Brown, 2020), Llama 2 (Touvron et al., 2023), and various
BERT models (Reimers & Gurevych, 2019; Sellam et al., 2022). To investigate additive decomposability,
we introduce a task in which a sentence, for example, “Can you find me an Adventure movie playing at
AMC NewPark in Newark?”, is split into its constituent concepts (location, theater_name, and genre). We
then assess whether these concepts can be additively composed within the embedding space, evaluating
performance across different models, various layers within SBERT, and multiple training stages of BERT.

For words, we analyze pretrained word2vec embeddings (Mikolov et al., 2013b), a static model that remains
widely used and offers a contrast to the Transformer-based approach. Word2vec embeddings are well known
to decompose morphologically. In this paper, the extent to which this decomposition holds across multiple
suffixes is investigated, as shown in the example: weightlessness - less - ness + y + ly = weightily. Guo et al.
(2023) showed that knowledge graph embeddings trained on the MovieLens dataset (Harper & Konstan, 2015)
could be decomposed into demographic attributes, even without this information being used in training. In
this paper, we assess the robustness of this finding across an alternative embedding method, and examine
the compositionality of embeddings across training stages.

Findings Our experiments show that simple vector operations capture meaningful relationships across
various embedding types. For example, we find that sentence embeddings from SBERT, GPT, and Llama-2-
7B can be decomposed into additive components that correspond to core conceptual elements, with additive
signals strengthening by up to 15% in mid-level layers before diminishing in higher layers. In the case of word
embeddings, models such as Word2Vec can be decomposed into coherent morphological and semantic units,
aligning well with external benchmarks like WordNet. Similarly, knowledge graph embeddings trained by
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different scoring functions on the MovieLens dataset show that demographic attributes such as age and gender
are encoded through additive operations, even without explicit attribute labels. These results demonstrate
that, despite their non-linear origins, large-scale models retain a quantifiable degree of additive compositional
structure, providing promising avenues for enhanced interpretability in representation learning.

1.1 Background and Related Work

The principle of compositionality—that the meaning of a whole can be derived from its parts—has long been
central to linguistic theory and distributional semantics. The extent to which embeddings are compositional
has been an area of research across multiple domains. Identifying the components of an embedding provides
insight into the factors affecting its representation, as does understanding the rules by which those parts are
combined.

Unlike earlier studies that focus on a single domain or merely report statistical significance, our work pro-
vides a unified, quantitative framework for analyzing additive compositionality across words, sentences, and
graphs. By clearly separating our empirical findings from established methods, we offer both a rigorous
methodological foundation and new insights into the linear signals within modern embedding spaces.

Compositionality in Sentence Embeddings Research on compositionality in sentence embeddings has
examined how models represent lexical and syntactic structures. BERT (Devlin et al., 2018) is not given
explicit syntactic trees during training, however its representations capture significant syntactic information
(Hewitt & Manning, 2019). Ettinger et al. (2016) and Dasgupta et al. (2018) explore semantic roles, scope,
and natural language inference by modifying sentence structures, while Adi et al. (2016) evaluate embeddings
using tasks like sentence length and word order. Probing tasks and representational similarity analysis
(RSA) have further analyzed how models encode linguistic features, with studies like Lepori & McCoy
(2020), Chrupała & Alishahi (2019), and Tenney et al. (2019b) investigating syntax, semantics, and sentence
structure in models such as BERT and ELMo. RNNs and Transformers have also been shown to encode
symbolic structures effectively (Soulos et al., 2020; Yu & Ettinger, 2020). Xu et al. (2023) show that sentence
representations from SBERT, using the [CLS] token, exhibit additive compositionality. In this paper, we
extend their findings to more recent language models.

Compositionality in Word Embeddings Numerous approaches have been proposed to understand
compositionality in word embeddings. Mikolov et al. (2013a) demonstrated that words can be decomposed
semantically and morphologically, for example, quickly - quick + slow = slowly. Disentangled Representation
Learning (Bengio et al., 2013) separates attributes in embeddings, enhancing interpretability by associating
latent dimensions with discrete features. Additive compositionality in skip-gram word vectors has been
theoretically justified (Gittens et al., 2017), with subsequent work relaxing these assumptions and proposing
models that satisfy more realistic conditions (Seonwoo et al., 2019). Shwartz & Dagan (2019) examined
compositionality via six tasks, exploring semantic drift and implicit meaning, while Andreas (2019) proposed
a metric based on fidelity in reconstructing representations from primitives. In this paper, we use techniques
from Xu et al. (2023) originally designed for the analysis of sentence embeddings, and show that the same
techniques can be applied to word embeddings. We show that word embeddings can be decomposed into
multiple prefixes and suffixes, extending the analysis from Mikolov et al. (2013b). We further compare
word2vec embeddings with WordNet embeddings (Miller, 1995) to evaluate their semantic compositionality.

Compositionality in Graph Embeddings While compositionality has been extensively studied in lin-
guistics, less attention has been given to graph embeddings. Graph embeddings, such as those in knowledge
graphs and recommender systems, encode relationships and attributes as constituent components within
their vector representations. For instance, embeddings trained from movie ratings capture compositional
information, including user preferences and movie characteristics. Recent work has explored how graph em-
beddings encode such components during training, with methods like adversarial loss used to isolate specific
attributes (Bose & Hamilton, 2019; Fisher et al., 2020). In this work, we evaluate compositionality in graph
embeddings across different scoring functions and training stages, focusing on how embeddings encode and
combine diverse attributes and relationships.
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Compositionality in Deep Learning More Generally The ability of neural networks to reason com-
positionally has been studied across various architectures. Kim & Linzen (2019) compared Gated Recurrent
Units (GRUs) and Simple Recurrent Networks (SRNs) for compositional generalization, while Wu et al.
(2020) analyzed contextual word representation models across architectures. Research increasingly focuses
on improving generalization to unseen compositions, with Lake & Baroni (2018) and Kim & Linzen (2020)
highlighting limitations of RNNs, LSTMs, and Transformers in systematic tasks. To address this, Lake &
Baroni (2023) proposed a meta-learning approach for systematic generalization. Hupkes et al. (2020) intro-
duced task-independent tests to evaluate compositional generalization, showing differences across recurrent,
convolutional, and transformer models. Additionally, structural and functional studies (Mu & Andreas, 2020;
Lepori et al., 2023) explore how architectures contribute to or hinder compositional understanding.

2 Data Embedding and Compositionality Detection Methods

2.1 Embedding Techniques

Embedding Words Word embeddings involve building vectors for words based on the distributional
hypothesis: words that occur in similar contexts have similar meanings. Word embeddings can be divided
into contextual (Peters et al., 2018; Devlin et al., 2018) and static (Mikolov et al., 2013b; Pennington et al.,
2014) embeddings. Static embeddings model word meanings as one static vector, whereas the embeddings
produced by contextual embedding methods differ based on the context in which the word occurs. In this
paper we focus on the semantics and morphology of embeddings. Since contextual embeddings naturally
additively encode morphology through character level or subword embeddings, we focus instead on static
embeddings, specifically pre-trained skip-gram word2vec (Mikolov et al., 2013a).

Embedding Sentences We focus on Transformer-based language models and examine the additive com-
positionality present in pretrained embeddings. Xu et al. (2023) show that sentence embeddings modelled
by the [CLS] token of SBERT can be additively decomposed into the words in the sentence. We extend
their results to examine compositionality through different layers of SBERT and through training stages of
the MultiBERTs (Sellam et al., 2022). We further examine the additive compositionality present in sentence
embeddings from GPT Embeddings and Llama 2. Since these are produced by averaging the word embed-
dings, we alter the task to instead show that sentence embeddings can be decomposed into a sum of the
concepts contained within them. Details are given in Section 3.

Embedding Knowledge Graphs Knowledge Graph Embeddings (KGEs) represent entities and relation-
ships as vectors. Scoring functions over these vectors encode the graph’s topology (Nickel et al., 2011). Two
main scoring functions are widely used: multiplicative scoring (Yang et al., 2014), which models interactions
through the product of entity and relation embeddings, and additive scoring (Bordes et al., 2013), where
relationships are modelled as translations in the embedding space. These embeddings are evaluated on link
prediction tasks. Guo et al. (2023) previously showed that KGEs trained on the MovieLens dataset us-
ing the multiplicative scoring function could be additively decomposed into attribute embeddings encoding
information such as age or gender. In this paper, we examine whether KGEs trained using the additive
scoring function exhibit similar compositionality. We further examine how this compositionality changes
over training stages.

2.2 Compositionality Detection Methods

Previous work has explored methods to detect compositionality in embeddings by examining the relationships
between entity attributes and their representations. Two approaches are Correlation-Based Compositionality
Detection and Additive Compositionality Detection (Xu et al., 2023; Guo et al., 2023), which we describe
briefly here. For each entity—whether user, word, or sentence—we consider two representations:

• A binary attribute matrix A (e.g., demographics or syntactic properties), where each row corresponds
to an entity and each column represents an attribute. Entries aij ∈ {0, 1} indicate the absence or
presence of attribute j in entity i.
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• A continuous embedding matrix U (e.g., user behaviour embeddings or word embeddings), where
each row corresponds to an entity’s embedding and each column represents a dimension of the
embedding space.

Correlation-Based Linearity Detection This method uses Canonical Correlation Analysis (CCA) to
uncover latent correlations between the attributes and embedding dimensions (Shawe-Taylor et al., 2004).
Given the binary attribute matrix A ∈ {0, 1}q×n and the embedding matrix U ∈ Rq×m, where q is the
number of entities, n is the number of attributes, and m is the dimensionality of the embeddings, the goal
is to find transformation matrices WA ∈ Rn×k and WU ∈ Rm×k that maximize the correlation between the
projected data:

ρ = max
WA, WU

corr (AWA, UWU )

Here, corr denotes the Pearson Correlation Coefficient (PCC) between the projected representations, and k
is the number of canonical components. The transformations AWA and UWU capture the most correlated
aspects of the attributes and embeddings, respectively. We provide a detailed formal exposition of all
settings necessary to define a CCA component, including the precise definition, the underlying vector space
and mapping of semantic attributes, as well as illustrative examples. A complete derivation and examples
are included in the Appendix A.

Additive Compositionality Detection The additive compositionality detection method quantifies how
much each attribute influences the embeddings (Xu et al., 2023). It assumes that an entity’s embedding can
be approximated as a linear combination of attribute embeddings. Given A and U, the goal is to solve the
linear system AX = U where X ∈ Rn×m is the matrix of attribute embeddings to be learned.

A leave-one-out (LOO) experiment is performed for each entity i. We firstly exclude the i-th row from A
and U to obtain A−i and U−i, then solve A−iX = U−i using the pseudo-inverse to obtain X. We then
estimate the left-out embedding using ûi = aiX, where ai is the i-th row of A, and finally compare ûi with
the actual embedding ui using (1) L2 loss, (2) cosine similarity, and (3) retrieval accuracy. More details are
given in Appendix B.

Hypothesis Testing To determine statistical significance, a non-parametric hypothesis test is performed
by directly estimating the p-value through Monte Carlo sampling. First, the test statistic Treal is computed
for the real pairing: for CCA, this is the canonical correlation ρreal; for additive compositionality, they are
L2 loss, cosine similarity and retrieval accuracy based on the real pairing. Next, permuted pairings are
generated by randomly shuffling the rows of A to disrupt the alignment, resulting in permuted datasets
{A(1), A(2), . . . , A(N)}.

For each permuted pairing j, the test statistic T
(j)
perm is calculated, and the p-value is estimated as p =

1
N

∑N
j=1 I(T

(j)
perm ≥ Treal), where I(·) is the indicator function. A low p-value indicates that the observed

statistic is unlikely under random pairings, supporting the statistical significance of the real pairing.

3 Evaluating Compositionality of Data Embeddings

3.1 Sentence Embeddings

We evaluate the extent to which sentence embeddings from SBERT, GPT, and Llama can be additively
decomposed into the concepts expressed in the sentence, using a dataset derived from the Schema-Guided
Dialogue (SGD) dataset (Rastogi et al., 2020)1. We firstly look at the compositionality of sentence embed-
dings from the final layer of each model. We go on to examine the compositionality of sentence embeddings
through different layers of SBERT, and finally look at how compositionality develops during the training
stages of the MultiBERTs.

1https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
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(a) SBERT embeddings (b) GPT Embeddings

Figure 1: Pearson’s correlation coefficient (PCC) for true sentence-concept pairings and 100 permuted pair-
ings. For both SBERT (Figure 1a) and GPT (Figure 1b) embeddings, we see that the correlation of true
pairs is significantly higher than for random pairings.

3.1.1 Dataset

We build a dataset consisting of sentences annotated with concepts, taken from the Schema-Guided Dialogue
(SGD) dataset. An example pair of sentence and concept labels is:

Sentence: Can you find me an Adventure movie playing at AMC NewPark in Newark?

Concepts: [location, theater name, genre].

We select 2,458 sentences, each annotated with minimum 3 and maximum 4 concepts from a total set of 47
concepts. The mean number of concepts per sentence is 3.16. There are 90 unique combinations of concepts
used. The sentences used comprise the test set of the Schema-Guided Dialogue (SGD) dataset. This split
was chosen because it is annotated with denser labels, providing more comprehensive concept coverage.

3.1.2 Experiments and Results

Final Layer Embeddings We generate embeddings using pretrained sentence models, producing matrices
U ∈ R2,458×d, where d is the dimensionality of the model. For SBERT2 and Llama3, embeddings are
generated by mean pooling over the token embeddings, excluding padding tokens. For GPT4, sentence
embeddings are obtained from the OpenAI API, which provides precomputed embeddings representing the
entire sentence. Each row of the matrix U consists of a sentence embedding for the corresponding sentence.
We construct attribute matrices A ∈ {0, 1}2,458×47 with each row being a binary vector indexing the relevant
concepts for the corresponding sentence.

We assess the compositionality of the sentence embeddings using the methods described in Section 2.2,
and the U and A matrices described above. For the correlation-based linearity detection experiment, all
sentences are used to compute correlations. For the additive compositionality experiments, sentences are
grouped by their concept combinations, and mean embeddings are computed for each group.

For SBERT and GPT embeddings5, we apply correlation-based compositionality detection to assess whether
sentence embeddings correlate with their binary concept vectors. Figure 1 shows significant difference in cor-
relation scores between real and permuted pairings (p-value < 0.01) for both GPT and SBERT embeddings,
indicating that sentence embeddings are correlated with their binary concept vectors.

Results from the additive compositionality detection experiment are reported in Table 1. Cosine similarity
and retrieval accuracy for the true pairings are all significantly and substantially higher than for the permuted
pairings. The behaviour of SBERT and GPT embeddings are very similar, whereas Llama embeddings

2sentence-transformers/all-MiniLM-L6-v2
3meta-llama/Llama-2-7b-hf
4text-embedding-3-small
5We do not assess correlation for Llama embeddings as the dimensionality of these embeddings is too high
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have a less substantial increase in compositionality over permuted pairings, as well as a lower retrieval
accuracy (Hits@5). Plots of the distribution of the metric values for permuted pairs vs. real pairs for SBERT
embeddings are given in Figure 2; the corresponding error bar plots, which summarize the distribution with
the mean ± standard error, are shown in Appendix F. Results for GPT and Llama embedding are provided
in Appendix D, Figures 9 and 10.

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@5

Figure 2: Test statistics for SBERT’s embedding decomposition. Dashed line is the average performance of û
learned from the sentence embedding. Bars are the distribution of the results from 100 random permutations.
(a) L2 loss, (b) Cosine Similarity, and (c) Retrieval Accuracy@5 compare real SBERT embedding pairs to
permuted pairs.

Table 1: Additive compositionality metrics for SBERT, GPT, and Llama embeddings. Figures in Real
columns are the mean across all leave-one out experiments. Figures in Permuted columns are the mean
across 100 permutations of the sentence-concept pairs. All increases of Real over Permuted values are
significant with p<0.01.

Embedding Cosine Cosine Hits@5 Hits@5
Real Permuted Real Permuted

SBERT 0.7761 0.4865 0.59 0.0405
GPT 0.7753 0.4941 0.57 0.0399
Llama 0.9355 0.8153 0.52 0.0468

Comparison between Different Layers We assess the additive compositionality of sentence embeddings
derived from each layer of SBERT. At each layer of SBERT, the binary attribute matrix A remains the same
as in the final layer experiment. Separate continuous embedding matrices Ui are built for each layer i. To
generate sentence embeddings at each layer, we extract hidden states for all layers from the SBERT model
and apply the same pooling method as used for the last layer (mean pooling over token embeddings). Each
embedding is normalized to length 1.

The results, reported in Table 2, show that compositionality increases through the layers, peaking at layer 4
or 5. However, an abrupt drop in compositionality, as measured by cosine similarity, is observed at the last
layer. This is in line with the phenomenon that semantic information is better encoded at earlier layers in
the model, see for example experiments in the original BERT paper (Devlin et al., 2018). The fact that the
cosine metric is fairly high for the random baseline. However, the discrimination between sentence meanings
is still high as can be seen by fact that the Hits@5 for real pairings is consistently substantially higher than
that for for permuted pairings.

Comparison between Different Training Stages We further compare additive compositionality across
different training stages of the MultiBERTs (Sellam et al., 2022). We again use the same binary attribute
matrix A at each training stage. We build continuous embedding matrices Usteps for 0, 20k, 40k, 100k,
1000k, and 2000k training steps. We use the [CLS] token to represent sentences. At 0k steps, there is no
significant differences between the values of the cosine similarity metrics for real and permuted despite high
overall values (0.9884). This indicates that the embeddings lack differentiation and do not capture conceptual
relationships. After 20k training steps, compositionality metrics significantly improve (Cosine Rel. Diff in
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Table 2: Additive compositionality metrics across SBERT layers. Figures in Real columns are the mean
across all leave-one out experiments. Figures in Permuted columns are the mean across 100 permutations
of the sentence-concept pairs. All increases of Real over Permuted values are significant with p<0.01.

Layer Cosine
Real

Cosine
Permuted

Hits@5
Real

Hits@5
Permuted

0 0.8889 0.7808 0.59 0.0397
1 0.9366 0.8671 0.57 0.0406
2 0.9397 0.8576 0.61 0.0390
3 0.9403 0.8330 0.64 0.0412
4 0.9408 0.8298 0.66 0.0400
5 0.9409 0.8273 0.62 0.0417
6 0.7761 0.4865 0.59 0.0405

Table 3), implying that additive compositionality emerges from training. Early stages (0k to 20k steps) show
gains in cosine similarity and retrieval accuracy, demonstrating the model’s ability to represent sentences as
combinations of concepts. However, further training produces diminishing returns, as the model may shift
focus to other linguistic features or risk overfitting. See Table 3 for details.

Table 3: Additive Compositionality Metrics at Different Training Steps of BERT. Number of training steps
is given by the suffix to the model, e.g. cls_20k indicates the performance of the model after 20k training
steps. Rel. Diff expresses this difference as a percentage of the permuted similarity, showing proportional
improvement. Figures in Real columns are the mean across all leave-one out experiments. Figures in
Permuted columns are the mean across 100 permutations of the sentence-concept pairs.

Model Cosine
Real

Cosine
Per-
muted

Cosine
Rel. Diff

Hits@5
Real

Hits@5
Per-
muted

cls_0k 0.9884 0.9882 0.02% 0.44 0.0418
cls_20k 0.8787 0.7722 13.79% 0.55 0.0407
cls_40k 0.8773 0.7724 13.59% 0.48 0.0405
cls_100k 0.9201 0.8323 10.54% 0.55 0.0417
cls_1000k 0.9545 0.9149 4.33% 0.44 0.0408
cls_2000k 0.9538 0.9094 4.89% 0.48 0.0415

3.2 Knowledge Graph Embedding

In Guo et al. (2023), it was shown that knowledge graph embeddings trained using the multiplicative scoring
function (Yang et al., 2014) exhibit correlation-based linearity and additive compositionality. In this section,
we firstly show that these results also hold for embeddings trained using the additive scoring function
(equation 4, Bordes et al. (2013)). We go on to examine the evolution of correlation-based linearity over
training stages, and finally examine the association between canonical variables and user attributes.

3.2.1 Compositionality across Diverse KGEs

We use the MovieLens 1M dataset (Harper & Konstan, 2015) with 6040 users, 3900 movies, and 1 million
ratings (1–5). As in the sentence embedding experiment, we pair each entity, i.e. user, with two descriptions:
a binary vector representing demographic attributes (gender, age and occupation) and a user embedding
learned from movie preferences.

Continuous embeddings are trained as follows. We encode (user, rating, movie) as relational triples (h, r, t)
and train 50-dimensional embeddings with OpenKE (Han et al., 2018), using the additive scoring function
(equation 4), for 300 training steps. We assess the quality of the embeddings on a link prediction task,
obtaining RMSE of 0.92 and Hits@1 of 0.46. Details of the process and evaluation are given in Appendix I.
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(a) Pearson’s correlation coefficient
(PCC) for true user-attribute pairings
and 100 permuted pairings. Embed-
dings are computed by the additive
scoring functions.

(b) Embeddings computed by mul-
tiplicative scoring function. Figure
recreated from Guo et al. (2023)

(c) Correlation coefficients over dif-
ferent training stages of multiplica-
tive scoring-function-based Knowl-
edge Graph embedding

Figure 3: PCC is calculated between projected A and projected U. x axis stands for the kth components,
y axis gives the value.The PCC value for real pairings is larger than for any permuted pairings.

Correlation-Based Linearity for KGEs The continuous embedding matrix Ucorr ∈ R6040×50 for
correlation-based linearity detection experiment is populated with these embeddings. We also generate
a binary attribute matrix Acorr ∈ {0, 1}6040×9 containing one 9-dimensional binary attribute vector for each
user, including attributes based on gender, age, and occupation.

Additive Compositionality for KGEs For the additive compositionality experiment, we generate a
binary attribute matrix Aadd ∈ {0, 1}14×9 containing one 9-dimensional binary attribute vector for each
user including attributes based on gender and age (2 genders × 7 age groups). The choice of attributes
is made to match the choices in Guo et al. (2023). The continuous embedding matrix Uadd ∈ R14×50 is
generated by taking the mean across embeddings associated with the same attribute combination.

Results Results of the correlation-based compositionality detection method are reported in Figure 3a.
Results from Guo et al. (2023) are recreated in Figure 3b for comparison. PCC, as measured by the
correlation-based linearity detection method, is shown to be robust across these two different graph embed-
ding methods. The additive scoring-function-based model (Figure 3a) shows a significant difference between
real and random pairings, confirming that user embeddings encode demographic information.

Results of the additive compositionality detection experiment are reported in Figure 4, showing L2 loss of
0.04, cosine similarity of 0.97, and Hits@1 of 0.94, each outperforming the random baseline with p = 0.01.
These findings reject the null hypothesis, demonstrating that user embeddings encode additive relationships
between gender and age.

3.2.2 Linearity across Training Stages

We train embeddings for the MovieLens-1M dataset using the multiplicative scoring function (Yang et al.
(2014)). Embeddings are extracted at both early (5 epochs) and late (300 epochs) stages of training. We
assess the correlation-based linearity at each training stage. For each stage the attribute matrix A is the same
as Acorr described above, whereas Uearly and Ulate contain embeddings from the early and late training
stages respectively.

Results Results are reported in Figure 3c. We see that as training progresses, the correlation coefficient
increases. This means that more demographic information becomes encoded into the embeddings.
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(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@1

Figure 4: The test statistics for user additive scoring function embedding decomposition. The dashed line
represents the average performance of Û from user embeddings, while the bars show the distribution of
results from 100 random permutations. (a) L2 loss, (b) Cosine Similarity, and (c) Retrieval Accuracy@5
compare real user embedding pairs to permuted pairs.

Figure 5: Positive weights in the second canonical component of CCA show the association between user
attributes (e.g., Female and Age: 18 ) and user embedding dimensions (e.g., 34 and 10 ).

3.2.3 Interpretation of Weights

Canonical Correlation Analysis (CCA) identifies linear combinations of variables, called canonical variables,
from two datasets (user attributes and user embeddings) that are maximally correlated. The weights in
CCA indicate the contribution of each original variable to the canonical variable, with the sign reflecting the
direction of the relationship.

In Figure 5, positive weights on the user attribute side (e.g., Female and Age: 18 ) and user embedding side
(e.g., dimensions 34 and 10 ) highlight their strong contribution to their respective canonical variables. This
strong correlation between user-side and movie-side canonical variables reveals meaningful links between
demographic traits and movie preferences.

3.3 Word Embedding

We apply the same methods to examine two distinct signals contained in word2vec embeddings: semantic
and syntactic information. To detect these signals, we use WordNet embeddings as semantic representation,
and MorphoLex for syntactic structures. By comparing the word2vec embeddings against both WordNet and
MorphoLex, we are able to disentangle the semantic and syntactic aspects of the word2vec representation.

3.3.1 Datasets

WordNet Embeddings WordNet (Miller, 1995) is a large lexical database of English that combines
dictionary and thesaurus features with a graph structure. It organizes nouns, verbs, adjectives, and adverbs
into synsets (sets of cognitive synonyms) interlinked by semantic and lexical relations. We use WN18RR
(Dettmers et al., 2018), a subset of WordNet with 40,943 entities and 11 types of relation.
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MorphoLex MorphoLex (Sánchez-Gutiérrez et al., 2018) provides a standardized morphological database
derived from the English Lexicon Project, encompassing 68,624 words with nine variables for roots and
affixes. An example extract from the dataset is given in Table 4. In this paper, we focus specifically on
words with one root and multiple suffixes.

Table 4: Suffix presence (indicated by ‘1’) for selected words from the MorphoLex dataset

Word er t y est ly ness less
weightier 1 1 1 0 0 0 0
weightiest 0 1 1 1 0 0 0
weightily 0 1 1 0 1 0 0
weightiness 0 1 1 0 0 1 0
weightlessly 0 1 0 0 1 0 1

3.3.2 Experiments and Results

Correlation-Based Linearity of Semantics and Morphology in Word2Vec We examine the extent
to which word2vec embeddings are correlated with WordNet embeddings and with MorphoLex represen-
tations. For WordNet, 25,781 words are selected from the intersection of the WN18RR and word2vec
(GoogleNews-vectors-negative300) vocabularies. We train embeddings for these words over WordNet on an
entity prediction task, which involves predicting the tail entity given a head entity and relation. Training de-
tails are provided in Appendix G.1. We build a continuous embedding matrix Uw2v−wn ∈ R25,781×300

using vectors from GoogleNews-vectors-negative300. We build a second continuous embedding matrix
Uwn−w2v ∈ R25,781×20 and assess the correlation using the methods described in section 2.

To assess the correlation between word2vec and MorphoLex, 15,342 words and 81 suffixes are selected by in-
tersecting the MorphoLex and word2vec (GoogleNews-vectors-negative300) vocabularies and filtering out suf-
fixes occurring fewer than 10 times. We build a continuous embedding matrix Uw2v−morpho ∈ R15,342×300 us-
ing vectors from GoogleNews-vectors-negative300 and a binary embedding matrix Xmorpho ∈ {0, 1}15,342×81.
We again assess the correlation using the methods described in section 2.

As shown in Figures 6a and 6b, the Pearson Correlation Coefficient (PCC) between word2vec, WordNet
embeddings, and MorphoLex binary vectors significantly exceeds the randomized baseline, indicating that
word2vec embeddings, trained on contextual co-occurrences, implicitly capture both semantic and morpho-
logical information.

(a) PCC for the true WordNet-
word2vec pairings and 50 permuted
pairings.

(b) PCC comparison for the true
MorphoLex-word2vec pairings and 50
permuted pairings.

Figure 6: PCC is calculated between projected A and projected U. The first 20 components are selected
for illustration. Real pairings show higher PCC values than permuted ones, showing word2vec embeddings
capture both semantic and morphological information.
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Additive Compositionality of word2vec Embeddings To examine the additive compositionality of
word2vec embeddings across multiple suffixes, we select 278 words as follows. We filter words that have
exactly 3 suffixes, each of which occurs 10 times or more6. This results in 17 suffixes, but some words end up
with fewer than 3 suffixes because certain suffixes occur less than 10 times and are filtered out. We build a
continuous embedding matrix Uw2v−add ∈ R278×300 using vectors from GoogleNews-vectors-negative300. We
build a binary attribute matrix Amorpho−add ∈ R278×45 indicating the presence or absence of each root word
and morphemes. We perform the additive compositionality experiment described in section 2 to determine
whether embeddings may be decomposed into multiple suffixes. Results are presented in Figure 7. We see
that word2vec embeddings can be decomposed into root and multiple suffixes fairly well. The linear system
loss is 39.85, lower than the minimum loss of the random system (43.91). Cosine similarity is 0.44, greater
than all instances of the random baseline, and retrieval accuracy @ 10 is greater than that of the random
system. However, overall these values are low, showing that there is still a fair bit of information that is not
being captured by this representation.

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@10

Figure 7: The test statistics for word2vec embedding decomposition. Dash line is the average performance
of û learned from the word2vec embedding. The bars are the distribution of the results from random
permutations that run for 100 times. (a) L2 loss, (b) Cosine Similarity, and (c) Retrieval Accuracy@10
compare real word2vec embedding pairs to permuted pairs.

4 Discussion and Conclusion

In many cases, embeddings are not easily explainable to humans, which may present safety concerns. To
address this issue, we analyzed embeddings from word, sentence, and graph data structures and worked
to interpret them in a more understandable way. Our central goal was to determine whether embeddings
representing structured entities could be decomposed through additive composition. To this end, we applied
two methods from the literature: (1) a correlation-based linearity analysis that measured how well learned
embeddings correlated with known attributes, and (2) an additive compositionality detection method (Xu
et al., 2023), which provides a way to decompose embeddings into vectors representing distinct attributes.

Linearity, Decomposition and Compositionality Our paper adopted a two-step approach to explore
the inherent structure of embeddings. In the first step, Correlation-based linearity detection confirmed a
robust linear correlation between embeddings and candidate semantic features. This step established the
necessary foundation for the second method, additive compositionality detection, where we rigorously demon-
strated that final embeddings can be reconstructed as an additive combination of concept embeddings, using
uniform coefficients analogous to those in word2vec’s analogy tasks. Unlike the work in Arora et al. (2018),
which focuses solely on decomposition, our leave-one-out experiment directly test the reconstruction of the
original embedding, thereby providing a more stringent validation of additive compositionality. While pre-
vious research (Mitchell & Lapata, 2010; Coecke et al., 2010) has focused on constructing representations by
combining parts into a whole, our approach inverted this task by decomposing holistic representations into
their constituent components. This inversion allows us to examine compositionality from both the construc-
tive and deconstructive perspectives. Our method builds on and extends earlier works (Maillard & Clark,
2015; Wijnholds et al., 2020; Baroni & Zamparelli, 2010; Lewis et al., 2022) by not only identifying these

6These words are listed in Appendix H
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components but also validating their additive recombination via a leave-one-out strategy, which underscores
the generative potential of the additive compositional structure in diverse embedding spaces.

The additive compositionality approach is fundamentally rooted in the linear system theory, as the su-
perposition principle enables us to decompose embeddings into distinct component vectors that can then
be recombined to reveal underlying relationships. In this way, linearity and additive compositionality are
effectively the same: both describe how the properties of a whole can be derived from the sum of its parts.

Word2Vec (Mikolov et al., 2013b), for instance, set the goal for understanding compositionality by showing
that vector arithmetic can capture meaningful relationships. This pioneering work has inspired further
research on decomposing embeddings to discover compositional structures. We extended this line of inquiry
by investigating compositionality across various data embeddings and evaluation metrics. Our additive
compositionality detection method decomposes embeddings into constituent component vectors and then
recombines them, clearly evidencing an additive signal that supports compositionality.

Our experiments demonstrated that embeddings across diverse domains exhibit additive compositionality,
albeit to varying degrees. In word embeddings (e.g., word2vec), morphological information showed a weaker
additive signal than expected. For sentence embeddings, we evaluated additive compositionality via de-
composition into constituent concepts. Decomposing sentences into multiple concepts is inherently more
complex due to interactions within token representations, making this a more stringent test of additive
compositionality.

Different training techniques influence the degree of compositionality. In MultiBERTs, compositionality does
not steadily increase with training and can decline over time (see Table 3). By contrast, compositionality in
knowledge graph embeddings tends to rise steadily during training. Likewise, in SBERT, compositionality
increases in earlier layers but declines slightly in later layers, presumably because these upper layers specialize
in task-specific representations (Devlin et al., 2018; Tenney et al., 2019a). For graph embeddings, both
additive and multiplicative scoring functions perform similarly, and further correlation-based analysis sheds
light on the semantic meaning of embedding dimensions.

Our findings address the broader question of whether relations between structured entities can be captured
through simple vector operations. Evaluating a range of word, sentence, and graph embeddings showed a
common thread of additive compositionality. For sentence embeddings, conceptual components can often be
combined additively, indicating that even large, non-linear models (e.g., GPT or Llama) retain interpretable
vector structures. Word embeddings effectively encode both morphological and semantic relationships, as
illustrated by transformations like weight + y + ly = weightily. In knowledge graph embeddings, attributes
such as user demographics (age, gender) can be adjusted via vector operations, enabling inference of new
relationships in recommender systems.

Overall, these results underscore that embeddings from diverse sources maintain a surprising degree of addi-
tive compositional structure, which can be leveraged to enhance interpretability in representation learning.
Future work will build on this foundation by exploring debiasing techniques (Bose & Hamilton, 2019) and
examining how large language models produce and utilize additive components in tasks like reasoning. Addi-
tionally, given the large size of LLaMA embeddings, we plan to explore dimensionality reduction techniques,
such as those inspired by the Johnson–Lindenstrauss lemma, to preserve statistical properties while improv-
ing numerical stability and computational efficiency. A more detailed investigation at both the layer and
attention-head level, as well as an extension to additional graph embedding models, may further illuminate
how different architectures preserve and exploit these additive relationships.
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A Details of Correlation-Based Compositionality Detection Method

Canonical Correlation Analysis (CCA) is used to measure the correlation information between two multi-
variate random variables (Shawe-Taylor et al., 2004). Just like the univariate correlation coefficient, it is
estimated on the basis of two aligned samples of observations.

A matrix of binary-valued attribute embeddings, denoted as A, is essentially a matrix representation where
each row corresponds to a specific attribute and each column corresponds to an individual data point (such
as a word, image, or user). The entries of the matrix can take only two values, typically 0 or 1, signifying
the absence or presence of a particular attribute. For example, in the context of textual data, an attribute
might represent whether a word is a noun or not, and the matrix would be populated with 1s (presence) and
0s (absence) accordingly.

On the other hand, a matrix of user embeddings, denoted as U, is a matrix where each row represents an
individual user, and each column represents a certain feature or dimension of the embedding space. These
embeddings are continuous-valued vectors that capture the movie preference of the users. The values in this
matrix are not constrained to binary values and can span a continuous range.

These paired random variables are often different descriptions of the same object, for example genetic and
clinical information about a set of patients (Seoane et al., 2014), French and English translations of the same
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document (Vinokourov et al., 2002), and even two images of the same object from different angles (Guo &
Wu, 2019).

In the example of viewers and movies, we use this method to compare two descriptions of users. One matrix
is based on demographic information, which are indicated by Boolean vectors. The other matrix is based on
their behaviour, which is computed by their movie ratings only.

Assuming we have a vector for an individual user’s attribute embedding, denoted as:

a = (a1, a2, . . . , an)T

and a corresponding individual user’s computed embedding:

u = (u1, u2, . . . , um)T

we aim to explore the correlation between these two representations across multiple users. Given a set of q
users, we define A as a q × n matrix where each row corresponds to the attribute embeddings for a specific
user, and U as a q × m matrix where each row represents the computed embedding of the same user. Here,
n is the number of attributes, and m is the dimensionality of the user embeddings.

Canonical Correlation Analysis (CCA) is then employed to find the projection matrices WA ∈ Rn×k and
WU ∈ Rm×k that maximise the correlation between the transformed representations of A and U. Each
projection matrix contains k-projection vectors, where k is the number of canonical components that depend
on the eigenvalues of the covariance matrix. For each k-th canonical component, the projections of the
attribute and user embeddings are given by:

Ak = Awak
and Uk = Uwuk

where wak
∈ Rn and wuk

∈ Rm are the k-th projection vectors from the matrices WA and WU , respectively.
Ak ∈ Rq represents the projection of the original attribute matrix A (size q × n) onto the k-th canonical
direction, using the projection vector wak

∈ Rn. It results in a vector of size q × 1 that contains the
transformed values for each user for the k-th component. Similarly, Uk ∈ Rq represents the projection of
the original user embedding matrix U (size q × m) onto the k-th canonical direction, using the projection
vector wuk

∈ Rm. It also results in a vector of size q × 1 that contains the transformed values for each user
for the k-th component.

The goal of CCA is to maximise the Pearson Correlation Coefficient (PCC) between these transformed
representations, i.e., between Ak and Uk, for each k-th canonical component. The correlation for the k-th
canonical component, denoted as ρk, is given by the formula:

ρk =
∑q

i=1 ((Ak)i − µAk
) ((Uk)i − µUk

)√∑q
i=1 ((Ak)i − µAk

)2
√∑q

i=1 ((Uk)i − µUk
)2

(1)

where µAk
and µUk

are the means of the transformed attribute and user embeddings, respectively, and q is
the number of users.

In matrix form, we can express this objective as maximising the correlation between the transformed matrices
AWA and UWU . This is formalised as:

ρ = max
WA,WU

corr (AWA, UWU ) (2)

where the correlation is maximised across the projection matrices WA and WU , and the result is a set of
K-canonical correlations ρ1, ρ2, . . . , ρk that describe the relationship between the attribute embeddings and
the user embeddings for the entire dataset.

Thus, by computing the canonical correlations ρK for each component, we obtain insights into how well the
attribute embeddings and computed user embeddings are aligned in terms of their underlying structure.

As shown in Figure 8, consider the case where we have 4 users. The attribute matrix A has dimensions 4×4,
representing 4 users and 4 attributes, and the user embedding matrix U has dimensions 4×3, representing 4

18



Under review as submission to TMLR

Figure 8: Schematic of Correlation-based compositionality Detection (Guo et al., 2023)

users and 3 embedding dimensions. Thus: - A ∈ R4×4: the attribute matrix where each row represents the
4-dimensional attribute vector for a user. - U ∈ R4×3: the user embedding matrix where each row represents
the 3-dimensional embedding vector for a user.

Canonical Correlation Analysis (CCA) is employed to find the projection matrices WA ∈ R4×k and WU ∈
R3×k that maximize the correlation between the transformed representations of A and U. Each projection
matrix contains k-projection vectors, where k is the number of canonical components that depend on the
eigenvalues of the covariance matrix. For each k-th canonical component, the projections of the attribute
and user embeddings are given by:

Ak = Awak
and Uk = Uwuk

where wak
∈ R4 and wuk

∈ R3 are the k-th projection vectors from the matrices WA and WU , respectively.

B Leave-one-out experiment

1. Leave Out: Exclude the i-th row from A and U to obtain A−i and U−i.

2. Train: Solve A−iX = U−i using the pseudo-inverse to obtain X.

3. Predict: Estimate the left-out embedding using ûi = aiX, where ai is the attribute vector of entity
i.

4. Evaluate: Compare ûi with the actual embedding ui using the following metrics:

(a) L2 Loss: L2 = ∥ûi − ui∥2, measuring the reconstruction error.

(b) Embedding Prediction (Cosine Similarity): cos(θ) = ûi · ui

∥ûi∥ ∥ui∥
, assessing the alignment between

the predicted and actual embeddings.
(c) Identity Prediction (Retrieval Accuracy): Determines if ûi correctly identifies entity i by check-

ing if ui is the nearest neighbor to ûi among all embeddings.

C Knowledge Graph Embedding

Knowledge Graph Embedding A graph G = (V, E) consists of a set of vertices V with edges E between
pairs of vertices. In a knowledge graph, the vertices V represent entities in the real world, and the edges
E encode that some relation holds between a pair of vertices. As a running example, we consider the case
where the vertices V are a set of viewers and films, and the edges E encode the fact that a viewer has rated
a film.

Knowledge Graphs represent information in terms of entities (or nodes) and the relationships (or edges)
between them. The specific relation r that exists between two entities is depicted as a directed edge, and
this connection is represented by a triple (h, r, t). In this structure, we distinguish between the two nodes
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involved: the head (h) and the tail (t), represented by vectors h and t respectively. Such a triple is termed
a fact, denoted by f :

f = (h, r, t)

Embedding Function. A knowledge graph G = (V, E) can be embedded by assigning each node v ∈ V
a vector xv ∈ Rd. This embedding function, ΦKG : V → Rd, maps nodes into a continuous space where
their relationships are captured by a scoring or distance function. For instance, one could define a threshold
θ such that an edge (vi, vj) ∈ E exists if and only if D(xvi , xvj ) < θ. Conversely, given a set of embedded
points, links between nodes can be recovered by applying a learned scoring function S

(
xvi

, xvj

)
.

C.1 Multiplicative Scoring

Nickel et al. (2011) introduced a tensor-factorization approach for relational learning, treating each frontal
slice of a three-dimensional tensor as a co-occurrence matrix for a given relation. In this model, a triple
(h, r, t) is scored using embeddings h, R, t, where h, t ∈ Rd represent head and tail entities, and R ∈ Rd×d

represents the relation:
S(h, r, t) = hT R t. (3)

Various specializations exist, such as DistMult (Yang et al., 2014), which restricts R to a diagonal matrix
(reducing overfitting), and ComplEx (Trouillon et al., 2016), which employs complex-valued embeddings for
asymmetric relations. In this work, we adopt DistMult due to its simplicity and scalability, particularly its
suitability for large knowledge graphs.

C.2 Additive Scoring

TransE (Bordes et al., 2013) introduces a translation-based perspective, where each relation is a vector that
shifts the embedding of the head entity to the tail entity. A triple (h, r, t) is scored by:

S(h, r, t) = ∥h + r − t∥, h, r, t ∈ Rd. (4)

For example, King + FemaleOf ≈ Queen. This translation idea captures relational semantics by minimizing
the distance between h + r and t.

Rating Prediction In alignment with (Berg et al., 2017), we establish a function P that, given a triple
of embeddings (h, R, t), calculates the probability of the relation against all potential alternatives.

P (h, R, t) = SoftArgmax(S(f)) = eS(f)

eS(f) +
∑

r′ ̸=r∈R eS(f ′) (5)

In the above formula, f = (h, r, t) denotes a true triple, and f ′ = (h, r′, t) denotes a corrupted triple, that
is a randomly generated one, that we use as a proxy for a negative example (a pair of nodes that are not
connected).

Assigning numerical values to relations r, the predicted relation is then just the expected value prediction =∑
r∈R rP (h, R, t) In our application of viewers and movies, the set of relations R could be the possible

ratings that a user can give a movie. The predicted rating is then the expected value of the ratings, given
the probability distribution produced by the scoring function. S(f) refers to the scoring function in Yang
et al. (2014).

To learn a graph embedding, we follow the setting of Bose & Hamilton (2019) as follows,

L = −
∑
f∈F

log eS(f)

eS(f) +
∑

f ′∈F ′ eS(f ′) (6)

This loss function maximizes the probabilities of true triples (f) and minimizes the probability of triples
with corrupted triples: (f ′).
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Evaluation Metrics We use 4 metrics to evaluate our performance on the link prediction task. These are
root mean square error (RMSE,

√
1
n

∑n
i=1 (ŷi − yi)2, where ŷi is our predicted relation and yi is the true

relation), Hits@K - the probability that our target value is in the top K predictions, mean rank (MR) - the
average ranking of each prediction, and mean reciprocal rank (MRR) to evaluate our performance on the
link prediction task. These are standard metrics in the knowledge graph embedding community.

D Additive Compositionality by Model

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@5

Figure 9: Test statistics for GPT embedding decomposition. Dashed line is the average performance of Û
learned from the user embedding. Bars are the distribution of the results from 100 random permutations.

(a) Linear System Loss (b) Cosine Similarity (c) Retrieval Accuracy@5

Figure 10: Test statistics for Llama embedding decomposition. Dashed line is the average performance of Û
learned from the user embedding. Bars are the distribution of the results from 100 random permutations.

E Compositionality across Layers and Training Stages

E.1 Comparison of Different Layers

Comparison Metrics To fairly compare different layers, we cannot rely solely on raw cosine similar-
ities or retrieval accuracies due to variations in scales and distributions. Instead, we use normalized
metrics for comparability. The Normalized Cosine Similarity computes the difference between the
mean real similarity and the mean permuted similarity, normalized by the maximum possible difference,
(1 − Mean Permuted Similarity). The Absolute Difference is a simple measure of the difference between
mean real and permuted similarities. Lastly, the Relative Difference (Percentage Improvement) ex-
presses this difference as a percentage of the permuted similarity, indicating proportional improvement.
These metrics enable robust and fair comparisons across models.
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Table 5: Additive Compositionality Metrics Across SBERT Layers

Layer Mean Sim (Real) Mean Sim (Permuted) Norm. Cosine Sim Hits@5 Acc (Real) Hits@5 Acc (Permuted) Norm. Retrieval Acc
0 0.8889 0.7808 0.4930 0.59 0.0397 0.5731
1 0.9366 0.8671 0.5228 0.57 0.0406 0.5518
2 0.9397 0.8576 0.5767 0.61 0.0390 0.5942
3 0.9403 0.8330 0.6424 0.64 0.0412 0.6245
4 0.9408 0.8298 0.6523 0.66 0.0400 0.6458
5 0.9409 0.8273 0.6577 0.62 0.0417 0.6035
6 0.7761 0.4865 0.5640 0.59 0.0405 0.5727

Table 6: Additive Compositionality Metrics at Different Training Steps of BERT

Model Training Steps Mean Sim (Real) Mean Sim (Permuted) Norm. Cosine Sim Hits@5 Acc (Real) Permuted Acc Norm. Retrieval Acc
cls_0k 0 0.9884 0.9882 0.0163 0.44 0.0418 0.4156
cls_20k 20,000 0.8787 0.7722 0.4676 0.55 0.0407 0.5309
cls_40k 40,000 0.8773 0.7724 0.4607 0.48 0.0405 0.4581
cls_100k 100,000 0.9201 0.8323 0.5236 0.55 0.0417 0.5304
cls_1000k 1,000,000 0.9545 0.9149 0.4655 0.44 0.0408 0.4162
cls_2000k 2,000,000 0.9538 0.9094 0.4896 0.48 0.0415 0.4575

F Error Bar Plot

G Word Embeddings

G.1 WordNet Embedding

We want to ensure our WordNet embedding can contain the semantic relation in it. Therefore, we train
the embedding with the task of predicting the tail entity given a head entity and relation. For example, we
might want to predict the hypernym of cat:

< cat, hypernym, ? >

Mapping Freebase ID to text WordNet is constructed with Freebase ID only, an example triple could
be <00260881, hypernym, 00260622>. We follow villmow (2019) to preprocess the data and map each entity
with the text with a real meaning.

The above triple can then be processed with the real semantic meaning: <land reform, hypernym, reform>.
The word2vec word embedding is pretrained from a google news corpus. We train the WordNet Embedding
in the following way:

1. We split our dataset to use 90% for training, 10% for testing.

2. Triples of (head, relation, tail) are encoded as relational triples (h, r, t).

3. We randomly initialize embeddings for each hi, rj , tk, use the scoring function in Equation 4 and
minimize the loss by Margin Loss.

4. We sampled 20 corrupted entities. Learning rate is set at 0.05 and training epoch at 300.

Results can be found in the Table 7, which shows that our WordNet embeddings do contain semantic
information.

Table 7: Link prediction performance for WordNet

Hits@1 Hits@3 Hits@10 MRR
WordNet 0.39 0.41 0.43 0.40
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Figure 11: Error bar plot comparing the real measured values (red dots) with the corresponding random
permutation distributions (blue markers with error bars) for three metrics: (a) L2 norm, (b) cosine similarity,
and (c) Hits@5 accuracy. The blue error bars represent the mean ± standard error of the metric computed
over 100 random permutations, thereby quantifying the variability and uncertainty in the random baseline.

H List of words of experiments: Decomposing word2vec Embedding by Additive
Compositionality Detection

allegorically, whimsicality, whimsically, voyeuristically, weightier, weightiest, weightily, weightiness, weight-
lessly, veritably, visualizations, tyrannically, traitorously, transcendentally, transitionally, tangentially, tem-
peramentally, surgically, structurally, studiously, studiousness, stylistically, spiritualistic, slipperiest, slipper-
iness, serviceability, serviceably, sectionalism, sentimentalism, sentimentalist, sentimentalized, sentimental-
izes, sentimentalizing, sentimentally, serialization, serializations, satanically, reverentially, ritualistically, reg-
ularization, quizzically, rapturously, puritanically, probationers, probationer, psychiatrically, preferentially,
practicably, practicalities, pleasurably, polarizations, phenomenally, personalizations, pessimistically, pathet-
ically, occupationally, optionally, oratorically, nationalizations, nautically, neutralizer, neutralizers, myste-
riously, mysteriousness, narcissistically, moralistically, melodiously, melodiousness, memorializes, memorial-
izing, metrication, materialistically, mechanistically, mechanizations, longitudinally, lexically, liberalization,
liquidator, liquidators, journalistic, inferentially, injuriously, hysterically, idealistically, heretically, futuris-
tically, fractionally, fluoridation, fictionalized, fictionalizes, fictionalizing, figuratively, farcically, fatalistic,
environmentalists, environmentally, episodically, equitably, emotionlessly, ecclesiastically, editorialized, ed-
itorializes, editorializing, editorially, educationalist, educationalists, educationally, egotistical, egotistically,
dictatorships, differentiations, derivatively, developmentally, deviationist, deviationists, decoratively, defer-
entially, definitively, demagogically, demonically, decimalization, cumulatively, conversationalists, conversa-
tionally, confidentialities, conspiratorially, collectivization, colonialists, classically, chauvinistically, censori-
ousness, certifications, capitalizations, breathalyser, breathalysers, brutalization, antagonistically, apocalyp-
tically, weightlessness, westernization, victoriously, visualization, vocalization, urbanization, Unitarian, Uni-
tarians, transcendentalism, transcendentalist, transcendentalists, theatrically, theoretically, technicalities,
technicality, technically, speculatively, socialistic, socialization, sophisticate, sophisticated, sophisticates, sig-
nificantly, sensational, sentimentalists, sentimentality, sentimentalize, scientifically, satirically, rotationally,
residentially, relativistic, realistically, prudentially, pressurization, probabilistic, probationary, professional-
ism, professionally, popularization, potentialities, potentiality, potentially, practicability, practicality, practi-
cally, polarization, phosphorescence, phosphorescent, physically, physicalness, periodically, personalization,
particularistic, paternalistic, operational, oratorical, organizational, normalization, numerically, negatively,
negativism, neutralization, nationalistic, nationalization, naturalistic, naturalization, mechanically, memori-
alize, memorialized, metrically, maturational, localization, linguistically, liquidation, liquidations, juridical,
justifiably, industrialization, imperialistic, incidentally, identically, imaginatively, historically, harmoniously,
graphically, generalization, generalizations, fictionalize, existentialism, existentialist, existentialists, evangel-
icalism, environmentalism, environmentalist, equalization, equalizers, equatorial, electrically, electronically,
emotionalism, emotionality, emotionally, economically, editorialist, editorialize, directionality, directionally,
dictatorial, dictatorship, differentiation, conversationalist, confidentiality, confidentially, colonialism, colo-
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Figure 12: Positive weights in the first canonical component of CCA show the association between user
attributes (e.g., male and Age: 18 ) and user embedding dimensions (e.g., 44 and 49 ).

nialist, commercialization, communicational, civilizational, centralization, certification, chemically, capital-
istic, capitalization, catastrophically, categorically, behaviorally, authentication, authentications, authen-
ticator, artistically, architecturally, anatomically, Anglicanism, alternatively, altruistically, adventurously,
acoustically, activation, additionally

I Movie-Lens Training Details

This experiment was conducted on the MovieLens 1M dataset (Harper & Konstan, 2015) which consists of
a large set of movies and users, and a set of movie ratings for each individual user. It is widely used to
create and test recommender systems. Typically, the goal of a recommender system is to predict the rating
of an unrated movie for a given user, based on the rest of the data. The dataset contains 6040 users and
approximately 3900 movies. Each user-movie rating can take values in 1 to 5. There are 1 million triples
(out of a possible 6040 × 3900 = 23.6m), so that the vast majority of user-movie pairs are not rated.

Users and movies each have additional attributes attached. For example, users have demographic information
such as gender, age, or occupation. Whilst this information is typically used to improve the accuracy of
recommendations, we use it to test whether the embedding of a user correlates to private attributes, such
as gender or age. We compute our graph embedding based only on ratings, leaving user attributes out.
Experiments for training knowledge graph embeddings are implemented with the OpenKE (Han et al., 2018)
toolkit. We train our model on GeForce GTX TITAN X.

We embed the knowledge graph in the following way:

1. We split our dataset to use 90% for training, 10% for testing.

2. Triples of (user, rating, movie) are encoded as relational triples (h, r, t).

3. We randomly initialize embeddings for each hi, rj , tk and train embeddings to minimize the loss in
equation 6 7.

4. We sampled 10 corrupted entities and 4 corrupted relations per true triple. Learning rate is set at
0.01 and training epoch at 300.

We verify the quality of the embeddings by carrying out a link prediction task on the remaining 10% test
set. We achieved a RMSE score of 0.88, Hits@1 score of 0.46 and Hits@3 as 0.92, MRR as 0.68 and MR as
1.89.

J Analysis of the First Canonical Component of CCA for Knowledge Graph
Embedding

7We add a negative sign for the additive scoring function, since we want to maximize the probability of the true triple, which
aligns the setting of this loss function
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